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Abstract. A fully connected vertex w in a simple graph G of order N is a vertex

connected to all the other N − 1 vertices. Upon denoting by L the Laplacian

matrix of the graph, we prove that the continuous-time quantum walk (CTQW)—

with Hamiltonian H = γL—of a walker initially localized at |w〉 does not depend

on the graph G. We also prove that for any Grover-like CTQW—with Hamiltonian

H = γL +
∑

w λw|w〉〈w|—the probability amplitude at the fully connected marked

vertices w does not depend onG. The result does not hold for CTQW with Hamiltonian

H = γA (adjacency matrix). We apply our results to spatial search and quantum

transport for single and multiple fully connected marked vertices, proving that CTQWs

on any graph G inherit the properties already known for the complete graph of the

same order, including the optimality of the spatial search. Our results provide a unified

framework for several partial results already reported in literature for fully connected

vertices, such as the equivalence of CTQW and of spatial search for the central vertex

of the star and wheel graph, and any vertex of the complete graph.

Keywords: quantum walks, quantum search, Grover search, quantum transport,

Laplacian matrix, graphs

1. Introduction

A quantum particle propagating on a discrete space, e.g., on a graph, performs a

quantum walk, the quantum analog of classical random walk. Quantum walks are a well-

established model [1], with already existing physical implementations [2]. Continuous-

time quantum walks (CTQWs) were introduced in [3] as a quantum algorithm to traverse

decision trees. In a CTQW the state of the walker evolves continuously in time according
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to the Schrödinger equation under a Hamiltonian which respects the topology of the

graph considered. The graph is mathematically represented by the Laplacian matrix

L = D−A, which encodes the degree D and the adjacency A of the vertices. Hence, the

matrices L and A are usually taken as generators of a CTQW. For regular graphs, A and

L are equivalent, since all the vertices have the same degree and thus D is proportional

to the identity. For irregular graphs, instead, A and L are not equivalent in general,

but it is possible to recover the same probability distributions for certain graphs and

depending on the initial states [4].

CTQWs walks inherit the versatility of application from their classical ancestors,

but the peculiar features arising from their quantum nature—e.g., the superposition of

the quantum walker in their path—make them suitable candidates not only for modeling

physical processes, such as coherent transport in complex networks [5] even in biological

system [6], but also for applications in quantum technologies. Indeed, they are of use in

studying perfect state transfer in quantum spin networks [7, 8], of utmost importance

for quantum communication, in developing quantum algorithms, such as spatial search

[9, 10, 11] and to solve K-SAT problems [12], and they are universal for quantum

computation [13, 14].

A number of works have reported equivalent results for Laplacian CTQWs when

the fully connected vertex is involved. By fully connected vertex we mean a vertex which

is adjacent (connected) to all the other vertices of the graph, as shown in Figure 1. The

dynamics of the central vertex of the star graph and that of any vertex of the complete

graph are equivalent, showing periodic perfect revivals and strong localization on the

initial vertex [15], even in the presence of a perturbation λL2 [16]. The spatial search

of a marked vertex on the complete graph or on the star graph, when the target is

the central vertex, are equivalent [17], and the same qualitative results are observed

even in the presence of weak random telegraph noise [18]. The quantum-classical

dynamical distance is a fidelity-based measure introduced to quantify the differences

in the dynamics of classical versus quantum walks on a graph. Such distance turns

out to be the same for the complete, star, and wheel graphs when the central vertex is

assumed as the initial state for the walker [19].

In this paper we prove the universality of the fully connected vertex in Laplacian

CTQWs. This means that when the fully connected vertex of a graph is the initial state

of the walk, or when it is the marked vertex (target) of a Grover-like CTQWs (those

involved in spatial search or quantum transport), results do not depend on the considered

graph G. In other words, those problems formulated on G of order N and on the

complete graph of the same order, KN , are equivalent. The present work thus explains

the equivalent results between star, wheel, and complete graphs already observed and

reported in literature, generalizing the equivalence to the fully connected vertices of any

simple graph.

The paper is organized as follows. In Section 2 we recall the CTQW model. In

Section 3 we briefly review the dimensionality reduction method for quantum walks [20],

according to which in Section 4 we prove the equivalence of the Laplacian CTQW of
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Figure 1. Examples of graphs of order N = 8 with at least one fully connected vertex

w (orange colored), deg(w) = N − 1. (a) Star graph SN , (b) Wheel graph WN , and

(c) Complete graph KN . (d)-(f) Random graphs.

a walker initially localized at a fully connected vertex in any simple graph. Instead,

the corresponding CTQWs generated by the adjacency matrix do depend on the graph

chosen. Then, in Section 5 we prove that the equivalence applies also to Grover-like

CTQWs for a single fully connected marked vertex, focusing on spatial search and

quantum transport. In Section 6 we generalize the result to the case of multiple marked

vertices. Finally, we present our concluding remarks in Section 7.

2. Continuous-time quantum walks

A graph is a pair G = (V,E), where V denotes the non-empty set of vertices and E the

set of edges. The order of the graph is the number of vertices, |V | = N . A simple graph

is an undirected graph containing no self loops or multiple edges. It is mathematically

represented by the Laplacian matrix L = D−A, where the adjacency matrix A (Avv′ = 1

if the vertices v and v′ are connected, 0 otherwise) is symmetric and describes the

connectivity of G and D is the diagonal degree matrix with Dvv = deg(v) =: dv the

degree of vertex v. According to this, L is real, symmetric, positive semidefinite, and

singular (L always admits the null eigenvalue because every row sum and column sum

of L is zero, thus det(L) = 0).

The CTQW is the propagation of a free quantum particle when confined to a

discrete space, e.g., a graph. The CTQW on a graph G takes place on a N -dimensional

Hilbert spaceH = span({|v〉 | v ∈ V }), and the kinetic energy term −∇2/2m is replaced

by γL, where ~ = 1 and γ ∈ R+ is the hopping amplitude of the walk. The state of the

walker obeys the Schrödinger equation

i
d

dt
|ψ(t)〉 = H|ψ(t)〉 (1)

with Hamiltonian H = γL. Hence, a walker starting in the state |ψ0〉 ∈ H continuously
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evolves in time according to

|ψ(t)〉 = U(t)|ψ0〉 , (2)

with U(t) = exp[−iHt] the unitary time-evolution operator. The probability to find the

walker in a target vertex w is therefore |〈w| exp [−iHt] |ψ0〉|2.

