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Abstract: In this article, we establish the concept of intuitionistic fuzzy double-controlled metric-
like spaces by “assuming that the self-distance may not be zero”; if the value of the metric is zero,
then it has to be “a self-distance”. We derive numerous fixed-point results for contraction mappings.
In addition, we provide several non-trivial examples with their graphical views and an application
of integral equations to show the validity of the proposed results.

Keywords: controlled metric-like space; intuitionistic fuzzy metric space; fixed points; integral
equation

1. Introduction

In 1965, Zadeh [1] developed “fuzzy notion” to contrast imprecise terms, in which
the membership function is used. Atanassov [2] introduced the concept of intuitionistic
fuzzy sets in which membership and non-membership functions are used. Fuzzy sets pre-
sented in [1] and metric spaces are combined to establish the concept of fuzzy metric
spaces, in which the notion of the continuous t-norm is used, which was introduced by
Schweizer and Sklar [3]. The notion of fuzzy metric spaces was first introduced by Kra-
mosil and Michalak [4] in 1975 and then George and Veeramani [5,6] updated it in 1994.
Garbiec [7] established the fuzzy version of the Banach fixed-point result.

Harandi [8] established the concept of metric-like spaces and proved several fixed-
point theorems for contraction mappings. The notion of metric-like spaces is a generali-
zation of metric space. Mlaiki [9] established the concept of controlled metric-type spaces.
Mlaiki et al. [10] established the notion of controlled metric-like spaces as a generalization
of controlled-type metric spaces. Shukla and Abbas [11] established the notion of fuzzy
metric-like spaces as a generalization of fuzzy metric spaces. Recently, Javed et al. [12]
introduced the notion of fuzzy b-metric-like spaces as a generalization of fuzzy b-metric
spaces and fuzzy metric-like spaces and proved several fixed-point results for contraction
mappings.

In 2004, Park [13] established the notion of intuitionistic fuzzy metric spaces and dis-
cussed the topological structure. Konwar [14] established the concept of intuitionistic
fuzzy b-metric spaces as a generalization of intuitionistic fuzzy metric spaces. Shatanawi
etal. [15] used an E.A property and the common E.A property for coupled maps to obtain
new results on generalized intuitionistic fuzzy metric spaces, and Gupta et al. [16] ob-
tained some coupled fixed-point results on modified intuitionistic fuzzy metric spaces
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and applied them to the integral-type contraction. Recently, Sezen [17] established the
concept of controlled fuzzy metric spaces and derived several fixed-point results. Saleem
et al. [18] established the concept of fuzzy double-controlled metric spaces as a generali-
zation of controlled fuzzy metric spaces and proved several fixed-point results for con-
traction mappings with an application of integral equations. Itoh [19] derived several ran-
dom fixed-point theorems with an application of random differential equations in Banach
spaces. Numerous fixed-point results of generalizations of fuzzy metric spaces were es-
tablished by the authors [20-24]. Recently, Farheen et al. [25] introduced the concept of
intuitionistic fuzzy double-controlled metric spaces and proved some fixed-point results.
The authors in [26-30] worked on different interesting applications of the fixed-point the-
ory.

In this manuscript, we introduce the concept of intuitionistic fuzzy double-controlled
metric-like spaces by replacing the following properties of intuitionistic fuzzy double-
controlled metric spaces:

#(w,o,v) = 1forallv > 0,ifand only if w = p,

X(w, 0,v) = 0forallv > 0,if and only if @ = g,

#(w,o,v) = 1forallv > 0,ifand only if w = p,
with

p(w,o,v) = 1forallv > 0,implies @ = g,

N(w,0,v) = 0forallv > 0,implies w = p.

We assume that the self-distance may not be zero; if the value of the metric is zero,
then it has to be a self-distance and several fixed-point results for contraction mappings
must be proven. Additionally, we establish a number of non-trivial examples with their
graphs and an application for integral equations.

2. Preliminaries

In the section, we give some basic notions that are helpful for readers to understand
the main section.

Definition 1 ([1]). A fuzzy set F defined in a space X is a non-empty set of 2-tuple elements:
F={xux),x€X},Vx€X,

where p: X — [0,1] is a membership function of a set S, which for every element x € X assigns
its membership degree p(x) € [0,1] to the fuzzy set F. The set X is called a domain of discourse
and we write F < X.

