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a b s t r a c t 

Background and objectives: In the latest years, the prediction of gene expression levels has been crucial 

due to its potential applications in the clinics. In this context, Xpresso and others methods based on 

Convolutional Neural Networks and Transformers were firstly proposed to this aim. However, all these 

methods embed data with a standard one-hot encoding algorithm, resulting in impressively sparse ma- 

trices. In addition, post-transcriptional regulation processes, which are of uttermost importance in the 

gene expression process, are not considered in the model. 

Methods: This paper presents Transformer DeepLncLoc, a novel method to predict the abundance of the 

mRNA (i.e., gene expression levels) by processing gene promoter sequences, managing the problem as a 

regression task. The model exploits a transformer-based architecture, introducing the DeepLncLoc method 

to perform the data embedding. Since DeepLncloc is based on word2vec algorithm, it avoids the sparse 

matrices problem. 

Results: Post-transcriptional information related to mRNA stability and transcription factors is included 

in the model, leading to significantly improved performances compared to the state-of-the-art works. 

Transformer DeepLncLoc reached 0.76 of R 2 evaluation metric compared to 0.74 of Xpresso. 

Conclusion: The Multi-Headed Attention mechanisms which characterizes the transformer methodology is 

suitable for modeling the interactions between DNA’s locations, overcoming the recurrent models. Finally, 

the integration of the transcription factors data in the pipeline leads to impressive gains in predictive 

power. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Gene expression is the process of producing a functional prod- 

ct from the instructions stored in the DNA. Predicting the abun- 

ance levels of these products - so, predicting the gene expression 

evels - is crucial for several applications, from drug discovery to 

athway enrichment analysis. 

Several studies proposed Machine Learning approaches to pre- 

ict gene expression. This challenge can be addressed by exploit- 

ng sophisticated Deep Learning architectures on DNA reference se- 

uences [1–4,10] . 

In detail, Convolutional Neural Networks (CNNs) were exten- 

ively adopted to address specific tasks, ranging from predicting 

issue-specific expression from long promoter-proximal sequences 
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ExPecto, Zouh et al. [1] ) to predicting the gene expression raw 

ounts from CAGE and ChIP-seq experiments (Basenji, Kelley et al. 

2] ). 

ExPecto [1] predicts tissue-specific expression from a wide reg- 

latory region of 40-kbp promoter-proximal sequences and which 

enes are mutated. On the other hand, Basenji [2] is based on di- 

ated convolutional filters that spot longer relationships in the in- 

uts concerning standard convolutions. However, the limited re- 

eptive field of the Convolutional Networks (CNN) can not compete 

ith the MultiHeadedAttention layer of a Transformer architecture 

5] , even using dilated filters. In addition, its main limitation con- 

ists in the use of cell line data that are more homogeneous than 

ata from human tissues. 

Regarding the solutions for predicting gene expression levels 

irectly from the DNA sequence, Xpresso (Agarwal and Shendure 

10] ) is the most complete, accessible, and reproducible project. 

presso’s [10] architecture is based on CNNs and, the hyperpa- 

https://doi.org/10.1016/j.cmpb.2022.107035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.107035&domain=pdf
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ameters were optimized using a metaheuristic approach. Indeed, 

 small change in one of the hyperparameters can substantially de- 

rease the performance and lower the stability and robustness of 

he architecture. 

Cutting-edge deep architectures were then proposed bringing 

urther improvements. The Enformer network (Avsec et al. [4] ) 

akes steps forward compared to Basenji by introducing a Trans- 

ormer architecture [5] to integrate long-range interactions in the 

enome. 

A common limitation of all the cited models is the embed- 

ing of the input sequences. Every model uses a one-hot encoding, 

hich leads to sparse matrices, which are not very informative. 

Here, we propose some alternatives based on Word2Vec em- 

eddings [8] and a domain-specific embedding method called 

eepLncLoc [7] . 

In addition, we present an innovative pipeline called Trans- 

ormer DeepLncLoc . Such a method relies on the transformer’s 

5] capability of modeling long-range dependencies and a task- 

ware embedding, overcoming the classical CNN-based solutions. 

s its name suggests, it is built on top of the DeepLncLoc embed- 

ing [7] and a vanilla Transformer Encoder Block [5] . 

Moreover, we propose two additional reference models, used as 

aselines for further evaluation. 

The baseline architectures are: 

• LSTM DeepLncLoc is an LSTM-based network fed with 

DeepLncLoc embedded data, used as a baseline for evaluating 

the DeepLncLoc embedding method [7] . 
• DivideEtImpera is an experimental model whose aim is to find 

a more stable Convolutional-based solution, which will be com- 

pared directly with Xpresso [10] . 

