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As BigData Analysismeets healthcare applications, domain-specific challenges

and opportunitiesmaterialize in all aspects of data science. Advanced statistical

methods and Artificial Intelligence (AI) on Electronic Health Records (EHRs)

are used both for knowledge discovery purposes and clinical decision support.

Such techniques enable the emerging Predictive, Preventative, Personalized,

and Participatory Medicine (P4M) paradigm. Working with the Infectious

Disease Clinic of the University Hospital of Modena, Italy, we have developed

a range of Data–Driven (DD) approaches to solve critical clinical applications

using statistics, Machine Learning (ML) and Big Data Analytics on real-world

EHR. Here, we describe our perspective on the challenges we encountered.

Some are connected to medical data and their sparse, scarce, and unbalanced

nature. Others are bound to the application environment, as medical AI tools

can a�ect people’s health and life. For each of these problems, we report

some available techniques to tackle them, present examples drawn from our

experience, and propose which approaches, in our opinion, could lead to

successful real-world, end-to-end implementations.

DESY report number: DESY-22-153.
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1. Introduction

Real-world Data Mining (DM) is characterized by the application of ML and DM

techniques to datasets that exist in-the-wild. Specifically, research based on retrospective

studies start from datasets that are not research ready, and thus require substantial

engineering alongside a deep understanding of the data domain.

Underpinned by Big Health Data, including EHRs, but also Patient Reported

Outcomes (PROs) like mobile-based questionnaires and wearable devices, DM and

AI can significantly advance the P4M vision focused on improving people’s wellness

by personalizing care (Flores et al., 2013). Drawing from our collaboration with the

Infectious Disease Clinic of the University Hospital of Modena, Italy, in this paper

we discuss principled solutions to demanding challenges in P4M, and present our

perspectives on open research problems.
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A useful initial distinction should be made between

prospective and retrospective datasets. The former tend to

be collected for research purposes, and are thus stable, being

the result of an agreed-upon protocol. However, they are

expensive to generate and often present limited opportunities

to answer different research questions (reusability). In contrast,

retrospective datasets such as EHRs, containing lifetime patients’

histories, include a wide variety of observations. In this paper,

we primarily focus on the challenges associated with making

such datasets research ready. Moreover, following the dominant

approach in predicting clinical outcomes (Kuan et al., 2021),

we consider applying supervised learning algorithms to these

datasets. Such algorithms impose strict requirements on the

training set in terms of overall volume, completeness, balance

among target classes, consistency, and regularity of observations

over time. We refer to the lack of these requirements as

an intrinsic data issue as these properties must be addressed

before training ML models. These problems, taken separately,

are all well-known in the literature, and examples and

solutions abound for each of them. Our suggestion is that

the real challenge is their interplay. Indeed, health datasets

are often scarce, i.e., lack a substantial fraction of the data,

often according to recognizable patterns. They also tend be

imbalanced, as some classes are typically under-represented.

They often show time inconsistencies due to changes in data

collection protocols and the heterogeneity in the data sources.

Finally, patients’ medical histories are naturally irregular

over time.

Other challenges exist at the interface between ML

and medicine, resulting in further human-in-the-loop

requirements. In medicine, not all errors are qualitatively

the same. Using different models or the predisposition

toward specific error types leads to different clinical

decisions. Furthermore, only few human-in-the-loop

systems exist that accept knowledge-based feedback

from physicians. We refer to these additional challenges

as translational.

Intrinsic and translational challenges are discussed in

Sections 2 and 3, respectively, and exemplified by leveraging

examples coming from the following studies:

• My Smart Age with HIV (MySAwH) (Ferrari et al., 2020a):

an international multi-center prospective study aimed

at studying and monitoring healthy aging in People

Living with HIV (PLWH). Collected data came from

routine clinical assessments and innovative PROs, collected

through mobile and wearable devices;

• Ferrari et al. (2020b,c) and Mandreoli et al. (2021):

retrospective studies focused on the hospital

resource management and clinical decision

making problems emerged during the

Covid–19 pandemic.

