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A B S T R A C T   

The plane strain problem of a slender and weightless beam-plate loaded by a transversal point force in unilateral 
contact with a couple stress elastic foundation is investigated. The study aims to explore the consequences of the 
material internal lengthscale on the contact mechanics. In particular, compatibility between the beam and the 
foundation surface demands that both displacement and rotation match along the contact line. To this aim, 
couple tractions are exchanged besides the traditional contact pressure until separation between the beam and 
the foundation occurs. The problem is formulated making use of the Green’s functions for a point force and a 
point couple acting atop of a couple stress elastic half-plane. A pair of coupled integral equations is thus derived, 
that governs the distribution of contact pressure and couple tractions, with one of them being immediately solved 
to provide an explicit relation between the two unknowns. In this sense, we retrieve the concept of a mechan-
ically equivalent action, as it is the case of the Kirchhoff shear for plates. The remaining integral equation sets a 
cubic eigenvalue problem, whose linear term accounts for the microstructure. Its numerical solution is sought by 
expanding the equivalent contact pressure in series of Chebyshev polynomials vanishing at the contact region 
ends points, namely the lift-off points, and then applying a collocation strategy. The contact length, the distri-
butions of contact pressure and couple tractions under the beam and the shearing force and bending moment 
along the beam are then obtained as a function of the material characteristic length. Results clearly indicate that 
accounting for the material internal lengthscale is mainly realized through exchange of the couple tractions, in 
the lack of which results much resemble those of the classical solution. Specifically, greater contact lengths and a 
stronger focusing effect about the loading point are encountered, which become very significant when the 
contact length approaches the internal lengthscale.   

1. Introduction 

Assessing mechanical contact of an elastic beam unilaterally sup-
ported by an elastic substrate endowed with an internal lengthscale (as it 
occurs, for instance, in the presence of material microstructure) is a 
fundamental endeavor in many scientific areas and lays the ground for 
several important applications. Indeed, it is a relevant issue for the 
railway industry, where it provides precious knowledge to detect dam-
age on railway tracks (Yang et al., 2020), for biomedical applications 
such as implant design (Ghavidelnia et al., 2021) and bone reconstruc-
tion (Ermeyev et al., 2016a,b 2017) and in civil engineering, whose 
prototype problem is the design of beam foundations resting on granular 

materials. This classical problem is experiencing a renaissance in light of 
its applications in the growing sector of electronic sensing and actuation 
devices, specifically in the raising area of micro- and 
nano-electromechanical systems (MEMS/NEMS). Recently, MEM-
S/NEMS have raised a lot of attention in connection to modern advanced 
manufacturing technologies, such as additive printing. For how classical 
this problem may be, featuring a long history of models and applica-
tions, it is the lengthscale involved in the system that brings new chal-
lenges. It is well known that, at this micro/nano scale, the material’s 
constitutive relations are different than those at the macro scale. To 
define such constitutive relations one of the most common material 
characterization tests used by the experimentalist is the indentation test 
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at the macro level. It is also used at the micro-nano level to define the 
material behavior (Ma and Clarke, 1995; Briscoe et al., 1998; Elmustafa 
and Stone, 2002). When indentation tests are conducted at the nano 
scale, they give results that depend on the size of the indenter, hence the 
influence of size whose role becomes fundamental, especially if the 
contact size is comparable to the material lengthscale. Moreover, from 
the failure and reliability standpoint of the moving parts in MEM-
S/NEMS structures, controlling the stress state at the ends of the contact 
zone is of paramount importance in order to rule out the possibility of 
crack formation and catastrophic debonding. 

The contact behavior of materials can be well investigated within the 
continuum theory of classical elasticity at the macro level. However, 
when size becomes a relevant issue, such it occurs at micro-nano level, 
the classical continuum theory fails for it is inherently self-similar, 
namely its structure is independent of the scale of the system under 
investigation. For this reason, enhanced constitutive theories have been 
proposed that introduce a length scale related to the material micro-
structure, thus spawning the broad class of complex media (Eringen, 
1968, 1972, 1983; Lam et al., 2003; Mindlin and Tiersten, 1962; Toupin, 
1962; Koiter, 1964; Gurtin et al., 1998; Jasiuk and Ostoja-Starzewski, 
1995; Dhaliwal and Singh, 1987). Complex media can be rightfully 
divided into three main groups: strain gradient elastic (Mindlin, 1964; 
1965; Chen and Wang, 2001; Lam et al., 2003), surface elastic (Gurtin 
and Murdoch, 1975, 1978; Zhu et al., 2017; Huang, 2018) and finally 
micropolar elastic media (Toupin, 1962, 1964; Mindlin and Tiersten, 
1962; Mindlin, 1963, 1964; Eringen, 1966). For the treatment of contact 
mechanics problems at the small scale, the Gurtin-Murdoch surface 
elasticity (GMSE) (Gurtin and Murdoch, 1975, 1978) and the couple 
stress elasticity (CSE) theories have been successfully employed with 
good results in terms of correlation with the experimental findings. One 
of the simplest classes of micropolar theory is the indeterminate couple 
stress theory (Koiter, 1964), which is essentially a gradient type (i.e. 
weakly) non-local theory where the deformation field at a point is 
related to its close neighborhood. This special theory assumes that the 
microrotations at each material point are coincident with the macro-
scopic rotations, i.e. the mean rotation of the principal axes of strain. In 
addition to the familiar stress and strain fields of classical elasticity, the 
couple stress theory employs the curvature and couple stress tensors as 
conjugated field variables. These are connected in constitutive terms 
through a characteristic length scale, which introduces the sought-for 
scale effect (Liu and Su, 2009). Typical values of the characteristic 
length can be found in Lakes (1986, 1993) for foam materials, in Chang 
et al. (2003) for granular materials, in Casolo (2006) for masonry, in 
Yang and Lakes (1982) for bone, in Nikolov et al. (2007) for glassy and 
semi-crystalline polymers. 

