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Abstract
Classification of arteries and veins in cerebral angiograms can increase the safety of neurosurgical
procedures, such as StereoElectroEncephaloGraphy, and aid the diagnosis of vascular pathologies, as
arterovenousmalformations.We propose a newmethod for vessel classification using the contrast
mediumdynamics in rotational digital subtraction angiography (DSA). After 3DDSA and angiogram
segmentation, contrast enhanced projections are processed to suppress soft tissue and bone structures
attenuation effect and further enhance theCMflow. For each voxel labelled as vessel, a time intensity
curve (TIC) is obtained as a linear combination of temporal basis functions whoseweights are
addressed by simultaneous algebraic reconstruction technique (SART 3.5D), expanded to include
dynamics. EachTIC is classified by comparing the areas under the curve in the arterial and venous
phases. Clustering is applied to optimize the classification thresholds. On a dataset of 60 patients, a
median value of sensitivity (90%), specificity (91%), and accuracy (92%)were obtainedwith respect to
annotated arterial and venous voxels up to branching order 4–5.Qualitative results are also presented
about CMarrival timemapping and its distribution in arteries and veins respectively. In conclusion,
this study shows a valuable impact, at no protocol extra-cost or invasiveness, concerning surgical
planning related to the enhancement of arteries asmajor organs at risk. Also, it opens a new scope on
the pathophysiology of cerebrovascular dynamics and its anatomical relationships.

1. Introduction

Cerebrovascular tree visualization plays a crucial role in neuroimaging and neurosurgery in preoperative,
intraoperative, and postoperative phases (Serafin et al 2012, Ilunga-Mbuyamba et al 2016, Teng et al 2016,
Ramakonar et al 2018,Neumann et al 2019, Perin et al 2021). Beyond a purelymorphological angiography, the
separation of arteries and veins (A/V) can be extremely advantageous in several clinical procedures, with amajor
impact on surgical planning and navigation (Kruger et al 2018, Tomasi et al 2020). For example, in keyhole
neurosurgery procedures such as StereoElectroEncephaloGraphy (SEEG), hemorrhage is one of themost
commonly occurring complication, whichmakes recognition and safeguarding of arteries amajor requirement
(Nowell et al 2015, Gilard et al 2016, Gonzalez-Martınez et al 2016,Mullin et al 2016,Minkin et al 2017, Sparks
et al 2017, Neumann et al 2019, Vakharia et al 2018, 2019, Scorza et al 2021). Additionally, in procedures such as
arteriovenousmalformations (AVMs) embolization, clinicians would benefit from the selective visualization of
the feeding arteries and the venous drainage network to guaranteemajor safety and efficacy of the surgical
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resection (Kaminogo et al 2002, Chen et al 2017, Prada et al 2018).Moreover, the observation of the venous
system can help the detection of vascular abnormalities such as arteriovenous shunts (Gandhi et al 2012, Gomez
et al 2012).

The gold standard technique procedure for visual assessment of the cerebrovascular treemorphology is the
digital subtraction angiography (DSA) (Mistretta 1980). TheDSA is the result of a subtraction between an image
acquired before the administration of contrastmedium (CM) from the one acquired after contrast agent
propagation in the bloodstream. Consequently, in theDSA dataset, projections are acquired at different time
intervals resulting in a collection of frames describing the flowof theCM through the vessels over a scan time
which covers theCM transport to thewhole cerebrovascular tree (Christenson et al 1980). This information
apart frombeing used for cerebrovascularmorphology assessment represents an optimal surrogatemarker for
cerebral hemodynamics.

Previous attempts to reconstruct image-based cerebral hemodynamics flowpatterns exploited 2D catheter
cerebral DSA images and tackled CMextraction by recording the intensity values along the projection frames for
each individual pixel (Strother et al 2010, Gölitz et al 2013, Scalzo and Liebeskind 2016, Teng et al 2016,Hong
et al 2019). To reduce randomnoise the curves are generally fittedwith prior distributions fromwhich perfusion
parameters are computed analytically (Lin and Jackson 2012). Once extracted, the perfusion parameters are
parametrized to generate color-codedDSA images and perfusionmaps.However, despite the high temporal and
spatial resolution (Christenson et al 1980), this technique still suffers from confounding factors due to
superimpositions of blood vessels located at different depths and vascular foreshortening. (Scalzo and
Liebeskind 2016, Teng et al 2016,Hong et al 2019).

These flawswere partially addressedwith the development of rotational three-dimensional (3D)DSA suites
equippedwithflat panel detector computed tomography (CT) (Green et al 2004, Akpek et al 2005). Similar to the
use ofmore conventional angiographic equipment, 3DDSA is the result of subtracting an imagewithout CM
(bone-mask, BM) from the contrast enhanced (CE) one. A few available systems exploit software-driven
subtraction of bony topography in serial rotational planes to estimate 3D vascular anatomy, guaranteeing
superior spatial resolution compared to images obtained bymeans of CT ormagnetic resonance (MR)
angiography (MRA). However, if on one hand, the introduction of 3D-DSA addresses the problemof vessel
overlapping, on the other hand it lacks the temporal resolution of biplanarDSA.

In this perspective, several authors reportedmethods that aim to reconstruct a time-resolved 3D cone beam
CT (CBCT) angiography to enable the view of the anatomy not only in any desired view but also at any desired
phase of vascular filling. As such,Mistretta (2011), Davis et al (2013), Chen and Li (2015, 2017), Sandoval-Garcia
et al (2016), Li et al (2018), Ruedinger et al (2021) propose to employ low-angle numerical reconstructions to
furnish a series of angiograms at subsequent times. At this purpose, C-arm rotational acquisition is used to
acquire images before and during bolus injection. To reduce low-angle reconstruction artifacts, while providing
sufficient time resolution, protocols are based on repeated scanswith fast back-and-forth to capture the full cycle
of the bolus inflow andwashout through the vasculature.

Besides the diagnosis and treatment of vascular pathologies (Torné et al 2019), even stereotactic procedures
demonstrated to benefit from the use of 3D-DSA. This is especially the case of SEEG, an invasive procedure in
which about 10–20 intracerebral electrodes are percutaneously implanted in the brain region. This procedure
requires brain vessels to be carefully avoided during the advancements of the recording electrodes into the
intracranial space, with a particular caution towards arteries. Cardinale et al (2013, 2015) have first proposed the
use of amobileO-ring cone-beamCT (CBCT) scanner to obtain a set of datasets to be post-processedwith a
dedicatedworkflow aimed at generating 3DCBCTDSA (Cardinale et al 2013, 2015, 2017, 2019). The acquisition
protocol proposed inCardinale et al (2013, 2015) enables to capture a consistent number of projections along a
full rotationwhich allows to accurately record thewash in phase, enhancing both the arterial and the venous
tree. However, in the current processing pipeline, time-dependent information is lost, and the final 3DDSA
reconstruction protocol is only able to depict a temporally averaged image of the vascular dynamic
enhancement, without any distinction between arteries and veins.

In this specific context,most of the studies found in literature addressing exclusively A/Vclassification are
based on 4DCT acquisition protocol. This technique consists in a dynamic acquisition protocol based on
multiple gantry rotationswhich capture a sequence of 3D volumes over time, associating to each vascular voxel a
Time Intensity Curves (TIC) describing theCMdynamic. Needless to say that these high-endmulti-detector
rowCT scanners are based on highly demanding equipment and protocols requiring higher acquisition time
which increases the dosage of CMand radiation exposure (Matsumoto et al 2005,Mendrik et al 2010, Laue et al
2013,Havla et al 2015, Shirasaka et al 2017,Meijs andManniesing 2018, 2019).

