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Abstract

Classification of arteries and veins in cerebral angiograms can increase the safety of neurosurgical
procedures, such as StereoElectroEncephaloGraphy, and aid the diagnosis of vascular pathologies, as
arterovenous malformations. We propose a new method for vessel classification using the contrast
medium dynamics in rotational digital subtraction angiography (DSA). After 3D DSA and angiogram
segmentation, contrast enhanced projections are processed to suppress soft tissue and bone structures
attenuation effect and further enhance the CM flow. For each voxel labelled as vessel, a time intensity
curve (TIC) is obtained as a linear combination of temporal basis functions whose weights are
addressed by simultaneous algebraic reconstruction technique (SART 3.5D), expanded to include
dynamics. Each TIC is classified by comparing the areas under the curve in the arterial and venous
phases. Clustering is applied to optimize the classification thresholds. On a dataset of 60 patients, a
median value of sensitivity (90%), specificity (91%), and accuracy (92%) were obtained with respect to
annotated arterial and venous voxels up to branching order 4-5. Qualitative results are also presented
about CM arrival time mapping and its distribution in arteries and veins respectively. In conclusion,
this study shows a valuable impact, at no protocol extra-cost or invasiveness, concerning surgical
planning related to the enhancement of arteries as major organs at risk. Also, it opens a new scope on
the pathophysiology of cerebrovascular dynamics and its anatomical relationships.

1. Introduction

Cerebrovascular tree visualization plays a crucial role in neuroimaging and neurosurgery in preoperative,
intraoperative, and postoperative phases (Serafin et al 2012, Ilunga-Mbuyamba et al 2016, Teng et al 2016,
Ramakonar et al 2018, Neumann et al 2019, Perin et al 2021). Beyond a purely morphological angiography, the
separation of arteries and veins (A/V) can be extremely advantageous in several clinical procedures, with a major
impact on surgical planning and navigation (Kruger et al 2018, Tomasi et al 2020). For example, in keyhole
neurosurgery procedures such as StereoElectroEncephaloGraphy (SEEG), hemorrhage is one of the most
commonly occurring complication, which makes recognition and safeguarding of arteries a major requirement
(Nowell et al 2015, Gilard et al 2016, Gonzalez-Martinez et al 2016, Mullin et al 2016, Minkin et al 2017, Sparks
etal2017, Neumann et al 2019, Vakharia eral 2018, 2019, Scorza et al 2021). Additionally, in procedures such as
arteriovenous malformations (AVMs) embolization, clinicians would benefit from the selective visualization of
the feeding arteries and the venous drainage network to guarantee major safety and efficacy of the surgical

© 2022 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd


https://doi.org/10.1088/1361-6560/ac8c7f
https://orcid.org/0000-0001-6479-3319
https://orcid.org/0000-0001-6479-3319
https://orcid.org/0000-0003-0268-3346
https://orcid.org/0000-0003-0268-3346
https://orcid.org/0000-0002-8819-2734
https://orcid.org/0000-0002-8819-2734
https://orcid.org/0000-0003-4718-4727
https://orcid.org/0000-0003-4718-4727
https://orcid.org/0000-0002-5141-9202
https://orcid.org/0000-0002-5141-9202
https://orcid.org/0000-0003-2978-1704
https://orcid.org/0000-0003-2978-1704
mailto:sara.elhadji@polimi.it
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ac8c7f&domain=pdf&date_stamp=2022-09-16
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ac8c7f&domain=pdf&date_stamp=2022-09-16
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

10P Publishing

Phys. Med. Biol. 67 (2022) 185018 SElHadjietal

resection (Kaminogo et al 2002, Chen et al 2017, Prada et al 2018). Moreover, the observation of the venous
system can help the detection of vascular abnormalities such as arteriovenous shunts (Gandhi et al 2012, Gomez
etal2012).

The gold standard technique procedure for visual assessment of the cerebrovascular tree morphology is the
digital subtraction angiography (DSA) (Mistretta 1980). The DSA is the result of a subtraction between an image
acquired before the administration of contrast medium (CM) from the one acquired after contrast agent
propagation in the bloodstream. Consequently, in the DSA dataset, projections are acquired at different time
intervals resulting in a collection of frames describing the flow of the CM through the vessels over a scan time
which covers the CM transport to the whole cerebrovascular tree (Christenson et al 1980). This information
apart from being used for cerebrovascular morphology assessment represents an optimal surrogate marker for
cerebral hemodynamics.

Previous attempts to reconstruct image-based cerebral hemodynamics flow patterns exploited 2D catheter
cerebral DSA images and tackled CM extraction by recording the intensity values along the projection frames for
each individual pixel (Strother et al 2010, Golitz et al 2013, Scalzo and Liebeskind 2016, Teng et al 2016, Hong
etal2019). To reduce random noise the curves are generally fitted with prior distributions from which perfusion
parameters are computed analytically (Lin and Jackson 2012). Once extracted, the perfusion parameters are
parametrized to generate color-coded DSA images and perfusion maps. However, despite the high temporal and
spatial resolution (Christenson et al 1980), this technique still suffers from confounding factors due to
superimpositions of blood vessels located at different depths and vascular foreshortening. (Scalzo and
Liebeskind 2016, Teng et al 2016, Hong et al 2019).

These flaws were partially addressed with the development of rotational three-dimensional (3D) DSA suites
equipped with flat panel detector computed tomography (CT) (Green et al 2004, Akpek et al 2005). Similar to the
use of more conventional angiographic equipment, 3D DSA is the result of subtracting an image without CM
(bone-mask, BM) from the contrast enhanced (CE) one. A few available systems exploit software-driven
subtraction of bony topography in serial rotational planes to estimate 3D vascular anatomy, guaranteeing
superior spatial resolution compared to images obtained by means of CT or magnetic resonance (MR)
angiography (MRA). However, if on one hand, the introduction of 3D-DSA addresses the problem of vessel
overlapping, on the other hand it lacks the temporal resolution of biplanar DSA.

In this perspective, several authors reported methods that aim to reconstruct a time-resolved 3D cone beam
CT (CBCT) angiography to enable the view of the anatomy not only in any desired view but also at any desired
phase of vascular filling. As such, Mistretta (2011), Davis et al (2013), Chen and Li (2015, 2017), Sandoval-Garcia
etal (2016), Lietal (2018), Ruedinger et al (2021) propose to employ low-angle numerical reconstructions to
furnish a series of angiograms at subsequent times. At this purpose, C-arm rotational acquisition is used to
acquire images before and during bolus injection. To reduce low-angle reconstruction artifacts, while providing
sufficient time resolution, protocols are based on repeated scans with fast back-and-forth to capture the full cycle
of the bolus inflow and washout through the vasculature.

Besides the diagnosis and treatment of vascular pathologies (Torné et al 2019), even stereotactic procedures
demonstrated to benefit from the use of 3D-DSA. This is especially the case of SEEG, an invasive procedure in
which about 10-20 intracerebral electrodes are percutaneously implanted in the brain region. This procedure
requires brain vessels to be carefully avoided during the advancements of the recording electrodes into the
intracranial space, with a particular caution towards arteries. Cardinale et al (2013, 2015) have first proposed the
use of a mobile O-ring cone-beam CT (CBCT) scanner to obtain a set of datasets to be post-processed with a
dedicated workflow aimed at generating 3D CBCT DSA (Cardinale etal 2013, 2015, 2017, 2019). The acquisition
protocol proposed in Cardinale ez al (2013, 2015) enables to capture a consistent number of projections along a
full rotation which allows to accurately record the wash in phase, enhancing both the arterial and the venous
tree. However, in the current processing pipeline, time-dependent information is lost, and the final 3D DSA
reconstruction protocol is only able to depict a temporally averaged image of the vascular dynamic
enhancement, without any distinction between arteries and veins.