Lately, the indeterminate couple stress theory of elasticity was suc-
cessfully applied to fracture mechanics (Radi, 2007; Radi, 2008; Morini 
et al., 2013; Gourgiotis and Georgiadis, 2011; Nobili et al., 2019) and 
contact mechanics (Zisis et al., 2015; Gourgiotis and Zisis, 2016; Gour-
giotis et al., 2016; Karuriya and Bhandakkar, 2017). Moreover, the 

effects of friction and adhesion on contact problems, within the frame-
work of couple-stress elasticity, have been included in the works of Song 
et al. (2017), Wang et al. (2018) and Li and Liu (2020). There are several 
assumptions, especially concerning the new boundary conditions 
relating rotations and couple tractions, that were introduced in the so-
lution of the above-mentioned problems in order to retrieve the classical 
elastic solution as the characteristic length of the microstruture tends to 
zero. For example, in contact problems involving a rigid punch, it is 
usually assumed that no (reduced) couple tractions are exchanged be-
tween the punch and the substrate when the latter is modelled as a 
classic Cauchy continuum. The aftermath of this questionable assump-
tion is discussed in terms of Love wave propagation and it is shown that 
it leads to ill-posed problems (Nobili and Volpini, 2021). 

Surprisingly, this assumption is generally introduced also when the 
substrate is a micropolar continuum (Zisis et al., 2014, 2018; Song et al., 
2017) and therefore it is capable of supporting couple tractions. Simi-
larly, Euler-Bernoulli (EB) beams in contact with a micropolar material 
are capable of exchanging distributed couples. These additional in-
teractions are mechanically equivalent to an increment in the total 
contact pressure, in much the same way as the Kirchhoff equivalent 
shear stress encompasses the twisting moments in classical plate theory. 

The plane problem of the bonded frictionless contact between a finite 
EB beam and a couple stress elastic half-plane has been recently inves-
tigated by Radi (2021) assuming that both normal stresses and couple 
tractions are transmitted along the contact zone. The interface condi-
tions considered in that work assumes that both the slope and the 
rotation of the contacting bodies correspond. 

In the present work, this novel contact scenario is extended to the 
much more involved situation of tensionless contact, thus allowing the 
beam to lift free from the half-plane and so parting the interaction zone 
in two disjoint sets defining contact and lift-off. Indeed, the special 
feature of unbonded contact, sometimes referred to as receding contact 
(Keer et al., 1972; El-Borgi et al., 2014; Yildirim et al., 2019), one-way 
contact (Attar et al., 2016), unilateral contact (Dempsey et al., 1984) 
or tensionless contact (Zhang and Liu, 2019), lies in allowing separation 
between the beam and the foundation. Following the debonding con-
dition considered for a beam free to lift off from an elastic half-plane 
(Gladwell, 1976; Gallagher, 1983) and for a rigid indenter tilted over 
a couple stress elastic half-plane (Gourgiotis et al., 2016), it is here 
assumed that this separation kicks in when the contact pressure crosses 
the zero point. In general, the extension of the contact region is a 
problem unknown, that requires solving a nonlinear equation whose 
determination is not trivial (Nobili, 2012; Yilmaz et al., 2018). We show 
that this contact scenario implies that couple tractions are proportional 
to the derivative of the contact pressure along the contact zone, and 
thus, if the contact pressure is assumed to vanish as a square root at the 
contact ends, then couple tractions may exhibit a square root singularity 
therein. 

The paper is organized as follows. The governing equations for the 
EB beam under a point load and the Green’s functions for the couple- 
stress half-plane loaded by a concentrated force or couple are reported 
in Sections 2 and 3, respectively. The compatibility conditions between 
the beam and the half-plane surface are then presented in Section 4. 
They result in a pair of integral equations for the unknown distributions 
of contact pressure and couple tractions. One of these is of the Fredholm 
type and provides an analytical relation between the two unknown 
distributions. With this result, the second equation may be reduced in a 
form similar to that governing the classical contact problem between a 
beam and an elastic half-plane (Gladwell, 1976; Gallagher, 1983). An 
approximated procedure for reducing the last integral equation to an 
algebraic eigenvalue problem is then reported in Section 5, based on the 
expansion of the contact pressure in series of orthogonal Chebyshev 
polynomials of the second kind and then applying the collocation 
method. This procedure leads to a cubic eigenvalue problem which is 
approached by the linearization method. The variations of contact 
length with the material characteristic length of the foundation, as well 

Fig. 1. A Euler-Bernoulli beam of flexural rigidity D in unbonded contact onto a 
couple stress elastic half-plane. The beam is acted upon by a concentrated load 
F at x = 0. The beam lifts-off from the foundation at x = a, being the beam 
length longer than 2a. 
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as the distributions of contact pressure, couple stress tractions, bending 
moment and shearing force along the beam are then illustrated in Sec-
tion 6. Finally, the main conclusions are illustrated in Section 7. 

2. Beam governing equations 

Let us consider the plane strain problem of a uniform weightless 
elastic EB beam resting in unilateral frictionless contact onto a homo-
geneous isotropic elastic foundation. The beam has flexural rigidity D 
and is longer than the contact region. It is loaded, at midspan, by a 
transversal line load F applied at the origin of a Cartesian reference 
system (0, x, y). This reference system is placed in such a manner that the 
x-axis corresponds to the undeformed beam axis while the y-axis is 
directed towards the foundation, as shown in Fig. 1. 

As well known, translational and rotational equilibrium of any beam 
element (see Fig. 2) lends the balance equations for the shearing force T 
and the bending moment M in the beam, namely 

T ’(x)–p(x) = 0, M’(x) − T(x) + m(x) = 0, (2.1)  

where p and m are the contact pressure and the (reduced) couple stress 
tractions exchanged with the foundation. Hereinafter, prime denotes 
differentiation with respect to x. 