In this workwe propose amethod for: (i) time-resolving the 3DDSA, (ii) providing amore advanced
interpretation of the intracranial vascular tree, i.e. A/V separation, exploiting the 3DCBCT angiography
imaging protocol proposed inCardinale et al (2013). Themain objective of this study is the recovery of the lost
dynamic (hence, functional) information along the 3DDSA reconstruction pipeline and its integrationwithin
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the anatomical angiographic reconstruction, starting from the standard BMandCE acquisition, with noRx dose
or CMadded. This strategy was named 3.5D as it reconstructs 4D information (volume plus time) from standard
3D scans. The approach of this study is theoretically presented by Barra et al (2016) and is limited to a proof of
concept on a low-dimension digital phantom (503 voxels) and a simple geometry, composed of a few
vessels (∼5).

The present work aims at extending the previous theoretical phantom study to clinical data. The final
physiological and clinical goals were: (i) verify algorithm convergence on clinical dataset dimensions
(192×512×512 voxels), real%of the targeted angiographic voxels, and real CM infusion dynamics; (ii) assess
the algorithm capability to provide time resolved 3D angiographies to the finest arterial and venous branching
orders, (iii) enhance and validate the previously proposed automatic artery/vein (A/V) classification in the
presence of the time overlaps displayed by physiological data.

Here, results are presented relevant to 60 standardDSAdatasets and validated by the accuracy of A/V
classification versus a specifically developed semiautomatic annotation. These datasets provide a benchmark to
evaluate the feasibility of this approach in presence of healthy and physiological blood flow circulation and
vascularmorphology. Further analyses addressed the comparison between the proposed TICsmodelling and
other TIC parameters found in literature. Qualitative results are also presented about CMarrival timemapping
and its distribution in arteries and veins respectively. To our knowledge, this is the first studywhich validates on
clinical data the proposed strategy for time resolved rotational angiography andA/V classification.

2.Materials andmethods

As summarized byfigure 1, the proposedmethod starts after the 3DDSA acquisitionworkflowdescribed in
section 3.1 (Cardinale et al 2015) by two pre-processing steps (figure 1 left panel; see section 2.1): (i) the
segmentation of vessels in the angiographic volume; (ii) subtraction of BM re-projections (synthetized from the
registered BMvolume) from the rawCEprojections. Next the TICs are computed for all the segmented vascular
voxels by SART3.5D (figure 1, 2nd panel; see section 2.3). The algorithm starts from the usual algebraic
description of 3D reconstruction solved by simultaneous algebraic reconstruction technique (SART). Each voxel
intensity value is substituted by aweighted linear combination of time basis functions. As such, a new algebraic
problem is derivedwhere the newunknowns are the basis functionweights. The increase in unknowns is largely
compensated by the sparse reconstructionwhich addresses only vascular voxels and solved by SART iterations.
Next (figure 1, 3rd panel; see section 2.4) a contrast arrival time (CAT) parameter is extracted from eachTIC and
the overall distribution analyzed by aGaussianmixturemodel (GMM) to determine the subject-specific
separation point for A/Vclassification (figure 1, 4th panel, top). In addition, CATmaps are provided (bottom),
which furnishes further information beyond theA/Vclassification.

2.1.Data pre-processing
As sketched infigure 2, data pre-processing includes: (i) the standardDSA, consisting in the reconstruction and
of BMandCE volumes, their rigid registration, and subtraction; (ii) angiographic segmentation (see Par.2.1.1);
and (iii) the 2D subtraction fromCEprojection data of the re-projections of the co-registered BMvolume (see
Par.2.1.2). The applied 3D reconstruction algorithmwas SART, in keepingwith the further steps applying the

Figure 1.The proposedmethodology follows fourmain steps (black blocks) to time resolve 3D angiography and label arteries (A) and
veins (V) starting from the raw dataset. The pre-processing block (section 2.1) includes the brain vascular segmentation (par. 2.1.1)
and the background subtraction in the raw data (par. 2.1.2). Then, 4D reconstructions are computed using SART 3.5D algorithm
which output time intensity curves (TICs) (section 2.2)which are processed according to an area under the curve based criteria as
described in section 2.3 throughwhich the contrast time-of-arrivalmap and brain A/Vclassification are computed.
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dynamic SARTmodification, i.e. SART 3.5D. The standard SARTwas implementedwith non-negativity
constraint andfixed iteration number=5. BM toCE registrationwas implemented by FLIRT of FSL (Jenkinson
and Smith 2001).

Some important technical notes are anticipated here since they involve the overall quality of the pre-
processing steps. Firstly, SARTdisplayed high sensitivity to non-even processing, even if the iterative updates
wereweighted by the angular sample size, which resulted in hyperintensity of the overrepresented angles. The
relevant artifacts were unobservable in the BMandCE reconstructed volumes. Conversely, they had remarkable
effects over the BM re-projections and, hence, on the cleanedCEprojections to be input to SART3.5D. The
problemwas fully solved by the even resampling at 1°.

Secondly, specific attentionwas devoted to the construction of the systemmatrix A,which contains the
weights aij representing the intersection of the ithCB raywith the jth voxel. Comparisons showed that the
distance-driven approach (DeMan andBasu 2004) outperformed the voxel-driven (Siddon 1985) and the ray-
driven (Joseph 1982) approaches, concerning the smoothness of reconstructed volumes. Importantly, the same
systemmatrix A was used for: (i) SART reconstructions, (ii) registered BMre-projections, (iii) SART3.5D,
althoughwith propermasking of non-vascular voxels.

Finally, consistent computational andmemory savingwas obtained by computing A for angle q = 0 only.
Projections at a generic angle q were implemented by counter-rotanting the volume by q- , performing the
projection, and rotating the volume back by q.Rotationswere implemented by a bi-linear interpolation in the
rotated volume slices.

2.1.1. 3D cerebrovascular segmentation
The angiographic segmentation is commonpractice, in the clinical analysis ofDSA. In this case, it becomes a
must as a priori input to SART 3.5D, defining the voxel set targeted for dynamic reconstruction. TheDSA
underwent classical vessel enhancement filtering (Frangi et al 1998) and thenwere thresholded through an
interactive tool formedical imaging segmentation, ITKsnap (Yushkevich et al 2006). The thresholded
angiogramwas refined bymorphological operations and connected component analysis (CCA). Dilation and
bridging (Kong andRosenfeld 1996)were carried out to connect broken vessels. Next, CCA eliminatedwrongly
segmented voxels related to BM residuals and streak artifacts. Thresholdingwas tuned considering the
minimumconnected component size, the latter assessed by the 26-voxel neighborhood.

2.1.2. 2D bone-mask subtraction fromCE projections
Significant coordinate changes take place between the two scans,mainly due to the catheterization and infusion
preparation occurring in-between, whichmay require repositioning of the patient’s head and of theO-arm
scanner. Clearly, BM toCE co-registration cannot be computed in the 2Dprojection space, given the 3D
rototranslation to be corrected. Conversely, the already co-registered volume 3D-BMCE provides synthetic
projections in theCE space, by re-projecting it through the systemmatrix A.As said, A was computed for
q = 0 only, so, projections at q ¹ 0 were obtained by counterrotating 3D-BMCE.