Furthermore, in this paper, transcription factors data are inte- 

rated with the model, leading to a significant improvement in 

ene expression prediction. 

Transcription factors are proteins that regulate the transcription 

ate of genetic information from DNA to messenger RNA. Eukary- 

tic transcription factors work by binding to their target DNA site, 

ocated near their target genes, to recruit or block the transcription 

achinery onto the promoter region of the gene of interest. Their 

unction relies on the ability to find their target site quickly and 

electively [13,14] . 

The rest of the paper is structured as follows. Data refers to 

he data used for the training phase of the models and their main 

haracteristics. Afterwards we present the Methods and their Re- 

ults. At the end, a Discussion and Conclusion part is provided. 

. Data 

The dataset is obtained from the Xpresso paper [10] , and con- 

ains about 18,0 0 0 gene sequences with their expression values al- 

eady processed and easily usable. Though gene expression is cell- 

ype specific, Xpresso reformulates the gene expression prediction 

ask to a cell-type agnostic approach. In particular, Xpresso aver- 

ges the expression profiles of 56 different tissues to create its la- 

els. This averaging operation is performed for two main reasons. 

irstly, Xpresso’s authors checked the pairwise Spearman correla- 

ions between all the pairs of expression profiles, concluding that 

hey were highly correlated with an average correlation of 0.78. 

econdly, cell-specific gene expression is regulated by factors lo- 

ated tens of thousands of basepairs far. As a consequence, the 

elatively short sequences used by Xpresso are not long enough 

o catch such dependencies. Consequently, the relatively short se- 

uences used by Xpresso are not long enough to catch such depen- 

encies. So, given that the labels are obtained using an averaging 

peration, they will often be referred to as median expression levels . 
2 
Xpresso’s authors refers to these gene’s sequences with the 

ame of promoters, that are sequences of DNA located upstream 

he Transcription Start Site (TSS) [12] , usually 100–1000 base pairs 

ong, containing specific DNA sequences that provide a secure ini- 

ial binding site for RNA polymerase and proteins called transcrip- 

ion factors recruiting RNA polymerase. Nevertheless, the actual 

ataset’s sequences contains other DNA regions with respect to the 

romoters such as the neighborood of the TSS and the codifying 

art. 

Indeed, in Xpresso, gene sequences contain 20,0 0 0 bp for each 

ene (10,0 0 0 bp upstream and 10,0 0 0 downstream the TSS) and 

ot the promoter part only. Furthermore, Xpresso performs a fine- 

uning of the promoter region, identifying 70 0 0 bp upstream and 

500 bp downstream the TSS as the best interval to predict gene 

xpression. 

Xpresso model, in addition to the gene sequences, exploits for 

ach gene some extra information, named mRNA half-life features, 

o predict the gene expression levels. 

The half-life of mRNAs is “the time required for degrading 50% 

f the existing mRNA molecules” [11] . Knowledge of the half-life of 

RNA could potentially provide information about the stability of 

ifferent types of mRNA. 

The half-life of mRNA is challenging to be determined experi- 

entally because an mRNA molecule is short-lived (between 3 and 

 min). However, equations describing the decay of mRNA and the 

rowth of cells can be used to estimate the mRNA half-life. Indeed, 

he information collected in the Xpresso paper refer to 8 values 

hat could explain the variability of mRNA half-lives [10] , such as: 

oding exon density , 5 ′ UTR G/C content , 3 ′ UTR G/C content, ORF 

/C content , 5 ′ UTR length , 3 ′ UTR length, ORF length, intron length .

n molecular biology and genetics, GC-content (or guanine-cytosine 

ontent) is the percentage of nitrogenous bases in a DNA or RNA 

olecule that are either guanine (G) or cytosine (C) [16] . Within 

wo years of their discovery in 1977, introns were found to affect 

ene expression positively. Indeed, distributions of the length and 

atching rate of optimally matched intron segments are consis- 

ent with sequence features of miRNA and siRNA [17] . These re- 

ults indicate that the interaction between intron sequences and 

RNA sequences is a kind of functional RNA-RNA interaction [17] . 

n molecular genetics, an open reading frame (ORF) is the part of 

 reading frame that can be translated. An ORF is a continuous 

tretch of codons that may [18] begin with a start codon (usually 

UG) and ends at a stop codon (usually UAA, UAG, or UGA) [19] .

n addition, an ATG codon (AUG in terms of RNA) within the ORF 

not necessarily the first) may indicate where translation starts. 

ne common use of open reading frames (ORFs) is evidence to as- 

ist in gene prediction. Long ORFs are often used, along with other 

vidence, to initially identify candidate protein-coding regions or 

unctional RNA-coding regions in a DNA sequence [20] . However, 

he presence of an ORF does not necessarily mean that the region 

s always translated. For example, in a randomly generated DNA se- 

uence with an equal percentage of each nucleotide, a stop-codon 

ould be expected once every 21 codons [20] . 