Following Jung (2022), in Table 1 we summarize the data

points, features, outcomes, and ML techniques used in the

aforementioned studies.

2. Intrinsic data challenges

The interplay of data scarcity, sparsity, target unbalancing,

and instability issues is frequent in both prospective and

retrospective health datasets. In what follows we briefly

summarize this interaction and describe present and future

techniques to manage it.

2.1. Sparsity/scarcity and (im)balance

Data sparsity refers to missing values within records or

time series. Scarcity, in contrast, refers to insufficient number

of observations, e.g., the number of patients’ records in

classification tasks.

The primary source of retrospective studies, operational

EHRs that are collected in-the-wild, are time series of patient

events (primary/secondary care, prescriptions), and can be

irregular (events are collected only when they happen),

scarce (healthy individuals will have fewer events), sparse

and heterogeneous (the variables represented within each

event, for instance clinical tests, vary depending on the

condition). However, a distinction between non-events, which

are informative (Tan et al., 2022; Yang et al., 2022), and non-

recorded events, which raise data quality issues, should be noted.

By contrast, prospective studies usually provide research

ready datasets right from the beginning. These tend to be

better curated but also scarce, due to their cost. The number

of patients involved can be limited even in multicentric studies;

as in Orsini et al. (2017) and Ferrari et al. (2020a), where the

few patients were unevenly enrolled acrossModena, HongKong,

and Sydney hospitals. Scarcity and sparsity are not always in

contrast, and methods exist to limit both their effects (Bansal

et al., 2021).

In clinical datasets, data scarcity/sparsity often conspires

with data imbalance. Medical studies often focus on rare or less

frequent cases (fewer ill than healthy people, fewer high-than

low-risk conditions). For example, in Mandreoli et al. (2021),

Hidden Markov Models (HMMs) were used to predict

oxygen-therapy state-transitions. Since relatively few patients

required intubation it was difficult for the Baum et al. (1970)

and Welch (2003) algorithm to accurately learn probability

distributions. All these problems compromise the learning

process of most ML models, including Neural Networks (NNs).

Specifically, missing data are not tolerated in the training set,

while data scarcity and imbalance lead to overfitting, preventing

NNs from generalizing well. Plenty of methods deal withmissing

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2022.1021621
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Mandreoli et al. 10.3389/fdata.2022.1021621

TABLE 1 Details about the ML applications, brought as examples.

Study Ferrari et al. (2020a) Ferrari et al. (2020b,c) Mandreoli et al. (2021)

Data points 4,176 EHRs

261 patients

1, 068 EHRs

198 patients

14,249 EHRs

1,040 patients

Features Total = 96

56) PROs

27) Blood tests

7) HIV specific

3) Body composition

3) Activity tracking

Total = 91

39) Blood and urine tests

29) Symptoms

16) Comorbidities

7) BGA

Total = 17

10) Blood and urine tests

3) Respiratory specific

2) BGA, oxygen–therapy

2) Age, CCI

Outcome(s) Falls, SPPB, QoL Respiratory failure Oxygen–therapy state

Domain ∈ R ∈ {0, 1} ∈ {s ≤ N | s ∈ N
+}

MLmodel GBM/DT Regressor(s) GBM/DT Classifier HMM–ensemble

Explainability SHAPs SHAPs ✘

Loss function(s) MAPE Binary Cross–entropy Eβ=0.5 effectivenessmeasure

(tuned to minimize FN rate) as in van Rijsbergen (1979)

Challenges

- Sparsity X X X

- Scarcity X X X

- Imbalance ✘ X X

- Instability ✘ X X

- Error preference ✘ X X

- Human in-the-loop X X ✘

BGA, Blood Gas Analysis; CCI, Charlson Comorbidity Index; EHRs, Electronic Health Records; FN, False Negative; GBM/DT, Gradient Boosting Machine/Decision Tree; HIV, Human

Immunodeficiency Virus; HMM, HiddenMarkovModel; MAPE,Mean Average Percentage Error; ML, Machine Learning; PROs, Patient Reported Outcomes; QoL, Quality of Life; SHAPs,