As sketched in the block diagramoffigure 2, the cleaning of 2D-CE (i.e. the rawCEprojections) by 2D-BMCE

produces a synthetized 2D-DSAdataset, which is next input to SART 3.5D. As shown infigure 3, the CM

Figure 2.The proposedmethodology follows threemain steps (black blocks) to label arteries (A) and veins (V) starting from the raw
dataset, namely, identified as contrast-enhanced (2D-CE) and bone-mask (2D-BM) as described in section 3.1. The pre-processing
block (section 2.1) can be divided into two subparts. Firstly, projections data are reconstructed: the volumes, 3D-CE and 3D-BM, are
then aligned bymeans of rigid registration. The obtained 3D-BMCE is used twice. First, it is subtracted from 3D-CE to compute the 3D
DSA for the brain vascularmask (par 2.1.1.). Second, it is forward projected and subtracted from the 2D-CE to obtain the 2Dbone-
free CE rawprojection data (par. 2.1.2). Then, 4D reconstructions are computed using SART 3.5D algorithmwhich outputs time
intensity curves (TICs) (sec) and classified.
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dynamics (from ICA, to arteries, to veins, to large veins and sinuses) ismore clearly visible in the cleaned 2D-
DSA. Importantly, view angles had also a precise time labeling ( ) ∙/q= t 360 12 s, with frame time resolution
D =t 0.033 s.

2.2. SART 3.5D for TICs computation
TheTICs reconstruction problem is formulated as a dynamic imagingmodel problemwhich is solved bymeans
of a sparse and time variant extended iterative reconstruction technique. Among the iterative reconstruction
algorithms in literature, we opted for SART for its updating strategy which allowed us to exploit the relationship
between angle θ and time t crucial for the purpose of this study. SART applies the correctional error termby
grouping into a subset all projection rays from a single view angle θ, { }qpi with index { }Î qi i (Andersen and
Kak 1984). For further details on the static SARTplease refer to the appendix. Table 1 reports symbols used in
this section.

The basic passages from static SART to the dynamic SART 3.5D are here summarized. The SARTupdate
equation is reported below:

Figure 3.Representative frames from contrast-enhanced bone-free raw data obtained from subtraction between theCE rawdata and
the projected 3D registered bone-mask; three phases namely, the arterial, capillary, and venous phases can be distinguishedwhile the
CM isflowing through the cerebrovascular tree. The frame number is shown in each case.

Table 1. List of symbols used in section 2.

Parameter Value

p Projection data

m Voxel intensities

A Systemmatrix

I Number of FPDs detectors

J Number of voxels

n Iteration number

l Relaxation factor

q View angle

Q Total Angular span

B Number of basis function

( )q t Basis function

( )d j b, Dynamicweight

K Unknows of SART 3.5D
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In SART3.5D the mj is substituted by the TIC ( )m tj which describes theCMdynamics in the jth voxel. ( )m tj is
modelled as a linear combination of regularly shifted basis functions ( )q t :b
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where dj b, denotes the b basis functionweight associated to the jth voxel. Theweighting factors
[ ]¼ ¼d d d, , , ,j j b j B,1 , , represent the new unknowns.

B is the number of basis functions, which, after comparison of several numbers (see results)was set to 12,
which, greatly limited the number of unknowns, compared to 360 time samples, still permitting tofit the regular
CMdynamics. Importantly, this 12-fold increase of unknowns compared to the static problem is by far
compensated by targeting the angiographic volume fraction (AVF), which is in the order of 1%.Hence, thefinal
number of unknowns is ∙ ∙= < <K J B J IAVF isminor than the number of data J ,which is a precondition
to convergence. The new vector of unknowns is ( )( )= Îd d .k j b

K
, Accordingly, the dynamic algebraic

equations,modelling CEprojection cleaned by BMCE, are:
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The coefficients of the dynamic systemmatrix ( )A tB are given by:

( ) ( ) ( )( ) =a t a q t , 5ik j b ij b,

where time t , determining the correct phase of each basis function, is obtained from the view angle with
( )/q= t 12 360 s. To summarize, the proposed dynamic imaging system is defined as:

( ) ( )=A t d p, 6B

with ( ) ( ( ))( )= ÎA t a t R .B ik j b
IxK

, Its construction implies the following steps:

(i) Targeting—delete unknowns with index j out of the angiographic segmentationmask and the related system
matrix columns.

(ii) Dynamics—expand the vector of unknowns by substituting to each angiographic mj with B basis function

weights dj b, and the respective systemmatrix columns by the ( )( )a tik j b, of (6).

As to the SART 3.5Dupdate was accordinglymodified:
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Once the vector of jth voxel weight coefficients are computed, the TIC is finally obtained as theweighted sumof
the basis functions.

Practically, the implemented algorithm, avoided the reordering work of the theoretical formulation (6).
More simply, separate volumeswere created for each basis functionweight d ,j b, whichwere rotated, updated,
and counter-rotated.

In summary, in the proposed SART3.5D algorithm, the 2D-DSA input is synthetized by 2D subtraction
from the raw 2D-CE projection of the 2D-BMCE reprojections (after 3D coregistration to theCE space). So,
SART 3.5D address only the contrast induced by theCMand, in the updates of equation (7), targeting (i.e.
masking of the systemmatrix by the segmented angiogram) affects both the simulated projections ¯ ( )pi

n and the
back-projection of error ¯ ( )-p p .i i

n Accordingly, initialization is set to zero. It is worth recalling that the
dynamics represented by TICs is estimated considering a separate volume for each dynamic basis function.

The order inwhich the projections are accessed in the iterative reconstruction algorithms has a strong
influence on the convergence speed, the accuracy, and artifacts (Guan andGordon 1996). In SART3.5D the
applied accessing order is themultilevel access ordering scheme (MLS) inwhich two sequential views are chosen
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formaximumorthogonality between them such that they contain amaximumof independent information in
terms of angular viewing positions (Guan andGordon 1994).

2.3. TICs classification
Most of theworks addressing A/Vclassification require for each voxel a time-intensity profile fromwhich signal
features are extracted and then processed for classification. Laue et al (2013) andMeijs andManniesing
(2018, 2019) processed 4DCT scans and used unsupervisedK-means clustering and a 3D convolutional neural
network on time intensity signal for A/Vclassification, respectively.Matsumoto et al (2005) and Shirasaka et al
(2017), defined the optimal scan timing for A/V separation in 4DCT as the peak-to-peak time between
measured time-attenuation curves observed inmanually selected ROIs.Mendrik et al (2010) proposed amethod
based on computed tomography perfusion (CTP) scans and classified the time intensity profiles according to
their time to peak (TTP).WhileHavla et al (2015) extract themaximumenhancement (ME), the TTP and the
full curve width halfmaximum (FWHM). These parameters are processed bymeans of a statisticalmethod
which aims at finding their optimal linear combination able to distinguish between the arterial and venous
phase.

In this study, given the infusion protocol, the reconstructed TICs are characterized by a smooth step-up
shapewhichmainly captures thewash-in phase of theCMflow. The raising phase is expected to be early in
arteries and late in veins (figure 4(a)). Accordingly, we use a classification criterion that requires a separation
time /TA V between a prevalently arterial phase and the next venous phase. The temporal segmentation permits
to compare the area under the curve (AUC) in the venous phase [ ]/T ;T ,A V called AUCV to the total AUC,which
index provides the A/Vclassification rule:

⎧
⎨
⎩

( )
< 

> 

if thr artery

if thr vein
, 8

AUC

AUC
AUC

AUC

V

V

where threshold < <thr0 1 is determined to optimize the classification.
A subject-specific data-driven tuning of /TA V and thr was needed to consider the variability in the subjects’

hemodynamics andCM infusion. This was carried out by unsupervisedGMMclustering (Par. 2.4.2) (Dempster
et al 1977).

