Metadata of the article that will be visualized in OnlineFirst

ArticleTitle	Synthesis and optimization of an eight-bar linkage mechanism for seat suspensions
Article Sub-Title	
Article CopyRight	The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering (This will be the copyright line in the final PDF)
Journal Name	Journal of the Brazilian Society of Mechanical Sciences and Engineering
Corresponding Author	FamilyName Spaggiari
	Particle
	Given Name A.
	Suffix
	Division
	Organization University of Modena and Reggio Emilia
	Address 242122, via Amendola, Italy
	Phone
	Fax
	Email andrea.spaggiari@unimore.it
	URL
	ORCID http://orcid.org/0000-0001-8959-2599
Author	FamilyName Cocconcelli
	Particle
	Given Name M.
	Suffix
	Division
	Organization University of Modena and Reggio Emilia
	Address 242122, via Amendola, Italy
	Phone
	Fax
	Email
	URL
	ORCID
Author	FamilyName Castagnetti
	Particle
	Given Name D.
	Suffix
	Division
	Organization University of Modena and Reggio Emilia
	Address 242122, via Amendola, Italy
	Phone
	Fax
	Email
	URL
	ORCID
Author	FamilyName Dragoni
	Particle
	Given Name \mathbf{E}
	Suffix
	Division
	Organization University of Modena and Reggio Emilia
	Address 242122, via Amendola, Italy
	Phone
	Fax
	Email
	URL
	ORCID

Author	FamilyName Particle Given Name Suffix Division Organization Address Phone
	Fax Email URL ORCID
Schedule	Received Revised Accepted
242122, via Amendola, Italy	

Keywords (separated by '- Seat suspensions - Eight-bar linkage - Mechanical design - Kinematic equations - Vibrations
')

Footnote Information Technical Editor: Zilda de Castro Silveira. updates

Synthesis and optimization of an eight-bar linkage mechanism for seat suspensions

A. Spaggiari ${ }^{1}{ }^{(\odot} \cdot$ M. Cocconcelli $^{1} \cdot$ D. Castagnetti ${ }^{1} \cdot$ E. Dragoni $^{1} \cdot$ R. Rubini 1

Received: 14 February 2022 / Accepted: 5 August 2022
© The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2022

Abstract

The work presents the analysis and synthesis of an eight-link mechanism for industrial seat suspension, followed by a numerical optimization of the design under specific technical requirements. Even though the eight-bar linkage mechanism is a well-known architecture, it has few applications in seat suspensions, and it shows interesting features compared with more traditional scissor systems. It is possible to exploit this mechanism, provided that is correctly designed, to achieve a seat suspension system, which grants a large quasi-perfect vertical motion, without the need of prismatic couplers, which are often a weak point in off-highway application due to their maintenance issues and cost. Firstly, the problem was tackled analytically in order to obtain the general set of equations and verified numerically with a multibody solver. Secondly, to choose the best solution for the application, we carried out an optimization of the system, aimed at minimizing the horizontal displacement of the seat along with granting the desired vertical travel needed. The results are both a general design procedure to optimize under specific constraints the eight-bar linkage for seat suspensions problems and a detailed design and possible embodiment of a seat suspension systems with application in the agricultural field.

Keywords Seat suspensions • Eight-bar linkage • Mechanical design • Kinematic equations • Vibrations

```
List of symbols
a, b Alternative horizontal distance between the
    spring and the lower left pin
L
\beta Angle between members 5 and 9
0i Anticlockwise angle between an horizontal line
    and the member i
\omega
F
F}\quad\mathrm{ Force due to passenger weight
Fx ij Horizontal force exchanged between i and j when
    only two members insists on a pin
Fy ij Vertical force exchanged between i and j when
    only two members insists on a pin
FxP ij Horizontal force between Pin i and member j
    when three members insists on a pin
```

Technical Editor: Zilda de Castro Silveira.
A. Spaggiari
andrea.spaggiari@unimore.it
1 University of Modena and Reggio Emilia, 242122 via Amendola, Italy

$$
\begin{array}{ll}
\text { FyP ij } & \begin{array}{l}
\text { Vertical force between Pin } i \text { and member } j \text { when } \\
\text { three members insists on a pin }
\end{array} \\
x_{m} \quad \begin{array}{l}
\text { Horizontal distance between the spring and the } \\
\text { lower left pin }
\end{array}
\end{array}
$$

1 Introduction

Seat suspensions are a key element in agricultural and offhighway machines, since the health of the operator largely depends on this component. The seat suspension connects the body of the operator to the frame of the machine, which is subjected to several types of vibrations, either coming from the harsh environment, such as rough, uneven terrain, or from the engine and the equipment connected to the system. The operator must withstand these vibrations for a very long time, without having consequences in terms of muscle stress and/or other work-related pathologies. To date, vibrations are one of the most important ergonomic factors affecting workers' health and therefore global efficiency of the production. Almost all the workers using mechanized systems are exposed to mechanical vibrations while working [1]. The most common effects of vibration exposure are: relaxation, increase in nervous tension, occupational

Journal : Large $\mathbf{4 0 4 3 0}$	Article No : 3724	Pages : 11	MS Code : 3724	Dispatch : 18-8-2022

problems [2], depending on vibration of the system. Vibrations therefore should be avoided or at least decreased since they affects human health, working comfort, work productivity, work quality, and work safety [3]. One of the most used parameter to measure the exposure to vibrations is the whole-body vibration (WBV) which could lead to health issues, including spinal column problems and lower-back pain, depending on the magnitude, frequency, direction, duration, and distribution of the vibrations on the human body [4-6]. Workers from many occupations are exposed to WBV in road or off-road vehicles, but one of the most important application where WBV affects the operators is the farm tractor world [7]. Typically, modern tractors have front-axle suspensions and elastomeric anti-vibration mounts or a suspension system between the cabin and the chassis [8-14], but, since the vibration levels in tractors are higher than in other road vehicles [15], the role of the seat suspension is particularly important. In order to be more conservative for the worker health and safety, the design of a seat suspension does not consider the presence of other vibration suppression systems on the machine which will add an additional comfort to the machinery.