3. Dimensionality reduction method

3.1. Method

In most CTQW problems encoded on a graph G and a Hamiltonian H, the quantity of

interest is the probability amplitude at a certain vertex of G. The graph often contains

symmetries that allow us to simplify the problem, reducing the effective dimensionality

of the latter. Indeed, the evolution of the system relevant to the problem actually occurs

in a subspace, also known as Krylov subspace [21], of the complete N -dimensional

Hilbert space H spanned by the vertices of G. This subspace contains the vertex of

interest and it is invariant under the unitary time evolution. As a result, the original

graph encoding the problem can be mapped onto an equivalent weighted graph of

lower order, whose vertices are the basis states of the invariant subspace. The reduced

Hamiltonian, i.e., H written in the basis of the invariant subspace, still fully describes

the dynamics relevant to the given problem. We can determine the invariant subspace

and its basis by means of the dimensionality reduction method for CTQW [20], which

we briefly review.

The unitary evolution (2) can be expressed as

|ψ(t)〉 =
∞∑
n=0

(−it)n

n!
Hn|ψ0〉 , (3)

so |ψ(t)〉 is contained in the subspace I(H, |ψ0〉) = span({Hn|ψ0〉 | n ∈ N0}). This

subspace of H is invariant under the action of the Hamiltonian and, thus, also of the

unitary evolution. Naturally, dim I(H, |ψ0〉) ≤ dimH = N . If the Hamiltonian is highly

symmetrical, then only a small number of powers of Hn|ψ0〉 are linearly independent,

hence the dimension of I(H, |ψ0〉) can be much smaller than N .

Let P be the projector onto I(H, |ψ0〉). Then

U(t)|ψ0〉 = e−iHredt|ψ0〉 , (4)

where Hred = PHP is the reduced Hamiltonian. We obtain this using the power series

of U(t) and the fact that P 2 = P (projector), P |ψ0〉 = |ψ0〉, and PU(t)|ψ0〉 = U(t)|ψ0〉.
For any state |φ〉 ∈ H, solution of the CTQW problem, we have

〈φ|U(t)|ψ0〉 = 〈φred|e−iHredt|ψ0〉 , (5)

where |φred〉 = P |φ〉 is the reduced state. Analogously, using the projector P ′ onto the

subspace I(H, |φ〉), we obtain

〈φ|U(t)|ψ0〉 = 〈φ|e−iH′
redt|ψ0red〉 , (6)
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with H ′red = P ′HP ′ and |ψ0red〉 = P ′|ψ0〉.
An orthonormal basis of I(H, |φ〉), say {|e1〉, . . . , |em〉}, can be iteratively obtained,

as follows: |e1〉 := |φ〉, then |en+1〉 follows from orthonormalizing H|en〉 with respect to

the previously obtained basis states, {|ek〉}k=1,...,n, i.e.,

|un+1〉 := H|en〉 −
n∑
k=1

〈ek|H|en〉|ek〉 ⇒ |en+1〉 :=
|un+1〉
‖|un+1〉‖

. (7)

The procedure stops when we find the minimum m such that H|em〉 ∈
span({|e1〉, . . . , |em〉}). The projector onto I(H, |φ〉) is therefore P ′ =

∑m
n=1 |en〉〈en|.

3.2. Complete Graph

As an example, we review the well-known reduced problem of the CTQW on the

complete graph on N vertices, KN , when generated by the Laplacian matrix or by

the adjacency matrix. Each pair of vertices is connected by an edge, so any vertex is

fully connected and has degree N − 1. The adjacency matrix is (AK)vv′ = 1 ∀v 6= v′,

the diagonal degree matrix is DK = (N − 1)I, where I is the identity operator, and the

Laplacian matrix is LK = DK −AK . Suppose we want to study the CTQW of a walker

initially localized at a certain vertex w or, alternatively, for walker starting from any

other initial state, to compute the probability amplitude at w. The invariant subspace

relevant to problem is

I(LK , |w〉) = I(AK , |w〉)

= span

({
|e1〉 = |w〉, |e2〉 =

1√
N − 1

∑
v 6=w
|v〉
})

. (8)

Writing LK and AK in this subspace, we find, respectively, the reduced Laplacian matrix

LK,red =

(
N − 1 −

√
N − 1

−
√
N − 1 1

)
, (9)

and the reduced adjacency matrix [20]

AK,red =

(
0

√
N − 1√

N − 1 N − 2

)
. (10)

It is worth noticing that, consistently with LK = DK − AK , we have LK,red =

DK,red − AK,red, since DK written in the basis (8) is DK,red = (N − 1)I2×2.

The steps required to obtain the orthonormal basis (8), the reduced Laplacian

matrix (9), and the reduced adjacency matrix (10) for the complete graph are the same

as those presented, in a more general case, in the proofs of Theorem 1 and Proposition

1, to which we refer the reader for details.

4. Universality of a CTQW starting from a fully connected vertex

In this section we discuss the CTQW generated either by the Laplacian matrix, H = γL,

or by the adjacency matrix, H = γA. The hopping amplitude γ plays the role of a time
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scaling factor in the time-evolution operator exp[−iLγt] or exp[−iAγt]. Therefore, in the

following we set γ = 1 so that, together with ~ = 1, time and energy are dimensionless.

4.1. Laplacian CTQW

We will refer to the CTQW generated by the Laplacian matrix L as a Laplacian CTQW.

Theorem 1. Let G = (V,E) be a simple graph on N = |V | vertices and M = |E| edges,

with Laplacian matrix LG = D − A. Let w ∈ V be a fully connected vertex of G, with

degree dw = N − 1. Then, the time-evolution of |w〉 under the Laplacian matrix is

e−iLGt|w〉 = e−iLG,redt|w〉 , (11)

is entirely contained in the invariant subspace

I(LG, |w〉) = span

({
|e1〉 = |w〉, |e2〉 =

1√
N − 1

∑
v 6=w
|v〉
})

, (12)

and is generated by the reduced Laplacian matrix

LG,red =

(
N − 1 −

√
N − 1

−
√
N − 1 1

)
. (13)

Remark 1. We emphasize that dim I(LG, |w〉) = 2 ≤ dimH = N independently of

N and of the graph considered. Theorem 1 generalizes what already known for the

complete graph in Section 3.2, proving that the CTQW of the fully connected vertex

|w〉 is independent of the graph.

Proof. Let H be the N -dimensional Hilbert space of quantum walker on G. The time

evolution of the state |w〉 generated by LG, exp [−iLGt] |w〉, belongs to a subspace of H,

I(LG, |w〉) := span({LnG|w〉 | n ∈ N0}) . (14)

The proof makes use of the dimensionality reduction method (Section 3) and consists

of two parts. (i) First, we prove Equation (12). (ii) Second, we prove Equation (13).