.1. Trascription factors 

As previously mentioned, a Transcription Factor (TF) is a protein 

hat controls the rate of transcription of genetic information from 

NA to messenger RNA by binding to a specific DNA sequence 

13,14] . Hence, such information is related to the gene expression 

15] . 

Therefore, TFs are exploited in the proposed method and inte- 

rated into the DL architecture. 

Transcription factors information was retrieved from the EN- 

ODE Transcription Factor Targets [13] dataset offered by the Har- 

onizome project [29] , which provides information from original 
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Table 1 

TFs table integrated in the proposed model. The 

rows correspond to the 22,449 genes and the 

columns to the 181 transcription factors. The value 

in position x i j is equal to 1 if gene i is targeted by 

transcription factor j, 0 otherwise. 

TF-1 TF-2 TF-3 .... TF-M 

GENE-1 0 1 1 .... 1 

GENE-2 1 1 0 .... 1 

.... .... .... .... .... ..... 

GENE-N 0 0 0 .... 0 
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atasets distilled into attribute tables that define significant asso- 

iations between genes and attributes, where attributes could be 

enes, proteins, cell lines, transcription factors, tissues, experimen- 

al perturbations, diseases, phenotypes, or drugs, depending on the 

ataset. In this specific case, the transcription factors dataset used 

or this work provides the associations between 22,449 distinct 

enes and their related transcription factors target. The association 

s performed through many pipelines [28] described in the EN- 

ODE project (Encyclopedia of DNA Elements) [27] . It is a genome 

apping project that seeks to annotate the human genome with 

nformation about genes and elements that regulate gene tran- 

cription, such as transcription factor binding sites. So far, the EN- 

ODE project has mapped transcription factor binding sites using 

hIP-Seq [30] , which then have been used to infer the target genes 

f transcription factors by computing the proximity of transcription 

actor binding sites to transcription start sites of genes. At the end 

f the full chain of data preprocessing steps, the number of tran- 

cription factors associated with the 22,449 genes resulted to be 

81. Hence, the final result of this analysis is delivered as a dataset 

hat associates each gene with a list of transcription factors. 

In this work, a presence-absence matrix is created leveraging 

he ENCODE dataset , containing the transcription factor informa- 

ion. An example of the TF matrix is reported in Table 1 , where

he rows correspond to the 22,449 genes and the columns to the 

81 transcription factors. The value in position x i j is equal to 1 if 

ene i is targeted by transcription factor j, 0 otherwise. 

.2. Experimental conditions 

In this work, three experimental conditions were considered to 

redict gene expression levels: 

• using gene sequence promoter information only; 
• using gene sequence promoters and half-life features informa- 

tion; 
• using gene sequence promoters, half-life features and tran- 

scription factors information. 

Hence, the Results section refers to the performances of Trans- 

ormer DeepLncLoc, LSTM DeepLncLoc, and DivideEtImpera archi- 

ectures in these three conditions. 

. Methods 

In this section, the base encoding DeepLncLoc is presented. 

hen, the proposed method Transformer DeepLncLoc and the two 

aseline architectures are described. 

.1. DeepLncLoc 

DeepLncLoc [7] is a domain-specific embedding used to syn- 

hesize information of long sequences of nucleotides in a compact 

ashion. It was initially proposed in the paper “DeepLncLoc: a deep 

earning framework for long non-coding RNA subcellular localiza- 

ion prediction based on subsequence embedding” [7] . 
3

The embedding process is defined as follows. 

1. The sequences are divided in k -mer [9] of 3 to create a vocab- 

ulary. The total number of distinct 3-mer for ATCG nucleotides 

is 64. 

This vocabulary is then processed by the word2vec algorithm 

[8] which associates each different 3-mer to a vector of length 

embedding size. The result is an embedding matrix of shape 

(3-mer, embedding size), which in our specific case is 64 × 64 . 

The best value of k is found via hyperparameter tuning (see Ap- 

pendix F). 