Agricultural vehicle WBV levels must be measured in accordance with the ISO 5008:2002 [16], where the tractor is driven over a smooth predefined path for 100 m and for the last 35 m on rougher track at a prescribed speed. During each cycle, the acceleration levels are measured simultaneously in three directions (X - longitudinal, Y - transverse and Z - vertical). The seat suspension must be rigid in X and Y direction, while should effectively suppress the vibration in Z direction. The typical structure used in seat suspension applications, therefore, is a 1 d.o.f. mechanism which allows only the vertical movement of the seat platform, with no rotation along the three axes (roll, pitch, yaw should be prevented).

The most common technical solution to this problem is the classic scissor configuration (Fig. 1a) [17], widely analysed in the literature [18] and quite popular among the main seat manufacturers [19-21]. This classical mechanical solution has some advantages in terms of stability, simplicity of construction, robustness to harsh environments, but it shows
some drawbacks as well, since it prevents the space under the seat to be fully exploited, and it has sliders on top and bottom of the structure, which need maintenance (lubricant) to achieve a smooth behaviour. The scissor configuration (Fig. 1a), as shown in [18, 22] has two main components which are in charge of suppressing the vibration: a spring and a damper. Typically, high-performance seat suspensions exploit air springs [18] and increase the damping capability by using a magnetorheological (MR) damper. The MR damper is able to produce a force which is proportional to the applied current, which grants improved performances in case of uneven terrain [23-28]. Air springs are typically preferred to mechanical spring since they provide adjustable height of the seat, according to the operator comfort, thanks to pressure calibration inside the spring. In order to overcome the drawback of the scissor suspension, Bose proposed a simple Grashof four-bar linkage active mechanism (Fig. 1b) [29, 30], which has an active electromagnetic system that compensate most of the vibrations especially for truck seats, where the speeds are very high but the displacement of the vehicle due to the external excitations smaller than in agricultural and off-highway. Since the seat is connected to a link of the four-bar mechanism, one of the limitations is that the vertical displacement of the system is coupled with a horizontal motion, which could be small for truck applications, but becomes too large for agricultural ones, where the displacements are larger due to the uneven terrain. The typical displacement range required for an agricultural seat suspension is above 100 mm up to 180 mm . The vibration frequencies are typically low in the normal working condition, but the seat must be able to prevent shocks due to impacts in rough terrain as well. The traditional scissor system as well as the Bose suspension provide a good damping behaviour in case of low frequency vibrations, but suffers in case of shocks, when the suspension hits the rubber stops. In order to prevents shocks and harsh impact of the seats against the hard stops of the structure having a seat with longer travel is an advantage, since it gives the spring, always present in the system, the chance to intervene with a stronger force, or better it provides an adequate reaction force with less rigid spring, increasing the comfort of the

Fig. 1 Scissors seat suspension general example with shock absorber and air spring [17] a and four-bar linkage b as reported in the Bose white paper [29]

(a)

(b)

Journal : Large 40430	Article No : 3724	Pages : 11	MS Code: 3724	Dispatch: 18-8-2022

ride. This consequence is clearly visible in many suspension applications such as down-hill mountain bikes or off-road enduro motorbike systems as well as in seat suspension for marine and military applications [31].

A more detailed explanation of how the seat travel affects the performance is reported in $[32,33]$ where three seats with different travel were compared and the results shows how the seat with longer vertical stroke provides a better performance in terms of SEAT (seat effective amplitude transmissibility) and VDV (vibration dose value).

The present work deals with the design of a seat suspension able to provide an almost pure vertical and large stroke while keeping small dimensions. An additional requirement is to avoid the sliders and retain the necessary under-seat volume for spring and dampers, which excludes the state-of-the-art solution, i.e. the scissor seat suspension. In dirty environments typical of off-highway machines, hinges are widely preferable than sliders thanks to their intrinsic reliability, lower wear and absence of lubrication, easiest manufacturing, and assembly. The present work does not consider any dynamic analysis and control of the suspension but only a kinematic analysis; the reader interested in those topics can refer to the specific literature [34, 35].

According to the technical literature, many kinematic systems, which ensures an almost pure vertical motion, were already proposed and analysed. Considering sliders, we can find the Evans' linkage and several multibar expanding grilles [36]. The Watt's mechanism [36] presents a configuration with a single point of a link, which moves along a vertical line, as well as the Peaucellier straight line mechanism [36] or the D-Drive [36]. These three mechanisms simply use pinned connections. Other more complex mechanisms can be found in the literature, mostly based on the four-bar linkage couple with several ternary rigid members, which are too complex and thus costly to be implemented in an industrial environment [36]. A promising mechanism is the
eight-bar linkage (8BL) in Fig. 2, initially developed for scales: it shows an almost vertical motion of a platform and can be designed to be used in a seat suspension application. Regarding this mechanism, scarce information can be traced in technical literature, therefore this work focuses on the analysis and the optimization of the system, up to the design of a seat suspension digital twin with a detailed embodiment suitable for agricultural applications.