According to the EB beam theory, the bending moment and the 
shearing force are connected by the constitutive assumptions to the 
derivatives of the beam deflection v(x) 

M(x) = − D v’’(x), T(x) = − D v’’’(x) + m(x). (2.2) 

Together, Eq. (2.2) provide a single fourth-order linear differential 
equation 

D v′′′′

(x) = m’(x) − p(x). (2.3) 

Eqn (2.3) clearly shows that the effects of the couple tractions are 
equivalent to an additional contact pressure − m′(x), as it occurs for the 
shearing force in the Kirchhoff plate theory. By exploiting the symmetry 
of the problem, we can focus on the right half of the beam corresponding 
to positive values of the abscissa x. Let us denote the abscissa of the edge 
of the contact zone with a (see Fig. 1, this is the point where the beam 
lifts off from the substrate), then the boundary conditions for the 
considered problem require that the bending moment and shearing force 
vanish at x = a, namely 

M(a) = 0, T(a) = 0, (2.4)  

as well as 

v’(0) = 0, T(0) = − F/2, (2.5)  

at x = 0, due to the symmetry of the problem. Integrating eqn (2.3) 
between an arbitrary value of x, for 0 ≤ x ≤ a, and a, using eqn (2.2)2 
and the boundary conditions (2.4)2, one obtains 

Dv’’’(x) =
∫a

x

p(t)dt + m(x). (2.6) 

Integrating eqn (2.6) between x and a again, and using eqn (2.2)1 and 

the boundary conditions (2.4)1, one has 

Dv’’(x) =
∫a

x

[(x − t)p(t) − m(t) ]dt. (2.7) 

By integrating eqn (2.7) between 0 and x, using the boundary con-
ditions (2.5)1, after integration by parts it follows 

Dv’(x) = −

∫x

0

[
(x − t)2

2
p(t) − (x − t)m(t)

]

dt − x
∫a

0

[(
t −

x
2

)
p(t) + m(t)

]
dt.

(2.8) 

Moreover, the balance condition for the half beam yields 

∫a

0

p(t)dt =
F
2
. (2.9)  

3. Substrate governing equations 

The foundation is modelled as a homogeneous isotropic couple stress 
elastic half-plane under plane strain condition. Consequently, the clas-
sical strain field 

εxx = ux,x, εyy = uy,y, εxy =
(
ux,y + uy,x

)/
2, (3.1)  

is supplemented by the curvature field 

κxz = ωz,x, κyz = ωz,y, (3.2)  

where ωz = (uy,x − ux,y)/2 is the microrotation vector. Here, ux(x, y) and 
uy(x, y) denote the in-plane displacement components and a subscript 
comma signifies partial differentiation with respect to the relevant 
variable, e.g. ux,x = ∂ux/∂x. Note that clockwise rotation is considered 
positive. The balance equations read 

σxx,x + σyx,y = 0,
σxy,x + σyy,y = 0,

σxy − σyx + mxz,x + myz,y = 0,
(3.3)  

where σ and m are the Cauchy and the couple stress tensor, respectively. 
As for classical isotropic elastic materials, the constitutive relations be-
tween stresses and strains for isotropic couple stress elastic materials 
under plane strain conditions are defined by two scalar parameters, 
namely the shear modulus μ and the Poisson ratio ν, 

εxx =
[
(1 − ν) σxx − ν σyy

]/
(2μ),

εyy =
[
(1 − ν) σyy − ν σxx

]/
(2μ),

εxy =
(
σxy + σyx

)/
(4μ).

(3.4) 

The additional constitutive relation between couple stresses and 
curvatures requires an additional material parameter, namely the ma-
terial characteristic length ℓ 

κxz =
mxz

4μl 2, κyz =
myz

4μl 2. (3.5)  

3.1. Green’s functions for the foundation 

The normal displacement, slope and microrotation at the surface of a 
couple stress homogenenous isotropic elastic half-plane were derived by 
Radi (2021) for a clockwise couple C acting at the origin of the coor-
dinate system 

uC
y (x, 0) = C

1 − ν
πμ

∫∞

0

w(sl )sinsx ds, (3.6)  

Fig. 2. Free body diagram of forces and couples acting on any infinitesimal 
beam element. 
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uC
y,x(x, 0) = C

1 − ν
πμ

∫∞

0

w(sl )scossx ds, (3.7)  

ωC
z (x, 0) = C

1 − ν
πμl

∫∞

0

w(sl )

[

sl +
sl +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + s2l 2

√

4 (1 − ν)

]

cossx ds, (3.8)  

respectively, where the following shorthand are introduced 

w(z) =
̅̅̅̅̅̅̅̅̅̅̅̅
1 + z2

√
− z

g(z)
, (3.9)  

and 

g(z) =
̅̅̅̅̅̅̅̅̅̅̅̅
1 + z2

√
+ 4(1 − ν)z2

( ̅̅̅̅̅̅̅̅̅̅̅̅
1 + z2

√
− z

)
. (3.10) 

Note that the function g(z) behaves as (3− 2ν) z + O(z) as z → ∞ and 
consequently, the function w(z) behaves as O(z− 2) as z → ∞, by which 
fact the rotation ωz

C displays a logarithmic singularity under the loading 
couple. 

Similarly, the normal displacement, slope and rotation fields due to 
the application of a normal point force P at the origin of the coordinate 
reference system can be found in Gourgiotis and Zisis (2016), Zisis et al. 
(2018), and Radi (2021), namely 

uP
y (x, 0) =

P
πμ (1 − ν)

∫∞

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + s2l 2

√

s g(sl )
cossx ds, (3.11)  

uP
y,x(x, 0) = −

P
πμ (1 − ν)

∫∞

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + s2l 2

√

g(sl )
sinsx ds =

=
P
πμ

1 − ν
3 − 2ν

⎡

⎣ −
1
x
+ 2(1 − ν)

∫∞

0

f (sl )sinsx ds

⎤

⎦,

(3.12)  

ωP
z (x, 0) = − P

1 − ν
πμ

∫∞

0

w(sl )sinsx ds, (3.13)  

where 

f (z) =
[
2z2

( ̅̅̅̅̅̅̅̅̅̅̅̅
1 + z2

√
− z

)
−

̅̅̅̅̅̅̅̅̅̅̅̅
1 + z2

√ ]/
g(z), (3.14)  

so that f(z) behaves as O(z− 2) as z → ∞, and f(0) = − 1. 

4. Contact conditions 

We are now in a position to write the contact conditions connecting 
the beam to the supporting foundation. These conditions require that no 
shear stress nor tensile tractions develop at the interface, while the same 
deflection stands for the beam and for the foundation surface along the 
contact region. 

The condition concerning frictionless contact is warranted by the 
Green’s functions introduced in Section 3. Besides, deflection compati-
bility can be advantageously formulated in terms of slope, which step 
disposes of any additional rigid body displacement. This complemen-
tarity problem spells out as 

v’(x) = uy ,x(x, 0), for |x| ≤ a, (4.1)  

uy ,x(x, 0) = ωz(x, 0), for |x| ≤ a (4.2)  

and, clearly, p(x) = m(x) = 0 for |x| > a. 
The contact conditions (4.2) stipulating coincidence between micro 

and macro-rotations, entails that ux,y + uy,x = 0, namely there is no 
surface shear deformation εxy = 0. Then, according to the frictionless 

assumptions both shear stress components σxy and σyx in the foundation 
are also vanishing along the contact zone. 