2. The data is cleverly reshaped to preserve the order of the se- 

quences. Initially, the data are divided into consecutive slices 

of an arbitrary length L , which is a hyperparameter: the val- 

ues [50 , 100 , 105 , 140 , 150 , 210] were evaluated on the valida-

tion set, and the best value resulted in being 210. Hence, the 

initial sequence of dimension 10 , 500 will be embedded into a 

matrix of 210 slices, and each slice will be 50 elements long. 

Afterward, each subsequence is converted in a k -mer form, and 

for each triplet, the respective embedding vector is associated. 

We can represent each subsequence with a matrix, concatenat- 

ing the vectors calculated by word2vec [8] for each triplet. 

3. As proposed in the original work, the mean of these vectors is 

taken to represent each subsequence with a vector. Then, the 

vectors related to the subsequences are concatenated to obtain 

the embedding of the whole sequence. The final dimension of 

the embedding is a matrix 210 × 64 , where 210 is the number 

of slices and 64 are the features for each slice. 

The main advantages of the DeepLncLoc [7] embedding are to 

void the sparse matrix representation (typical of the one-hot en- 

oding) thanks to word2vec [8] and to compress the data exploit- 

ng a domain-aware approach making use of k -mer. In addition, it 

llows the usage of sequence processing models that would not be 

ossible to exploit on the raw sequences. This dimensionality re- 

uction is crucial in order to train complex many-to-one sequence 

odels. For instance, LSTM-based networks can employ many re- 

ources and can be time-consuming: instead, feeding the networks 

ith a reduced feature matrix makes the training phase lighter and 

aster ( Figs. 1 and 2 ). 

.2. Transformer DeepLncLoc 

The Transformer [5] is one of the newest Deep Learning mod- 

ls, state of the art in the field of Natural Language Processing. 

he main pillars of this architecture are: Embedding of the to- 

ens (word2vec), Mikolov [8] , Positional encoding (sinusoidal func- 

ions) [5] , MultiHeadedAttention [5] . This paper presents Trans- 

ormer DeepLncLoc, a transformer-based architecture combining 

he DeepLncLoc embedding advantages [7] with the transformers’ 

5] capability in finding complex and long-range dependencies. The 

ransformers [5] build themselves the embedding given the se- 

uences with a word2vec [8] approach, and then they add a po- 

itional encoding for keeping track of the position of the words. 

n the other hand, DeepLncLoc [7] is based on word2vec [8] too, 

ut it is an offline procedure. Therefore, the integration of the 

eepLncLoc embedding with the transformer architecture is per- 

ormed using a BatchNormalization [24] layer just after the input 

ayer to solve numerical issues. Then, the classical transformer’s 

ositional Encoder is applied. Subsequently, there is a Transformer 

ncoding Block, the One-Dimensional Global Average Pooling, the 

oncatenation with the Half-life features and the last two dense 

ayers to accomplish the regression task. After the hyperparame- 

er tuning, the best optimizer is Adam, and the best loss is mean 

quare error (MSE) [22] . 

https://maayanlab.cloud/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets
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Fig. 1. DeepLncLoc methodology. In the picture it is possible to see how the sequences are processed from the sequence split into chunks of 50 base pairs each to the dense 

embedding representation. It is important to notice that the training phase of the Word2Vec embedder for the k -mer is not reported in this illustration. 
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.3. LSTM DeepLncLoc 

LSTM DeepLncLoc provides a baseline for the Transformer 

eepLncLoc [7] architecture. It consists of a Long Short term Mem- 

ry (LSTM) [6] based model fed with DeepLncLoc embedded data. 

ndeed, it is the simplest type of processing that can be applied 

o a sequence. In detail, the model is composed of a 100 units 

STM [6] feature extractor and fully connected layer in order to al- 

ow the regression task. After the hyperparameter tuning, the best 

ptimizer is Adam, and the best loss is MSE [22] . 

.4. DivideEtImpera 

DivideEtImpera is based on classical Conv1D layers, devised to 

nd a more stable convolutional solution. It receives as input the 

ne-hot encoding version of the sequences, splits them into dif- 

erent chunks (inspired by DeepLncLoc embedding), and employs 

 deeper convolutional structure (128 filters per layer, 3 convolu- 

ional layers in total for each chunk and 4 after the concatenation) 

hich exploits only kernels of size 3, because on average this al- 

ows extracting more complex features rather than a shallow Con- 

olutional Network with a big filter such Xpresso [10] . 