Definition 2 ([2]). Let X be a non-empty set. An intuitionistic fuzzy set A in X is an object
having the form A = {{u(x),v(x)):x € X}, where the functions u,v:X — [0,1] define, respec-
tively, the degree of membership and degree of non-membership of the element x € X to the set A,
which is the subset of X, and forall x € X, 0 < u(x) +v(x) < 1. Furthermore, we have m(x) =
1 — u(x) —v(x), called the index of the intuitionistic fuzzy set or the hesitation margin of x € A.
n(x) is the degree of indeterminacy of x € X to the intuitionistic fuzzy set A and m(x) € [0,1]
for every x € X.

Definition 3 ([13]). A binary operation =:[0, 1] x [0, 1] — [0, 1] is said to be a CTN if it satis-
fies the following conditions:

1. ¢*oa=wnx*¢ (V)¢ €[0,1];

2. % is continuous;

3. ¢x1=¢(V)ce0,1];

4 (*xo)rp=¢x(@*p), (V)¢ op€[01];
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5. If ¢<pand & <A, with ¢,®,p,A €[0,1], then ¢*® < p * A.

Definition 4 ([13]). A binary operation ©: [0, 1] x [0, 1] — [0, 1] is said to be a CTCN if it
satisfies the following conditions:

cO@=wO0g¢, forall¢,m € [0,1];

O is continuous;

¢00=0,forall¢e[0,1];

(o@op=¢o(@op)forallgmp€[0,1];

If ¢<p and ® < A, with ¢,®,p,4 €[0,1], then ¢om@ < p o A.

ARSI I

Definition 5 ([14]). Suppose = # @. Let * bea CTN, O bea CTCN and b = 1. Let §,R be
FSson E x & x (0, ), If they satisfy the following conditions for all w,o € £ and o,v > 0:
(IFB1) gp(w,0,v) + X(w,0,v) < 1;

(1FB2) ¢ (w,o,v) > 0;

(IFB3) go(w,o,v) =1 © w = g;

(IFB4) (w,0,v) = $(0,@,v);

(IFB5) $(w,4,b(v +0)) = (@, 0,v)*0 (0,4, 0);

(IFB6) o(w,0,) is a non-decreasing function of R* and 51_}72) p(w,o,v) =1;

(IFB7) X(w, o,v) > 0;

(IFB8) X(w,0,v) =0 © @w = g;

(IFB9) X(w,o,v) = R(p, w,v);

(IFB10) (@, 4,b(v + 0)) < R(w,0,v) OX(e, 4, 0);

(IFB11) X(w,p,) is a non-increasing function of R* and 51_}7210 N(w,0,v) = 0;

then (Z,,8,%, O) is said to be IFBMS.

Definition 6 ([25]). Let £ # @. Suppose I,E:E X £ — [1,00) are non-comparable functions.
Let * be a CIN and © be a CICN. Let f,R be FSs on E X E x (0, 00). If they satisfy the fol-
lowing conditions for all @w,0,A € E:

(IFD1) ¢ (w,0,v) + X(w,o,v) < 1;
(IFD2) o(w,0,v) > 0;
(IFD3) ¢(w,o,v) =1 forallv > 0,if and only if w = @;
(IFD4) (@, 0,v) = $(0,@,v);

v
(IFD5) ¢o(w, AL v+0) = @ (w, 0, n(w,g)) * 0 (Q,A,ﬁ);
(IFD6) $(w,0,"): (0,0) — [0,1] is left continuous;
(IFD7) X(w@w,p,v) > 0;
(IFD8) X(w,p,v) =0 forallv > 0,if and only if @w = g;
(IFD9) X(@,p,v) = X(o, w,v);

v o .
(IFD10) (@, A,v +0) < X (w0, (w,g)) o X(0 4% (M)),
(IFD11) X(w,0,):(0,0) — [0,1] is left continuous;

then (=, g, 8,*,0) is said to be IFDCMS.

3. Main Results

In this section, we introduce the concept of IFDCMLSs and prove some FP results for
contraction mappings.

Definition 7. Let £ # @. Suppose I1,€: & X £ — [1,00) are non-comparable functions. Let * be
a CTN and © bea CTCN. Let g and & be FSs on EZ x E X (0, ). If they satisfy the following
conditions for all @, 0, € Z:

(IFDL1) $(w,0,v) + R(w,0,v) < 1;

(IFDL2) $(@,0,v) > 0;

(IFDL3) g(w,o,v) =1 for allv > 0,implies w = g;

(IFDL4) (@, 0,v) = (0, @,v);
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(IFDL5) p(@, 2, +0) = (,0,- (w)) (04, ﬁ)
(IFDL6) go(w,0,): (0,00) = [0,1] is left continuous;
(IFDL7) X(w, 0,v) > 0;

(IFDL8) X(w,0,v) =0 for allv > 0,implies w = g;
(IFDL9) R(w,0,v) = X(po,w,v);

(IFDL10) X(w,4,v + @) < X (w, 0, = Q)) o x(o4, ﬁ)

(IFDL11) X(w,p,): (0,00) —= [0,1] is left continuous;
then (&, g, 8,*,0) is said to be an IFDCMLS.