2 Kinematic analysis of the eight-bar linkage for vertical motion

The application of the 8 BL to the suspension problem requires the development of an analytical solution to the kinematic closure equations of the mechanism. The aim is to design and optimize the linkage described in Fig. 2 to obtain the required quasi-vertical movement of the output platform as a function of the motion of the input member. The problem is tackled first by providing a kinematic analysis of the system through a set of analytical equations, and then, an optimization is carried out under a set of prescribed dimensions and constraints which come from the potential application of the system. After that the embodiment of the suspension is provided, the rigid links dimensions are established to sustain the forces and stresses due to the load, and the spring and damper elements are placed under the seat compartment. The description of this methodology is provided in the subsequent sections.

This configuration can be studied as a planar mechanism, while a real application for a suspension will consists of two twin 8BL mechanisms at a given distance (i.e. the two 8BL lay on two parallel planes), in order to increase the robustness of the system and to provide a stable support for the operator seat.

Fig. 2 Eight-bar linkage inspired by [36]

Fig. 3 Eight-bar linkage planar schematic used for the kinematic analysis

Journal : Large 40430	Article No : 3724	Pages : 11	MS Code : 3724	Dispatch : 18-8-2022

Figure 3 shows the nomenclature for the 8BL, the peculiar dimensions of each members in the figure are identified by a number, from L_{1} to L_{10} which coincides with the member itself except the triangular rigid rocker arm, defined by the three distances of each hinge (5-9-10) and by the angle β comprised by 5 and 9 . Member 1 is assumed fixed and for each member of the mechanism a specific angle θ_{i}, measured always starting from the horizontal line in anticlockwise direction, as shown in Fig. 3, defines the position of the axis of each member. The vectors show the kinematic chains used in the next closure equations.

Initially, no assumptions are provided for the 8 BL , in order to be more general as possible. Considering the four-bar linkage $1-4-9-8$, it is possible to write the following relationships:
$\left\{\begin{array}{c}\mathrm{L}_{4} \cos \left(\theta_{4}\right)=\mathrm{L}_{8} \cos \left(\theta_{8}\right)+\mathrm{L}_{9} \cos \left(\theta_{9}\right) \\ \mathrm{L}_{1}+\mathrm{L}_{4} \sin \left(\theta_{4}\right)=\mathrm{L}_{8} \sin \left(\theta_{8}\right)+\mathrm{L}_{9} \sin \left(\theta_{9}\right)\end{array}\right.$
The angles θ_{9} and θ_{4} are taken as dependent variables, while the angle θ_{8} is the independent one. Through a series of analytical and algebraic simplifications, reported in Appendix, it is possible to explicitly write the angles θ_{9} as a function of the distances of the links and of the angle θ_{8} :

$$
\begin{aligned}
\frac{1}{\cos \left(\theta_{9}\right)}=- & \frac{2 L_{9}^{2}\left(L_{1}^{2}-2 L_{1}^{2} L_{8} \sin \left(\theta_{8}\right)+L_{8}^{2}\right)}{L_{8} L_{9} \cos \left(\theta_{8}\right)\left(L_{1}^{2}-2 L_{1}^{2} L_{8} \sin \left(\theta_{8}\right)-L_{4}^{2}+L_{8}^{2}+L_{9}^{2}\right)-} \\
& \sqrt{-L_{9}^{2}\left(L_{1}-L_{8} \sin \left(\theta_{8}\right)\right)^{2}}
\end{aligned}
$$

From trigonometric consideration, we have as well:
$\theta_{4}=\arccos \left(\frac{L_{8} \cos \left(\theta_{8}\right)+L_{9} \cos \left(\theta_{9}\right)}{L_{4}}\right)$
Once the expression of the angles is known, it is possible to derive the system of equations, reported in 1 in order to obtain the linear equations of the velocities ω_{4} and ω_{9} as a function of ω_{8} :
$\left\{\begin{array}{l}\omega_{4}=\frac{L_{8} \omega_{8} \operatorname{cosec}\left(\theta_{4}-\theta_{9}\right) \sin \left(\theta_{8}-\theta_{9}\right)}{L_{4}} \\ \omega_{9}=\frac{L_{8} \omega_{8} \sin \left(\theta_{4}-\theta_{8}\right) \operatorname{cosec}\left(\theta_{4}-\theta_{9}\right)}{L_{4}}\end{array}\right.$
Considering the rigid triangular member formed by the bars 5,9 , and 10 , it is obvious that they have the same angular velocity, and the angles are constrained to form a triangle:
$\omega_{9}=\omega_{5}=\omega_{10}$
$\theta_{5}=\pi+\theta_{9}-\beta$
The kinematic of the remaining members can be easily derived from the closure equations of the four-bar linkages $1-2-3-4$ and 3-5-6-7 and their time-derivative to get velocity equations:

$$
\left\{\begin{array}{l}
\mathrm{L}_{4} \cos \left(\theta_{4}\right)=\mathrm{L}_{2} \cos \left(\theta_{2}\right)+\mathrm{L}_{3} \cos \left(\theta_{3}\right) \\
\mathrm{L}_{1}+\mathrm{L}_{4} \sin \left(\theta_{4}\right)=\mathrm{L}_{2} \sin \left(\theta_{2}\right)+\mathrm{L}_{3} \sin \left(\theta_{3}\right) \\
\mathrm{L}_{3} \cos \left(\theta_{3}\right)+\mathrm{L}_{5} \cos \left(\theta_{5}\right)=\mathrm{L}_{7} \cos \left(\theta_{7}\right)+\mathrm{L}_{6} \cos \left(\theta_{6}\right) \\
\mathrm{L}_{3} \sin \left(\theta_{3}\right)+\mathrm{L}_{5} \sin \left(\theta_{5}\right)=\mathrm{L}_{7} \sin \left(\theta_{7}\right)+\mathrm{L}_{6} \sin \left(\theta_{6}\right) \tag{6}
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
\mathrm{L}_{4} \sin \left(\theta_{4}\right) \omega_{4}=\mathrm{L}_{2} \sin \left(\theta_{2}\right) \omega_{2}+\mathrm{L}_{3} \sin \left(\theta_{3}\right) \omega_{3} \\
\mathrm{~L}_{4} \cos \left(\theta_{4}\right) \omega_{4}=\mathrm{L}_{2} \cos \left(\theta_{2}\right) \omega_{2}+\mathrm{L}_{3} \cos \left(\theta_{3}\right) \omega_{3} \\
\mathrm{~L}_{3} \sin \left(\theta_{3}\right) \omega_{3}+\mathrm{L}_{5} \sin \left(\theta_{5}\right) \omega_{5}=\mathrm{L}_{7} \sin \left(\theta_{7}\right) \omega_{7}+\mathrm{L}_{6} \sin \left(\theta_{6}\right) \omega_{6} \\
\mathrm{~L}_{3} \cos \left(\theta_{3}\right) \omega_{3}+\mathrm{L}_{5} \cos \left(\theta_{5}\right) \omega_{6}=\mathrm{L}_{7} \cos \left(\theta_{7}\right) \omega_{7}+\mathrm{L}_{6} \cos \left(\theta_{6}\right) \omega_{6} \tag{7}
\end{array}\right.
$$

Member 6 can be considered as the end-effector of the 8 BL mechanism, i.e. where the driver's seat will be mounted on. The aim of the kinematic analysis is to write the displacement and the speed of the seat both in horizontal and vertical direction, in order to optimize the system. The vertical travel must be maximized, since a high vertical stroke leads to better vibration suppression [33], while the horizontal one must be minimized, or possibly prevented. By deriving the horizontal displacement of member 6 and substituting the expression of the angles (Eq. 5) and the angular velocities (Eq. 4) we can write the horizontal speed of member 6 .
$v_{6 h}=\frac{L_{8} \omega_{8}\left(\operatorname{cosec}\left(\theta_{4}-\theta_{9}\right) \sin \left(\theta_{4}-\theta_{8}\right)\left(L_{5} \sin \left(\beta-\theta_{9}\right)+L_{9} \sin \left(\theta_{9}\right)\right)-L_{9} \sin \left(\theta_{8}\right)\right.}{L_{9}}$
By comparing the horizontal speed of member 6 and the angular speed of member $8\left(\omega_{8}\right)$, we can write the final expression to be minimized.

$$
\begin{equation*}
\frac{v_{6 h}}{\omega_{8}}=\frac{L_{8}\left(\operatorname{cosec}\left(\theta_{4}-\theta_{9}\right) \sin \left(\theta_{4}-\theta_{8}\right)\left(L_{5} \sin \left(\beta-\theta_{9}\right)+L_{9} \sin \left(\theta_{9}\right)\right)-L_{9} \sin \left(\theta_{8}\right)\right.}{L_{9}} \tag{9}
\end{equation*}
$$

Journal : Large $\mathbf{4 0 4 3 0}$	Article No : 3724	Pages : 11	MS Code : 3724	Dispatch : 18-8-2022

This expression can be optimized by using an optimization algorithm, under the desired constraint of prescribed height in stored position and minimum vertical travel. Even though Eq. 9 is general, the problem can be simplified by considering that the dimensions of the link are constrained by the required vertical displacement, i.e. four-bar linkages $1-2-3-4$ and $3-5-6-7$ must be articulated parallelograms. Therefore, we prescribe the following constraints:
$\mathrm{L}_{1}=\mathrm{L}_{3}=\mathrm{L}_{6}$
$\mathrm{L}_{2}=\mathrm{L}_{4}$
$\mathrm{L}_{5}=\mathrm{L}_{7}$
which means, according to Figure 3, that the corresponding angles are:
$\theta_{1}=\theta_{3}=\theta_{6}=\pi / 2$
$\theta_{2}=\theta_{4}$
$\theta_{5}=\theta_{7}$
In order to limit the horizontal size of the mechanism in the close configuration, the triangle 5-9-10 must have $\beta \leq \frac{\pi}{2}$.

3 Numerical optimization procedure

The synthesis of the mechanism is solved numerically by means of an optimization procedure. First, the seat suspension constraints (Eqs. 8-9) were applied to the general problem. Assuming that member 6 (i.e. the seat) is the output of the suspension, the following dimensional requirements are the constraints that must be achieved:

Table 1 Optimization problem constraints
Enforced constrains in the opti- Motivation mization problem

$L_{1}=70 \mathrm{~mm}$	
$L_{2}=345 \mathrm{~mm}$	Maximum horizontal displacement
$L_{1}=L_{3}=L_{6}$	Horizontal space availability
$L_{2}=L_{4}$	Geometrical constraint
$L_{5}=L_{7}$	Geometrical constraint
$50 \mathrm{~mm}<L_{5}<340 \mathrm{~mm}$	Geometrical constraint
$50 \mathrm{~mm}<L_{8}<340 \mathrm{~mm}$	Maximum horizontal displacement
$50 \mathrm{~mm}<l_{9}<100 \mathrm{~mm}$	Horizontal space availability
$0<\beta \leq \pi / 2$	Maximum horizontal displacement
$0<\theta_{8}<\pi / 3$	Geometrical constraint
$L_{8} \operatorname{sen}\left[\theta_{8}\right]+L_{9} \operatorname{sen}\left[\theta_{9}\right]$	Geometrical constraint
$-L_{5} \operatorname{sen}\left[\theta_{9}-\beta\right]=60 \mathrm{~mm}$	Maximum horizontal displacement

1) The horizontal displacement of member 6 during the vertical travel should be within the range $\pm 6 \mathrm{~mm}$.
2) The seat suspension height in closed position should be less than 130 mm .
3) The overall vertical travel should be more than 120 mm .
4) The global horizontal dimension should be less than 380 mm .