Therefore, if the CTQW of a fully connected vertex w on any graph G satisfy these two

conditions, then the statement (11) follows from Equation (4).

(i) The first basis state is |e1〉 = |w〉. Then we consider

LG|e1〉 = (N − 1)|w〉 −
∑
v 6=w

|v〉 =: (N − 1)|e1〉 −
√
N − 1|e2〉 , (15)

where we have used the fact that w is adjacent to all the other vertices, dw = N − 1.

The basis state |e2〉 follows from orthonormalizing LG|e1〉 with respect to the previous

basis state, |e1〉.
To find the next basis state, we compute LG|e2〉 and then we orthonormalize it

with respect to the previous basis states. To compute the projections 〈en|LG|e2〉, with

n = 1, 2, it is convenient to use the definition of Laplacian matrix. We have that

〈e1|LG|e2〉 =
1√

N − 1

∑
v 6=w

(Dwv − Awv) = − 1√
N − 1

∑
v 6=w

Awv

= −
√
N − 1 , (16)
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because D is diagonal, Dwv = 0 for v 6= w, and
∑

v 6=w Awv =
∑

v∈V Awv = dw in a graph

with no self loops (a vertex is not adjacent to itself), as in the present case. Then

〈e2|LG|e2〉 =
1

N − 1

∑
v,v′ 6=w

(Dvv′ − Avv′) =
1

N − 1

[∑
v 6=w

dv − (2M − 2dw)

]

=
1

N − 1
[2M − (2M − dw)] = 1 , (17)

since ∑
v,v′ 6=w

Avv′ =
∑
v∈V

∑
v′ 6=w

Avv′ −
∑
v′ 6=w

Awv′ =
∑
v,v′∈V

Avv′ −
∑
v∈V

Avw − dw

= 2M − 2dw , (18)

where, we recall, M is the number of edges. Summing all the elements of the

adjacency matrix, as well as summing the degrees, means counting the edges twice,∑
v,v′∈V Avv′ =

∑
v∈V dv = 2M . In graph theory the latter is known as the degree sum

formula and it implies the handshaking lemma. We can now prove that

LG|e2〉 = −
√
N − 1|e1〉+ |e2〉 , (19)

therefore that LnG|w〉 ∈ span({|e1〉, |e2〉})∀n ∈ N0, by showing that

|λ〉 := (LG − I)|e2〉+
√
N − 1|e1〉 = 0 , (20)

where I is the identity. First, we project it onto |w〉

〈w|λ〉 =
1√

N − 1

(∑
v 6=w

(dv − 1)δwv −
∑
v 6=w

Awv +N − 1

)

=
1√

N − 1
(0− dw +N − 1) = 0 , (21)

and then we project it onto any other vertex state, |v′ 6= w〉,

〈v′|λ〉 =
1√

N − 1

[∑
v 6=w

(dv − 1)δv′v −
∑
v 6=w

Av′v + 0

]

=
1√

N − 1

[
dv′ − 1−

(∑
v∈V

Av′v − Av′w

)]

=
1√

N − 1
[dv′ − 1− (dv′ − 1)] = 0 , (22)

where Av′w = 1 because w is adjacent to all the other vertices. This proves Equation

(20), because the w-th component and any other component, v′ 6= w, are null. The

statement (12) follows.

(ii) We can easily prove Equation (13) by taking the matrix elements

(LG,red)jk := 〈ej|LG|ek〉 = (LG,red)kj , (23)

with j, k = 1, 2, from (i).
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To summarize, the time evolution of the fully connected vertex state |w〉 always

belongs to the subspace (12) and is fully described by the reduced generator (13)

indipendently of the graph G considered. This proves the statement (11), concluding

the proof.

Corollary 1. Let us consider the Laplacian CTQWs on a graph G1 and on a graph G2

both of order N with a fully connected vertex w. Let us assume that the initial states are

|ψ0,G1〉 and |ψ0,G2〉, respectively. Then, the probability amplitude of finding the walker at

w is the same, 〈w| exp [−iLG1t] |ψ0,G1〉 = 〈w| exp [−iLG2t] |ψ0,G2〉, provided that the two

initial states have the same projection onto the subspace I(LG1 , |w〉) (12).

Proof. This directly follows from Equation (6), with |φ〉 = |w〉, and Theorem 1.

4.2. Adjacency CTQW

We will refer to the CTQW generated by the adjacency matrix A as an adjacency

CTQW.

Proposition 1. Let G = (V,E) be a simple graph on N = |V | vertices and M = |E|
edges, with adjacency matrix AG. Let w ∈ V be a fully connected vertex of G, with

degree dw = N − 1. Then, the adjacency CTQW of the state |w〉 does depend on the

graph G considered.

Proof. The proof makes use of the dimensionality reduction method (Section 3) and

consists of three parts. (i.a) First, we prove that

dim I(AG, |w〉) ≥ 2 = dim I(AK , |w〉) , (24)

where the subscript K refers to the complete graph and, as known, I(AK , |w〉) is (8).

This is a first indication that the CTQW of |w〉 generated by AG and AK are not

equivalent, in general, revealing a first dependence on the graph considered. (i.b) In

particular, if the graph G has more than one fully connected vertex and G 6= KN , then

dim I(AG, |w〉) > 2. (ii) Second, we prove that even if I(AG, |w〉) = I(AK , |w〉), the

two reduced generators are different, AG,red 6= AK,red, and thus lead to different time

evolutions.

(i.a) The first basis state is |e1〉 = |w〉. Then we consider

AG|e1〉 =
∑
v 6=w

|v〉 =:
√
N − 1|e2〉 , (25)

and |e2〉 follows from normalizing AG|e1〉, as the latter is already orthogonal to |e1〉.
To find the next basis state, we compute AG|e2〉 and then we orthonormalize it

with respect to the previous basis states. To compute the projections 〈en|AG|e2〉, with

n = 1, 2, and it is convenient to use the definition of adjacency matrix. We have that

〈e1|AG|e2〉 =
1√

N − 1

∑
v 6=w

Awv =
√
N − 1 , (26)
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since dw = N − 1, and, from Equation (18),

〈e2|AG|e2〉 =
1

N − 1

∑
v,v′ 6=w

Avv′ =
1

N − 1
(2M − 2dw) =

2M

N − 1
− 2 , (27)

where, we recall, M is the number of edges. We can now study whether or not the state

|α〉 :=

[
AG −

(
2M

N − 1
− 2

)]
|e2〉 −

√
N − 1|e1〉 (28)

is null. If null, then the invariant subspace has dimension 2, as AG|e2〉 is a linear

combination of |e1〉 and |e2〉, otherwise it has dimension > 2. First, we project the state

(28) onto |w〉, observing that 〈w|α〉 = 0 from Equation (26), and then we project it onto

any other vertex state, |v′ 6= w〉,

〈v′|α〉 =
1√

N − 1

[∑
v 6=w

Av′v −
(

2M

N − 1
− 2

)∑
v 6=w

δv′v

]

=
1√

N − 1

[
(dv′ − 1)− 2M

N − 1
+ 2

]
=

1√
N − 1

(
dv′ + 1− 2M

N − 1

)
, (29)

where
∑

v 6=w Av′v =
∑

v∈V Av′v − Av′w = dv′ − Av′w and Av′w = 1 because w is adjacent

to all the other vertices. We have proved that the w-th component is null, but the other

components v′ 6= w depend on v′, so they are not null, in general. According to this,

AG|e2〉 is not just a linear combination of |e1〉 and |e2〉, further basis states are required,

and so the statement (24) follows.