In this specific context, most of the studies found in literature addressing exclusively A /V classification are
based on 4D CT acquisition protocol. This technique consists in a dynamic acquisition protocol based on
multiple gantry rotations which capture a sequence of 3D volumes over time, associating to each vascular voxel a
Time Intensity Curves (TIC) describing the CM dynamic. Needless to say that these high-end multi-detector
row CT scanners are based on highly demanding equipment and protocols requiring higher acquisition time
which increases the dosage of CM and radiation exposure (Matsumoto et al 2005, Mendrik ez al 2010, Laue et al
2013, Havla et al 2015, Shirasaka et al 2017, Meijs and Manniesing 2018, 2019).

In this work we propose a method for: (i) time-resolving the 3D DSA, (ii) providing a more advanced
interpretation of the intracranial vascular tree, i.e. A/V separation, exploiting the 3D CBCT angiography
imaging protocol proposed in Cardinale et al (2013). The main objective of this study is the recovery of the lost
dynamic (hence, functional) information along the 3D DSA reconstruction pipeline and its integration within
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Figure 1. The proposed methodology follows four main steps (black blocks) to time resolve 3D angiography and label arteries (A) and
veins (V) starting from the raw dataset. The pre-processing block (section 2.1) includes the brain vascular segmentation (par. 2.1.1)
and the background subtraction in the raw data (par. 2.1.2). Then, 4D reconstructions are computed using SART 3.5D algorithm
which output time intensity curves (TICs) (section 2.2) which are processed according to an area under the curve based criteria as
described in section 2.3 through which the contrast time-of-arrival map and brain A/V classification are computed.

the anatomical angiographic reconstruction, starting from the standard BM and CE acquisition, with no Rx dose
or CM added. This strategy was named 3.5D as it reconstructs 4D information (volume plus time) from standard
3D scans. The approach of this study is theoretically presented by Barra et al (2016) and is limited to a proof of
concept on alow-dimension digital phantom (50° voxels) and a simple geometry, composed of a few

vessels (~5).

The present work aims at extending the previous theoretical phantom study to clinical data. The final
physiological and clinical goals were: (i) verify algorithm convergence on clinical dataset dimensions
(192 x 512 x 512voxels), real % of the targeted angiographic voxels, and real CM infusion dynamics; (ii) assess
the algorithm capability to provide time resolved 3D angiographies to the finest arterial and venous branching
orders, (iii) enhance and validate the previously proposed automatic artery/vein (A/V) classification in the
presence of the time overlaps displayed by physiological data.

Here, results are presented relevant to 60 standard DSA datasets and validated by the accuracy of A/V
classification versus a specifically developed semiautomatic annotation. These datasets provide abenchmark to
evaluate the feasibility of this approach in presence of healthy and physiological blood flow circulation and
vascular morphology. Further analyses addressed the comparison between the proposed TICs modelling and
other TIC parameters found in literature. Qualitative results are also presented about CM arrival time mapping
and its distribution in arteries and veins respectively. To our knowledge, this is the first study which validates on
clinical data the proposed strategy for time resolved rotational angiography and A/V classification.

2. Materials and methods

As summarized by figure 1, the proposed method starts after the 3D DSA acquisition workflow described in
section 3.1 (Cardinale et al 2015) by two pre-processing steps (figure 1 left panel; see section 2.1): (i) the
segmentation of vessels in the angiographic volume; (ii) subtraction of BM re-projections (synthetized from the
registered BM volume) from the raw CE projections. Next the TICs are computed for all the segmented vascular
voxels by SART 3.5D (figure 1, 2nd panel; see section 2.3). The algorithm starts from the usual algebraic
description of 3D reconstruction solved by simultaneous algebraic reconstruction technique (SART). Each voxel
intensity value is substituted by a weighted linear combination of time basis functions. As such, a new algebraic
problem is derived where the new unknowns are the basis function weights. The increase in unknowns is largely
compensated by the sparse reconstruction which addresses only vascular voxels and solved by SART iterations.
Next (figure 1, 3rd panel; see section 2.4) a contrast arrival time (CAT) parameter is extracted from each TIC and
the overall distribution analyzed by a Gaussian mixture model (GMM) to determine the subject-specific
separation point for A/V classification (figure 1, 4th panel, top). In addition, CAT maps are provided (bottom),
which furnishes further information beyond the A/V classification.

2.1. Data pre-processing

As sketched in figure 2, data pre-processing includes: (i) the standard DSA, consisting in the reconstruction and
of BM and CE volumes, their rigid registration, and subtraction; (ii) angiographic segmentation (see Par.2.1.1);
and (iii) the 2D subtraction from CE projection data of the re-projections of the co-registered BM volume (see
Par.2.1.2). The applied 3D reconstruction algorithm was SART, in keeping with the further steps applying the
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Figure 2. The proposed methodology follows three main steps (black blocks) to label arteries (A) and veins (V) starting from the raw
dataset, namely, identified as contrast-enhanced (2D-CE) and bone-mask (2D-BM) as described in section 3.1. The pre-processing
block (section 2.1) can be divided into two subparts. Firstly, projections data are reconstructed: the volumes, 3D-CE and 3D-BM, are
then aligned by means of rigid registration. The obtained 3D- BM . is used twice. First, it is subtracted from 3D-CE to compute the 3D
DSA for the brain vascular mask (par 2.1.1.). Second, it is forward projected and subtracted from the 2D-CE to obtain the 2D bone-
free CE raw projection data (par. 2.1.2). Then, 4D reconstructions are computed using SART 3.5D algorithm which outputs time
intensity curves (TICs) (sec) and classified.

dynamic SART modification, i.e. SART 3.5D. The standard SART was implemented with non-negativity
constraint and fixed iteration number = 5. BM to CE registration was implemented by FLIRT of FSL (Jenkinson
and Smith 2001).

Some important technical notes are anticipated here since they involve the overall quality of the pre-
processing steps. Firstly, SART displayed high sensitivity to non-even processing, even if the iterative updates
were weighted by the angular sample size, which resulted in hyperintensity of the overrepresented angles. The
relevant artifacts were unobservable in the BM and CE reconstructed volumes. Conversely, they had remarkable
effects over the BM re-projections and, hence, on the cleaned CE projections to be input to SART 3.5D. The
problem was fully solved by the even resampling at 1°.

Secondly, specific attention was devoted to the construction of the system matrix A, which contains the
weights a;; representing the intersection of the ith CB ray with the jth voxel. Comparisons showed that the
distance-driven approach (De Man and Basu 2004) outperformed the voxel-driven (Siddon 1985) and the ray-
driven (Joseph 1982) approaches, concerning the smoothness of reconstructed volumes. Importantly, the same
system matrix A was used for: (i) SART reconstructions, (ii) registered BM re-projections, (iii) SART 3.5D,
although with proper masking of non-vascular voxels.

Finally, consistent computational and memory saving was obtained by computing A for angle = 0° only.
Projections at a generic angle 6 were implemented by counter-rotanting the volume by — 6, performing the
projection, and rotating the volume back by 6. Rotations were implemented by a bi-linear interpolation in the
rotated volume slices.

2.1.1. 3D cerebrovascular segmentation

The angiographic segmentation is common practice, in the clinical analysis of DSA. In this case, it becomes a
must as a prioriinput to SART 3.5D, defining the voxel set targeted for dynamic reconstruction. The DSA
underwent classical vessel enhancement filtering (Frangi ef al 1998) and then were thresholded through an
interactive tool for medical imaging segmentation, ITKsnap (Yushkevich et al 2006). The thresholded
angiogram was refined by morphological operations and connected component analysis (CCA). Dilation and
bridging (Kong and Rosenfeld 1996) were carried out to connect broken vessels. Next, CCA eliminated wrongly
segmented voxels related to BM residuals and streak artifacts. Thresholding was tuned considering the
minimum connected component size, the latter assessed by the 26-voxel neighborhood.