SHapley Additive exPlanations values; SPPB, Short Physical Performance Battery.

data (Penny and Atkinson, 2012), in both descriptive tasks

and causal modeling (Sperrin et al., 2020). While missing

data can sometimes be inferred/imputed from available feature

distributions, this is not an option for critical parameters, like

vital ones, that are subject to abrupt changes and thus difficult

to predict. Moreover, many popular data imputation methods

like MICE (Azur et al., 2011) assume data to be missing-at-

random to correctly work. This contrasts with the rationale

behind “opportunistically” collected datasets, as EHRs, which

show patterns of data missingness, as further described in

Section 3. This problem raises the need for MLmethods tolerant

to non-randomly missing data.

Correctly managing data imbalance is a challenge

affecting all data science disciplines (Leevy et al., 2018).

Although data imputation and augmentation methods can

be used to counteract imbalance, it is well-known that

they may induce spurious data relations. For example,

downsampling the majority class may introduce or remove

biases depending on the data quantity/quality as shown

by Nwosu et al. (2019). Conversely, upsampling, e.g., using

SMOTE by Chawla et al. (2002), is generally acceptable, but

excessively amplifying the minority class leads to training

sets no longer representing the population ground truth.

Other approaches face imbalance by introducing weights

into the loss function (Elkan, 2001; Mienye and Sun, 2021).

Finally, modifying the study’s objectives, following clinical

advice, may solve unbalancing problems. This happened

in Ferrari et al. (2020c), where next-day respiratory failure

risk data were highly imbalanced (30% positives, 70%

negatives) whilst next-2-days risk data were not (44%

positives, 56% negatives). This clinically-driven adaptation

was a non-statistical strategy that effectively prevented an

excessive outcome imbalance while also making the outcome

clinically safer.

Imbalance and data scarcity may also be tackled together

with data augmentation techniques, i.e., combining limited

labeled data with synthetic data. While this line of research is

still in its infancy, interesting advances concern the development

of generative models (Zhang et al., 2017; Jordon et al., 2019). A

promising research perspective would be to develop techniques

capable of filling gaps in clinical trials, such as missing or

underrepresented groups.

2.2. (In)stability

In-the-wild data collection routines often change over time,

jointly evolving with the clinical practice. Data acquisition and
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management are affected by emergencies, changes in public

policy, hospital resources, and collection technologies. Changes

in a tabular dataset schema may cause data instability issues. For

instance, in Ferrari et al. (2020c) and Mandreoli et al. (2021),

tests were administered daily, depending on the patient’s

condition and the constantly evolving scientific evidence. The

introduction of new biomarkers, like interleukin-6, in patient

evaluation came after weeks, causing their absence in the first

study dataset.

Algorithm or hyper-parameter fixes momentarily solve

instability only when data grows under a constant schema.

However, they may not suffice when data collection becomes

unstable, eventually changing the model outcomes and

interpretation too, propagating instabilities to the deployment

stage and thus requiring constant maintenance.

The strategies we identified to address/mitigate data

instability are:

1. preventively designing data collection processes and

databases to embrace changes from the clinical practice

without altering the underlying schema;

2. continuously promoting the cross-talk between physicians

and data engineers, to ensure quick answers to the clinical

needs without disrupting operational/technological

procedures;

3. fortifying debugging facilities, e.g., allowing to capture and

query the provenance of the transformations produced by

the pipeline.

3. Translational challenges

Developing and applying any AI technique in medicine

requires the collaboration of physicians and data scientists to

produce efficient, robust, and reliable solutions. The former need

to understand the assumptions and rationale behind models

to provide valuable insights from their domain of expertise;

the latter, should learn the clinical significance of data to work

on problems of real interest, and build functional and reliable

applications. The next subsections, summarize two prominent

problems arising from this medicine/AI interface.