(i.b) Let us now assume that there is another fully connected vertex w′ 6= w,

dw′ = N − 1. Then, 〈w|α〉 = 0 still holds and Equation (29) for v′ = w′ reads as

〈w′|α〉 =
1

(N − 1)3/2

(
N2 −N − 2M

)
, (30)

which is null for N = (1 ±
√

1 + 8M)/2. However, N ∈ N requires the solution with

the plus sign and
√

1 + 8M = 2m + 1, with m ∈ N0. Solving the latter condition with

respect to m leads to m = [−1± (2m + 1)]/2. The only acceptable solution is m = m,

i.e., any positive odd number 2m + 1 can be written as
√

1 + 8M . The degree sum

formula,
∑

v∈V dv = 2M , allows us to write

N =
1

2

(
1 +

√
1 + 4

∑
v∈V

dv

)
. (31)

Now we study whether the Equation (31) admits a solution. The presence of fully

connected vertex make the graph connected, and dv ≥ 2 ∀v ∈ V since, by assumption,

there are at least two fully connected vertices. The graph satisfying the minimal

conditions is the graph with two fully connected vertices, w,w′ with dw = dw′ = N − 1,

and with all the other N − 2 vertices connected only to w and w′, dv = 2 ∀v 6= w,w′.
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Hence,
∑

v∈V dv = 2(N − 1) + (N − 2)2, from which the right-hand side of Equation

(31) is

f(N) =
1

2

(
1 +
√

16N − 23
)
. (32)

If we assume that all the vertices are fully connected, then we get the complete graph.

Hence,
∑

v∈V dv = N(N − 1), from which Equation (31) holds for any N . However,

we are interested in graphs other than the complete one. There is no graph with

only N − 1 fully connected vertices, as, otherwise, the remaining vertex is necessarily

connected to all the others and so the graph is complete. There is, however, the graph

with N − 2 fully connected vertices, obtained by removing one edge from the complete

graph. The two non-fully connected vertices thus obtained have degree N − 2. Hence,∑
v∈V dv = 2(N − 2) + (N − 2)(N − 1), from which the right-hand side of Equation (31)

is

g(N) =
1

2

(
1 +
√

4N2 − 4N − 7
)
. (33)

All the possible graphs on N vertices having a number 2 ≤ µ ≤ N−2 of fully connected

vertices fall within these two cases. In Figure 2 we study Equation (31), and we observe

that there are no solutions, as none of the right-hand sides, f(N) and g(N), have

intersection with the left-hand side, the line h(N) = N . We have just proved that,

under the assumption of having at least two fully connected vertices and G 6= KN , more

than two basis states are required, therefore dim I(AG, |w〉) > 2. Indeed, while the w-th

component is null, the components corresponding to the other fully connected vertex

(or vertices) w′ 6= w (30) are not, thus AG|e2〉 is not just a linear combination of |e1〉
and |e2〉.

(ii) Let us now assume that there is only one fully connected vertex, w. Then,

〈w|α〉 = 0 still holds and Equation (29) reads as

〈v′|α〉 =
1

(N − 1)3/2

[
(N − 1)dv′ −

∑
v 6=w

dv

]
, (34)

since
∑

v∈V dv =
∑

v 6=w dv + (N −1) = 2M . The above expression is null if (N −1)dv′ =∑
v 6=w dv and the latter condition must apply ∀v′ 6= w to make the state (28) null.

Therefore, this condition implies that all the vertices, except w, must have the same

degree dv′ . This is the case, e.g., of the star graph [Figure 1(a)] or the wheel graph

[Figure 1(b)]. We have just proved that if a simple graph has one fully connected

vertex, w, and deg(v) = d ∀v ∈ V \ {w}, then all the components of the state (28) are

null. Hence, AnG|w〉 ∈ span({|e1〉, |e2〉})∀n ∈ N0, because

AG|e2〉 =
√
N − 1|e1〉+

(
2M

N − 1
− 2

)
|e2〉 , (35)

and therefore I(AG, |w〉) = I(AK , |w〉). From (i) we have the matrix elements

(AG,red)jk := 〈ej|AG|ek〉 = (AG,red)kj , (36)
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Figure 2. Graphical solution of Equation (31). The left-hand side (LHS) is N (blue

solid line, square). The right-hand side (RHS) is f(N) (32) (orange dashed line, circles)

or g(N) (33) (yellow dotted line, diamonds). All the possible graphs on N vertices

having a number 2 ≤ µ ≤ N − 2 of fully connected vertices result in a RHS which falls

within these two cases. Results are shown for N ≥ 4, because the graphs for N = 2, 3

and µ = 2 would be the complete graph K2,K3, respectively. We observe that there

are no intersections between the RHS and the LHS, as highlighted in the log-log plot

of N − g(N) in the inset. Note that, g(N) ∼ N for large N , but g(N) never reaches

N . Therefore, Equation (31) has no solution.

with j, k = 1, 2. Writing AG in the basis {|e1〉, |e2〉}, we find that

AG,red =

(
0

√
N − 1√

N − 1 2M
N−1
− 2

)
. (37)

The reduced generator AG,red (37) differs from AK,red (10) in the element (Ared)22. We

observe that

2M

N − 1
− 2 = N − 2⇔M =

N(N − 1)

2
, (38)

but only the complete graph has M = N(N − 1)/2 edges. Moreover, also the star

graph and the wheel graph differ in that element, as M = N − 1 and M = 2(N − 1),

respectively. So, the adjacency CTQW on the graphs which are regular except for the

fully connected vertex w are neither equivalent among them, in general, nor to the

adjacency CTQW on the complete graph. The reason is that the reduced generators,

AG,red and AK,red, are different, as they depend on the number of edges M , and thus

they lead to different time evolutions, which, however, belong to the same invariant

subspace I(AG, |w〉) = I(AK , |w〉).
To summarize, adjacency CTQWs do depend on the given graphG. Considering the

adjacency CTQWs of the fully connected vertex state |w〉 either the time evolutions of it

belong to different subspaces (see Equation (24)) or, otherwise, the reduced generators

are different, as they depend on the number of edges M . This proves the Proposition