2.1.2. 2D bone-mask subtraction from CE projections
Significant coordinate changes take place between the two scans, mainly due to the catheterization and infusion
preparation occurring in-between, which may require repositioning of the patient’s head and of the O-arm
scanner. Clearly, BM to CE co-registration cannot be computed in the 2D projection space, given the 3D
rototranslation to be corrected. Conversely, the already co-registered volume 3D-BM g provides synthetic
projections in the CE space, by re-projecting it through the system matrix A. As said, A was computed for
6 = 0° only, so, projections at § = 0° were obtained by counterrotating 3D-BMcg.

As sketched in the block diagram of figure 2, the cleaning of 2D-CE (i.e. the raw CE projections) by 2D-BM¢g
produces a synthetized 2D-DSA dataset, which is next input to SART 3.5D. As shown in figure 3, the CM
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Figure 3. Representative frames from contrast-enhanced bone-free raw data obtained from subtraction between the CE raw data and
the projected 3D registered bone-mask; three phases namely, the arterial, capillary, and venous phases can be distinguished while the
CM is flowing through the cerebrovascular tree. The frame number is shown in each case.

Table 1. List of symbols used in section 2.

Parameter Value

Projection data

Voxel intensities

System matrix

Number of FPDs detectors
Number of voxels
Iteration number
Relaxation factor

View angle

Total Angular span

DD >R~ ~hT

Number of basis function
q(t) Basis function

b Dynamic weight

K Unknows of SART 3.5D

dynamics (from ICA, to arteries, to veins, to large veins and sinuses) is more clearly visible in the cleaned 2D-
DSA. Importantly, view angles had also a precise time labeling t = (6/360°) o 12 s, with frame time resolution
At = 0.033s.

2.2.SART 3.5D for TICs computation
The TICs reconstruction problem is formulated as a dynamic imaging model problem which is solved by means
of a sparse and time variant extended iterative reconstruction technique. Among the iterative reconstruction
algorithms in literature, we opted for SART for its updating strategy which allowed us to exploit the relationship
between angle 6 and time t crucial for the purpose of this study. SART applies the correctional error term by
grouping into a subset all projection rays from a single view angle 0, { p; }, withindex i € {7}y (Andersenand
Kak 1984). For further details on the static SART please refer to the appendix. Table 1 reports symbols used in
this section.

The basic passages from static SART to the dynamic SART 3.5D are here summarized. The SART update
equation is reported below:
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1 P —p"
M(jn+1) — Mgn) + )\Z - Z z] i aij, 1)
ijicl
i€l e Z aij
=

updates pu™ — p®+D (i.e. from update 7 to update n + 1of the current estimate of p) and is based on the
simulated projection:

J
ﬁin = Z aijuj(n)~ 2
=1

In SART 3.5D the y; is substituted by the TIC /4;(#) which describes the CM dynamics in the jth voxel. 1, () is
modelled as a linear combination of regularly shifted basis functions g, (t):

B
(1) = Sdip q,t), 3)
b=1

where d; ;, denotes the b basis function weight associated to the jth voxel. The weighting factors
[d;15.-»djps..., djp]represent the new unknowns.

B is the number of basis functions, which, after comparison of several numbers (see results) was set to 12,
which, greatly limited the number of unknowns, compared to 360 time samples, still permitting to fit the regular
CM dynamics. Importantly, this 12-fold increase of unknowns compared to the static problem is by far
compensated by targeting the angiographic volume fraction (AVF), which is in the order of 1%. Hence, the final
number of unknownsis K = J « B ¢« AVF < | < [ is minor than the number of data J, which is a precondition
to convergence. The new vector of unknownsis d = (dij,») € R¥. Accordingly, the dynamic algebraic
equations, modelling CE projection cleaned by BMcg, are:

] B

p=2"aiy dip g, (4)

=1 b=l
The coefficients of the dynamic system matrix Ag(t) are given by:
aik(j by (B) = aiiq, (1), (5)

where time ¢, determining the correct phase of each basis function, is obtained from the view angle with
t = 12(0/360°) s. To summarize, the proposed dynamic imaging system is defined as:

Ap(t)d = p, (6)
with Ag(t) = (aijp) (1)) € R™ . Its construction implies the following steps:

(i) Targeting—delete unknowns with index j out of the angiographic segmentation mask and the related system
matrix columns.

(i) Dynamics—expand the vector of unknowns by substituting to each angiographic 4; with B basis function
weights d; , and the respective system matrix columns by the ajx(; s (¢) of (6).

As to the SART 3.5D update was accordingly modified:

40D — g 1 o

! )+ A
1k(],b)( )’GI
il Y ann ()

=1

aix(ib (). 7

Once the vector of jth voxel weight coefficients are computed, the TIC is finally obtained as the weighted sum of
the basis functions.

Practically, the implemented algorithm, avoided the reordering work of the theoretical formulation (6).
More simply, separate volumes were created for each basis function weight d; ;, which were rotated, updated,
and counter-rotated.

In summary, in the proposed SART 3.5D algorithm, the 2D-DSA input is synthetized by 2D subtraction
from the raw 2D-CE projection of the 2D-BM g reprojections (after 3D coregistration to the CE space). So,
SART 3.5D address only the contrast induced by the CM and, in the updates of equation (7), targeting (i.e.
masking of the system matrix by the segmented angiogram) affects both the simulated projections . and the
back-projection of error p; — p.™”. Accordingly, initialization is set to zero. It is worth recalling that the
dynamics represented by TICs is estimated considering a separate volume for each dynamic basis function.

The order in which the projections are accessed in the iterative reconstruction algorithms has a strong
influence on the convergence speed, the accuracy, and artifacts (Guan and Gordon 1996). In SART 3.5D the
applied accessing order is the multilevel access ordering scheme (MLS) in which two sequential views are chosen

6



IOP Publishing Phys. Med. Biol. 67 (2022) 185018 SElHadjietal

80 —
L
- E
x
o
40 >
TIC g
c
20
AU, AUCY b)
K |
1 2 3 4 5 L] T'" 8 9 10 1" 12 9 1
Time [s] *
80 100
_P'A
P,
60 v
80 =
- 1758
o E 178, 0
z % r
5 2
20
2 w0 3
AUC, AUCy 2 €
0 [
1 2 3 4 5 6 "" 8 L] 10 " 12
Time [s] AV 20
0 =
a) c) o 0.2 04 74,08 0.8 1
CAT [~]

Figure 4. Overview of the TIC’s classification step: (a) exemplative set of TICs selected from two separate ROIs are examined. Statistics
of arterial (top) and venous (bottom) TICs with T' = 12 s are represented. In each plot, two areas under the curve (AUC) with respect
toan optimal T /v are highlighted, AUC, and AUC, respectively; (b) and (c) from top to down: the CAT~ % histogram of the
subset (b) is clustered by two Gaussian mixture models, Gy and Gy respectively (c). Finally the T, /v was computed as the temporal
instant that maximizes the bimodality of the corresponding CAT = AUCC" histograms. Accordingly, the probability inversion value
defined as thr is the analytical intersection point between the identified Gaussian modes and the respective posterior probabilities
(Py and Py). Patient case scenario (m/37 y).

for maximum orthogonality between them such that they contain a maximum of independent information in
terms of angular viewing positions (Guan and Gordon 1994).