3.1. Not all errors are equally wrong

High-stakes domains constantly dealing with people’s health

and safety, like medicine, engineering, or law, must balance any

forecast error based on its quality and severity, penalizing the

most unwanted or unfair ones; e.g., underestimating risk ismuch

more dangerous than overestimating it. For example, consider

binary classification problems where false positive (FP) and false

negative (FN) routinely drive predictive performance. When

their human and financial cost is balanced, standard measures

like AUC-ROC or F-score may correctly measure performance.

However, high-risk medical applications often prefer some type

of error.

For example, in Ferrari et al. (2020b) the objective was

predicting the occurrence of respiratory failure in Covid–19

patients. Tuning the loss function reduced the impact of FN,

e.g., patients’ predicted to be safe but eventually becoming more

severe. Thus, before choosing the final model formulation, it

is always necessary to understand the level of risk reduction

tolerated by the clinical setting. This issue highlights the need

for adequate performance metrics. The AI branch dealing

with uneven classification errors and costs is named “cost-

sensitive learning” (Turney, 2002; Lomax and Vadera, 2013).

There, a cost matrix is defined or learned to reflect the

penalty of miss-classifying samples (Wang et al., 2018); other

sources of cost/risk can be incorporated in the analysis, as

in Freitas et al. (2007). Opposite to re-sampling techniques, cost-

sensitive methods can deal with imbalanced datasets without

altering the original data distribution (Elkan, 2001; Mienye and

Sun, 2021).

Assessing model quality should always come with a study

of the errors quality. Indeed, model comparison and evaluation

should not be done with just prediction performance in mind,

but also considering model fairness (Chouldechova and Roth,

2018; Mehrabi et al., 2021). Unfairness may be induced by

biases already present at dataset construction time. Indeed,

EHRs often reflect the demographic and ethnic characterization

of a country and may therefore contain poorly sampled

or totally missing minorities, leading to representation or

sampling bias (Suresh and Guttag, 2021). Sensitive attributes

like age, sex, ethnicity, or behavioral risk-factors may identify

these subgroups. Population bias coupled with data scarcity,

generate setups where under/over-sampling techniques usage

is challenging. The same holds for down-weighting/discarding

sensitive attributes from the analyses (Zeng et al., 2017),

or for the extraction of records not containing sensitive

information (Zemel et al., 2013; Feldman et al., 2015). Moreover,

the aforementioned approaches imply that the sensitive attribute

influence on the decision is entirely unfair, although this is

not always the case. Indeed, when sensitive data constitute

risk-factors for a given disease, their elimination may penalize

minorities/subgroups as performance metrics always provide an

average value (Suresh and Guttag, 2021).

A trending strategy to mitigate data scarcity and population

bias is Federated Machine Learning (FedML). Introduced

by Konečnỳ et al. (2016), FedML has proven to be a promising

methodology, allowing the distribution of data analysis pipelines

across multiple centers without any form of centralization, yet

being able to train competitive ML models, able to provide

even better performance. Its main advantages are: privacy

preservation, since clinical data are not moved, and the

possibility of integrating multiple data sources. This increases
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the dataset diversity, the trained model robustness, and the

number of representatives in each group.

Nevertheless, not all population biases can be mitigated

through FedML, e.g., people with disabilities will always be a

minority. Understanding how and why a sensitive attribute

influences other variables in a dataset can be challenging.

Recently, Caton and Haas (2020) and Mehrabi et al. (2021)

listed various techniques to counteract different sources of

bias which make models unfair. Theoretically, algorithms

should be able to treat similar individuals similarly and do

not discriminate solely based on sensitive data. Checking the

algorithm fairness across sub-groups to limit the population

bias is essential in medicine. This may be done, e.g., introducing

constraints to limit fluctuations in performance on different

subgroups, like FP/FN rates (Kearns et al., 2019).

3.2. Human in-the-loop AI

Lately, medical and AI progress have had very different

speeds. The rapid evolution and diffusion of AI, not always

associated with a better understanding of the techniques and

their results, highlights how these fields are physiologically

different and explains why many resistances from physicians

slow down the integration between the two domains. In high-

stakes domains, focusing solely on model accuracy without

understanding how the result was obtained has already exposed

end users to high risks. A series of retrospective analyses

highlighting how black-box models led to harmful or unfair

decisions can be found in Rudin (2019) (and references therein).