Moreover, for amore intuitive understandingwe convert the abovementioned classification parameter as
follows:

Figure 4.Overview of the TIC’s classification step: (a) exemplative set of TICs selected from two separate ROIs are examined. Statistics
of arterial (top) and venous (bottom)TICswithT=12 s are represented. In each plot, two areas under the curve (AUC)with respect
to an optimal /TA V are highlighted, AUCa and AUCv respectively; (b) and (c) from top to down: the »CAT AUC

AUC
V histogramof the

subset (b) is clustered by twoGaussianmixturemodels, GA and GV respectively (c). Finally the /TA V was computed as the temporal
instant thatmaximizes the bimodality of the corresponding »CAT AUC

AUC
V histograms. Accordingly, the probability inversion value

defined as thr is the analytical intersection point between the identifiedGaussianmodes and the respective posterior probabilities
(PA and PV ). Patient case scenario (m/37 y).
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( )=CAT
AUC

AUC
T , 9V

where CAT represents a temporally scaled perfusion parameter. Theworking hypothesis heremaintained is that
the integral ratio AUC

AUC
V is nearly proportional to the transport delay to the addressed voxel. TheCAT, therefore, is

only an estimate of the time of arrival of the CM,which should consider the almost sigmoidal TIC expectedwith
perfusion protocols. In the noisy environment of real TICs, such integral estimator is consideredmore robust
than others based onTICmorphology.

In our preliminary analyses the CAT index showed a continuum if small vessels were included. This was
attributed to partial temporal superposition of the arterial and venous phases in small vessels. So, it was decided
to perform a temporal basedA/Vclassification only on 60%of voxels within vessels of larger radius, which
limitation still permits to pinpoint arteries and arterioles of interest as surgical organs at risk.Hence theA/V
classificationwas preceded by a dimension-based segmentation in Par. 2.4.1.

2.3.1. Skeletonization and radius estimation of vascular limbs
The selection of angiographic voxels undergoing A/Vclassificationwas based on the skeletonization of both the
arterial and the venous tree, which implied the a priori exclusion of the few small vessels artifactually non-
connected to the overall angiogram. Skeletonizationwas carried out by parallelmedial axis thinning in 3D (Lee
et al 1994). Branching points were defined as skeleton voxel withmore than two neighbors (Kong and
Rosenfeld 1996) and segmented the skeleton limbs. The average radius of the lth limb, ( )r l was approximately
measured considering the curvilinear cylinder cross-section area ( )( )p r l 2 as ratio of the limb volume in number
of voxels, ( )N ,l divided by the skeleton length along its ( )n l elements:

( ) ( ) ( )
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where x, y and z are the skeleton limb coordinates, which Euclidean distances are summed to provide the limb
axis length.

2.3.2. Artery and vein clustering optimization
The angiographic limbswere ordered by descending ( )r l and a reduced A/Vclustering set was built including
limbs from largest to smaller up to the inclusion of at least the 60%of all angiographic voxels. So, the about 40%
of the angiogram that included arterioles and venules with large dynamic overlapwas excluded from theA/V
classification. The CAT indexwas computed on the splinedTICs resampled at 0.01 s (see figure 4(a)).

As shown infigure 4(b), the CAT index of the 60% reduced set presented the expected A/Vbimodal
separation in all subjects, which permittedGMMclustering (Dempster et al 1977) and the subject-specific
calibration ofTAV andThr parameters.

The stochastic parallel search, a genetic algorithm (Goldberg 1989), was used tofind the optimal /TA V within
the [4-9] s timewindow, leading to the best GMMseparation. Among various objective functions (e.g. Akaike’s
(Akaike 1974), Bayesian (Schwarz 1978), Kullback–Leibler information criteria (Kullback 1997), and
Bhattacharya distance (Bhattacharyya 1943) the Bhattacharya (Bh) distance was chosen, which quantifies the
closeness between theGMMcomponents in terms of their overlap area. The stopping rule was set at a tolerance
of 10–4.

TheGMMmodel offers a probabilistic classificationwhich needs conversion to a crispy rule fixing theThr
value.On preliminary trials, themost common separation criterion at equal probability density value
(figure 4(c)) outperformed the alternative of balancing the probabilities of the overlapped tails. This simple
criterionwas consequently adopted.

2.4. Time-resolved 3Ddigital subtraction angiography
TheCATdynamic informationwas accordingly represented in false colors of the 3D angiogram, thus proposing
a 4DDSA. The ‘hsv’ colormapwith linear color scaling over thewhole [ ]T0; rangewas kept as first explorative
plot. This representation reflects the temporal progress of the CM in the vascular tree. Heat (‘hot’ inMatlab)
mapswith intensity based scale (arteries hotter) provide an effective representation of the contrast agentflow
rate. This representation provides amore intuitive visual description of the contrast injection protocol. In
particular it reflects the continuous inflowof the agent along all the acquisitionwindow. Future applications
should permit to set both the central time (most likely with the individual /TA V as default) and theCAT range
with changing color, to enhance color contrast in the desired angiographic section. Finally, interactively
scrolling through limited ranges of CAT, should provide an effective 4D representation.
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3. Experimental protocol

3.1. Study population, equipment, and acquisition protocol
Data from60 consecutive subjects (31males and 29 females, age 32±13 years)whohad undergoneCBCTDSA
for SEEGplanning between 2017 and 2021were retrospectively selected and processed. Only one internal
carotid artery (ICA)CMdataset was processed for each subject, and other optional CMdatasets (contralateral
ICAor vertebral artery)were ignored. Therefore, 120 datasets (60 BM, 60 ICACM)were used. All patients were
suffering frompartial epilepsy and did not present any vascular pathology. The technique originally developed
and implemented at ‘ClaudioMunari’ center for performing 3DCBCTDSA in the context of epilepsy surgery
has been detailed elsewhere (Cardinale et al 2013, 2015). Briefly, theworkflow includes the acquisition of a BM
dataset followed by a variable number of enhanced datasets obtained during the trans-femoral selective injection
of CM in at least one ICA and, when needed, in the contralateral ICA and/or in one of the vertebral arteries. The
CMdatasets are acquired over 12 s after the start of iopamidol (300 mgml−1) infusion in the selected artery. The
injection parameters are: acceleration and deceleration 0.5 s; pressure limit 500 psi; velocity, 1.5 ml s−1 or
2 ml s−1 for children less than 25 kg and remaining patients, respectively; injection length, 10 s.

CBCT scanswere obtained bymeans ofO−arm system (Medtronic;Minneapolis,Minnesota, USA) a
mobile radiographic device for intraoperative imaging originally developed for spine surgery. The device is
composed by an x-ray tube (120 kWP, x-ray tube current 32–40 mA) and aflat panel detector (384×1024
detectors, with 0.776×0.388 mmdetector pixel size) that rotates inside a circular gantry around the iso-center.
The number of full scan projections acquired is 390, covering a total angular span of 360°. The angular sampling
at regime velocity is 1° of arch; however, it is denser in the starting acceleration phase and in the deceleration
phase. Irregular samplingwas corrected by even interpolation and resampling at 1°. The reconstructed image
consists of a 192-slice volume, 512×512matrix each slice, with 0.415×0.415×0.833 mmanisotropic voxel
size (volumetric field of view of 22× 22× 17 cm3). All acquisition and geometric parameters are reported in
table 2. Conventionally, wewill refer to ‘raw/projection data’ as the result of a standard natural logarithmic
transformation of the recorded x-ray attenuation.