1, concluding the proof.
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5. Grover-like CTQWs with single marked vertex

Corollary 2. Let w be a fully connected marked vertex of a simple graph G of order N

with Laplacian matrix L. Let us consider the Grover-like CTQW where the quantity of

interest is the probability amplitude at w. Let

H = γL+ λ|w〉〈w| (39)

be the Hamiltonian encoding the problem, where γ ∈ R+, λ ∈ C, and Hw := λ|w〉〈w| is

the oracle Hamiltonian. Then, given the initial state |ψ0〉, the probability amplitude

at the marked vertex is 〈w| exp [−iHredt] |ψ0red〉, where |ψ0red〉 = P |ψ0〉 with P the

projector onto the invariant subspace I(H, |w〉) (12) relevant to the problem and the

reduced Hamiltonian is

Hred = γ

(
N − 1 + λ/γ −

√
N − 1

−
√
N − 1 1

)
. (40)

Grover-like CTQWs on a graph G1 and on a graph G2 both of order N result in the

same probability amplitude 〈w| exp [−iHG1t] |ψ0,G1〉 = 〈w| exp [−iHG2t] |ψ0,G2〉 provided

that |ψ0,G1 red〉 = |ψ0,G2 red〉.

Proof. First, we prove that the invariant subspace I(H, |w〉) relevant to the problem

is (12) and then that the reduced Hamiltonian is (40). The only effective parameter

in the Hamiltonian (39) is the ratio λ/γ. Writing H = γH ′ we understand that γ

only determines the timescale of the evolution. Clearly I(H, |w〉) = I(H ′, |w〉) and

|e1〉 = |w〉. The oracle H ′w = (λ/γ)|w〉〈w| acts nontrivially only onto |e1〉. Therefore,

after orthonormalizing H ′|e1〉 with respect to |e1〉, we find the second basis state, |e2〉
defined in Equation (12). We observe thatH ′|e2〉 = L|e2〉, asH ′w|e2〉 = 0, thus, according

to the proof of Theorem 1, there are no further basis states. Hence, the dynamics relevant

to the Grover-like CTQWs for the fully connected vertex belong to the subspace (12).

The oracle Hamiltonian Hw has a natural representation in such subspace

Hw,red = λ|e1〉〈e1| =

(
λ 0

0 0

)
. (41)

The reduced Hamiltonian (40) follows from summing the reduced Laplacian matrix

(13) and the reduced oracle Hamiltonian (41). The remark on the equal probability

amplitudes at w depending on the initial state follows from Equation (6), with |φ〉 =

|w〉.

Grover-like CTQWs of great interest formulated as in the Corollary 2 are spatial

search [9], λ = −1, and quantum transport, γ = 1 and λ = −iκ, with κ ∈ R+ and

i =
√
−1 the imaginary unit [22]. In the former, solving the problem amounts to

making the walker reach the state |w〉 with the maximum probability starting from the

equal superposition of all vertices. In the latter, the quantity of interest is often the

transport efficiency, η = 2κ
∫ +∞

0
〈w|ρ(t)|w〉 dt, the integrated probability of trapping at

the vertex w, where ρ(t) is the density matrix of the walker. The transport efficiency can
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also be read as the complement to 1 of the probability of surviving within the graph, i.e.,

η = 1− Tr [limt→+∞ ρ(t)] [23]. We point out that whenever Im(λ) 6= 0 the Hamiltonian

(39) is a non-Hermitian effective Hamiltonian that leads to non-unitary dynamics. This

is useful to phenomenologically model certain processes like, if Im(λ) < 0, the dissipative

dynamics in quantum optics [24] or the absorption of an excitation in light harvesting

systems [25, 26].

5.1. Spatial search

The Hamiltonian encoding the problem is

H = γL− |w〉〈w| , (42)

where the marked vertex, target of the search, is the fully connected vertex w. Since

we have no information about the marked vertex, the initial state is commonly chosen

as the equal superposition of all vertices, |ψ0〉 =
∑

v∈V |v〉/
√
N . The goal is to tune the

hopping amplitude γ to maximize the probability amplitude at the marked vertex after a

period of time of evolution. The time evolution of |ψ0〉 is entirely contained in I(H, |w〉),
as |ψ0〉 = (|e1〉 +

√
N − 1|e2〉)/

√
N and so |ψ0red〉 = |ψ0〉. Hence, not only the success

probability of finding w, but also the entire dynamics of the system exp [−iHt] |ψ0〉 is

the same on any simple graph G. According to Corollary 2, the results we have for the

spatial search on the complete graph, a well-known problem [27, 9, 17], also apply to

the search of w on other graphs. Therefore, if γ = 1/N (optimal value), then the walker

reaches w with probability

Pw(t) = |〈w|e−iHt|ψ0〉|2 =
1

N
cos2

(
t√
N

)
+ sin2

(
t√
N

)
(43)

equal to one (certainty) at time t∗ = π
√
N/2.

5.2. Quantum transport

The non-Hermitian effective Hamiltonian encoding the problem is

H = L− iκ|w〉〈w| , (44)

where the trapping vertex is the fully connected vertex w and the trapping rate κ ∈ R+

(λ = −iκ in (39)). We assume that the initial state is localized at a vertex different from

w, |ψ0〉 = |v 6= w〉. Under such assumptions, the transport efficiency of the complete

graph is ηK = 1/(N − 1) [26]. Hence, according to Corollary 2, all the graphs whose

trap is the fully connected vertex w have η = ηK . This follows from the fact that η is

the overlap of the initial state with the basis states of the invariant subspace I(H, |w〉)
[20, 23],

η =
∑
n=1,2

|〈en|ψ0〉|2 = |〈e2|ψ0〉|2 =
1

N − 1
, (45)

and such invariant subspace is (12) for the problems and graphs under investigation,

including the complete graph.
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Alternatively, we can prove this as follows. We define the integrated probability of

trapping within the time interval [0, t],

η̃(t) = 2κ

∫ t

0

〈w|ρ(τ)|w〉 dτ ⇒ lim
t→+∞

η̃(t) = η , (46)

where 〈w|ρ(t)|w〉 = |〈w| exp [−iHt] |v〉|2. From Equation (6), the probability amplitude

at w,

〈w|e−iHt|v〉 = 〈w|e−iHredt
∑
n=1,2

|en〉〈en|v〉 =
1√

N − 1
〈e1|e−iHredt|e2〉 , (47)

is independent (i) of the graph under investigation and (ii) of the initial vertex state

|v〉, provided that v 6= w. (i) Follows from the fact that the graphs considered have the

same basis states and the same reduced Hamiltonian (Corollary 2). (ii) Follows from

the fact that all the vertices other than the trap only overlap with |e2〉, which is the

equal superposition of them, and have the same overlap with it. Therefore, η̃(t) does

not depend on the graph under investigation or on the initial vertex state. As a result,

in the limit of infinite time we also recover the same transport efficiency η = ηK .