Using the Green functions, we can easily write the kinematical 
conditions (4.1) and (4.2) in terms of the distribution of contact pressure 
p(x) and couple tractions m(x) being exchanged between the beam and 
the foundation. To this aim, we need the following expressions for the 
slope uy,x(x, 0) and the rotation ωz(x, 0) of the foundation surface, that 
are obtained from the Green’s functions (3.7), (3.8), (3.12) and (3.13) 

uy ,x(x, 0) =
1 − ν
πμ

{

−

∫a

− a

p(t)dt
∫∞

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + s2l 2

√

g(sl )
sin[s(x − t) ]ds

+

∫a

− a

m(t)dt
∫∞

0

w(sl )scos[s(x − t) ]ds

⎫
⎬

⎭
,

(4.3)  

ωz(x, 0) =
1 − ν
πμ

{

−

∫a

− a

p(t)dt
∫∞

0

w(sl )sin[s(x − t) ]ds

+

∫a

− a

m(t)dt
∫∞

0

w(sl )

[

s+
sl +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + s2l 2

√

4 (1 − ν) l

]

cos[s(x − t) ]ds

⎫
⎬

⎭

(4.4) 

Therefore, introduction of eqns (4.3) and (4).4) into the contact 
condition (4.2) provides the following integral equation 

∫a

− a

p(t)dt
∫∞

0

s sin[s(x − t) ]
g(sl )

ds+
∫a

− a

m(t)dt
∫∞

0

cos[s(x − t) ]
4(1 − ν)l 2g(sl )

ds = 0, (4.5) 

for |x|≤a. Note that, integrating by parts and using the lift-off con-
ditions p(±a) = 0, one has 

s
∫a

− a

p(t)sin[s(x − t) ]dt = −

∫a

− a

p’(t)cos[s(x − t) ]dt. (4.6) 

Then, by using the result (4.6) in eqn (4.5), it follows that 

∫a

− a

[

p’(t) −
m(t)

4(1 − ν)l 2

]

dt
∫∞

0

cos[s(x − t) ]
g(sl )

ds = 0, (4.7)  

for |x|≤a. where Note that the term within square brackets is odd with 
respect to t. Then, according to the result in Appendix D, equation (4.7) 
necessarily implies that 

m(t) = 4(1 − ν)l 2 p’(t). (4.8) 

The introduction of eqns (2.8) and (4).3) into the contact condition 
(4.1), by using the results (4.8) and (4.6), recalling also the definitions 
(3.9) and (3.10) of the functions w and d and the definite integral 

∫∞

0

sin[s(x − t) ]ds =
1

x − t
, (4.9)  

then gives the following integral equation 

∫x

0

[
(x − t)2

2
− 4(1 − ν)l 2

]

p(t)dt + x
∫a

0

(
t −

x
2

)
p(t)dt = D

1 − ν
μπ

∫a

− a

p(t)
x − t

dt,

(4.10) 

for |x|≤a. This homogeneous integral equation closely resembles 
that governing the problem of the tensionless contact between a beam 
and a classical elastic half-plane, as it appears in Gladwell (1976) and 
Gallagher (1983), with the remarkable exception of the term containing 
the characteristic length ℓ of the material. It is therefore trivial to deduce 
the classical case letting ℓ→0. It is important to observe that this integral 
equation hides the contact length a inside the integral limits. Intro-
ducing the dimensionless variables ξ = x/a and τ = t/a we bring it out 
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∫ξ

0

[
(ξ − τ)2

2
− 4 (1 − ν) l 2

a2

]

p(τ)dτ + ξ
∫1

0

(

τ − ξ
2

)

p(τ)dτ = L3

πa3

∫1

− 1

p(τ)
ξ − τ dτ,

(4.11)  

for |ξ|≤1, in what is a cubic eigenvalue problem for the contact length a, 
where the length L is defined by 

L =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ν

μ D3

√

. (4.12) 

As expected, this dependence of the eigenvalue reveals that for a ≫ ℓ 
the classical problem dominates, while for a ~ ℓ ≪ 1, the term of couple 
stress origin in (4.11) provides a significant contribution. 

4.1. Numerical solution by the collocation method 

At the ends of the contact region, namely at x =±a, the pressure p(a) 
must vanish as required by the lift-off condition. Accordingly, we write 
the contact pressure in the form of a Chebyshev series using the Che-
byshev polynomials of the second kind U2n. Here, owing to the sym-
metric setup, we only use even terms (see Appendix A), 

p(x) =
F
a
∑∞

n=0
pnU2n

(x
a

)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(x
a

)2
√

, (4.13)  

for |x|≤a, where pn (n = 0, 1, 2, …) are coefficients to be determined by 
collocation. Then, according to the result (4.8), the couple tractions m(a) 
displays singular behavior at the edge of the contact zone, namely 

m(x) = − 4(1 − ν)Fl 2

a2

∑∞

n=0
(1 + 2n)pn

T2n+1(x/a)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (x/a)2
√ , (4.14)  

for |x|≤a, where T2n+1 are the Chebyshev polynomials of the first kind, 
this time of odd order 2n+1 (see Appendix A). In other words, the 
contract pressure is an even function of x, while the couple tractions are 
odd. By using the result (A.2) provided in Appendix A, being U0(t) = 1, 
the introduction of representations (4.13)1 in the balance condition 
(2.9) provides the first coefficient 

p0 = 2/π. (4.15) 

The introduction of representations (4.13) in eqn (4.11) together 
with the non-dimensional parameters 

λ = l /L, β = a/L, (4.16)  

using the result (A.3), then yields a homogeneous equation for the un-
known coefficients pn (n = 0, 1, …, N) 

∑∞

n=0

[
T2n+1(ξ) + 4(1 − ν)λ2βC(0)

2n (ξ) − β3An(ξ)
]
pn = 0, (4.17)  

for 0≤ξ≤1, where the function An(ξ) is given by 

An(ξ) =
1
2

[
ξ2C(0)

2n (ξ) − 2ξC(1)
2n (ξ) + C(2)

2n (ξ) + 2ξC(1)
2n (1) − ξ2C(0)

2n (1)
]
,

(4.18)  

for n ≥ 0, being 

C(m)
n (ξ) =

∫ξ

0

Un(τ)
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − τ2

√
τm dτ. (4.19) 

Closed form expressions for the definite integral (4.19) are worked 
out in Appendix B for m = 0, 1, 2. Note that, the size a of the contact 
region and thus the parameter β defined in (4.16) are unknowns. 
Moreover, the parameter β is an eigenvalue of the cubic eigenvalue 
problem (4.17) satisfying the balance condition (4.15), which provides a 

normalization condition for the eigenvalue problem. 