3.2. Ground truth annotation
The proposedA/Vclassificationwas validated against a semi-automatic A/Vannotation based on two limited
angle 3D reconstructions centered on the arterial and the venous phase, respectively. The rationale was assuming
that specific low-angle sets contained themain information relevant to the arterial and venous phases. 2D-DSA
projections (i.e. CE projections, cleaned fromBMCE reprojections)were visually inspected to select two time-
framesmost representative of either phase. This selectionwas performedmanually, and it is patient specific.
Each limited angle set included aminimumof 30° centered on the reference frame but waswidened to include as
many frames representative or the arterial or the venous phase as possible. A SART limited angle volume
reconstruction followed. Given theCM infusion protocol, the ‘venous phase’ volume enhanced both arteries
and veins. Accordingly, the arterial volumewas subtracted from the venous one to keep only the venous
contrast, as shown infigure 5 (block diagram in the bottompanel). Hard thresholding provided a first coarse
angiographicmask, next refined by local adaptive thresholding. Two expert gradersmanually checked and
further refined the labeled ground-truth exploiting both temporalmaximum intensity projection (MIP) and
views from anatomical planes. A 3Dmedical imaging visualization tool, ITKsnap (Yushkevich et al 2006), was
used at this purpose. Finally,morphological opening and connectivity analysis were applied to remove thin non-
connected vessels and to isolatemajor structures. The example infigure 5, shows the annotated arterial and
venous ROIs. Visual inspection confirmed the limited-angle ‘gold-standard’ reached branching orders up to

Table 2.O-ARMTMgeometry and acquisition
parameters.

Parameter Value

Volume dimension 512×512×192
Voxel spacing 0.415 mm

Slice thickness 0.833 mm

FPDdimension 1024×384
Pixel size 0.776×0.388 mm

Source to isocenter 647.7 mm

Detector to isocenter 520.7 mm

Number of projections 390

Range rotational angle Full rotation

Acquisition time 12 s

9

Phys.Med. Biol. 67 (2022) 185018 S ElHadji et al



4–5th, and despitemore limited than the 60%, including clinically relevant arteries and veins on several axial
slices throughout the scan, and thus it was sufficiently rich for our validation to furnish a representative ground
truth, whichwould have been hardly achieved by a fullymanual annotationwhich could not go beyond few
vessels within the 2nd–3rd branching order. In the annotated ROIswe recognized the ICA and vessels belonging
to theAnterior Cerebral artery and theMiddle Cerebral Artery, while the venous ROIs included the superior,
transverse, and sigmoid sinuses andmajor frontal,middle, parietal, temporal superficial veins terminating in the
sinuses.

3.3. Comparativemethods
3.3.1. SART 3.5D test-variant on rawCE data
The test-variant here described addresses iterations on thewhole CEdataset, without prior BM subtraction, to
be conversely performed at the very end.Main steps are as follows: (i) initialization to 3D-BMCE; (ii) untargeted
projection simulations ¯ ( )p ;i CE

n
, (iii) errors ¯ ( )-p pi CE i CE

n
, , by comparisonwith the rawCEprojections; (iv)

targeted backprojection of errors (i.e. only the angiographic voxels are updated); (v)final subtraction of the 3D-
BM from the reconstructed volumes relevant to each temporal basis function and consequent TIC extraction.

Note that now the focus onCM induced changes is within the iterations, subtracting the prior image data
given by the 3D-BMCE.We adapted to our case some of the theoretical steps introduced inChen et al (2008). It
can be easily shown that the considered errors are the same as in (7), since the BMprojections can be subtracted
from p ,i CE, whichfits the definition of the 2D-DSA, i.e. p .i Similarly, the same subtraction can be done on the

¯ ( )p ,i CE
n

, which focuses changes from the starting BM initialization. So, in principle, the same objective function
ismaintained, i.e. nulling errors versus theCMadditional contrast by updating exclusively the angiographic
voxels. This test-variant was analyzed since similar strategies are in the literature Li et al (2018). Focus was on the
convergence capability, whichwas expected to be hindered by small errors derived as difference between the
large full CE andBMcontrasts. Qualitative results will be shown in section 4.1, limited to the basic choice of
non-overlapped, rectangular basis functions.

3.3.2. SART 3.5D test-variant with updates on progressive angles
This second test-variant was analyzedmainly to verify the convergence degradation compared to the optimal
max-orthogonality subset ordering criterion.Moreover, by imposing non-overlapped, rectangular basis
functions, the algorithmmimics limited-angle dynamic reconstructions, with angular range 360°/B=30°,
withB=12. Accordingly, the time resolution of TICs 1 sample/s.

Figure 5.On the top panel: limited angle reconstruction given a set of projections including exclusively the arterial phase. In the
bottompanel the limited angle reconstruction of a volume generous towards the arterial phase and fully in the initially capillary phase
is reconstructed. Then is subtracted from the 3DDSA volume to preserve the venous phase of the enhancement. The two volumes are
manually thresholded, andmorphological operators are applied to isolate themaximumconnected object.
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3.3.3. Basis functions and TIC post-processing
In a previouswork Barra et al (2016), rectangular non-overlapped basis functions are tested yet stressing the
algorithmflexibility in the choice of different basis functions. As shown infigure 6, this study tested both
rectangular non-overlapped basis functions (panel a) considered 50%overlapped triangular basis function to
perform linear interpolation, promoting smoothness over orthogonalization. As it regards the optimal number
of basis functionswe examined the number of basis functions, by comparing B values ranging from10 to 60 basis
functions. Both the step-wise and the linear-wise TICswere smoothed by cubic hermite spline interpolation (see
figure 6(c) for the smoothed step-wise TIC; the smoothed linear-wise is not shown).

Smoothing by parametricfittingwas also considered. Curves suggested in literature asmodels of CM
dynamics are the gamma-curve (Thompson et al 1964, Lin and Jackson 2012), shown infigure 6(d). Thefitting
was performed assuming the TIC following a two-parameterWeibull curve. Thefittingwas performed using the
non-linear least-squares optimizationmethod (Kenney andKeeping 1962).

3.4. Comparative perfusion parameters fromTICs
Fromprevious paragraph, the following quantitative perfusion parameters are extracted fromTICfittedwith
gamma-curve: the peak value, the raise time, TTP and the respectivemaximumvalue at the TTP (ME), wash in
(WI) andwash out (WO) rate (computed as the time needed to raise the intensity from the baseline value to half
maximumand from the peak value to halfmaximum, respectively) and the FWHM (Thompson et al 1964).

3.5. Performancemetrics and statistical analysis
The performance of SART 3.5Dmethod is evaluated by comparing the classification results to ground truth.
Since arteries are themain organs at risk in surgery, their correct classificationswere conventionally taken as true
positives, while the correct classifications of veins were considered true negatives. Accordingly, arteries
misclassified as veins were false negatives and veinsmisclassified as arteries were false positives.With this
convention, TheA/V sensitivity (Se) and specificity (Sp) reflect themodel capability for correctly detecting
arteries and veins, respectively.While the accuracy (Acc), quantifies the overall performance of the algorithm.
Themetrics have been computed individually for each case, and themedian (IQR) of all score values obtained is
reported as summary statistics.

To check normality, the Kolmogorov–Smirnov test was applied to all data. Comparison between groups of
several independent samples was performed using theWilcoxon Signed-Rank Test whennormality could not be

Figure 6. (a) step-wise rawTIC after rectangular basis functions; (b) linear wise rawTIC after triangular basis functions; (c) cubic
spline of the step-wise TIC in panel a; (d) gamma curvefitting of the step-wise TIC in panel a.
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assumed. The p values to be considered as significant is<0.05.We corrected for the effect ofmultiple
comparisons by conducting a posterioriBonferroni test by the Bonferroni factor. All statistical analysis was
conducted using version 17.0 of SPSS forWindows (SPSS, Chicago, IL).