Example 1. Suppose £ = [0,10] and I,E: £ X £ — [1,0) are non-comparable functions given
by N(w,0) =w+o+1and &(w,0) = w?+ 0%+ 1. Define $,%:E5xE x (0,0) - [0,1]
by
v
$(@,0,v) =

v + max{w, 0}

and

max{w, ¢}

N(w,0,V) = ———.
(@,0,0) v + max{w, 0}

Then, (Z,6,8%0) is an IFDCMLS with CIN ¢*®=¢® and CICN ¢Oo® =
max{¢, ®}.

Remark 1. In IFDCMLS, the self-distance may be not equal to 1 for the membership function or
0 for non-membership function. So, every IFDCMS is an IFDCMLS, but the converse is not true.

Consider Example 1, and let w = ¢ = 1. Then

v
(@, 0,v) = v + max{1,1} 7
and
max{l,l}
X(@,0,0) = o # 0

Remark 2. Example 2 is also fulfilled for CTN ¢*® = min{¢,®} and CTCN ¢oo =
max{¢, ®}.

Example 2. Let £ =[0,1] and I1,&: £ X & = [1,0) be two NCFs given by I(w,0) =@ + 0 +
1and E(w,0) = @2 + 0% + 1.
Define fo,R:E X £ x (0,00) = [0,1] as

v max{w, 0}*

50(07, Q,U) = N(ZU,Q,U) =

v + max{w, 0}*’ v + max{w, 0}*

Then (5,¢,8%,0) is an IFDCMLS with CIN ¢*®=¢o» and CICN ¢Oo® =
max{s, ®}. The graphical behavior of functions P and X is shown in Figure 1.
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Figure 1. The graphical behavior of the functions P and X with v = 2, where the yellow color rep-
resents P's behavior and the blue color represents behavior of X.

Remark 3. The above example also holds for

lifw=p,
N(w,0) =41+ max{w,o} .
min{w,0) 77 ¢
and
lifw=op,
(w,0) = {1+ max{w?, 0%} )
el S *
min{w?, g2} 1 770

Remark 4. Example 3 is also fulfilled for CTN ¢*® = min{¢,®} and CTCN ¢oo =
max{¢, ®}.

Example 3. Let £ =[0,3] and I1,&: £ X & = [1,0) be two NCFs given by I(w,0) =@ + 0 +
1 and E(w,0) = w? + 0* — 1. Define fo,RX:Z X E x (0,) - [0,1] as

v + min{w, ¢}
Pl = (e, o)
and
v + min{w,
N(wﬁ 0, U) =1- { Q}

v + max{w, o}

Then (E,4,8,%0) is an IFDCMLS with CTN ¢*®=¢® and CICN ¢o® =
max{¢, ®}. The graphical behavior of functions P and X is shown in Figure 2.
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ped
o o

Figure 2. The graphical behavior of the functions P and X with v = 2, where the yellow color rep-
resents P's behavior and the blue color represents behavior of X.

Remark 5. In the above example, if we let ¢ * ® = min{¢,®}, ¢°0® = max{¢,®}, w=1,0 =
2,1=3,v=0.01,0 = 0.02 withlI(w,0) =@ + 0 + 1 and (@, 0) = @? + 02 — 1. Then, it is
not an IFDCMLS.

Proposition 1. Let £ =[0,1] and I, &5 X E - [1,0) be two NCFs given by Il(w,p) =
2+ o0+ 1) and E(w, 0) = 2(w? + 0% + 1). Define X, g as

max{w,0}? max{w,0}?

(@, o,v™) =9 v* R(w,o,v™)=1—-9 v forallwep€eZv>0

Then, let (%, g,8,%,0) be an IFDCMLS with ¢*® = ¢ and ¢° ® = max{¢,}. The
graphical behavior of functions P and X is shown in Figure 3.

2

o o

Figure 3. The graphical behavior of the P and X functions with n =10 and v = 2, in which the
yellow color depicts P's behavior and the blue color depicts behavior of X.

Remark 6. Proposition 1 is also satisfied for CIN ¢ * ® = min{¢,®} and CTCN ¢o® =
max{¢, ®}.