Since clinicians are the end users of DD tools in clinical

practice, they must be empowered to interpret predictions

correctly to improve their decision making process. However,

ML techniques are notoriously difficult to understand and

often seen as black-boxes, providing unintelligible answers.

The closer predictive models come to being adopted as part

of the clinical practice, the more urgent interpretability or,

at least, explainability becomes. Recently, much effort was

devoted to providing explanations for non-linear models as

in Lundberg and Lee (2017) and for Deep Learning models

trained on medical images as in Singh et al. (2020). For example,

in Ferrari et al. (2020a,c), results were explained using SHapley

Additive exPlanations values (SHAPs) by Lundberg et al. (2020),

allowing to evaluate feature ranking both at a global and

individual level, providing clinical interpretations of the results

and highlighting anomalies. Furthermore, since explainability

highly depends on the user’s background, in Zhang et al. (2020)

an empirical framework is produced by quantifying the users’

subjective interpretability, taking their feedback into account

(e.g., via surveys). Nevertheless, although some techniques

can explain complex models’ results, this is not always

sufficient to understand how an outcome is achieved and

its real meaning. Several studies show that interpreting

models’ results is not equivalent to use intrinsically intelligible

algorithms (Rudin, 2019). This is why, lately, increasingly

more ML works in healthcare started focusing on interpretable

ML techniques (Ahmad et al., 2018; Abdullah et al., 2021).

Intelligibility was deemed obtainable only at the cost of lowering

the model expressive power and thus performances, but recent

studies show that this is not the case (Bell et al., 2022).

A model which can “explain itself ” only addresses half of the

problem. In a true human-in-the-loop AI scenario, physicians’

deep understanding of clinical practice should be injected into

the ML models, e.g., by expressing agreement/disagreement

with the prediction, or a preference for a given error type.

Providing these feedback is usually possible, but only at

a technical level, at which physicians are not comfortable

operating. Flexible graphical interfaces, like those provided

by Causal Machine Learning (CML) (Oneto and Chiappa,

2020; Sanchez et al., 2022) could overcome this problem.

Determining causal relationships often requires carefully

designed experiments since there is a limit to how much can

be learned by purely observational data. CML makes it very

easy to visualize and reason about complex scenarios. Moreover,

it allows wondering, in a what-if manner, about potential

effects of interventions at population and individual levels.

Other interesting research directions bringing humans in-the-

loop, concern approaches able to manage structured data and

knowledge graphs such as neural symbolic programming and

graph neural networks (Lamb et al., 2020).

Currently, iterative processes, where models provide

understandable explanations and gradually improve based on

user feedback, are not yet routinely applied in data science

for healthcare. To lay the foundations for this continuous

bidirectional exchange of information, we should now

systematize the dialogue between physicians and data scientists.

This could soon lead to the assimilation of ML techniques in

clinical practice, equating them to the statistical ones, with

which they share many theoretical foundations.

4. Discussion

In this manuscript, we have summarized the characteristics

of health data collected in-the-wild and specifically designed for

research purposes. Based on the current literature and our recent

experiences in this field, we outlined the main challenges arising

when applying DM and ML techniques to healthcare data and

the possible methods to solve them.

Firstly, we described issues intrinsic to clinical data usage;

these include sparsity, i.e., the lack of data, scarcity, i.e., the

limited amount of available data, and imbalance, i.e., the uneven

distribution of data samples with regard to outcomes of interest.

We also highlighted the impact of data instability, caused

by constantly evolving data collection processes in healthcare

information systems.
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Secondly, we introduced translational challenges, like

dealing with the importance of prediction errors and joining

the work of clinicians and data scientists in a human-in-the-

loop paradigm.

With this paper, we want to promote a more aware

approach to clinical data science, where the clinical

perspective and DM procedures fit into each other more.

Indeed, in our experience, the tightest the interaction

between physicians and data scientists, the faster the

results will satisfy both the research fields, eventually

leading to the discovery of new clinical knowledge and new

ML methodologies.
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