These requirements grant an innovative suspension compared to the traditional scissor solution with a lower seat index point (as defined by ISO5353) and a much more compact structure. In order to solve the numerical optimization problem, these requirements should be quantified in numbers and other geometrical constraints should be added, mainly based on the mechanic of the seat suspension and on the available space. Table 1 reports a detailed list of all the constraints applied to the optimization problem.

We implemented the optimization problem through the Matlab software [37], by using the equations presented in the previous section and the constraints in Table 1. These constraints consider the average space typically allowed for the seat suspension in agricultural equipment and are comparable with some of the seats of commercial manufactures [18-20].

To identify the minimum of the objective function (i.e. Eq. (7)), we used the "fmincon" solver [37], which calculates the constrained minimum of a scalar function, can manage several variables and can be used with a sequential quadratic programming algorithm. The maximum number of iteration allowed was 1000 , and the tolerance of the solution was 1.0 E-6.

To identify the absolute value of the minimum of the objective function, we ran the procedure from different starting points. The geometrical constraints on the link lengths are imposed by the 8 BL architecture, while the last constraints are needed to maintain the system where it has a minimum drift of the horizontal displacement.

Table 2 Optimal configuration for the seat suspension under the constraints in Table 1

Geometrical variable Output results
$L_{1}=L_{3}=L_{6}=70 \mathrm{~mm}$ Horizontal displacement of member $6: \pm 5.35 \mathrm{~mm}$
$L_{2}=L_{4}=345 \mathrm{~mm} \quad$ Vertical displacement of member 6: 12.2 mm
$L_{5}=71.75 \mathrm{~mm} \quad$ Minimum height of the suspension: 125.2 mm
$L_{8}=332.38 \mathrm{~mm} \quad$ Maximum height of the suspension: 250.3 mm
$L_{9}=51.80 \mathrm{~mm} \quad$ Overall travel of member $6>125 \mathrm{~mm}$
$\beta=1.218 \mathrm{rad}$

Fig. 4 Solidworks Motion simplified model of the optimized configuration (not to scale)

4 Numerical optimization results

The results of the numerical optimization, based on the analytical method described by Eqs. (1-9), led to the following link length for the 8BL mechanism, reported in Table 2. All the constraints are met, and the performance of the suspension satisfies the system requirements.

5 Numerical kinetostatic validation

In order to verify numerically the selected solution for the suspension we developed a Solidworks Motion model, using the dimensions reported in Table 2 to validate the motion equations for the 8 BL . The model is reported in Fig. 4, and it is used to estimate the behaviour of the system in term of horizontal (x) displacement of member 6 (in light blue), the vertical link which is connected to the passenger's seat and the horizontal displacement of member 3 (in black), the vertical link of the parallelogram connected to the chassis, which provides a direct comparison to a four bar linkage
system (Fig. 1b) The input of the system is applied to the passenger seat as a sinusoidal vertical (z) travel from the lowermost to the uppermost position.

Figure 5 depicts that the 8BL mechanics provides a low horizontal displacement (within $\pm 6 \mathrm{~mm}$) with a quite high vertical travel (more than 130 mm) as the system moves from its closed to its open position. Figure 5 reports the horizontal displacement of the member as well, 3 in order to show that the simple four bar linkage 1-2-3-4 displays a 14% larger horizontal displacement, compared to the proposed solution. This result confirms that the mechanical design meets the constraints and provides the desired performance for the seat suspension.

6 Design and Structural analysis of the optimized mechanism

Once the optimization procedure and the numerical simulations confirmed the feasibility of the solution, the next step was to provide a suitable embodiment for the 8BL concept, which must be tailored to be applied to a real seat suspension. First, we designed a structure that switch from planar to 3D, by means of several rigid links that couples two parallel 8BL together. Then, structural and manufacturing constraint could be considered, especially regarding the base of the seat suspension and the member 6 , which is designed to be the housing of the proper seat. The detailed design of every component is not reported in this paper for the sake of brevity, but we report only synthetic considerations about the structural stability and strength of the main members.

Figure 6 reports the scheme used for the static structural analysis of the system: if we assume an input load F_{p} on

Fig. 5 Temporal plot of the horizontal displacement of member 6 (blue solid line) and member 3 (black dashed line) to be read on the right axis and vertical displacement of member 6 (red solid line) to be read on the left axis

[^0]| Journal : Large 40430 | Article No : 3724 | Pages : 11 | MS Code: 3724 | Dispatch: 18-8-2022 |
| :--- | :--- | :--- | :--- | :--- |

Fig. 6 Schematic of 8BL members used to determine the forces of acting on the system

member 6 (i.e. the passenger payload), to enforce the static and dynamic equilibrium of the system a spring is applied on member 4 , with an arm $x_{m}=220 \mathrm{~mm}$ from member 1 , which is the frame, and a line of action as the force, Fm, in Fig. 6. Starting from this, we wrote the 29 equilibrium equations, not reported here for the sake of brevity, that describe the forces acting on each pin and thus on each member of the mechanism. This system of equations was solved for each equilibrium point, since the distances between the hinges are completely defined depending only on one Lagrangian parameter, the angle θ, as reported in Fig. 3.
To determine the forces on the members of the suspensions and on the connecting pins, we used the following notation: F_{ij} is the force exchanged between members i and j when only two members insists on a pin, while when the pin connects three members the force on the pins, which works under shear and bending are defined as $F_{P A j}$, where P stands for pin, A is the pin name as defined in Fig. 6 and j is the member that exchanges a force with the pin. The force on each member is reported in the three important positions of the 8BL suspension: i) the closed position (Fig. 7a), ii) the maximum extension position (Fig. 7b), iii) the nominal position, in the middle between the other two (Fig. 7c). Table 3 reports the force in the three positions in horizontal (x) and vertical direction (y) normalized with respect to the force due to the passenger gravity, $F p$, except the components that are null. The force acting on the triangular rigid member are identified by number 5 . The force of the spring below the seat is Fm. It is worth noting that the 8 BL suspension with the proposed design exploits a spring which provides a force around twice the target force and conversely grants a travel for the seat which is two times the stroke of the spring.