Proposition 2. Let £ =[0,1] and I,&:5 X E - [1,00) be two NCFs given by (w,0) =
2+ o0+ 1) and E(w, 0) = 2(w? + 0% + 1). Define X, g as

max{x,y}? max{x,y

-1 27-1
}
p(w,o,v™) = [19 um ] ,R(@w,0,v™) =1— [19 uT ] forallw,p € Z,u>0.
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Then (E,4,8%0) is an IFDCMLS with CTN ¢*®=¢® and CITCN ¢o® =
max{s, ®}. The graphical behavior of functions P and X is shown in Figure 4.

Figure 4. The graphical behavior of the P and X functions with n =1 and v = 2, in which the
yellow color depicts P's behavior and the blue color depicts behavior of X.

Remark 7. The above proposition is also satisfied for CTN ¢ * @ = min{¢,®} and CICN ¢ o
® = max{¢, ®}.

Definition 8. Let an open ball B(w,r,v) inan [IFDCMLS (Z, o, 8,*,0) with center @, radius
r,0<r <1 and v >0 bedefined as follows:

B(w,r,v) ={0 € &:pp(w,0,v) > 1 —r,R(w,o,v) <1}

Definition 9. Suppose (Z, f,R,*,0) is an IFDCMLS. Let {w,} be a sequence in . Then
(i) {w,} is said to be a convergent sequence if there exists w € E such that
6. rlll_l’?o P (w,, w,v) = p(w,w, v),rllilzlo R(w,, @,v) =
X(w,w,v), for allv > 0.
(ii) {sn} is said to be a Cauchy sequence (CS) if for every v > 0 there exists ny € N such that
rllirg o (@, @2, 0), and rllll?o R(@,, W42, V) exists and is finite.
(iii) An IFDCMLS (E, o, R8,%,0) is said to be complete if every CS is convergent in E, that is

lim (@, @, 41,v) = limp(w,, @w,v) = p(w, T,v),
n—oo n—-oo
lim R(w,, @41, V) = limR(w,, @,v) = X(w, @, v).
n—oo n—-oo

Lemma 1: Let @ and ¢ be any two points in an IFDCMLS (E, o, 8,*,0). If for any 7 € (0,1),
we have

o(w,0,7v) = P(w,0,v), X(w, 0, 7v) < R(w, 0,V),

then @w = o.

Theorem 1. Let (£, o, 8,%,0) be a complete IFDCMLS with I,&:E X & - (0,1) and 0 <7 <
1, assume that
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lim o(w,0,v) =1 and lim X(w,0,v) =0 (1) 1)
Vo000 Vo000

forall w,0 €5 and v > 0. Let §&:Z — E be a mapping satisfying

p(gwr EQ: TU) = p(wr o, U) and N(Ew, f@; TU) < N('(U, o, U) (2)

forall w,0 €5 and v > 0. Then & has a unique FP.

Proof. Suppose @, is an arbitrary point in £ and define a sequence w, by @, =
@, = {w,_1, n € N. By utilizing (1) forall v > 0, we deduce

v
SO(ZD'n, Wnt1, TU) = So(fwn—lﬂ fwnt TU) = go(wn—lt Wy, U) = 50 (wn—ZI Wn-1, ;)

v v
= (wn—3iwn—2'1__2) =280 (wo, wl’_-[n—l)

and
v
N(m-nt Wnt1s TU) = N(fwn—lﬂ Em-n: TU) < x(m'n—l' Wnp, U) < h (wn—Z' Wn-1, ;)
v v
<N (wn_g,wn_z,r—z) <--<N (wo, wif.[n_—1)
We obtain

v v
P (@, Wy, TV) = 0 (wo, wl,Tn—_l) and R(@y, @Wyyq,TV) < X (wo, wl,Tn—_l) 3)

for any A € N, using (IFDL5) and (IFDL10),

v v
@, ’w ;U 2 (o ;w Y=, W\ * w; 'wn ’
50( n Wn+a ) @( nr Wn+1 Z(H(ZD'n, w_n+1))) @( n+1 +A Z(E(lD'n.,.l, wn+l))>

v v
* §0 (wn » Wn2, >
Z(H(‘(D'n, wn+1))> i *2 (Z)Z(E(wn+1'wn+l)n(wn+1t wn+2))

= JO (‘(D'n, Wn+1s

v
* 0| Wpio Tptns
( e (Z)Z(E(wnﬂ,ww)z(wmz.wnﬂ)))
—— | * W1 Dnaos
Z(H(mntmn+1)) +1 *2 (Z)Z(E(wn+1'wn+/1)n(wn+1lwn+2))