2.3. TICs classification

Most of the works addressing A /V classification require for each voxel a time-intensity profile from which signal
features are extracted and then processed for classification. Laue et al (2013) and Meijs and Manniesing

(2018, 2019) processed 4D CT scans and used unsupervised K-means clustering and a 3D convolutional neural
network on time intensity signal for A/V classification, respectively. Matsumoto et al (2005) and Shirasaka et al
(2017), defined the optimal scan timing for A/V separation in 4D CT as the peak-to-peak time between
measured time-attenuation curves observed in manually selected ROIs. Mendrik et al (2010) proposed a method
based on computed tomography perfusion (CTP) scans and classified the time intensity profiles according to
their time to peak (TTP). While Havla et al (2015) extract the maximum enhancement (ME), the TTP and the
full curve width half maximum (FWHM). These parameters are processed by means of a statistical method
which aims at finding their optimal linear combination able to distinguish between the arterial and venous
phase.

In this study, given the infusion protocol, the reconstructed TICs are characterized by a smooth step-up
shape which mainly captures the wash-in phase of the CM flow. The raising phase is expected to be early in
arteries and late in veins (figure 4(a)). Accordingly, we use a classification criterion that requires a separation
time T /v between a prevalently arterial phase and the next venous phase. The temporal segmentation permits
to compare the area under the curve (AUC) in the venous phase [Ty /v;T1, called AUCy to the total AUC, which
index provides the A/V classification rule:

if A%V < thr — artery

AUC )
if 2%V S thr — vein )

AUC

where threshold 0 < thr < 1is determined to optimize the classification.

A subject-specific data-driven tuning of T, s and thr was needed to consider the variability in the subjects’
hemodynamics and CM infusion. This was carried out by unsupervised GMM clustering (Par. 2.4.2) (Dempster
etal 1977).

Moreover, for a more intuitive understanding we convert the abovementioned classification parameter as
follows:




10P Publishing

Phys. Med. Biol. 67 (2022) 185018 SElHadjietal

AUCy

CAT = T, C))
AUC

where CAT represents a temporally scaled perfusion parameter. The working hypothesis here maintained is that
the integral ratio /Z LZrCcV is nearly proportional to the transport delay to the addressed voxel. The CAT, therefore, is
only an estimate of the time of arrival of the CM, which should consider the almost sigmoidal TIC expected with
perfusion protocols. In the noisy environment of real TICs, such integral estimator is considered more robust
than others based on TIC morphology.

In our preliminary analyses the CAT index showed a continuum if small vessels were included. This was
attributed to partial temporal superposition of the arterial and venous phases in small vessels. So, it was decided
to perform a temporal based A/V classification only on 60% of voxels within vessels of larger radius, which
limitation still permits to pinpoint arteries and arterioles of interest as surgical organs at risk. Hence the A/V

classification was preceded by a dimension-based segmentation in Par. 2.4.1.

2.3.1. Skeletonization and radius estimation of vascular limbs

The selection of angiographic voxels undergoing A /V classification was based on the skeletonization of both the
arterial and the venous tree, which implied the a priori exclusion of the few small vessels artifactually non-
connected to the overall angiogram. Skeletonization was carried out by parallel medial axis thinning in 3D (Lee
etal 1994). Branching points were defined as skeleton voxel with more than two neighbors (Kong and
Rosenfeld 1996) and segmented the skeleton limbs. The average radius of the Ith limb, r¥) was approximately
measured considering the curvilinear cylinder cross-section area 7 (r")? as ratio of the limb volume in number
of voxels, NV, divided by the skeleton length along its n” elements:

NO

o ] 1 1 ] 1 v
T G = 50+ G0, = yOP + @ — 20

m

P =

(10)

where x, y and z are the skeleton limb coordinates, which Euclidean distances are summed to provide the limb
axis length.

2.3.2. Artery and vein clustering optimization

The angiographic limbs were ordered by descending " and a reduced A/V clustering set was built including
limbs from largest to smaller up to the inclusion of at least the 60% of all angiographic voxels. So, the about 40%
of the angiogram that included arterioles and venules with large dynamic overlap was excluded from the A/V
classification. The CAT index was computed on the splined TICs resampled at 0.01 s (see figure 4(a)).

As shown in figure 4(b), the CAT index of the 60% reduced set presented the expected A/V bimodal
separation in all subjects, which permitted GMM clustering (Dempster et al 1977) and the subject-specific
calibration of Ty and Thr parameters.

The stochastic parallel search, a genetic algorithm (Goldberg 1989), was used to find the optimal T ;y within
the [4-9] s time window, leading to the best GMM separation. Among various objective functions (e.g. Akaike’s
(Akaike 1974), Bayesian (Schwarz 1978), Kullback—Leibler information criteria (Kullback 1997), and
Bhattacharya distance (Bhattacharyya 1943) the Bhattacharya (Bh) distance was chosen, which quantifies the
closeness between the GMM components in terms of their overlap area. The stopping rule was set at a tolerance
of 10-4.

The GMM model offers a probabilistic classification which needs conversion to a crispy rule fixing the Thr
value. On preliminary trials, the most common separation criterion at equal probability density value
(figure 4(c)) outperformed the alternative of balancing the probabilities of the overlapped tails. This simple
criterion was consequently adopted.

2.4. Time-resolved 3D digital subtraction angiography

The CAT dynamic information was accordingly represented in false colors of the 3D angiogram, thus proposing
a4D DSA. The ‘hsv’ colormap with linear color scaling over the whole [0; T'] range was kept as first explorative
plot. This representation reflects the temporal progress of the CM in the vascular tree. Heat (‘hot’ in Matlab)
maps with intensity based scale (arteries hotter) provide an effective representation of the contrast agent flow
rate. This representation provides a more intuitive visual description of the contrast injection protocol. In
particular it reflects the continuous inflow of the agent along all the acquisition window. Future applications
should permit to set both the central time (most likely with the individual T /v as default) and the CAT range
with changing color, to enhance color contrast in the desired angiographic section. Finally, interactively
scrolling through limited ranges of CAT, should provide an effective 4D representation.

8
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Table 2. O-ARM™ geometry and acquisition

parameters.

Parameter Value

Volume dimension 512 x 512 x 192
Voxel spacing 0.415 mm

Slice thickness 0.833 mm

FPD dimension 1024 x 384

Pixel size 0.776 x 0.388 mm
Source to isocenter 647.7 mm
Detector to isocenter 520.7 mm
Number of projections 390

Range rotational angle Full rotation
Acquisition time 125

3. Experimental protocol

3.1. Study population, equipment, and acquisition protocol

Data from 60 consecutive subjects (31 males and 29 females, age 32 £ 13 years) who had undergone CBCT DSA
for SEEG planning between 2017 and 2021 were retrospectively selected and processed. Only one internal
carotid artery (ICA) CM dataset was processed for each subject, and other optional CM datasets (contralateral
ICA or vertebral artery) were ignored. Therefore, 120 datasets (60 BM, 60 ICA CM) were used. All patients were
suffering from partial epilepsy and did not present any vascular pathology. The technique originally developed
and implemented at ‘Claudio Munari’ center for performing 3D CBCT DSA in the context of epilepsy surgery
hasbeen detailed elsewhere (Cardinale et al 2013, 2015). Briefly, the workflow includes the acquisition of a BM
dataset followed by a variable number of enhanced datasets obtained during the trans-femoral selective injection
of CM in at least one ICA and, when needed, in the contralateral ICA and/or in one of the vertebral arteries. The
CM datasets are acquired over 12 s after the start of iopamidol (300 mg ml ™~ ") infusion in the selected artery. The
injection parameters are: acceleration and deceleration 0.5 s; pressure limit 500 psi; velocity, 1.5 mls ' or

2 ml s~ for children less than 25 kg and remaining patients, respectively; injection length, 10 s.