The final embodiment of the seat suspension is reported in Fig. 7. Two 8BL are coupled in parallel by rigid links, which

Fig. 7 Embodiment of the suspension in fully closed position (a) in nominal position (b) and fully open position, (c)
help the system stability and prevent unwanted lateral displacement. The links were designed to sustain the desired load. The base of the system was designed to host all the components needed to provide the correct suspension of the passenger,

Journal : Large 40430	Article No : 3724	Pages : 11	MS Code : 3724	Dispatch: 18-8-2022

Table 3 - Forces acting on the 8BL members and hinges, normalized over the passenger weight, F_{p}

	Normalized Force (dimensionless)		
	Closed Position	Nominal Position	Open Position
Fx58	-3.42	-3.94	-4.34
Fy58	-0.21	-0.88	-1.38
FxP D5	3.42	3.94	4.34
FyP D5	1.20	1.86	2.37
Fx 14	3.42	3.94	4.34
Fy 14	-0.70	-0.18	0.20
Fx P D4	3.42	3.94	4.34
Fy P D4	1.20	1.86	2.37
Fx PA8	-3.42	-3.94	-4.34
Fy PA8	-0.21	-0.88	-1.38
Fx 12	-3.42	-3.94	-4.34
Fy 12	-0.21	-0.88	-1.38
Fy PG5	-0.98	-0.98	-0.98
Fm	1.89	2.04	2.17

such as springs, dampers, sensor, control system, and air flow control devices. On the left part of Fig. 7, it possible to see that the available space under the seat is used to host a damper and the control electronic with pneumatic valves used to control the pneumatic spring (in black) attached to member 4. The pneumatic spring, which was accounted in the analysis, posed one of the major constraints, since this element is typically commercial, and the design has to consider its stiffness and its maximum and minimum travel. The spring used in this application is a Contitech SZ 51-5 [38], with a travel of $\pm 30 \mathrm{~mm}$. The selected architecture allows this spring to be connected to a member in a position which suits the spring stroke limitations and provides the desired reaction force (which is dependent on the pressure applied by the pneumatic circuit): at 5 Bar the spring stiffness is roughly $83 \mathrm{~N} / \mathrm{mm}$ and the force in central position is around 3500 N .

Fig. 8 Traditional scissor system (a) and 8 -link system (b) in open (shaded) and closed configurations. The space available for the springs and the other elements under the seat depicted in green, while unavailable space is shown in purple

(a)

(b)

Journal : Large 40430	Article No : 3724	Pages : 11	MS Code : 3724	Dispatch: 18-8-2022

is larger for the proposed solution. Moreover, in the proposed solution there are many elements to which the spring could be connected as well as the possibility to choose the position of the spring almost freely in the under-seat volume. Only the central portion and the rightmost portion of the volume (shown in purple) are not available, but the same happens for the scissor suspensions, due to the central pins used to join the two sides of the system. The scissor system, which shows comparable compactness and similar vibrational behaviour, needs a spring with larger strokes and stiffness since the spring must be positioned not far from the leftmost hinge, due to the spatial disposition of its members.

Hence, the scissor suspension is mainly used when the sliders are not an issue or when the available horizontal space for the seat is not a tight constraint. To increase the space available for the components other solutions have been envisioned, such as systems like the Bose one (Fig. 1b) These systems, unfortunately, couples the vertical motion with the horizontal one, which is annoying for the driver especially for long strokes. Conversely, the 8BL grants a quite large space under the seat a small horizontal drift and multiple places where the spring can be placed, according to the manufacturer needs. Specifically, it can be attached either to bar 2, 8 , or 4 (Fig. 9). This freedom is crucial for the designer which can easily provide the desired dynamic response since the force and the deflection of the spring to be selected are dependent on its distance from member 1 (Fig. 9).

Another important features worth mentioning are the rubber hard stops which prevent the seat to hit the base and limit the upper stroke to avoid possible damages of the structure: these elements are considered in the suspension system, but not reported in the 3D model in Fig. 10 to avoid confusion.

8 Conclusion

This research shows the methodology used to provide the analysis and the synthesis of an eight-link mechanism for agricultural and off-highway seat suspensions. A

Fig. 10 3D assembly of the final suspension system
numerical optimization of the system is applied to ensure that the final design meets the technical specification and provides applicable results even compared with the traditional scissor systems which are the state of the art in this field. The methodology shown overcomes two issues of the traditional systems, i.e. the small space under the seat for the auxiliaries, which becomes more important as the functions of seat increases to satisfies ergonomics and safety aspects, and the presence of linear prismatic couplers, which are always delicate elements due to presence of lubricants and friction elements. First a set of analytical equations of the kinematics are developed in order to describe the proposed system, then a numerical optimization procedure is provided. The first aim is minimizing the horizontal displacement of the seat, which is annoying for the driver and the second aim is providing the desired vertical motion which leads to good vibration mitigation especially in harsh terrain. The large vertical displacement prevents the suspension to hit the hard stops and therefore the driver to undergo dangerous shocks, as reported in the Introduction section. The main advantages of the proposed