In this problem the initial state is a vertex state |v 6= w〉 and cannot be written as

linear combination of the two basis states. Therefore, it evolves differently depending

on the given graph. Nevertheless, as just shown, it provides the same dynamics relevant

to the problem, i.e., the same (trapped) population at w.

6. Grover-like CTQWs with multiple marked vertices

Theorem 2. Let G = (V,E) be a simple graph of order N = |V | with M = |E| edges.

Let W := {v ∈ V | deg(v) = N − 1 ∧ v is marked} 6= ∅ be the set of fully connected

marked vertices and let µ := |W |, with 1 ≤ µ < N . Let us consider a Grover-like

CTQW where the quantities of interest are the probability amplitudes at w ∈ W . Let

H = γL+
∑
w∈W

λw|w〉〈w| (48)

be the Hamiltonian encoding the problem, where γ ∈ R+ is constant and λw ∈ C depends

on the fully connected vertex. Then, given the initial state |ψ0〉, the probability amplitude

at a marked vertex is 〈w| exp [−iHredt] |ψ0red〉, where |ψ0red〉 = P |ψ0〉 with P the projector

onto the (µ+ 1)-dimensional invariant subspace relevant to the problem,

I = span

({
{|ek〉 = |wk〉}k, |eµ+1〉 =

1√
N − µ

∑
v/∈W
|v〉
})

, (49)

with k = 1, . . . , µ, and the reduced Hamiltonian is

Hred = γ


∆1 + λ′w1

−1 · · · −1 −
√

∆µ

−1
. . . . . .

...
...

...
. . . . . . −1

...

−1 · · · −1 ∆1 + λ′wµ −
√

∆µ

−
√

∆µ · · · · · · −
√

∆µ µ

 , (50)
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where ∆n = N −n and λ′w = λw/γ. Grover-like CTQWs on a graph G1 and on a graph

G2 both of order N result in the same probability amplitude 〈w| exp [−iHG1t] |ψ0,G1〉 =

〈w| exp [−iHG2t] |ψ0,G2〉 provided that |ψ0,G1 red〉 = |ψ0,G2 red〉.
Remark 2. The dimensionality of the problem can be further reduced if subsets of

vertices in W have the same λ, Wα = {w ∈ W | λw = λα} such that
⋃
αWα = W

and Wα ∩Wβ = ∅ ∀α 6= β. Instead of having one basis state per marked vertex, the

equal superposition of all vertex states from the same set Wα defines one basis state,

|eWα〉 =
∑

w∈Wα
|w〉/

√
|Wα|. This follows from the symmetries of the problem, as they

allow to group together identically evolving vertices [28]. The reduced Hamiltonian (50)

will change according to the new basis.

Proof. We have more than one marked vertex and we cannot apply straightforwardly

the dimensionality reduction method, because neither the initial state is unique (except

in the spatial search) nor the target state is unique (multiple marked vertices).

The Hamiltonian (48) inherits the symmetries of the graph (Laplacian matrix), but

each oracle Hamiltonian Hw breaks the symmetries involving the corresponding fully

connected vertex w. Here we consider the Hamiltonian in the general framework, with

no assumptions on λ’s.

During the time evolution of the system the population at the marked vertices is

determined only by the Hamiltonian eigenstates having nonzero overlap with the marked

vertices. Our aim is to prove that the subspace E spanned by those eigenstates is the

subspace I (49). Let us define the subspace

E := span ({|ε〉 | H|ε〉 = ε|ε〉 ∧ 〈w ∈ W |ε〉 6= 0}) , (51)

where the |ε〉 are the minimum number of Hamiltonian eigenstates overlapping with

the fully connected marked vertices w ∈ W . By mininum we mean that in the case

of degenerate eigenspaces more than one eigenstate can have a nonzero overlap with

the marked vertices. We can solve this ambiguity by choosing the eigenstate from this

degenerate eigenspace which has the maximum possible overlap with the marked vertices

and then by orthogonalizing all the other vectors within this eigenspace with respect to

it. Therefore, after orthogonalization, the remaining eigenstates in the degenerate space

would have zero overlap with the marked vertices. This approach to the problem is

explained in [26], where it provides a simple way to compute the efficiency of transport

to a trapping vertex on a graph (in the absence of dephasing and dissipation).

Lemma 1. The Hamiltonian eigenstates that do not overlap with the marked vertices

have projections onto the vertex states that sum to zero,∑
v

〈v|ε /∈ E〉 =
∑
v/∈W

〈v|ε /∈ E〉 = 0 . (52)

Proof. We study the eigenproblem H|ε〉 = ε|ε〉 by components in the basis of vertex

states, projecting the eigenvalue equation onto a generic |v〉

〈v|H|ε〉 − ε〈v|ε〉 =
∑
v′

[γ(Dvv′ − Avv′)] 〈v′|ε〉+
∑
w∈W

λw〈v|w〉〈w|ε〉 − ε〈v|ε〉
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= (γdv − ε+ λwδvw)〈v|ε〉 − γ
∑
v′

Avv′〈v′|ε〉 = 0 . (53)

Let us focus on |ε〉 /∈ E and v ∈ W . Then, from Equation (53), we have∑
v′ 6=v

〈v′|ε〉 =
∑
v′

〈v′|ε〉 =
∑
v′ /∈W

〈v′|ε〉 = 0 , (54)

as v ∈ W is fully connected, thus Avv′ = 1 ∀v 6= v′ (Avv = 0). The index of summation

can be extended to all the vertices v′ ∈ V or limited to v′ /∈ W as 〈v′ ∈ W |ε /∈ E〉 = 0

by definition. �

Lemma 2. The Hamiltonian eigenstates that overlap with the marked vertices have

constant projection onto the non-marked vertex states,

〈v /∈ W |ε ∈ E〉 =
γ

γµ− ε
∑
v′∈W

〈v′|ε〉 = const ∀v /∈ W . (55)

Proof. From Equation (53), the components under investigation are

〈v /∈ W |ε ∈ E〉 =
γ
∑

v′ Avv′〈v′|ε〉
γdv − ε

=
γ

γdv − ε

(
ξ +

∑
v′ /∈W

Avv′〈v′|ε〉

)
, (56)

where we have defined ξ :=
∑

v′∈W 〈v′|ε〉, which does not depend on the v /∈ W chosen,

and used the fact that Avv′ = 1 ∀v′ ∈ W , fully connected vertices, and v 6= v′.