The main idea behind this model is to reduce the main prob- 

em in subparts, solve them and finally recombine everything and 

nd the solution. We divide our sequence into ten chunks (found 

y validation), apply five conv/pool layers to each chunk sepa- 

ately, concatenate all the results, and then apply five conv/pool 

ayers again, and the final result is processed by the dense lay- 

rs Section 3.4 . We tried different combinations of depth in ev- 

ry stage of the network, ending up with 128 filters for each con- 

olutional layer and a pool size of 5 for each MaxPooling layer. 

inally, we found out that the best optimizer/loss combination is 

GD [23] with MSE [22] . 
4

Concerning the additional data, half-life features, and transcrip- 

ion factors, they are integrated in the same way for all the models. 

amely, they are concatenated after the features extraction pro- 

ess of the promoters. In particular, when transcription factors are 

nvolved in the pipeline, they are fed to the model by means of 

 boolean vector, that can be easily retrieved from the presence- 

bsence matrix that we created. 

All the methods in this work are available on the github page. 

. Results 

In this section, the evaluation of the models is done in three 

ifferent Experimental conditions, replicating the same evaluation 

etting of the Xpresso paper for the sake of comparison. The lat- 

er consists of using the R 2 metric for evaluation and keeping the 

est ten runs for each model to build confidence intervals (CIs). We 

larify that for the best ten runs we consider the results of the first 

on-degenerate ten runs. The latter may happen, even if the odds 

f such events are low, as Xpresso’s authors stated in their paper. 

ence, very few instances have been discarded. In regression, the 

 

2 coefficient of determination is a statistical measure of how well 

he regression predictions approximate the real data points, com- 

uted as the ratio of the explained variance to the total variance 

26] . By doing so, the stability of each model and the performance 

an be clearly stated. The R 2 evaluation metric can be defined as 

ollows: 

 

2 = 1 −
∑ N 

i =1 (Y i − ˆ Y i ) 
2 

∑ N 
i =1 (Y i − Ȳ i ) 2 

here N is the number of data points, Y i the observed values, ˆ Y i 
he predicted values and Ȳ = 

1 
n 

∑ 

i Y i . 

We clarify the fact that we run the Xpresso ’s Google Colab 

otebook to obtain the CIs of the dataset composed by promoter 

nd halflife features, while for the other conditions, we used an 

dapted version created for the sake of the project. 
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Fig. 2. Chart representation of the proposed methodologies. All the methods shares the same configuration of the concatenation layer with half-life and TF data. Moreover, 

the arrows are not continuous to highlight the fact that the integration of these data sources are optional. Additionally, the arrow between DeepLncLoc and the LSTM and 

Transformer methodologies is dashed because DeepLncLoc runs offline. 

Table 2 

95% Confidence Intervals based on R 2 scores produced from 

the best 10 independent trials using only promoters se- 

quences. 

Model LB Mean UB 

Xpresso 0.526 0.531 0.536 

LSTM DeepLncLoc 0.574 0.580 0.585 

DivideEtImpera 0.529 0.534 0.539 

Transformer DeepLncLoc 0.588 0.596 0.603 

s

s

c

Table 3 

95% Confidence Intervals based on R 2 scores produced from 

the best 10 independent trials using promoter sequences 

and halflife features. 

Model LB Mean UB 

Xpresso 0.559 0.567 0.574 

LSTM DeepLncLoc 0.603 0.606 0.609 

DivideEtImpera 0.580 0.582 0.583 

Transformer DeepLncLoc 0.608 0.610 0.612 

I

X

t

t

t

d

The experiments are grouped and evaluated considering the 

ame input data. 

First of all, the models are evaluated only on the promoter gene 

equences, and in Table 2 can be seen the CIs. 

Afterwards, the experiments shown in Table 3 are evaluated 

onsidering promoter gene sequences and the halflife features. 
5

n particular, this table represents a direct comparison between 

presso’s performances under its preferred experimental condi- 

ions against the models proposed in this paper. It is possible 

o notice that the CI of Xpresso’s performances and the ones of 

he proposed methodologies never overlap, granting statistical evi- 

ence of the improvements. 
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Fig. 3. Expression Scatter Plots: these graphs are devised to highlight the differences between the labels (axis- y ), which are referred as Median Expression Levels , and the 

predictions (axis- x ), which are referred as Predicted Expression Levels . 

Table 4 

95% Confidence Intervals based on R 2 scores produced from 

the best 10 independent trials using promoter sequences, 

halflife features and transcription factors data. 