CBCT scans were obtained by means of O—arm system (Medtronic; Minneapolis, Minnesota, USA) a
mobile radiographic device for intraoperative imaging originally developed for spine surgery. The device is
composed by an x-ray tube (120 kWP, x-ray tube current 32—40 mA) and a flat panel detector (384 x 1024
detectors, with 0.776 x 0.388 mm detector pixel size) that rotates inside a circular gantry around the iso-center.
The number of full scan projections acquired is 390, covering a total angular span of 360°. The angular sampling
atregime velocity is 1° of arch; however, it is denser in the starting acceleration phase and in the deceleration
phase. Irregular sampling was corrected by even interpolation and resampling at 1°. The reconstructed image
consists of a 192-slice volume, 512 x 512 matrix each slice, with 0.415 x 0.415 x 0.833 mm anisotropic voxel
size (volumetric field of view of 22 x 22 x 17 cm’). All acquisition and geometric parameters are reported in
table 2. Conventionally, we will refer to ‘raw/projection data’ as the result of a standard natural logarithmic
transformation of the recorded x-ray attenuation.

3.2. Ground truth annotation

The proposed A/V classification was validated against a semi-automatic A/V annotation based on two limited
angle 3D reconstructions centered on the arterial and the venous phase, respectively. The rationale was assuming
that specific low-angle sets contained the main information relevant to the arterial and venous phases. 2D-DSA
projections (i.e. CE projections, cleaned from BMg reprojections) were visually inspected to select two time-
frames most representative of either phase. This selection was performed manually, and it is patient specific.
Each limited angle set included a minimum of 30° centered on the reference frame but was widened to include as
many frames representative or the arterial or the venous phase as possible. A SART limited angle volume
reconstruction followed. Given the CM infusion protocol, the ‘venous phase’ volume enhanced both arteries
and veins. Accordingly, the arterial volume was subtracted from the venous one to keep only the venous
contrast, as shown in figure 5 (block diagram in the bottom panel). Hard thresholding provided a first coarse
angiographic mask, next refined by local adaptive thresholding. Two expert graders manually checked and
further refined the labeled ground-truth exploiting both temporal maximum intensity projection (MIP) and
views from anatomical planes. A 3D medical imaging visualization tool, ITKsnap (Yushkevich et al 2006), was
used at this purpose. Finally, morphological opening and connectivity analysis were applied to remove thin non-
connected vessels and to isolate major structures. The example in figure 5, shows the annotated arterial and
venous ROIs. Visual inspection confirmed the limited-angle ‘gold-standard’ reached branching orders up to
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Figure 5. On the top panel: limited angle reconstruction given a set of projections including exclusively the arterial phase. In the
bottom panel the limited angle reconstruction of a volume generous towards the arterial phase and fully in the initially capillary phase
is reconstructed. Then is subtracted from the 3D DSA volume to preserve the venous phase of the enhancement. The two volumes are
manually thresholded, and morphological operators are applied to isolate the maximum connected object.

4-5th, and despite more limited than the 60%, including clinically relevant arteries and veins on several axial
slices throughout the scan, and thus it was sufficiently rich for our validation to furnish a representative ground
truth, which would have been hardly achieved by a fully manual annotation which could not go beyond few
vessels within the 2nd—3rd branching order. In the annotated ROIs we recognized the ICA and vessels belonging
to the Anterior Cerebral artery and the Middle Cerebral Artery, while the venous ROIs included the superior,
transverse, and sigmoid sinuses and major frontal, middle, parietal, temporal superficial veins terminating in the
sinuses.

3.3. Comparative methods
3.3.1. SART 3.5D test-variant on raw CE data
The test-variant here described addresses iterations on the whole CE dataset, without prior BM subtraction, to
be conversely performed at the very end. Main steps are as follows: (i) initialization to 3D-BMcg; (ii) untargeted
projection simulations p; -, ; (iii) errors p, o, — p; ;™ by comparison with the raw CE projections; (iv)
targeted backprojection of errors (i.e. only the angiographic voxels are updated); (v) final subtraction of the 3D-
BM from the reconstructed volumes relevant to each temporal basis function and consequent TIC extraction.
Note that now the focus on CM induced changes is within the iterations, subtracting the prior image data
given by the 3D-BMg. We adapted to our case some of the theoretical steps introduced in Chen et al (2008). It
can be easily shown that the considered errors are the same as in (7), since the BM projections can be subtracted
from pice> which fits the definition of the 2D-DSA, i.e. p,. Similarly, the same subtraction can be done on the
b CE(”) , which focuses changes from the starting BM initialization. So, in principle, the same objective function
is maintained, i.e. nulling errors versus the CM additional contrast by updating exclusively the angiographic
voxels. This test-variant was analyzed since similar strategies are in the literature Li et al (2018). Focus was on the
convergence capability, which was expected to be hindered by small errors derived as difference between the
large full CE and BM contrasts. Qualitative results will be shown in section 4.1, limited to the basic choice of
non-overlapped, rectangular basis functions.

3.3.2. SART 3.5D test-variant with updates on progressive angles

This second test-variant was analyzed mainly to verify the convergence degradation compared to the optimal
max-orthogonality subset ordering criterion. Moreover, by imposing non-overlapped, rectangular basis
functions, the algorithm mimics limited-angle dynamic reconstructions, with angular range 360°/B = 30°,
with B = 12. Accordingly, the time resolution of TICs 1 sample/s.

10
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Figure 6. (a) step-wise raw TIC after rectangular basis functions; (b) linear wise raw TIC after triangular basis functions; (c) cubic
spline of the step-wise TIC in panel a; (d) gamma curve fitting of the step-wise TIC in panel a.

3.3.3. Basis functions and TIC post-processing

In a previous work Barra et al (2016), rectangular non-overlapped basis functions are tested yet stressing the
algorithm flexibility in the choice of different basis functions. As shown in figure 6, this study tested both
rectangular non-overlapped basis functions (panel a) considered 50% overlapped triangular basis function to
perform linear interpolation, promoting smoothness over orthogonalization. As it regards the optimal number
of basis functions we examined the number of basis functions, by comparing B values ranging from 10 to 60 basis
functions. Both the step-wise and the linear-wise TICs were smoothed by cubic hermite spline interpolation (see
figure 6(c) for the smoothed step-wise TIC; the smoothed linear-wise is not shown).

Smoothing by parametric fitting was also considered. Curves suggested in literature as models of CM
dynamics are the gamma-curve (Thompson et al 1964, Lin and Jackson 2012), shown in figure 6(d). The fitting
was performed assuming the TIC following a two-parameter Weibull curve. The fitting was performed using the
non-linear least-squares optimization method (Kenney and Keeping 1962).

3.4. Comparative perfusion parameters from TICs

From previous paragraph, the following quantitative perfusion parameters are extracted from TIC fitted with
gamma-curve: the peak value, the raise time, TTP and the respective maximum value at the TTP (ME), wash in
(WI) and wash out (WO) rate (computed as the time needed to raise the intensity from the baseline value to half
maximum and from the peak value to half maximum, respectively) and the FWHM (Thompson et al 1964).

3.5. Performance metrics and statistical analysis
The performance of SART 3.5D method is evaluated by comparing the classification results to ground truth.
Since arteries are the main organs at risk in surgery, their correct classifications were conventionally taken as true
positives, while the correct classifications of veins were considered true negatives. Accordingly, arteries
misclassified as veins were false negatives and veins misclassified as arteries were false positives. With this
convention, The A/V sensitivity (Se) and specificity (Sp) reflect the model capability for correctly detecting
arteries and veins, respectively. While the accuracy (Acc), quantifies the overall performance of the algorithm.
The metrics have been computed individually for each case, and the median (IQR) of all score values obtained is
reported as summary statistics.