5. Approximate solution 

In order to transform the compatibility condition (4.17) into a linear 
homogeneous system of N +1 algebraic equations for the unknown co-
efficients pn (for n = 0, 1, 2, …, N), a collocation procedure is introduced 
by truncating series (4.13) to the first N +1 terms. Their coefficients are 
determined imposing the compatibility condition (4.17) at N+1 collo-
cation points ξk (k = 0, 1, 2, …, N), ranging between 0 and 1, selected as 
the positive roots of the Chebyshev polynomial T2N+2(ξ), namely 

ξk = cos
(2k + 1)π
4(N + 1)

, for k = 0, 1,…,N. (5.1) 

To this aim, let us define the following components of the (N+1) ×
(N+1) matrices T, B and A 

Tkn = T2n+1(ξk), Bkn = 4(1 − ν)λ2C(0)
2n (ξk), Akn = An(ξk), (5.2)  

for n, k = 0, 1, 2, …, N. Then, the homogeneous equation (4.17) provides 
the following algebraic system 
(
T + β B − β3 A

)
p = 0, (5.3)  

where the upper-case bold symbols denote (N+1) × (N+1) square 
matrices and the lower-case bold symbols denote vectors of N+1 com-
ponents. The homogeneous algebraic equation (5.3) together with the 
balance condition (4.15) defines a generalized cubic eigenvalue problem 
for the eigenvalue β and eigenvector p, which can be reduced to the 
following enlarged linear eigenvalue problem 
⎡

⎣
0 I 0
0 0 I
T B 0

⎤

⎦

⎛

⎝
p
β p
β2 p

⎞

⎠ = β

⎡

⎣
I 0 0
0 I 0
0 0 A

⎤

⎦

⎛

⎝
p
β p
β2 p

⎞

⎠, (5.4)  

where 0 and I are the (N+1) × (N+1) null matrix and identity matrix, 
respectively. The procedure then takes the smallest real and positive 
eigenvalue β of the generalized eigenvalue problem (5.4) and the cor-
responding eigenvector p that provide a positive (compressive) distri-
bution of pressure (4.13)1 under the beam for |x| < a, where a = βL. 

Once the eigenvector p is known, the contact pressure and couple 
tractions under the beam immediately follow from (4.13) and (4.14). 
The bending moment and shearing force along the beam, for 0 ≤ x ≤ a, 
can be obtained from eqns (2.2) and (2.8) by using (4.8), as 

M(x) = −

∫a

x

[(x − t)p(t) − m(t) ]dt = −

∫a

x

(x − t)p(t)dt − 4(1 − ν)l 2p(x),

(5.5)  

T(x) = −

∫a

x

p(t) dt. (5.6) 

Then, introducing the series expansions (4.13) and (4.14) and the 
normalized variables ξ = x/a and τ = t/a, it follows that 

M(ξ)
Fa

= −
∑∞

n=0
pn

⎡

⎢
⎣

∫1

ξ

U2n(t)
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − τ2

√
(ξ − τ)dτ + 4(1

− ν) λ
2

β2U2n(ξ)
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

⎤

⎥
⎦, (5.7)  

T(ξ)
F

= −
∑∞

n=0
pn

∫1

ξ

U2n(τ)
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − τ2

√
dτ. (5.8) 
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Plugging the series representations (4.13), truncated to N terms, into 
eqns (5.7) and (5).8), then yields 

M(ξ)
Fa

=
∑N

n=0
pn

[

ξC(0)
2n (ξ) − ξC(0)

2n (1) − C(1)
2n (ξ) + C(1)

2n (1) + 4(1

− ν) λ
2

β2U2n(ξ)
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√ ]

, (5.9)  

T(ξ)
F

= −
∑N

n=0
pn

[
C(0)

2n (1) − C(0)
2n (ξ)

]
, (5.10)  

for 0 ≤ ξ ≤ 1. The functions Cn
(m) are defined in eqn (4.19) and explicitly 

calculated in Appendix B. 

5.1. Special case for vanishing couple tractions 

If the couple tractions are vanishing under the beam, then the 
problem reduces to the single equation (4.1), which requires continuity 
of slope between the beam and the foundation. In this case, the rotation 
of the half-plane surface ωz(x, 0) is free. Then, by introducing eqns (4.3) 
and (2).8) for m = 0 in condition (4.1), one has  

for |x |≤ a. The introduction of the Chebyshev series (4.13) for the 
contact pressure in eqn (5.11), using the integral (A.4), then yields 

∑∞

n=0

[
Fn(ξ) − β3An(ξ)

]
pn = 0, for 0 ≤ ξ ≤ 1, (5.12)  

where the function An(ξ) has been defined in (4.18) and 

Fn(ξ) = (2n+ 1)( − 1)n
∫∞

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + α2Λ2

√

α g(αΛ) J2n+1(α)sinαξ dα, (5.13) 

being Λ = ℓ/a. The functions Fn(ξ) for n = 0, 1, 2, …defined in (5.13) 
involve infinite integrals of highly oscillatory functions given by the 
product of trigonometric and Bessel functions. They are calculated 
accurately by using a special numerical integration procedure based on 
contour integration in the complex plane, as illustrated in Appendix C. 