4. Results

Weconducted a systematic evaluation of the algorithmmodules and parameters. In this sectionwe expose the
findings of the experiments carried out to evaluate their impact on the overall performance. Results will be
presented both in quantitative and qualitative terms.

4.1. SART 3.5D: pre-processing and projection ordering scheme
In this sectionwe showdifferent versions of SART 3.5D to evaluate the contribution of some crucial steps
presented in the proposed TICs computationworkflow. Specifically, SART 3.5Dworkflowwas degraded to
observe the effect of two important factors. First, we addressed the effectiveness of the BMcleaningwhich is
carried out a priori in the projection domain: the same algorithm ismodified to execute the BM subtraction on
thefly in the volume domain. Second, we assessed SART3.5D applied considering a projection ordering scheme
that promotes orthogonalization versus a sequential projection ordering schemewhich resembles the limited-
angle reconstruction setting.

Results are shown relevant to four temporal volumes infigure 7. SART 3.5Dwith BMcleaning performed in
the volume domain (top row) is affected by severe artifacts attaining to skull and cerebral tissue residuals, as well
as streak artifacts. In the limited-angle SART 3.5D (mid row), the overall quality of the frames is improved,
however the reconstruction quality of small vessels is poor in several regions. Namely, vessels overlapped in a
specific viewwere not separated and,more generally, had smoothed edges. Conversely, the full SART 3.5D
(bottom row) displays both a better cancellation of non-angiographic tissues and sharp patterns even for the
smallest vessels, which guarantees a better quality of the TICs.

4.2. TICsmodelling
In this section, the shape and the number of basis functions are compared aswell as the post-processingmethod
applied.

As to the basis function shape, table 3 compares SART3.5Dwith 12 rectangular and 12 triangular basis
functions. Results relevant to the subsequent A/V classification are reported. As shown, SART3.5Dwith
triangular basis functions yields the best overallmedian accuracy of 0.926 (range: 0.896–0.956), whereas when
rectangular basis functions are applied an overallmedian accuracy of 0.873 (range: 0.835 to .0893) is achieved. As
a further post-processing stepwe fitted the TICwith the standardGamma variate function perfusionmodel. The

Figure 7.MIP of temporal 3DDSA in 4 different time frames.On thefirst row the dynamic SART 3.5Doutput with the BMcleaning at
the end of the reconstruction. On themiddle row, the dynamic SART 3.5Doutput with the BMcleaning performed a priori in the
projection domain processing the projection sequentially as in a limited angle reconstruction. The bottom row instead the output of
SART 3.5Dobtained by preprocessing projections according to theMLS scheme.
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triangular basis function combination approach demonstrated to outperform standardGamma variate
function, with a significant difference inAcc, Se, and Spwhere interpolationmethod achieved amedianAcc, Se,
and Sp of 0.926, 0.902 and 0.916 versus 0.768, 0.740, 0.773.

Considering that triangular basis function outperformed all other variants a comparison of different basis
functions numbersB is shown only for this shape. Acc values are compared by the box-plots offigure 8. It is
noticed that the best results were at =B 12,with a significant difference compared toB>15 (< 0.05) andwith
a lower IQR compared toB<10.

4.3. A/Vclassification
First of all, the relationship between AUC

AUC
V and vessel radius was investigated relevant to the feasibility of A/V

classification based on this TIC index, as shown infigure 9, for a representative subject.
The smallest vessels in the lower 40 radius percentiles were compared to the large vessels in the 60 upper

percentiles. TheGaussian fittings show a large overlap in the former case and good separation in the latter.
Similar results on several randomly chosen subjects determined our choice to performA/Vclassification on the
set of the 60%of larger vessel, letting the smallest 40% in an unclassified ‘gray-zone’.

Table 4 highlights the significant classification improvement with the subject specific /TA V optimization
comparedwith a constant // = =T T 2 6 s.A V

Indeed, the optimal /TA V ranged in [4.75–6.98] s, approximately centred on /T 2 butwith large subjective
differences. TheGaussianmodeswere located at 0.47 (0.10) and 0.72 (0.08) for the arteries and the veins,
respectively. Thewidth ofGaussians (as std)were 0.043 (0.018) and 0.02 (0.015) and the normalizedweights 0.42
(0.12) and 0.58 (0.08) for the arterial and venousGaussian, respectively. The overlap area of the twoGaussian
tails was 5.8% (2.18), which confirmed that the 60% subsets showed good bimodal separation in all subjects.
However, this indicates about a 6%of uncertain voxels to be added to the ‘grey-zone’upon the 40%of small
vessels a priori excluded.

Infigure 10(a), the surface rendering of arteries (red) and veins (blue) classified in the set of 60%of larger
vessels are shown in two representative cases. The arterial and the venous anatomical architectures are clearly
displayed from left to right.

Figure 8.Boxplot of performance comparison using different number of basis function (nB). The comparison is shown in terms of
accuracy (Acc) for each nB.

Table 3.Classification performance of the proposed perfusionmodel according to the shape of the
basis function,measured as accuracy (Acc), sensitivity (Se), and specificity (Sp). Performancemetrics
are reported asmedian (interquartile range). (∗) significant byWilcoxon rank sum.

TIC reconstructionmethod Acc↑ Se↑ Sp↑

Rectangular basis functions 0.873 (0.06) 0.879 (0.02) 0.899 (0.03)
Triangular basis functions 0.926 (0.06)* 0.902 (0.04)* 0.916 (0.04)*

Triangular basis functions+Gamma fitting 0.768 (0.17) 0.740 (0.13) 0.773 (0.10)
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Infigure 10(b), relevant to the two cases, a comparison between the 60% set and the validation set is
performed for the arteries (red) and veins (blue). The light red and blue vessels highlight the difference voxels in
the 60% sets and not in the validation sets of arteries and veins, respectively. Interestingly, the 60% and the
classification criteria after SART 3.5D are able to capture higher order arterial and venous branches compared to
the validation sets, whichwere subject to a semiautomatic low-angle reconstruction. The opposite difference
(voxels in the validation set and not in the 60% set)was virtually empty and accordingly not shown.

4.4. CAT versusGammabased perfusion parameters
Infigure 11, the CAT index (SART3.5D, 12 triangular basis functions) is comparedwith indexes from gamma-
curvefitting (Thompson et al 1964) of the 12 time samples provided by 12 rectangular basis functions. The
significantly higher scores by theCAT index clearly indicate that the gamma curve, proposed tomodel CM
dynamics after bolus injection is less suited tomodel the infusion protocol considered in this study.

4.5. Contrast arrival timemaps and 4DDSA
Infigure 12, time-resolved 3DDSA are shown according to two different criteria. The first row shows the static
vascularmap in four different frames. The second row showsmaps of the TIC intensities ( )m t in four
subsequent frames at t= 5.5, 6.75, 9.5, and 12 s. LateralMIPs are shown by the hot colour scale. It is possible to
appreciate the contrast change in vasculature reconstructed by the SART 3.5DTICs starting in the arterial and
next contrasting the veins. The temporal volumes represented infigure 12midline are obtained bymultiplying
the temporal vascularmasks shown in the top row for the 3DDSA. This leads to obtaining a series of 3DDSA
frames over timewhere each voxel is assigned an intensity value. The frames shown in themidline are intended
to visually reflect the dynamics of the contrast passage. In particular, being an infusion protocol, the acquisition
captures thewash in phase but not thewash out phase (this can be seen above all infigure 3, where the frames of
the 2D-DSA are shown). Therefore, theflow rate of the contrast remains continuous for the duration of the

Figure 9.Comparison betweenCAThistogram referred to small (left) and large (righ) vessels.