To check normality, the Kolmogorov—Smirnov test was applied to all data. Comparison between groups of
several independent samples was performed using the Wilcoxon Signed-Rank Test when normality could not be
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Figure 7. MIP of temporal 3D DSA in 4 different time frames. On the first row the dynamic SART 3.5D output with the BM cleaning at
the end of the reconstruction. On the middle row, the dynamic SART 3.5D output with the BM cleaning performed a prioriin the
projection domain processing the projection sequentially as in a limited angle reconstruction. The bottom row instead the output of
SART 3.5D obtained by preprocessing projections according to the MLS scheme.

assumed. The p values to be considered as significant is <0.05. We corrected for the effect of multiple
comparisons by conducting a posteriori Bonferroni test by the Bonferroni factor. All statistical analysis was
conducted using version 17.0 of SPSS for Windows (SPSS, Chicago, IL).

4. Results

We conducted a systematic evaluation of the algorithm modules and parameters. In this section we expose the
findings of the experiments carried out to evaluate their impact on the overall performance. Results will be
presented both in quantitative and qualitative terms.

4.1. SART 3.5D: pre-processing and projection ordering scheme

In this section we show different versions of SART 3.5D to evaluate the contribution of some crucial steps
presented in the proposed TICs computation workflow. Specifically, SART 3.5D workflow was degraded to
observe the effect of two important factors. First, we addressed the effectiveness of the BM cleaning which is
carried out a prioriin the projection domain: the same algorithm is modified to execute the BM subtraction on
the fly in the volume domain. Second, we assessed SART 3.5D applied considering a projection ordering scheme
that promotes orthogonalization versus a sequential projection ordering scheme which resembles the limited-
angle reconstruction setting.

Results are shown relevant to four temporal volumes in figure 7. SART 3.5D with BM cleaning performed in
the volume domain (top row) is affected by severe artifacts attaining to skull and cerebral tissue residuals, as well
as streak artifacts. In the limited-angle SART 3.5D (mid row), the overall quality of the frames is improved,
however the reconstruction quality of small vessels is poor in several regions. Namely, vessels overlapped in a
specific view were not separated and, more generally, had smoothed edges. Conversely, the full SART 3.5D
(bottom row) displays both a better cancellation of non-angiographic tissues and sharp patterns even for the
smallest vessels, which guarantees a better quality of the TICs.

4.2. TICs modelling
In this section, the shape and the number of basis functions are compared as well as the post-processing method
applied.

As to the basis function shape, table 3 compares SART 3.5D with 12 rectangular and 12 triangular basis
functions. Results relevant to the subsequent A/V classification are reported. As shown, SART 3.5D with
triangular basis functions yields the best overall median accuracy of 0.926 (range: 0.896-0.956), whereas when
rectangular basis functions are applied an overall median accuracy of 0.873 (range: 0.835 t0 .0893) is achieved. As
afurther post-processing step we fitted the TIC with the standard Gamma variate function perfusion model. The
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Figure 8. Boxplot of performance comparison using different number of basis function (nB). The comparison is shown in terms of
accuracy (Acc) for each nB.

Table 3. Classification performance of the proposed perfusion model according to the shape of the
basis function, measured as accuracy (Acc), sensitivity (Se), and specificity (Sp). Performance metrics
are reported as median (interquartile range). () significant by Wilcoxon rank sum.

TIC reconstruction method Accl Sel SpT
Rectangular basis functions 0.873(0.06) 0.879 (0.02) 0.899 (0.03)
Triangular basis functions 0.926 (0.06)" 0.902 (0.04)" 0.916 (0.04)*
Triangular basis functions + Gamma fitting 0.768 (0.17) 0.740(0.13) 0.773(0.10)

triangular basis function combination approach demonstrated to outperform standard Gamma variate
function, with a significant difference in Acc, Se, and Sp where interpolation method achieved a median Acc, Se,
and Sp 0 0.926,0.902 and 0.916 versus 0.768, 0.740, 0.773.

Considering that triangular basis function outperformed all other variants a comparison of different basis
functions numbers B is shown only for this shape. Acc values are compared by the box-plots of figure 8. It is
noticed that the best results were at B = 12, with a significant difference compared to B > 15 ( < 0.05) and with
alower IQR compared to B < 10.

4.3. A/V classification
AUG,

First of all, the relationship between e and vessel radius was investigated relevant to the feasibility of A/V

classification based on this TIC index, as shown in figure 9, for a representative subject.

The smallest vessels in the lower 40 radius percentiles were compared to the large vessels in the 60 upper
percentiles. The Gaussian fittings show a large overlap in the former case and good separation in the latter.
Similar results on several randomly chosen subjects determined our choice to perform A/V classification on the
set of the 60% of larger vessel, letting the smallest 40% in an unclassified ‘gray-zone’.

Table 4 highlights the significant classification improvement with the subject specific Ty /v optimization
compared withaconstant Ty )y = T/2 = 6s.

Indeed, the optimal Ty /v ranged in [4.75-6.98] s, approximately centred on T /2 but with large subjective
differences. The Gaussian modes were located at 0.47 (0.10) and 0.72 (0.08) for the arteries and the veins,
respectively. The width of Gaussians (as std) were 0.043 (0.018) and 0.02 (0.015) and the normalized weights 0.42
(0.12) and 0.58 (0.08) for the arterial and venous Gaussian, respectively. The overlap area of the two Gaussian
tails was 5.8% (2.18), which confirmed that the 60% subsets showed good bimodal separation in all subjects.
However, this indicates about a 6% of uncertain voxels to be added to the ‘grey-zone’ upon the 40% of small
vessels a priori excluded.

In figure 10(a), the surface rendering of arteries (red) and veins (blue) classified in the set of 60% of larger
vessels are shown in two representative cases. The arterial and the venous anatomical architectures are clearly
displayed from left to right.
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Figure 9. Comparison between CAT histogram referred to small (left) and large (righ) vessels.

Table 4. Classification performance of the proposed Ty /v data driven
computation is compared to Ty /v computed as in Barra etal (2016).
The metrics computed are accuracy (Acc), sensitivity (Se), and
specificity (Sp). Performance metrics are reported as median
(interquartile range). #: p < 0.05, Wilcoxon rank sum.

AccT Sel SpT
Constant Ty 0.783 (0.09) 0.773(0.17) 0.712 (0.13)
Adaptive T,y 0.926(0.06)" 0.902 (0.04)" 0.916 (0.04)"

In figure 10(b), relevant to the two cases, a comparison between the 60% set and the validation set is
performed for the arteries (red) and veins (blue). The light red and blue vessels highlight the difference voxels in
the 60% sets and not in the validation sets of arteries and veins, respectively. Interestingly, the 60% and the
classification criteria after SART 3.5D are able to capture higher order arterial and venous branches compared to
the validation sets, which were subject to a semiautomatic low-angle reconstruction. The opposite difference
(voxels in the validation set and not in the 60% set) was virtually empty and accordingly not shown.

4.4. CAT versus Gamma based perfusion parameters

In figure 11, the CAT index (SART 3.5D, 12 triangular basis functions) is compared with indexes from gamma-
curve fitting (Thompson et al 1964) of the 12 time samples provided by 12 rectangular basis functions. The
significantly higher scores by the CAT index clearly indicate that the gamma curve, proposed to model CM
dynamics after bolus injection is less suited to model the infusion protocol considered in this study.