Fig. 9 Possible positions for the spring element. The spring is represented as mechanical spring for clarity, but in the application it was used the air spring described in the text. Position a linked to member 2, is suitable for small and rigid springs and position \mathbf{b} linked to member 8 , is for more compliant springs

Journal : Large 40430	Article No : 3724	Pages : 11	MS Code : 3724	Dispatch: 18-8-2022

solution are the compactness (380 by 300 footprint with around 125 mm of height in closed position) and the low seat index point, a very high vertical travel (more than 130 mm) which is more than a 100% extension and moderate horizontal travel of the seat, within $\pm 6 \mathrm{~mm}$. Moreover, the proposed embodiment grants a quite large space under the seat, more than half of the total suspension volume, which can be conveniently filled the auxiliaries and with a wide range of commercial pneumatic springs and dampers according to the dynamic needs of the vehicle, with several possible combinations. To conclude, the general design procedure of the analysis and synthesis of an eightbar linkage mechanism and its optimization under given constraints for seat suspensions was shown in detail for a possible application in the agricultural field, but the same methodology is widely applicable to other applications and industrial contexts.

Appendix

Considering the same notation reported in Fig. 3, Eq. 1 can be rewritten as:
$\left\{\begin{array}{c}L_{4} c_{4}=L_{8} c_{8}+L_{9} c_{9} \\ L_{4} s_{4}=L_{8} s_{8}+L_{9} s_{9}-L_{1}\end{array}\right.$
where $c_{i}=\cos \left(\theta_{i}\right)$ and $s_{i}=\sin \left(\theta_{i}\right)$. It is possible to square both equations and sum them together:
$L_{4}^{2}=L_{8}^{2}+L_{9}^{2}+L_{1}^{2}+2 L_{8} L_{9} c_{8} c_{9}+2 L_{8} L_{9} s_{8} s_{9}-2 L_{1} L_{8} s_{8}-2 L_{1} L_{9} s_{9}$
Introducing the parametric formula: $s_{\alpha}=\frac{2 t}{1+t^{2}}, c_{\alpha}=\frac{1-t^{2}}{1+t^{2}}$ where $t=\tan \left(\frac{\alpha}{2}\right)$ we have:
$\left(L_{1}^{2}+L_{8}^{2}+L_{9}^{2}-L_{4}^{2}-2 L_{1} L_{8} S_{8}\right)+2 L_{8} L_{9} c_{8} \frac{1-t_{9}^{2}}{1+t_{9}^{2}}$
$+2\left(L_{8} s_{8}-L_{1}\right) L_{9} \frac{2 t_{9}}{1+t_{9}^{2}}=0$
Rearranging the members it becomes:
$\left(L_{1}^{2}+L_{8}^{2}+L_{9}^{2}-L_{4}^{2}-2 L_{1} L_{8} s_{8}\right)\left(1+t_{9}^{2}\right)$
$+2 L_{8} L_{9} c_{8}\left(1-t_{9}^{2}\right)+4\left(L_{8} s_{8}-L_{1}\right) L_{9} t_{9}=0$
This is a second-degree equation in the term t_{9} :
$A t_{9}^{2}+2 B t_{9}+C=0$
where
$A=L_{1}^{2}+L_{8}^{2}+L_{9}^{2}-L_{4}^{2}-2 L_{1} L_{8} s_{8}-2 L_{8} L_{9} c_{8}$
$B=2\left(L_{8} s_{8}-L_{1}\right) L_{9}$
$C=L_{1}^{2}+L_{8}^{2}+L_{9}^{2}-L_{4}^{2}-2 L_{1} L_{8} s_{8}+2 L_{8} L_{9} c_{8}$
So we have the well-known solution:
$t_{9}=\frac{-B \pm \sqrt{B^{2}-A C}}{A}=f\left(\theta_{8}\right)$
After that follows a sequence of algebraic simplifications made by the software Mathematica [40] leads to Eq. (2).

References

1. European Risk Observatory (2008) Report: workplace exposure to vibration in europe: an expert review
2. Melemez K, Tunay M, Emir T (2013) The role of seat suspension in whole-body vibration affecting skidding tractor operators. J Food Agric Environ 11:1211-1215
3. Sherwin LM, Owende PMO, Kanali CL et al (2004) Influence of forest machine function on operator exposure to wholebody vibration in a cut-to-length timber harvester. Ergonomics 47:1145-1159. https://doi.org/10.1080/00140130410001702141
4. Blood RP, Ploger JD, Johnson PW (2010) Whole body vibration exposures in forklift operators: comparison of a mechanical and air suspension seat. Ergonomics 53:1385-1394. https://doi.org/ 10.1080/00140139.2010.519053
5. Solecki L (2011) Low back pain among farmers exposed to whole body vibration: a literature review. Med Pr 62:187-202
6. Adam SA, Jalil NAA (2017) Vertical suspension seat transmissibility and seat values for seated person exposed to whole-body vibration in agricultural tractor preliminary study. Procedia Eng 170:435-442. https://doi.org/10.1016/J.PROENG.2017.03.070
7. Scarlett AJ, Price JS, Stayner RM (2007) Whole-body vibration: evaluation of emission and exposure levels arising from agricultural tractors. J Terramechanics 44:65-73. https://doi. org/10.1016/J.JTERRA.2006.01.006
8. Research Institute S, Vibration Test Laboratory R (2004) HSE health \& safety executive practical solutions to noise problems in agriculture
9. Hidén T (2018) MS thesis: low energy-consuming load sensing truck cab suspension. KTH
10. Tewari VK, Dewangan KN (2009) Effect of vibration isolators in reduction of work stress during field operation of hand tractor. Biosyst Eng 103:146-158. https://doi.org/10.1016/j.biosy stemseng.2009.03.002
11. Giordano DM, Facchinetti D, Pessina D (2015) Comfort efficiency of the front axle suspension in off-road operations of a medium-powered agricultural tractor. Contemp Eng Sci 8:1311-1325
12. Mattetti M, Davoli S, Maraldi M et al (2019) Experimental characterisation of front axle suspension systems for narrow-track tractors. Biosyst Eng 185:45-55. https://doi.org/10.1016/j.biosy stemseng.2019.01.013
13. Gobbi M, Mastinu G, Previati G (2014) Farm tractors with suspended front axle: Anti-dive and anti-lift characteristics. J Terramechanics 56:157-172. https://doi.org/10.1016/j.jterra. 2014. 10.003