By using a collocation procedure similar to that used in section 5, 
equation (5.12) is then transformed into a homogeneous system of linear 
algebraic equations for the unknown coefficients pn, n = 0, 1, 2, …, N, 
which has the form of a generalized linear eigenvalue problem for the 
eigenvalue β3, namely 
(
F − β3A

)
p = 0. (5.14) 

Here, the (N+1) × (N+1) square matrix F has the components 

Fkn = Fn(ξk), for n, k = 0, 1,…,N. (5.15) 

Introducing the series expansion (4.13) into eqns (5.5) and (5).6), 
while letting m = 0, yields the bending moment and shearing force along 
the beam 

M(ξ)
Fa

=
∑N

n=0
pn

[
ξC(0)

2n (ξ) − ξC(0)
2n (1) − C(1)

2n (ξ) + C(1)
2n (1)

]
, (5.16)  

T(ξ)
F

= −
∑N

n=0
pn

[
C(0)

2n (1) − C(0)
2n (ξ)

]
, (5.17)  

for 0 ≤ ξ ≤ 1, where the functions Cn
(m) are defined in eqn (4.19) and they 

Fig. 3. Contact pressure (a) and couple tractions (b) exchanged between a beam and a couple stress half-plane in bilateral frictionless contact. Here, ν = 0.3, λ = ℓ/L 
= 0.2, and two values of the normalized beam length β = a/L are considered, (a) smaller and (b) greater than the critical length (β = 2.42). In the former case the 
contact pressure is positive throughout, and thus compressive, in the latter it attains negative values which indicate tensile stress tractions. 

∫x

0

(x − t)2

2
p(t)dt + x

∫a

0

(
t −

x
2

)
p(t)dt = D

1 − ν
μπ

∫a

− a

p(t)dt
∫∞

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + s2l 2

√

g(sl )
sin[s(x − t) ]ds, (5.11)   
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are calculated analytically in Appendix B. 

6. Results and discussion 

The first step in our analysis is to relate this problem to that of the 
beam in full contact with the substrate, which situation has been 

considered by Radi (2021) revealing that both stresses and couple 
tractions are square root singular at the beam ends. Hereinafter, we 
consider ν = 0.3 for the Poisson’s coefficient and N = 20 for the number 
of collocation points. 

In Fig. 3 we plot the contact pressure and the couple traction dis-
tribution for a beam of length 2a in full contact with the substrate, for λ 
= ℓ/L = 0.2 and ν = 0.3. These curves show that the contact pressure due 
to a centred point load is fully compressive under the beam if the beam is 
shorter than some critical length, e.g. for β = 2, while tensile stress 
tractions start to appear if the beam is longer, e.g. for β = 3. Indeed, as 
found in the following, this critical length, which marks the appearance 
of lift-off, is located at β = 2.42 (assuming, as in Fig. 3, that λ = 0.2). 
Fig. 3b shows that the couple tractions are singular at the beam ends and 
have the same sign irrespectively of the beam being shorter or longer 
than the critical length, namely, both for β = 0.2 and β = 0.3. It follows 
that, in the tractionless contact framework, the contact pressure must 
vanish at the lift-off points, where the couple tractions are expected to 
exhibit a square root singularity, as assumed in (4.13) and (4.14). 

The variation of the critical length β relating the contact length a to 
the beam length L, defined in (4.16), is plotted in Fig. 4 for tensionless 
contact as a function of the normalized characteristic length λ for the 
half-plane. This curve shows that the contact length increases with λ due 
to the effects of the couple tractions, which contribute to keeping the 
beam in contact with the half-plane, especially at the ends of the contact 
zone. As the material characteristic length becomes vanishingly small, it 
can be also observed that the contact length a tends to recover the 
prediction of Gladwell (1976) and Gallagher (1983) for the standard 
elastic contact problem, who obtained a/L = 11.071/3 = 2.229 and a/L 
= 111/3 = 2.224, respectively. Numerical results are also presented in 
Table 1. 

The normalized distributions of contact pressure and couple traction 
under the beam are plotted in Fig. 5 for five values of the characteristic 
length of the elastic half-plane as it compares with the beam length. In 

Fig. 4. Dimensionless contact length β = a/L as a function of the normalized 
characteristic length λ = ℓ/L for the tensionless contact problem, (ν = 0.3). 

Table 1 
Values of the normalized contact length β = a/L for some values of the normalized characteristic length λ = ℓ/L, for ν = 0.3 in the presence of couple tractions.  

λ 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

β 2.226 2.237 2.273 2.421 2.682 3.080 3.643 4.403 5.380 6.572 7.954 9.486  

Fig. 5. Contact pressure (a) and couple tractions (b) as a function of dimensionless position in the contact region for the tensionless contact problem, at ν = 0.3 and 
for five different values of the relative length scale in the foundation, λ = ℓ/L. 
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Fig. 5a, it can be observed that the contact pressure under the beam is 
compressive, attains its maximum at the point of application of the line 
load and correctly vanishes at the lift-off point. Moreover, for a very 
small characteristic length, e. g. for λ = 0.01, the curve approaches the 
classical elastic solution. As the normalized characteristic length λ in-
creases, the magnitude of contact pressure increases strongly in the 
neighborhood of the loading and fades off rapidly approaching the end 
of the contact zone. In all curves, the couple tractions plotted in Fig. 5b 
display a singular behavior at the end of the contact zone and equally 
increase for higher values of the characteristic length λ. Notably, as the 
parameter λ increases, oscillations appear in the distribution of the 
couple tractions, which may be reduced increasing the number of terms 

(N+1) considered in the approximation (4.13). This behavior is an in-
dicator of the unstable character of the couple tractions for large ma-
terial characteristic lengths. Conversely, as the characteristic length 
becomes vanishingly small, the couple tractions under the beam tend to 
disappear and localize at the contact end: in this sense, the contact 
pressure approaches but never recovers the classical elastic solution. 

The corresponding normalized distributions of bending moment and 
shearing force along the beam are plotted in Fig. 6. As expected, the 
bending moment peaks under the line load, where the shearing force 
jumps. The effect of increasing the microstructure lengthscale consists of 
a considerable reduction of the bending moment peak under the load 
and a mild increment in the shearing force (in absolute terms). This 

Fig. 6. Bending moment (a) and shearing force (b) along the contact zone, for five values of the characteristic parameter λ = ℓ/L (ν = 0.3).  

Fig. 7. Dimensionless contact length β = a/L, as a function of the relative 
length scale of the microstructure Λ = ℓ/a in the absence of couple tractions 
along the contact zone, for ν = 0.3. 

Fig. 8. Contact pressure distribution along the contact zone for four values of 
the relative lengthscale Λ = ℓ/a, in the absence of couple tractions exchange (ν 
= 0.3). 
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suggests that consideration of the microstructure and of the couple stress 
exchange with the foundation considerably relieves the beam from the 
bending stress. In particular, due to the contribution of the couple 
tractions, the bending moment occurs with opposite sign at the lift-off 
points, thereby promoting adhesion to the foundation. 