Table 4.Classification performance of the proposed /TA V data driven
computation is compared to /TA V computed as in Barra et al (2016).
Themetrics computed are accuracy (Acc), sensitivity (Se), and
specificity (Sp). Performancemetrics are reported asmedian
(interquartile range). ∗: p<0.05,Wilcoxon rank sum.

Acc↑ Se↑ Sp↑

Constant TAV 0.783 (0.09) 0.773 (0.17) 0.712 (0.13)
Adaptive TAV 0.926 (0.06)* 0.902 (0.04)* 0.916 (0.04)*
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acquisition in the arteries, higher in the ICA. This phenomenon leads the arteries to exhibit amuch higher
contrast enhancement than the venous district. The full CATmap is similarly shown as lateralMIP in the
bottom raw, rightmost panel. CAT values are represented by theHSV color code in the range from
CAT=4.5 (red) to CAT=9.5 s (blue). To facilitate the reading of the full CATmap, progressively wider CAT
ranges are shown in the previous three panels. From the left-most: (i)CAT [0, 5.5], (ii)CAT [0, 6.75], and (iii)
CAT [0, 9.5]. A comparison of the corresponding frames in the top and the bottom rows clearly shows that the

Figure 10. (a)Arterial (red) and venous (blue) compartments are represented separately and include the selected vascular voxels
according to diameter and connectivity criteria (60%of angiography). (b)Arterial and venous compartments are represented in two
shades. Light red and blue capture the vessels belonging to the 60%of the angiographic voxels and not included in the validation sets
which are represented in dark tones.

Figure 11.Bar graph showing themedian values and inter-quartile range of the Se, Sp, Acc for each of the perfusion parameters
computed on the selected TICs. Perfusion parameters considered are the following: rise time,maximumenhancement, time to peak
(TTP), wash in (WI) andwash out (WO) rate and the full curve width at halfmaximum (FWHM). The bar height indicates themedian
valuewhile the ‘error-bar’ stands for the inter-quartile range.
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CM intensity progression from arteries to veins (top) is well paralleled by the appearance of higher and higher
CAT values, thus confirming this index as a valuable descriptor of the overall dynamics in single TICs.

4.6. Computational time
The automatic algorithmwe proposewas able to time-resolve and generate A/Vclassification for all considered
3DDSA cases in an average time of approximately~5 min. Themost computationally intensive step is the TIC
computation. This step relies on an iterative reconstruction techniquewhich requires n = 4 iterations until
convergence is reached (around 52 s each iteration on a standard PC, inMatlab).While the classification step
took an average time of approximately 20 s. The processing protocols were running on aWindows 10
Professional 64 bit operating system, AMDRyzen 9 5900×12-Core Processor, 3.70 GHz, 128GBRAM.

5.Discussion

This study addressed the extraction of 4D information from3DCBCTDSAprotocols (i.e. a 3.5D strategy). It
started from a previous proof of concept (Barra et al 2016) on small and simple digital phantoms and analyzed
whether a step-up to real clinical data applications was feasible. The extension to clinical datasets demandedfirst
to address amore complex geometry with a consequent considerable computational load. it is worth
mentioning the crude size issues passing to a 400-fold number of voxels with about a 4002-fold larger system
matrix, from5phantom vessels to the hundreds of segmented angiographic limbs. Second, image artifacts (e.g.
patientmotion) and hemodynamic andCM infusion variability from subject to subject had to be considered as
well. Accordingly, our contributions can be summarized as follows: (i) SARTwas re-implemented as a
dynamical and sparse variant of the classical SART; (ii) a specifically designed bone-mask (BM) subtraction in
the 2Dprojection after 3Dmotion correction, ahead of the 3.5Ddynamic reconstruction; (iii) attentive

Figure 12. In the top row the 3D volume rendering. In themiddle row the intensityMIP of the temporal volume, in the last the
contrast arrivalmaps in four time frames.
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validation of angiographic segmentation, which is a core prior to the targeted dynamic reconstruction; (iv)
adaptive TIC analysis andA/Vclassification driven by subject specific statistics; (v) comparison of TIC
parameterizations.

The study addressedCBCTDSAdatasets, based on a 12 s BM scan and 12 sCE scan, with infusion of theCM
in the ICA. Importantly, it was a fully standard protocol used in preparation to brain surgery (Cardinale et al
2015), i.e. no extra Rx exposure, CMdosage, and scan timewas required, diversly fromothermethods
(Matsumoto et al 2005,Mendrik et al 2010, Laue et al 2013,Havla et al 2015, Shirasaka et al 2017,Meijs and
Manniesing 2018, 2019).

Amajor taskwas to improve the convergence regularization using subsets. Grouping updates into subsets
was unavoidably limited to single angular views, i.e. SART, to save the temporalmeaning of angles in the SART
3.5Ddynamic context. Also, the computation of systemmatrix coefficients required optimization in favor of the
distance-driven strategy. Comparisons with the previous ART3.5Ddone in the development phase are not
shown in this study, since the adopted solutions are in themainstreamof the numerical algorithms’ theory
(Barra et al 2016), nonetheless, this passage represented a core turning point towards real applications.

Clinical data imposed specific pre-processing phases to compensatemovements between the BMand theCE
scans. This study demonstrated that best outcomes were given by the 3D alignment of the BM to theCE volume
followed by BMcancellation from the raw 2D-CEprojections (i.e. the 2D-DSA). This was compared to the
different strategy of searchingCEdeviations from the BMwithin the 3Ddynamic reconstruction, with
initialization to BMandBM subtraction at the very end, in analogywith published algorithms (Chen et al 2008).

Themathematical demonstration presented by the previouswork (Barra et al 2016) clearly showed the
flexibility in the choice of different basis function shapes used tomodel the TICswith a reduced number of
parametersB. However, only the simplest, non-overlapped, rectangular basis functionswere tested since
sufficient on simple digital phantoms. Conversely, this study presents a comparison among step-wise TICs from
rectangular basis functions and linear-wise TICs from triangular basis functions.Moreover, the step-wise shape
from the former ones were compared considering two post-processing algorithms: (a) spline smoothing and (b)
gamma-curve fitting, which is amajormodel in the description of CMdynamics (Thompson et al 1964). Finally,
SART 3.5D,which explores projection angles by amaximumorthogonality iteration strategy, was compared to a
variant similar to low-angle reconstructions, thus showing the better performance of the proposed algorithm
which processes the overall dynamic content of the dataset.

Barra et al (2016)define as A/Vclassification index ratio /AUC AUC,V where AUCV is the AUC limited to
the last half of the scan [ ]= =T s T s6 , 12AV andAUC refers to thewhole scan duration. This integral strategy
reveals to be robust against TICs noise andwell suited to infusion protocols. Hence, it wasmaintained in the
present study, though adapted to real cases. Notationwas changed in favor of themore intuitive

( )/=CAT T AUC AUCV in [s], which is useful both for A/Vclassification and for the dynamicmapping of
angiographies. It is worth remarking that such linear rescaling has no impact on classification processes. Passing
to real data required to individually set the instant /TA V that best separated the early phase (CMalmost only in
arteries) from the late one (CMreaching the veins, while persisting in the arteries, due to infusion). This
individual data-driven setting revealed to be crucial in real data analysis compensating subjective differences in
transport delays and randomerrors in the synchronization between the scan and the infusion process. This goal
required to optimize theGMMclustering of CATby setting /TA V at the value offering the best separation of the
arterial and venousGaussian distributions, which searchwas implemented by a genetic algorithm.