Journal : Large 40430	Article No : 3724	Pages : 11	MS Code : 3724	Dispatch: 18-8-2022

14. Cnh Front Axle and Suspension I NHAG. https://agriculture. newholland.com/apac/en/equipment/products/agricultural-tract ors/t7-heavy-duty/detail/front-axle-and-suspension
15. Kumar A, Varghese M, Mohan D et al (1999) Effect of wholebody vibration on the low back, a study of tractor-driving farmers in north India. Spine 24:2506-2515
16. ISO ISO 5008:2002 - Agricultural wheeled tractors and field machinery -- Measurement of whole-body vibration of the operator. https://www.iso.org/standard/1743.html
17. Scissors mechanism - Wikipedia. https://en.wikipedia.org/wiki/ Scissors_mechanism
18. Braghin F, Cheli F, Facchinetti A, Sabbioni E (2011) Design of an active seat suspension for agricultural vehicles. In: Proulx T. (eds) structural dynamics conference proceedings of the society for experimental mechanics series. Springer, New York
19. Grammer comfortable tractor seat options - grammer. https:// usa.grammer.com/grammer-usa/seating-solutions/agriculturalseating.html
20. C.O.B.O. (2020) Cobo Seats. https://www.cobogroup.net/en/catal ogues/sitting/seats.html?task=download.send\&id=3628\&catid= $121 \& m=0$
21. Sears sears seating deluxe D8075-D8065. http://www.searsseati ng.net/pdf/D8075.pdf
22. Song X, Ahmadian M, Southward S (2007) Analysis and strategy for superharmonics with semiactive suspension control systems. J Dyn Syst Meas Control 129:795. https://doi.org/10.1115/1.27894 70
23. CARLSON JD, (2005) MR fluids and devices in the real world. Int J Mod Phys B 19:1463-1470. https://doi.org/10.1142/S0217 979205030451
24. Jolly MR (2001) Pneumatic motion control using magnetorheological technology. Proc SPIE 4332:300-307. https://doi.org/10. 1117/12.429669
25. Carlson JD (2000) Lord MR fluid for automotive damping systems. Current
26. Spaggiari A, Dragoni E (2012) Efficient dynamic modelling and characterization of a magnetorheological damper. Meccanica. https://doi.org/10.1007/s11012-012-9573-y
27. Corp, Lord (2005) RD-8040-1 MR damper. http://www.lordm rstore.com/CatalogueRetrieve.aspx?ProductID $=7101544 \& A=$ SearchResult\&SearchID=32895351\&ObjectID $=7101544 \& O b j e c$ tType=27
28. Spencer BFJ, Dyke SJ, Sain MK, Carlson JD (1997) Phenomenological model for magnetorheological dampers. J Eng Mech

123:230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997) 123:3(230)
29. Parison J (2010) Bose ride system - technical overview white paper. http://cdn2.hubspot.net/hub/460706/file-2335930475-pdf/ files/Bose-Ride-system-Technical-Overview-White-Paper.pdf?t= 1423677098810
30. Clearmotion active suspension seat. https://www.clearmotion. com/active-suspension-seat
31. Allsalt I shoxs shock mitigating bucket seats. https://allsalt.com/ category/mil-pro-bucket-seats
32. Rakheja S, Boileau PÉ, Wang Z, Politis H (2003) Performance analysis of suspension seats under high magnitude vibration excitations: part I: model development and validation. J Low Freq Noise Vib Act Control 22:225-252. https://doi.org/10.1260/02630 9203323022599
33. Rakheja S, Boileau PÉ, Wang Z (2004) Performance analysis of suspension seats under high magnitude vibration excitations: II. design parameter study. J Low Freq Noise Vib Act Control 23:7-25. https://doi.org/10.1260/0263092041456792
34. Heidarian A, Wang X (2019) Review on seat suspension system technology development. Appl Sci 9:2834. https://doi.org/10. 3390/app9142834
35. Cavacece M, Smarrini F, Valentini PP, Vita L (2005) Kinematic and dynamic analysis of a sit-ski to improve vibrational comfort. Sport Eng 8:13-25. https://doi.org/10.1007/BF02844128
36. Sclater N, Chironis NP (2001) Mechanisms and mechanical devices sourcebook. McGraw-Hill
37. (2018) Mathworks : matlab \& simulink users guide. https://www. mathworks.com/help/simulink/
38. MIRBM a springs $\square \mathrm{C}$ air springs \square catalog MIRBM. https:// mirbm.ru/wa-data/public/site/manuals/default/211.pdf
39. (2011) The basics of shoulder screws I machine design. https:// www.machinedesign.com/fastening-joining/article/21834322/the-basics-of-shoulder-screws
40. Wolfram research I (2021) Mathematica

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Journal : Large 40430	Article No : 3724	Pages: 11	MS Code: 3724	Dispatch: 18-8-2022

[^0]: Springer