Let us start with a particular case. If the vertices v /∈ W are only connected to the

vertices w ∈ W , then dv = µ = |W | ∀v /∈ W and Avv′ = 0 ∀v, v′ /∈ W . Hence, all the

components are constant and equal to

〈v /∈ W |ε ∈ E〉 =
γξ

γµ− ε
∀v /∈ W . (57)

In general, instead, we have a system of µ̄ := N − µ linear equations like (56) in µ̄

unknowns xj := 〈vj /∈ W |ε ∈ E〉, with 1 ≤ j ≤ µ̄,

x1 −
γ

γd1 − ε
∑
k 6=1

A1kxk =
γξ

γd1 − ε
...

xµ̄ −
γ

γdµ̄ − ε
∑
k 6=µ̄

Aµ̄kxk =
γξ

γdµ̄ − ε
.

(58)

We make the following ansatz on the solution

x1 = . . . = xµ̄ =
γξ

γµ− ε
, (59)

based on the analytical solution (57) for a particular case and on numerical evidence

for general graphs, including the complete graph. Hence, focusing on the left-hand side
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of the j-th equation (58), we recover the identity with the right-hand side of the same

equation

γξ

γµ− ε

[
1− γ

γdj − ε
∑
k 6=j

Ajk

]
=

γξ

γµ− ε

[
1− γ

γdj − ε
(dj − µ)

]
=

γξ

γµ− ε
γµ− ε
γdj − ε

=
γξ

γdj − ε
, (60)

where
∑

k 6=j Ajk = dj − µ because the index of summation does not run over all the

vertices but runs over the non-marked vertices, hence we get the degree dj lowered

by the number of fully connected marked vertices, µ. This identity applies to all

j = 1, . . . , N − µ, i.e., to all v /∈ W . This verifies the correctness of the ansatz (59) and

therefore proves the Lemma. �

According to the previous Lemmas, we now prove that E = I. First, we prove that

E ⊆ I. Let c := 〈v /∈ W |ε ∈ E〉 (Lemma 2). Then, we can write any |ε〉 ∈ E as

|ε〉 =
∑
v

|v〉〈v|ε〉 =
∑
w∈W

|w〉〈w|ε〉+ c
∑
v/∈W

|v〉

=

µ∑
n=1

|en〉〈en|ε〉+ c
√
N − µ|eµ+1〉 ∈ I , (61)

as it is a linear combination of the basis states (49). Second, we prove that I ⊆ E . We

start with the basis states |ej〉 = |wj〉 for j = 1, . . . , µ

|ej〉 =
∑
ε

|ε〉〈ε|ej〉 =
∑
ε∈E

|ε〉〈ε|ej〉 ∈ E , (62)

as it is a linear combination of the Hamiltonian eigenstates |ε〉 ∈ E . The summation

over ε denotes the summation over all the Hamiltonian eigenstates. The second equality

follows from 〈wj|ε /∈ E〉 = 0, by definition. The last basis state is

|eµ+1〉 =
1√

N − µ
∑
ε

∑
v/∈W

|ε〉〈ε|v〉

=
1√

N − µ

[∑
ε∈E

∑
v/∈W

|ε〉〈ε|v〉+
∑
ε/∈E

∑
v/∈W

|ε〉〈ε|v〉

]

=
1√

N − µ

[∑
ε∈E

∑
v/∈W

|ε〉〈ε|v〉+ 0

]
∈ E , (63)

where the last equality follows from Lemma 1. To summarize, I = E (49), since E ⊆ I
and I ⊆ E , and this also implies that dim E = dim I = µ+ 1.

Now that we have the basis of the invariant subspace, we can write the reduced

Hamiltonian. Given the Hamiltonian (48), the matrix elements of the reduced

Hamiltonian for j, k = 1, . . . , µ are

〈ej|H|ek〉 = γ (〈ej|D|ek〉 − 〈ej|A|ek〉) + λwjδjk

=
[
γ(N − 1) + λwj

]
δjk − γ , (64)
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since dw = N − 1 and the vertices wj and wk are necessarily adjacent,

〈ej|H|eµ+1〉 = −γ〈ej|A|eµ+1〉 =
−γ√
N − µ

∑
v/∈W

Awjv = −γ
√
N − µ , (65)

since the basis is orthonormal and Awjv = 1 ∀v /∈ W ∧ ∀w ∈ W (w is fully connected).

The last element is

〈eµ+1|H|eµ+1〉 =
γ

N − µ
∑

v,v′ /∈W

Lvv′ = γµ . (66)

Indeed, ∑
v/∈W

dv =
∑
v∈V

dv − µ(N − 1) = 2M − µ(N − 1) , (67)

and ∑
v,v′ /∈W

Avv′ =
∑
v,v′∈V

Avv′ −
∑
v∈W

∑
v′∈V

Avv′ −
∑
v/∈W

∑
v′∈W

Avv′

=
∑
v,v′∈V

Avv′ −
∑
v∈W

dv −
∑
v/∈W

µ

= 2M − µ(N − 1)− (N − µ)µ , (68)

since Avv′ = 1 ∀v′ 6= v ∧ v ∈ W and, we recall, µ = |W | and N = |V |. Hence, the

reduced Hamiltonian (50) follows.

6.1. Spatial search

The Hamiltonian encoding the problem is

H = γL−
∑
w∈W

|w〉〈w| , (69)

where the marked vertices, the µ possible solutions of the spatial search, are the fully

connected vertices w ∈ W . The oracles are unbiased, λw = −1 ∀w ∈ W in Equation

(48), as the solutions are usually assumed to be equivalent [29, 30]. The goal is to

tune the hopping amplitude γ to maximize success probability PW (t) =
∑

w∈W Pw(t)

after a period of time of evolution. The overall success probability PW is the sum of the

probabilities at each w ∈ W because these are equivalent solutions. Solving the problem

amounts to finding one of them. The initial value is PW (0) = µ/N , since the initial state

is the equal superposition of all vertices. The time evolution of |ψ0〉 is entirely contained

in I, as |ψ0〉 = (
∑µ

j=1 |ej〉+
√
N − µ|eµ+1〉)/

√
N and so |ψ0red〉 = |ψ0〉. Hence, not only

the success probability PW (t), but also the entire dynamics of the system exp [−iHt] |ψ0〉
is the same on any simple graph G. According to Theorem 2, the results we have for

the spatial search on the complete graph also apply to the search of w ∈ W on other

graphs. The spatial search of µ marked vertices in the complete graph is known to be

optimal (PW = 1) for γ = 1/N at time t∗ = (π/2)
√
N/µ [30]. We point out that in [30]

the CTQW is generated by the adjacency matrix, but this is equivalent to using the
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Laplacian matrix since the complete graph is regular. Hereafter we prove these results

on the optimal search without assuming that the graph is complete.