So, the proposed criterion, so far, is exclusively based on theCM transport delay estimated byCAT. Amajor
focus of this studywas to pinpoint potentials and limitations of this strategy, possibly opening to future studies
integrating dynamic and anatomical features to further improveA/Vclassification. Indeed, the presented results
revealed awideCAToverlap between small arterioles and venules, impeding a clearGMMclustering.
Accordingly, it was decided to compute the radius of the angiographic limbs bymeans of skeletonization and to
address only the 60%angiographic volume of larger arterial and venous vessels, letting the rest of small vessels in
a 40% ‘grey-zone’. Although this choice is a clear limitation of the current A/Vclassification, it is in keepingwith
the primary goal of providing a safe and robust detection of arteries as organs at risk, which is performed only
within the 60% subset, nonetheless including large tomediumvessels ofmajor surgical interest.

Detailed analyses of the relationships among limb radius, anatomical position and branching order, and the
functional information provided byCAT,was beyond the scope of the present study. However, this can be a
starting point to future research shedding new light over cerebrovascular transport physiology and providing
effectivemarkers of its pathological alterations.

The optimization of /TA V limited to the 60%angiographic volume permitted good clusteringwith about 6%
overlap of the twoGaussian distributions. It also revealed a consistently wide range of the subjective /TA V over
about [4.75–6.98] s, which confirmed the usefulness of the implemented subject specific approach.

The selection of a gold-standard for the A/V clustering validation deserves specific discussion. In
preliminary analysis, the validation againstmanual labelling of arteries and veinswas attempted.However, this
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standard approach revealed to be unfeasible due to complexity of the angiographic structure and the consistent
cohort of 60DSAs here evaluated. In practice,manual labelling could not go beyond few vessels within the 2nd–
3rd branching order, while the classification set, though limited to 60%, reached the 7th order. Hence, we had to
revert to the semiautomatic procedure (Par. 3.2) based on themanual selection of low-angles best representative
of the arterial and the venous phase respectively, followed by visual inspection by expert observers of the arterial
and venous trees reconstructed by limited-angle (non-dynamic) SART. This approach, though acceptable for
validation in the absence of other options, was not a solution to automatic A/Vclassification since it required
manual arch selections and result verification, also given the limitations of low-angle reconstructions discussed
above. Conversely, the dynamic SART3.5Ddoes automatically integrates all the information sparse over the
360°, alias 12 s. Indeed, the lack of a ‘gold-standard’ fully covering the tested set is a limitation of the presented
study; however, improvements could be hardly gainedwithin the context of sole CBCTDSAdata andwould
require comparisonwith different imaging systems, in a future.

The proposedCAT index, after SART 3.5Dwith 12 triangular basis functions, provided the highestmedian
accuracy (0.926)with the shortest IQR (0.056), which is a very high score, thoughwith all the previously
highlighted limitations relevant both the tested and the reference sets. Concerning SART3.5D andTIC analysis
optimization, our results showed this solution to significantly outperform alternatives relevant to rectangular
basis functions, basis function number, andfixed versus adaptive /T .A V

For the sake of completeness, we also analyzed the performance of CMdynamics indexes described in the
literature. Unfortunately, to our knowledge, descriptors of bolus,first-passage protocols are described, based on
gamma-curve andGaussian fitting (Calamante 2013, Akhbardeh et al 2019). The latter onewas not considered
since obviously unfit to infusion data. Conversely, results relevant to theGMMclassification performancewith
gamma-curve indexeswere presented. A comparisonwith theCAT criterion showed that gamma-curvefitting is
less appropriate in the description of infusion protocols. This result does by noway diminish the gamma-curve
validity for bolus protocols but confirmed the utility of CAT index refinement done in this study relevant to
infusion protocols.

This comparison opens a brief discussion about the preference given to infusion protocols in clinical pre-
surgical and surgical contexts (Cardinale et al 2015). Undoubtedly, nothing better than the first passage of a
bolus is suited to capture theCMdynamics.However, the primary focus of clinicians is on the 3Dnon-dynamic
angiography, and infusion assures high contrast alongmost of the scan, in arteries, and a broad%of the late part
of the scan, in veins. Given this strong clinical need, this study challenged the problemof extracting the dynamic
features testingwhether their information content was sufficient to derive theCAT index andA/Vclassification.
Further analysis will address the flexibility of the proposedmethod in presence of imagingmodalities which are
covering less than 360° (as itmight be imposed byC-arm scans) to see the boundaries of the effectiveness of the
approach both in terms of contrast injection protocol andminimumcoverage angle.

6. Conclusion

This study demonstrated the feasibility of automatically extracting dynamic information from clinical CBCT
DSAdatasets based on infusion, which is conversely conceived to optimize anatomical features of the brain
angiogram in pre-surgical and surgical contexts. Through a detailed optimization of the SART3.5D algorithm,
theCMarrival time (CAT)wasmapped up to vessels of the 6th—7th branching order. Accordingly, arteries and
veinswere labelled in a 60%of the angiographic volume, excluding a ‘gray-zone’ of 40%of smaller vessel, with
lesser importance in surgical planning. The efficacy of design choices and settings were documented in detail by
comparisonswith alternatives, based on the classification of arteries and veins. A limitationwas the definition of
a validation ‘gold-standard’ extracted from the sameDSAdatasets via amanual definition of arterial and venous
low-angle reconstruction, which requires future comparisons to ‘gold-standards’ provided by different imaging
modalities. The algorithms applied to extractmorphometric properties as the radius of vascular limbs and the
SART3.5D extracting the functional information summarized byCATdeserve future attention. Firstly, to
further improve vessel classification bymerging the temporal (TIC) and themorphometric (branching order
and connectivity) analysis of the vascular tree. Secondly, to shed new light on the physiology of cerebrovascular
transport and its pathological deviations, which impacts on vast areas, from vascularmalformation to
cerebrovascular degenerations close related to neurological diseases.
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Appendix

According to the iterative reconstructionmethods, the image acquisition process ismodeled as a linear systemof
equations:

∙ ( )mA=p , A1

where ( )m m= Îj
J depicts the unknown voxel attenuations in vector form, ( )= Îp pi

I represents the

measured optical density for each projection, while ( )= ÎA a Rij
IxJ is the systemmatrix.

ARTupdates ( ) ( )m m +n n 1 (i.e. fromupdate n to update +n 1of the current estimate ofm) is based on the
simulated projection:

¯ ( )å m=
=

p a . A2i
n

j

J

ij j
1

Next, the additive error ( )-p pi i
n is computed and the update correction is given proportionally, weighted by a .ij

The basic ART considers single projection raymeasurement at a time and imposes a ray-by-ray updates (i.e. an
iteration through thewhole dataset is composed by I updates). Hence, the convergence is initially the fastest
possible, but has an unstable end since no smoothing of data redundancy is included (Kak et al 2002). This is
obtained by derived algorithms including a relaxation factor l < 1 (percent of full correction) and grouping
corrections as average of the single ones in an entire subset of data (Herman andMeyer 1993,Wang and
Jiang 2004, Xu et al 2010).

The Simultaneous ART (SART) groups into a subset all projections from a single view angle q, { }qpi with
index { }Î qi i (Andersen andKak 1984). Since the introduction of SART, subset strategies have been
significantly improved to optimize the tradeoff between fastness with small subsets (i.e.many updates in a single
iteration) and convergence stability with large ones. A significant improvement in reconstruction smoothness
was found, compared toART (Kunz and Frangakis 2014). The SARTupdate equation is:
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In this study, the relaxation factor l was set to 0.99, a common value in the literature.
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