4.5. Contrast arrival time maps and 4D DSA

In figure 12, time-resolved 3D DSA are shown according to two different criteria. The first row shows the static
vascular map in four different frames. The second row shows maps of the TIC intensities y (¢) in four
subsequent frames att=5.5,6.75, 9.5, and 12 s. Lateral MIPs are shown by the hot colour scale. It is possible to
appreciate the contrast change in vasculature reconstructed by the SART 3.5D TICs starting in the arterial and
next contrasting the veins. The temporal volumes represented in figure 12 midline are obtained by multiplying
the temporal vascular masks shown in the top row for the 3D DSA. This leads to obtaining a series of 3D DSA
frames over time where each voxel is assigned an intensity value. The frames shown in the midline are intended
to visually reflect the dynamics of the contrast passage. In particular, being an infusion protocol, the acquisition
captures the wash in phase but not the wash out phase (this can be seen above all in figure 3, where the frames of
the 2D-DSA are shown). Therefore, the flow rate of the contrast remains continuous for the duration of the
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Figure 10. (a) Arterial (red) and venous (blue) compartments are represented separately and include the selected vascular voxels
according to diameter and connectivity criteria (60% of angiography). (b) Arterial and venous compartments are represented in two
shades. Light red and blue capture the vessels belonging to the 60% of the angiographic voxels and not included in the validation sets
which are represented in dark tones.
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Figure 11. Bar graph showing the median values and inter-quartile range of the Se, Sp, Acc for each of the perfusion parameters
computed on the selected TICs. Perfusion parameters considered are the following: rise time, maximum enhancement, time to peak
(TTP), wash in (WI) and wash out (WO) rate and the full curve width at half maximum (FWHM). The bar height indicates the median
value while the ‘error-bar’ stands for the inter-quartile range.

acquisition in the arteries, higher in the ICA. This phenomenon leads the arteries to exhibit a much higher
contrast enhancement than the venous district. The full CAT map is similarly shown as lateral MIP in the
bottom raw, rightmost panel. CAT values are represented by the HSV color code in the range from

CAT = 4.5 (red) to CAT = 9.5 s (blue). To facilitate the reading of the full CAT map, progressively wider CAT
ranges are shown in the previous three panels. From the left-most: (i) CAT [0, 5.5], (ii) CAT [0, 6.75], and (iii)
CAT [0, 9.5]. A comparison of the corresponding frames in the top and the bottom rows clearly shows that the
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Figure 12. In the top row the 3D volume rendering. In the middle row the intensity MIP of the temporal volume, in the last the
contrast arrival maps in four time frames.

CM intensity progression from arteries to veins (top) is well paralleled by the appearance of higher and higher
CAT values, thus confirming this index as a valuable descriptor of the overall dynamics in single TICs.

4.6. Computational time

The automatic algorithm we propose was able to time-resolve and generate A/V classification for all considered
3D DSA cases in an average time of approximately ~5 min. The most computationally intensive step is the TIC
computation. This step relies on an iterative reconstruction technique which requires n = 4 iterations until
convergence is reached (around 52 s each iteration on a standard PC, in Matlab). While the classification step
took an average time of approximately 20 s. The processing protocols were running on a Windows 10
Professional 64 bit operating system, AMD Ryzen 9 5900 x 12-Core Processor, 3.70 GHz, 128 GB RAM.

5. Discussion

This study addressed the extraction of 4D information from 3D CBCT DSA protocols (i.e. a 3.5D strategy). It
started from a previous proof of concept (Barra et al 2016) on small and simple digital phantoms and analyzed
whether a step-up to real clinical data applications was feasible. The extension to clinical datasets demanded first
to address a more complex geometry with a consequent considerable computational load. itis worth
mentioning the crude size issues passing to a 400-fold number of voxels with about a 400°-fold larger system
matrix, from 5 phantom vessels to the hundreds of segmented angiographic limbs. Second, image artifacts (e.g.
patient motion) and hemodynamic and CM infusion variability from subject to subject had to be considered as
well. Accordingly, our contributions can be summarized as follows: (i) SART was re-implemented as a
dynamical and sparse variant of the classical SART; (ii) a specifically designed bone-mask (BM) subtraction in
the 2D projection after 3D motion correction, ahead of the 3.5D dynamic reconstruction; (iii) attentive
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validation of angiographic segmentation, which is a core prior to the targeted dynamic reconstruction; (iv)
adaptive TIC analysisand A /V classification driven by subject specific statistics; (v) comparison of TIC
parameterizations.

The study addressed CBCT DSA datasets, based ona 12 s BM scan and 12 s CE scan, with infusion of the CM
in the ICA. Importantly, it was a fully standard protocol used in preparation to brain surgery (Cardinale et al
2015),1.e. no extra Rx exposure, CM dosage, and scan time was required, diversly from other methods
(Matsumoto et al 2005, Mendrik et al 2010, Laue et al 2013, Havla et al 2015, Shirasaka et al 2017, Meijs and
Manniesing 2018, 2019).

A major task was to improve the convergence regularization using subsets. Grouping updates into subsets
was unavoidably limited to single angular views, i.e. SART, to save the temporal meaning of angles in the SART
3.5D dynamic context. Also, the computation of system matrix coefficients required optimization in favor of the
distance-driven strategy. Comparisons with the previous ART3.5D done in the development phase are not
shown in this study, since the adopted solutions are in the mainstream of the numerical algorithms’ theory
(Barra et al 2016), nonetheless, this passage represented a core turning point towards real applications.

Clinical data imposed specific pre-processing phases to compensate movements between the BM and the CE
scans. This study demonstrated that best outcomes were given by the 3D alignment of the BM to the CE volume
followed by BM cancellation from the raw 2D-CE projections (i.e. the 2D-DSA). This was compared to the
different strategy of searching CE deviations from the BM within the 3D dynamic reconstruction, with
initialization to BM and BM subtraction at the very end, in analogy with published algorithms (Chen et al 2008).

The mathematical demonstration presented by the previous work (Barra et al 2016) clearly showed the
flexibility in the choice of different basis function shapes used to model the TICs with a reduced number of
parameters B. However, only the simplest, non-overlapped, rectangular basis functions were tested since
sufficient on simple digital phantoms. Conversely, this study presents a comparison among step-wise TICs from
rectangular basis functions and linear-wise TICs from triangular basis functions. Moreover, the step-wise shape
from the former ones were compared considering two post-processing algorithms: (a) spline smoothing and (b)
gamma-curve fitting, which is a major model in the description of CM dynamics (Thompson et al 1964). Finally,
SART 3.5D, which explores projection angles by a maximum orthogonality iteration strategy, was compared to a
variant similar to low-angle reconstructions, thus showing the better performance of the proposed algorithm
which processes the overall dynamic content of the dataset.

Barraetal (2016) define as A/V classification index ratio AUCy /AUC, where AUCy is the AUC limited to
thelasthalfofthescan [Tyy = 6 s, T = 12 s]and AUC refers to the whole scan duration. This integral strategy
reveals to be robust against TICs noise and well suited to infusion protocols. Hence, it was maintained in the
present study, though adapted to real cases. Notation was changed in favor of the more intuitive
CAT = T(AUCy /AUCQ) in [s], which is useful both for A/V classification and for the dynamic mapping of
angiographies. It is worth remarking that such linear rescaling has no impact on classification processes. Passing
to real data required to individually set the instant T} , that best separated the early phase (CM almost only in
arteries) from the late one (CM reaching the veins, while persisting in the arteries, due to infusion). This
individual data-driven setting revealed to be crucial in real data analysis compensating subjective differences in
transport delays and random errors in the synchronization between the scan and the infusion process. This goal
required to optimize the GMM clustering of CAT by setting T /v at the value offering the best separation of the
arterial and venous Gaussian distributions, which search was implemented by a genetic algorithm.