Spatial search is a suitable case study to apply Remark 2, as all the fully connected

marked vertices have the same λ = −1. Therefore, the Hamiltonian (69) is invariant

under permutations of the vertices in W . This symmetry allows us to further reduce the

dimensionality of the problem by grouping together such identically evolving vertices in

the state |ẽ1〉 =
∑

w∈W |w〉/
√
µ [28]. This state is the solution of the search and is the

first basis state of the reduced invariant subspace. Then, it can be shown that

H|ẽ1〉 = [γ(N − µ)− 1]|ẽ1〉 − γ
√
µ(N − µ)|ẽ2〉 , (70)

H|ẽ2〉 = −γ
√
µ(N − µ)|ẽ1〉+ γµ|ẽ2〉 , (71)

where |ẽ2〉 :=
∑

v/∈W |v〉/
√
N − µ is the second basis state. Therefore, the orthonormal

states |ẽ1〉 and |ẽ2〉 span the invariant subspace relevant to the spatial search. The

reduced Hamiltonian is

Hred = γ

(
N − µ− 1/γ −

√
µ(N − µ)

−
√
µ(N − µ) µ

)
. (72)

For γ = 1/N , the eigenvalues are ε± = ±
√
µ/N and the corresponding eigenstates are

|ε±〉 =

√√
N ±√µ
2
√
N

(
∓
√
N − µ√
N ±√µ

|ẽ1〉+ |ẽ2〉

)
. (73)

The success probability

PW (t) = |〈ẽ1|e−iHt|ψ0〉|2 =
µ

N
cos2

(√
µ

N
t

)
+ sin2

(√
µ

N
t

)
, (74)

is equal to one (certainty) at time t∗ = (π/2)
√
N/µ. For µ = 1 we recover the results—

reduced Hamiltonian, success probability, and optimal time—for the spatial search of a

single marked vertex discussed in Section 5.1.

6.2. Quantum transport

The non-Hermitian effective Hamiltonian encoding the problem is

H = L− i
∑
w∈W

κw|w〉〈w| , (75)

where the µ trapping vertices are the fully connected vertices w ∈ W and have,

in general, different trapping rates κw ∈ R+ (λw = −iκw in (48)). Accordingly,

η := 2
∑

w∈W κw
∫ +∞

0
〈w|ρ(t)|w〉 dt [22]. We assume |ψ0〉 = |v /∈ W 〉, therefore, according

to the basis states (49),

η =

µ+1∑
n=1

|〈en|ψ0〉|2 = |〈eµ+1|ψ0〉|2 =
1

N − µ
. (76)

The transport efficiency improves as the number of fully connected traps µ increases and

does not depend on the trapping rates. Changing the κw affects the timescale on which
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the trapping occurs, not η as it is defined in the limit of infinite time. Moreover,

η̃(t) = 2
∑

w∈W κw
∫ t

0
〈w|ρ(τ)|w〉 dτ does not depend on the initial vertex state |v〉,

provided that v /∈ W . Indeed, from Equation (6), the probability amplitude at w ∈ W ,

〈w|e−iHt|v〉 = 〈w|e−iHredt

µ+1∑
n=1

|en〉〈en|v〉 =
1√

N − µ
〈ew|e−iHredt|eµ+1〉 , (77)

is independent of v /∈ W . For µ = 1 we recover the transport efficiency for the single

trapping vertex discussed in Section 5.2.

7. Conclusions

In this paper we have investigated the role of the fully connected vertex w in continuous-

time quantum walks (CTQWs) on simple graphs G of order N . In particular, we

have analytically proved that when the dynamics of the walker is governed by the

Laplacian matrix, the CTQW starting from the state |w〉 does not depend on the graph

G considered and it is therefore equivalent, e.g., to the CTQW on the complete graph

of the same order, KN . Instead, the corresponding adjacency CTQWs do depend on

the graph considered.

After that, we have investigated Grover-like CTQWs, i.e., systems with

Hamiltonian of the form H = γL +
∑

w∈W λw|w〉〈w|, where W is the subset of

vertices made of µ fully connected marked vertices. Here the quantity of interest

is the probability amplitude at the vertices w ∈ W . For these systems, we have

analytically proved that the probability amplitudes of interest do not depend on the

graph considered. In this case, the equivalence concerns the dynamics relevant to the

computation of the probability amplitude at w, whereas the full dynamics of the walkers

are not necessarily equivalent.

As applications of the above results, we have considered spatial search of w ∈ W and

quantum transport to w ∈ W . These problems on a simple graph G of order N inherit

the results already known for the corresponding problems on the complete graph KN ,

independently of the considered graph. In particular, the spatial search of equivalent

solutions (unbiased oracles) is optimal for γ = 1/N at time t∗ = (π/2)
√
N/µ, and the

full dynamics of the equal superposition of all vertices under the search Hamiltonian

on G and on KN are equivalent. Regarding quantum transport of an initially localized

excitation, the transport efficiency η increases with the number of fully connected traps

as η = 1/(N − µ), and does not depend on the initial vertex state |v /∈ W 〉.
Our proofs are based on the notion of Krylov subspaces. We have determined the

invariant subspace relevant to the considered Laplacian problems, and the corresponding

reduced Hamiltonian, thus reducing the dimensionality of the original problem.

Whenever a fully connected vertex is the initial state of the CTQW or a marked vertex

of a Grover-like CTQW, results do not depend on the graph considered. Hence, the

universality of the fully connected vertex.

One of most relevant consequences of our work is that the spatial search of fully
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connected vertices is always optimal and does not depend on the full topology of the

involved graph. We can always find the solution with certainty and we know the

parameters, γ and time, to achieve this result. This can be exploited, e.g., in finding

the fully connected hubs of a network. Indeed, most often the hub is not connected to

all the nodes, but serves as the center of star-shaped subnetwork [31] and our results

hold when applied to the subnetwork. More generally, our results provide a coherent

and unified framework to understand and extend several partial results already reported

in literature for fully connected vertices, and pave the way for further development in

the area, e.g., understanding whether universality survives in the presence of chirality

[32, 33].
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