Model LB Mean UB 

Xpresso 0.742 0.745 0.747 

LSTM DeepLncLoc 0.753 0.755 0.758 

DivideEtImpera 0.757 0.759 0.760 

Transformer DeepLncLoc 0.756 0.760 0.764 
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Finally, the models are evaluated considering all the data avail- 

ble: sequences, halflife data and transcription factors ( Table 4 ). 

Given the evident boost in performances due to the integration 

f transcription factors, a vanilla Multi-Layer Perceptron has been 

rained on transcription factors data only to assess their informa- 

ive power. The evaluation’s confidence interval obtained by means 
6 
f ten runs with 95% level of confidence is the following: (0.662, 

.670, 0.677). See Appendix C for more details. 

In Fig. 3 it’s possible to have a visual evaluation of the mod- 

ls through the scatter plot. Given the predicted expression level 

n the x axes and the median expression level on the y axes, ide- 

lly, the closer the points are to the bisector, the better the model’s 

redictive power. 

. Discussion 

In this section, we discuss the results, making comparisons 

etween the models’ performances and trying to highlight their 

trengths and weaknesses. 

Firstly, by giving a glance at the results tables, we can state that 

ransformer DeepLncLoc outperforms every model considered in 

very experimental condition (for more, please refer to section Ex- 

erimental conditions). 
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This result is because Transformer DeepLncLoc architecture 

ixes the methods that try to solve the main limitations 

f the classical approaches. In fact, on the one hand, the 

eepLncLoc [7] embedding method is capable of modeling and 

reating a compressed, dense, and domain-aware embedding. On 

he other hand, the Transformer Encoder block [5] has a great 

redisposition in long-range modeling dependencies. In addition, 

e can study and compare the results of LSTM DeepLncLoc 

nd DivideEtImpera to understand better the effectiveness of the 

eepLncLoc embedding. First of all, it is essential to remark that 

he DeepLncLoc embedding works offline so that you can compute 

he embedded version of the data one time, and then you can train 

he models feeding them directly with the embedded data. Con- 

equently, if the embedding was computed in the right way, you 

eed only an algorithm capable of finding patterns in sequences, 

ike a Recurrent model or an Attention-based one. Indeed, imple- 

enting just a classic LSTM-based solution on top of such embed- 

ing entails reaching leading performance [6] . On the contrary, Di- 

ideEtImpera computes the embedding online every time that its 

raining routine is invoked. It has to accomplish two tasks instead 

f one (computing the embedding and analyzing the resulting se- 

uences), and for this reason, the likelihood of failure increases, re- 

ulting in lower performance on average. Similarly, this is the rea- 

on why Transformer DeepLncLoc shifts the odds of failure just 

n the Transformer Encoder. 

From these considerations, we can conclude that the embed- 

ing of the raw sequences is a very crucial part of the process and

hat DeepLncLoc [7] offers an excellent solution to the problem. 

evertheless, a Transformer based solution [5] seems the perfect 

hoice in order to analyze the embedded sequences, overtaking 

he performances of recurrent-based solutions thanks to the Multi- 

eaded Attention’s capability to model longer relationships. 

At this point, some useful considerations can be done about Di- 

ideEtImpera . As already stated, the logic behind the design of 

his model is not intended to create a competitive architecture like 

ransformer DeepLncLoc , but to understand how to create sta- 

le embedding and feature extraction exploiting solely Convolu- 

ional Layers. Indeed, its peak performances are not relevant like 

ur LSTM or Transformer’s ones. Nevertheless, it is the second per- 

orming model on the dataset integrated with Transcription Fac- 

ors. Moreover, this framework is more stable and less dependent 

n the tuning of the hyperparameters with respect to Xpresso [10] . 

his point is achieved thanks to its peculiar deep chunking archi- 

ecture, and in the end, it can be seen like the Convolutional coun- 

erpart of DeepLncLoc [7] . 

The final considerations are related to the integration of the 

ranscription Factors data. Thanks to the results shown in Table 4 , 

e can state that TF additional data gives a massive boost to all 

he models. Moreover, it is essential to say that they achieve re- 

arkable results also in a stand-alone evaluation, as stated in the 

esults section. 

The main reason of the results achieved by the TF are due to 

heir main role in the transcription regulation process. Indeed TF 

an either stimulate or repress transcription of the related gene 

ffecting the gene expression levels [25] . 

. Conclusion 

The aim of this paper is to predict the abundance of the mRNA 

y processing gene promoter sequences, handling the problem as 

 regression task. 