So, the proposed criterion, so far, is exclusively based on the CM transport delay estimated by CAT. A major
focus of this study was to pinpoint potentials and limitations of this strategy, possibly opening to future studies
integrating dynamic and anatomical features to further improve A /V classification. Indeed, the presented results
revealed a wide CAT overlap between small arterioles and venules, impeding a clear GMM clustering.
Accordingly, it was decided to compute the radius of the angiographic limbs by means of skeletonization and to
address only the 60% angiographic volume of larger arterial and venous vessels, letting the rest of small vessels in
a40% ‘grey-zone’. Although this choice is a clear limitation of the current A/V classification, it is in keeping with
the primary goal of providing a safe and robust detection of arteries as organs at risk, which is performed only
within the 60% subset, nonetheless including large to medium vessels of major surgical interest.

Detailed analyses of the relationships among limb radius, anatomical position and branching order, and the
functional information provided by CAT, was beyond the scope of the present study. However, this can be a
starting point to future research shedding new light over cerebrovascular transport physiology and providing
effective markers of its pathological alterations.

The optimization of T /v limited to the 60% angiographic volume permitted good clustering with about 6%
overlap of the two Gaussian distributions. It also revealed a consistently wide range of the subjective Ty /y over
about [4.75-6.98] s, which confirmed the usefulness of the implemented subject specific approach.

The selection of a gold-standard for the A/V clustering validation deserves specific discussion. In
preliminary analysis, the validation against manual labelling of arteries and veins was attempted. However, this
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standard approach revealed to be unfeasible due to complexity of the angiographic structure and the consistent
cohort of 60 DSAs here evaluated. In practice, manual labelling could not go beyond few vessels within the 2nd—
3rd branching order, while the classification set, though limited to 60%, reached the 7th order. Hence, we had to
revert to the semiautomatic procedure (Par. 3.2) based on the manual selection of low-angles best representative
of the arterial and the venous phase respectively, followed by visual inspection by expert observers of the arterial
and venous trees reconstructed by limited-angle (non-dynamic) SART. This approach, though acceptable for
validation in the absence of other options, was not a solution to automatic A/V classification since it required
manual arch selections and result verification, also given the limitations of low-angle reconstructions discussed
above. Conversely, the dynamic SART 3.5D does automatically integrates all the information sparse over the
360°, alias 12 s. Indeed, the lack of a ‘gold-standard’ fully covering the tested set is a limitation of the presented
study; however, improvements could be hardly gained within the context of sole CBCT DSA data and would
require comparison with different imaging systems, in a future.

The proposed CAT index, after SART 3.5D with 12 triangular basis functions, provided the highest median
accuracy (0.926) with the shortest IQR (0.056), which is a very high score, though with all the previously
highlighted limitations relevant both the tested and the reference sets. Concerning SART 3.5D and TIC analysis
optimization, our results showed this solution to significantly outperform alternatives relevant to rectangular
basis functions, basis function number, and fixed versus adaptive Ty /.

For the sake of completeness, we also analyzed the performance of CM dynamics indexes described in the
literature. Unfortunately, to our knowledge, descriptors of bolus, first-passage protocols are described, based on
gamma-curve and Gaussian fitting (Calamante 2013, Akhbardeh et al 2019). The latter one was not considered
since obviously unfit to infusion data. Conversely, results relevant to the GMM classification performance with
gamma-curve indexes were presented. A comparison with the CAT criterion showed that gamma-curve fitting is
less appropriate in the description of infusion protocols. This result does by no way diminish the gamma-curve
validity for bolus protocols but confirmed the utility of CAT index refinement done in this study relevant to
infusion protocols.

This comparison opens a brief discussion about the preference given to infusion protocols in clinical pre-
surgical and surgical contexts (Cardinale et al 2015). Undoubtedly, nothing better than the first passage of a
bolus is suited to capture the CM dynamics. However, the primary focus of clinicians is on the 3D non-dynamic
angiography, and infusion assures high contrast along most of the scan, in arteries, and a broad % of the late part
of the scan, in veins. Given this strong clinical need, this study challenged the problem of extracting the dynamic
features testing whether their information content was sufficient to derive the CAT index and A/V classification.
Further analysis will address the flexibility of the proposed method in presence of imaging modalities which are
covering less than 360° (as it might be imposed by C-arm scans) to see the boundaries of the effectiveness of the
approach both in terms of contrast injection protocol and minimum coverage angle.

6. Conclusion

This study demonstrated the feasibility of automatically extracting dynamic information from clinical CBCT
DSA datasets based on infusion, which is conversely conceived to optimize anatomical features of the brain
angiogram in pre-surgical and surgical contexts. Through a detailed optimization of the SART 3.5D algorithm,
the CM arrival time (CAT) was mapped up to vessels of the 6th—7th branching order. Accordingly, arteries and
veins were labelled in a 60% of the angiographic volume, excluding a ‘gray-zone’ of 40% of smaller vessel, with
lesser importance in surgical planning. The efficacy of design choices and settings were documented in detail by
comparisons with alternatives, based on the classification of arteries and veins. A limitation was the definition of
avalidation ‘gold-standard’ extracted from the same DSA datasets via a manual definition of arterial and venous
low-angle reconstruction, which requires future comparisons to ‘gold-standards’ provided by different imaging
modalities. The algorithms applied to extract morphometric properties as the radius of vascular limbs and the
SART 3.5D extracting the functional information summarized by CAT deserve future attention. Firstly, to
further improve vessel classification by merging the temporal (TIC) and the morphometric (branching order
and connectivity) analysis of the vascular tree. Secondly, to shed new light on the physiology of cerebrovascular
transport and its pathological deviations, which impacts on vast areas, from vascular malformation to
cerebrovascular degenerations close related to neurological diseases.
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Appendix

According to the iterative reconstruction methods, the image acquisition process is modeled as a linear system of
equations:

p = A ° 'u,) (Al)
where p = (1)) € R/ depicts the unknown voxel attenuations in vector form, p = (p;) € R represents the
measured optical density for each projection, while A = (a;)) € R™ is the system matrix.

ART updates pu™ — p**+D (i.e. from update n to update n + 1 of the current estimate of 1) is based on the
simulated projection:

]
151'" = Z aij [ (A2)
j=1

Next, the additive error p, — pi(”) is computed and the update correction is given proportionally, weighted by a;;.
The basic ART considers single projection ray measurement at a time and imposes a ray-by-ray updates (i.e. an
iteration through the whole dataset is composed by I updates). Hence, the convergence is initially the fastest
possible, but has an unstable end since no smoothing of data redundancy is included (Kak et al 2002). This is
obtained by derived algorithms including a relaxation factor A < 1 (percent of full correction) and grouping
corrections as average of the single ones in an entire subset of data (Herman and Meyer 1993, Wang and

Jiang 2004, Xu et al 2010).

The Simultaneous ART (SART) groups into a subset all projections from a single view angle 6, { p, }y with
index i € {i}y (Andersen and Kak 1984). Since the introduction of SART, subset strategies have been
significantly improved to optimize the tradeoff between fastness with small subsets (i.e. many updates in a single
iteration) and convergence stability with large ones. A significant improvement in reconstruction smoothness
was found, compared to ART (Kunz and Frangakis 2014). The SART update equation is:

1 b —p"
‘u;rH*l) — :LLS”) + )\Z auz l] i aj. (A3)
yicl
i€ly e Zaij
=1

In this study, the relaxation factor A was set to 0.99, a common value in the literature.
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