For the sake of comparison, the results obtained under the alterna-
tive assumption of vanishing couple tractions under the beam, already 
introduced in Section 5.1, are plotted in Figs. 7–9. In particular, the 
variation of the critical ratio β between the contact length a and the 
length L with the normalized characteristic length of the half-plane Λ =
ℓ/a is plotted in Fig. 7. Similar results are also reported in Table 2. 
Interestingly, the dimensionless contact length β appears to decrease as 
the normalized characteristic lengthscale Λ increases, in contrast with 
the behaviour observed in Fig. 4 obtained in the presence of couple 
tractions along the contact zone. Note that the lengthscale Λ adopted 
here is normalized against the contact length a, as opposed to the 
parameter λ previously introduced which is normalized with respect to 
the beam half-length L. 

The contact pressure distribution under the beam is shown in Fig. 8 
for four values of the non-dimensional ratio Λ, in the absence of couple 
traction exchange. In this simplified contact scenario, the characteristic 
length of the material affects the contact pressure very little, in sharp 
contrast with the results observed in Fig. 5a for the case when couple 
tractions are acting. Also, no uniform trend can be retrieved. Equally, 
the bearing of the material characteristic length on the distribution of 
bending moment and shearing force along the beam, which is illustrated 
in Fig. 9a and 9b, respectively, is very mild, compared to that described 
in Fig. 6. Therefore, it may be concluded that the presence of the couple 
tractions under the beam is the main driver of the size effect observed in 
the contact problem between a beam and an elastic half-plane with 
microstructure. Consequently, ignoring couple tractions amounts to 

greatly underestimating the effect of the microstructure and results 
closely match the classical contact scenario. 

7. Conclusions 

In this paper, the contact problem for a beam resting in unilateral 
contact onto a microstructured foundation is investigated. The problem 
is formulated in terms of a single cubic eigenvalue problem for linear 
integral operators of the difference type. The contact evolution that 
emerges is the natural continuation of progressing from a beam in 
complete contact with the substrate until separation kicks in, with the 
contact pressure vanishing at the lift-off points and the couple tractions 
developing a square root singularity. Significantly, couple stresses 
appear as the main contributor to the deviation of the results from the 
classical scenario, that neglects the internal characteristic lengthscale. In 
this respect, neglecting couple stress exchange between the beam and 
the substrate greatly mitigates the role played by the microstructure in 
affecting the contact mechanics. In particular, accounting for the 
microstructure yields a contact pressure distribution that is highly 
peaked about the load application point. This outcome is much stronger 
than that obtained from classical elasticity and also compared to the 
case, often met in the literature, when couple tractions are not trans-
mitted along the contact zone. 

In fact, besides the usual compatibility between the slope of the two 
solids in contact, here we also require compatibility between the rota-
tions of the foundation surface and of the beam mid-plane. This has 
profound consequences on the contact pattern, in terms of exchanged 
forces and resulting stresses, as well as on the contact length. Indeed, a 
striking feature predicted by the present solution is the remarkable size- 
effect affecting the magnitude of the contact pressure and, in turn, the 
bending moment, when the intrinsic characteristic length scale of the 
ground becomes comparable to the length of the contact zone. Results 
may be very significant when designing micro- and nano-scale devices, 
for then the contact pressure predicted by the classical theory is much 
underestimated. Finally, it must be remarked that the plane strain 
condition here considered is strictly valid for a long strip or plate 
extending in the out of plane direction, and thus the results here pre-
sented are approximated for a beam of small width. A fully three- 
dimensional analysis of this contact problem will be the subject of 
further investigations. 

Fig. 9. Bending moment (a) and of the shearing force (b) distribution along the contact zone, for four values of the relative lengthscale Λ = ℓ/a, in the absence of 
couple tractions exchange (ν = 0.3). 

Table 2 
Values of the normalized contact length β = a/L for some values of the 
normalized characteristic length λ = ℓ/L, for ν = 0.3 in the absence of couple 
tractions.  

λ 0 0.2 0.5 1.0 1.5 2.0 

В 2.225 2.102 1.954 1.814 1.754 1.725  
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Appendix A. Integrals involving Chebyshev polynomials 

The Chebyshev polynomial of the first and second kinds of order n are defined as: 

Tn(t) = cos(n arcos t), Un(t) =
sin[(n+ 1)arccos t ]

sin(arccos t)
. (A.1) 

respectively, where 0 ≤ arcos t ≤ π. They form a complete orthogonal set in the interval [− 1, 1] with respect to the weight function (1− t)− 1/2 and 
(1− t)1/2, respectively, namely: 

∫ 1

− 1

Tn(t)Tm(t)
̅̅̅̅̅̅̅̅̅̅̅̅
1 − t2

√ dt =

⎧
⎨

⎩

π/2, if n = m ∕= 0,
π, if n = m = 0,
0, if n ∕= m.

∫ 1

− 1
Un(t)Um(t)

̅̅̅̅̅̅̅̅̅̅̅̅
1 − t2

√
dt =

{
π/2, if n = m,
0, if n ∕= m. (A.2) 

By using the definition (A.1) and making the substitution t = cos θ, the following definite integrals can be calculated: 

∫1

− 1

Un(τ)
ξ − τ

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − τ2

√
dτ = π Tn+1(ξ), (A.3)  

as found in Erdogan and Gupta (1972) and Gladwell (1976). Using the same substitution and the results (3.715.13) and (3.715.18) in Gradshteyn and 
Ryzhik (2007), also the following results can be obtained 

∫1

− 1

Un(τ)
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − τ2

√
sin[α(ξ − τ) ]dτ = π

α (n+ 1)Jn+1(α)sin
(
αξ − nπ

2

)
, (A.4)  

∫1

− 1

Un(τ)
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − τ2

√
cos[α(ξ − τ) ]dτ = π

α (n+ 1)Jn+1(α)cos
(
αξ − nπ

2

)
, (A.5)  

where Jn denotes the Bessel function of the first kind of order n. 