A deep study of the existent models like Xpresso [10] was per- 

ormed in order to spot their main weak points and to devise new 

odels capable of overcoming their performances. 

The main drawback of the presented Convolutional-based so- 

ution is the embedding type, usually a one-hot encoding, and the 
7 
imited receptive field typical of the Convolutional Neural Network. 

n this paper we used more dense and task-aware embeddings 

ike DeepLncLoc [7] and architectures capable of modeling com- 

lex long-range dependencies like Transformers [5] . By analyzing 

he results, it is possible to understand that the Transformers can 

eneralize better concerning LSTM [6] , hence they can reach better 

esults, and this is probably due to the multi-head attention layer 

hat finds more complex patterns for LSTM [6] . 

From the dataset perspective, the relevant finding is related to 

he transcription factors capable of giving a massive boost in per- 

ormance. 

A possible future improvement is exhaustive hyperparameter 

esearch for models and better integration between the additional 

ata. 
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ppendix A. Implementation 

All this work and the data are available through the GitHub 

epository. The implementation has been possible thanks to Google 

olaboratory. Furthermore, the project is fully coded in Python and 

he deep learning framework adopted for the realization of the 

odels is TensorFlow. 

ppendix B. Methods complexity 

The illustrated methods in this work have a different complex- 

ty. As specified in Appendix A , the experimentations were carried 

ut thanks to Google Colaboratory. This platform changes the avail- 

ble hardware, without possibility of controlling it. Therefore, it is 

ot fair to compare runtimes among methods. However, it is useful 

o report the number of parameters of the used methods employ- 

ng the same dataset, namely the one that includes promoters and 

alflife data ( Table B1 ). 

Concerning the runtime, it’s impossible to define a fixed time 

or the experiments due to the random assignment of resources 

n Google Colab. However, it’s possible to give an estimate of the 

https://github.com/geneexpressionpolito/Predicting-gene-expression-levels-from-DNA-sequences-and-post-transcriptional-info-with-transformers
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Table B1 

Methods along with number of parameters and GPU usage, using the 

dataset that includes promoters and halflife. 

Method # of parameters GPU usage [GB] 

Xpresso 112,485 4.77 

DivideEtImpera 1,892,289 8.79 

DeepLncLoc 4096 —

LSTM DeepLncLoc 76,157 3.78 

Transformer DeepLncLoc 123,881 2.42 
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aximum time required for each experiment which is less than 

alf an hour for each model. 

ppendix C. Statistical relevance 

In statistics, the Confidence Intervals (CIs) are employed to as- 

ess the possible range around the estimate of a statistical mea- 

ure of a population (e.g. mean), highlighting also how stable the 

stimate is. For the purposes of this work, the CI have been com- 

uted employing the t -student distribution. For each experiment, 

omposed by ten R 2 results, the standard deviation has been com- 

uted with the unbiased estimator: 

= 

∑ N 
i =1 ( ̄X − X i ) 

2 

N − 1 

here N is the number of data points, X i the observed values and 

¯
 = 

1 
n 

∑ 

i X i the average of the observed values. Then, the lower 

ound (LB), upper bound (UB) and mean (Mean) values of the CI 

re computed as follows: 

ean = X̄ = 

1 

N 

N ∑ 

i =1 

X i , LB = X̄ − t α/ 2 
σ√ 

N 

, UB = X̄ + t α/ 2 
σ√ 

N 

here N is the number of data points, X i the observed values, α is 

he significance level (in our case equal to 0.05, so that the confi- 

ence level is 0.95) and t α/ 2 is the t -student distribution evaluated 

t α/ 2 . 

To further prove the enhancement of this work with respect 

o the literature, we set two different statistical tests. In both 

ests, the null hypothesis is that the mean of the first and sec- 

nd populations are equal, and then we test if the mean of the 

econd population is significantly greater with respect to the first. 

he significance level of the tests is the same as the Confidence 

nterval, hence it is 0.05. The results are shown in Tables C1 

nd C2 . 

The first test performed is the one-sided Wilcoxon-test [21] and 

ompared the results of Xpresso with the methods shown in this 

ork. 

The second test performed is the t -test which is applied with 

he same settings as the first. 
Table C1 

Wilcoxon test to compare the performances of the methods. 

First measure Second measure p -value 

Xpresso Transformer DeepLncLoc 0 . 97 × 10 −3 

Xpresso LSTM DeepLncLoc 0 . 97 × 10 −3 

LSTM DeepLncLoc Transformer DeepLncLoc 0.02 

Table C2 

T -test to compare the performances of the methods. 

First measure Second measure p -value 

Xpresso Transformer DeepLncLoc 1 . 05 × 10 −10 

Xpresso LSTM DeepLncLoc 9 . 68 × 10 −10 

LSTM DeepLncLoc Transformer DeepLncLoc 0.007 

t
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a

a

t

p

s
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8 
The p -values are all smaller than the chosen threshold which is 

.05, hence proving the evidence against the null hypothesis. 

ppendix D. Prediction of mouse species’ expression levels 

The focus of this Manuscript is the human species but to fur- 

her enrich our work the methods developed along with Xpresso 

re tested on another mammalian species, the mouse. The dataset 

sed for these experiments is the same used in the Xpresso pa- 

er. It is composed like the main dataset (e.g. the humans) with 

romoters and halflife data. The main difference is the number 

f genes, that in the case of the mouse is 21,856. All the meth- 

ds presented in this work are applied to this dataset, and they 

ll use the same hyperparameters. In Table D1 all the results for 

he different models are summarised. The experiments confirm 

hat was discussed in Section 6 . Indeed, the relative performances 

f the models mirror what happened with human data, show- 

ng again that Xpresso’s performances are overtaken by all the 

roposed models and the best performing model is still Trans- 

ormerDeepLncLoc. The only difference is that all the models per- 

ormed a substantial increase in the evaluation metric in absolute 

alues. 

Table D1 

95% Confidence Intervals based on R 2 scores produced from 

the best 10 independent trials using promoter sequences 

and halflife features of the mouse dataset. 

Model LB Mean UB 

Xpresso 0.692 0.700 0.708 

LSTM DeepLncLoc 0.738 0.740 0.743 

DivideEtImpera 0.719 0.723 0.727 

Transformer DeepLncLoc 0.754 0.757 0.761 

The experiments confirm what was discussed in Section 6 . The 

ain difference in the results of the mouse is the magnitude. In- 

eed the models generally perform better with this new dataset. 

he other important evidence is the coherence with the Xpresso 

esults using our implementation. 

ppendix E. Attention plot analysis 

The analysis of the attention mechanism of the transformer 

ould give interesting hints about the model interpretation and the 

atterns spotted. 

The analysis of the attention head of the Transformer 

eepLncLoc method has been evaluated on the first batch of the 

alidation set in the epoch of lowest validation loss. In particular, 

he graph shows the average weights for the four attention heads 

f the transformer encoder block of the first batch. As it is possi- 

le to see in Fig. E1 , the most frequent patterns are vertical pat- 

erns which mean that in the sequences there are some important 

NA’s locations where all the other locations pay attention. More- 

ver, it is important to remark that the Transcription Start Site is 

ocated around position 140. By observing the plot, it appears that 

he first head models have strong attention to the gene sequence 

and in particular the first exon, which is mostly coding sequence), 

 weaker one on the promoter part of the sequences, and very low 

ttention to the TSS. The second head, instead, is paying particular 

ttention to the TSS. Finally, the third head is paying attention to 

he regions which immediately surround the TSS while the fourth 

ays attention to the TSS and its neighborhood. In the end, we can 

ay that the attention mechanism highlighted the most important 

iological regions of the sequences. 
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Fig. E1. Attention Plot of TransformerDeepLncLoc at the epoch of lowest validation loss, which gave an R 2 of 0.613 on the test set. 
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ppendix F. DeepLncLoc k -mer trials 

The k represents the size of a window that slides on a se- 

uence, with a stride equal to one. This window extracts sequen- 

ially substrings composed of k nucleotides. Actually, the k can be 

een as a hyperparameter concerning the DeepLncLoc model. It is 

elected by performing DeepLncLoc in combination with the BioL- 

TM or the Transformer method. Finally, It is important also to un- 

erline that the experiments to choose the k are performed us- 

ng the human dataset composed of sequences and half-life data 

 Table F1 ). 

Table F1 

95% Confidence Intervals based on R 2 scores for different k values, 

produced using promoter sequences and halflife features of the hu- 

man dataset. 

Model LB Mean UB 

Transformer DeepLncLoc (3-mer) 0.608 0.610 0.612 

Transformer DeepLncLoc (6-mer) 0.499 0.502 0.505 

Transformer DeepLncLoc (9-mer) 0.329 0.334 0.339 

LSTM DeepLncLoc (3-mer) 0.603 0.606 0.609 

LSTM DeepLncLoc (6-mer) 0.439 0.448 0.457 

LSTM DeepLncLoc (9-mer) 0.306 0.312 0.319 
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