Appendix B. Calculation of definite integrals in (4.19) 

Using the substitution τ = cos θ, the definite integrals (4.19) can be calculated in closed-form: 

C(0)
n (ξ) =

∫π/2

arccos ξ

sin(n+ 1)θ sinθ dθ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ξ2

√

2

[
Un+1(ξ)
n+ 2

−
Un− 1(ξ)

n

]

+
n+ 1

n(n+ 2)
sin

nπ
2
, for n ∕= 0,

π
4
−

arccosξ
2

+
U1(ξ)

4

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

, for n = 0,

(B.1)  

C(1)
n (ξ) =

1
2

∫π/2

arccosξ

[cosnθ − cos(n+ 2)θ ]cosθ dθ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ξ2

√

4

[
Un+2(ξ)
n+ 3

−
Un− 2(ξ)
n − 1

]

−
cos(nπ/2)

(n − 1)(n+ 3)
, for  n ∕= 1,

π
8
−

arccosξ
4

+
U3(ξ)

16

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

, for  n = 1,

(B.2)  
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C(2)
n (ξ) =

1
2

∫π

arccosξ

[cosnθ − cos(n+ 2)θ ]cos2θ dθ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ξ2

√

8

[
Un+3(ξ)
n+ 4

+
Un+1(ξ)
n+ 2

−
Un− 1(ξ)

n
−

Un− 3(ξ)
n − 2

]

−
2(n+ 1)sin(nπ/2)
n(n2 − 4

)
(n+ 4)

, for n ∕= 0, 2,

π
16

−
arccosξ

8
+

U3(ξ)
32

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

, for n = 0,

π
16

−
arccosξ

8
+

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ξ2

√

8

[
U5(ξ)

6
+

U3(ξ)
4

−
U1(ξ)

2

]

, for n = 2.

(B.3)  

Appendix C. Numerical calculation of infinite integrals in (5.13) 

The infinite integral in (5.13) involves the product of Bessel and trigonometric function which displays highly oscillatory behavior at infinite and it 
has the following form and can be split into two terms 
∫∞

0

φ(α)J2n+1(α)sinαξ dα = In(ξ, α0) + Ln(ξ,α0), (C.1)  

where the function φ(α) is analytic in the complex half-plane Re(α) ≥ α0 > 0, being α0 a real and positive value to be defined in the following, and 

In(ξ,α0) =

∫α0

0

φ(α)J2n+1(α)sinαξ dα,

Ln(ξ,α0) =

∫∞

α0

φ(α)J2n+1(α)sinαξ dα.
(C.2) 

The integral In(ξ, α0) can be evaluated by using standard Gauss quadrature, being defined in a bounded interval. In particular, the choice α0 = 2n+1 
is made, since the function J2n+1(α) has no oscillation within the real interval 0 ≤ α ≤ 2n+1. For calculating the integral Ln(ξ, α0) use is made of the 
decomposition of a Bessel function of the first kind into the sum of two Hankel functions (Gradshteyn and Ryzhik, 2007), namely 

Jn(α) =
1
2
[
H(1)

n (α) + H(2)
n (α)

]
. (C.3) 

The Hankel functions H(1)
n (α) and H(2)

n (α) exhibit exponential decay as α tends to infinite in the upper and lower complex halfplane, respectively, 
namely 

H(1)
n (α) = O

(
α− 1/2 ei(α− nπ/2− π/4) ), H(2)

n (α) = O
(
α− 1/2 e− i(α− nπ/2− π/4) ), (C.4) 

as |α|→∞. Then, according to the decomposition (C.3) the integral Ln(ξ, α0) can be split as 

Ln(ξ,α0) =
1
2

⎡

⎣
∫∞

α0

φ(α)H(1)
2n+1(α)sinαξ dα+

∫∞

α0

φ(α)H(2)
2n+1(α)sinαξ dα

⎤

⎦, (C.5) 

The contours of integration of the integrals in (C.5) can be deformed in the complex α plane into a straight path parallel to the imaginary axis 
defined by α = α0 ± i β, for 0 ≤ β ≤ R, where the plus sign is taken for the first integral and the minus sign for the second one, and a quarter of circle of 
radius R centred on the real axis at α = α0, for R → ∞. Then, according to the Jordan lemma the contribution of the two circular paths is vanishing small 
as R → ∞. The contributions of the straight paths provide instead the following convergent integral, whose argument decays exponentially as β → ∞, 
according to the asymptotic behavior of the Hankel functions (C.4) and that of function g(αλ) 

Ln(ξ,α0) = Re

⎧
⎨

⎩

eiaξ

2

∫∞

0

[
φ(α0 + iβ)H(1)

2n+1(α0 + iβ)e− βξ − φ(α0 − iβ)H(2)
2n+1(α0 − iβ)eβξ

]
dβ

⎫
⎬

⎭
.

Appendix D. Proof of result (4.19) 

Let us show that the condition 
∫a

− a

φ(t)dt
∫∞

0

cos[s(x − t) ]
g(sl )

ds = 0, for |x| ≤ a, (D.1) 

where φ(t) is an odd function, i.e. φ(t) = − φ(− t), necessarily implies φ(t) = 0 for |t| ≤ a. 
Indeed, by exchanging the order of integration and using the odd property of φ one has 

∫∞

0

Φ(s)
g(sl )

sinsx ds = 0, for |x| ≤ a, (D.2)  
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where 

Φ(s) =
∫a

− a

φ(t)sinst dt. (D.3) 

Inversion of the Fourier sine transform then yields Φ(s) = 0 for s ≥ 0. Now, by expanding the term sin st in power series one gets 

∑∞

k=1

( − 1)ks2k− 1

(2k − 1)!

∫a

− a

φ(t) t2k− 1 dt = 0, for s ≥ 0. (D.4) 

Therefore: 
∫a

− a

φ(t) t2k− 1 dt = 0, for k = 1, 2 ,… (D.5) 

Now, let us expand also φ(t) in power series 

φ(t) =
∑∞

j=1
φj t2j− 1. (D.6) 

Then, eqn (D.5) requires 

∑∞

j=1
φj

∫a

− a

t2(j+k− 1) dt = 0, for k = 1, 2 ,… (D.7) 

namely 

∑∞

j=1

φj a2j

j+ k − 1/2
= 0, for k = 1, 2,… (D.8) 

Since eqn (D.8) must hold true for every integer k ≥ 1, then all the coefficients φj must be null, for j = 1, 2, …, and thus φ(t) = 0 for |t| ≤ a. 
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