= gg (wnt Wn+1s

v
* ‘0 m’ ) w )
( (z>3(e<wn+1,wm)a(wm,wm)n(wm,wm)))

v
* 0| @ » Wit )
( e (2)3 (E(wn+1' wn+l)z(wn+2’ ZD-n+/1)€(z‘7n+3' wn+l))
— = | * . , . )
Z(H(Wn, ‘(Un+1)) e (Z)Z(E(wnﬂ: ZD'n+}L)H(wn+1,wn+2))

=P ("Uw Wny1)

v
* 0| W2 Wy,
( i s (2)3(E(wn+1'wn+l)€(wn+2'wn+l)n(wn+2:wn+3)))

v
* 0| Wpe3, Wnta ) Kok
< e (2)4(E(wn+1' @) E( @12, D) E( @43, Ty D@43, wn+4-))

v
JO(ZD’ +1-2) Wn4a-1 _ )
" " Y (E@n11, s )E@nt2 Tnid) = E(@nia-2 T )N @ni1-2 Tniao1))

v
* §0 (mn+/1—1'wn+)u (2 )

)/1—1(5(@”1, D ) E( @2, Dpip) - E(@pia-1, wnM))

and
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v v
N(w,, @y, V) < K| @, 01, ————< | ON| Dyt Tty
( " i ) ( " s Z(H(wnfwn+1))) < m e Z(E(wn+1'wn+l)))

v v
————— | OR| D1, Tpya)
Z(H(an'wnﬂ))) ( e (Z)Z(E(mn+1'wn+/1)n(wn+1t mn+2))>

<X (wn,wn+1,

v
OR| @pi2 Onsas )
( T (22 (E @ty B 2)E@razs Tien))
_ Wit Dpao
Z(H(wn'wn+1)) A (2)2(€(wn+1' wn+l)n(wn+1:wn+2))

<KX (wn,wn+1,

v
OXN| @ya0, Wpas,
< s (2)3 (E(wn+1' ZD'rL+)L)€(w-11+2: wn+l)n(wn+2’ ZD-n+3))>

v
O N\ @Wps3 Tnsns )
( s m (2)3(E(wn+1'wn+l)€(wn+2'wn+l)z(wn+3'wn+l))

v v
<N @y, W1, ———=< | OR| Tpy1, Tnsa, )
( " e Z(H(wn:wrwl))) ( i " (Z)Z(E(wrwl'wn+l)n(wn+1twn+2))

v
ORN| @12, Wpis,
( ez (2)3 (E(wn+1' Dy ) E( @2, Ty ) ( @2, zDn+3))>

v
O R | @Wpi3 Tpias ) 0.0
( m m (2)4(E(wn+1, D) E(@ns2, T ) E(@ g3, Ty DN (@43, ern+4))

v
R\ Dp+a-2 Onsa-1, )
( m m (2)1_1 (E(wn+1: ZD-n+)1)8(‘wn+2: zD'n+}L) E(wn+/1—2' ZI"rL+)L)l_[(‘(D'n+/1—2r ZI"n+)1—1))

v
O R Dpia-1, Tnsns - )
( " " (2))L 1(E(‘wn+1' zD'n+)L)E:(w-n+2’ wn+/1)g(wn+3' ZI"n+)L) E(wn+l—1r wn+l))

Using inequalities in (3), we have

v v
= (“"” o 2(r)n-1(n<wn,wn+1))) " (w"’wl’ 22O (E(@s1, Tnr ) (@nrr, wn+2))>

v
* § | @Wo, Dy,
( . (2)3(T)n+1(€(wn+1'wn+l)z(wn+2’wn+/1)n(wn+2rwn+3))>

v
* o | wo, @y, * ok
< 0 ! (2)4(T)n+2 (E(wn+1t wn+/1)€(wn+2: zD'n+)l)8(w'n+3t ‘(D'n+,1)H(ZD'n+3, wn+4)))
1)

(2)/1_1 (T)TH-A_Z (E(wn+1: @D ) E( @12, Dpia) - E(@pia—2, T DN (@112, wn+l—1)))

JO <w0' w3,

v
* 0| o, Wy,
< o (2)/1_1(T)n+’1_1(5(wn+1'?Un+/1)z(wn+2'mn+/1)g(wn+3'wn+,1)“'E(wn+/1—1:wn+/1))>

and

v v
=X (wﬂ' ov Z(T)"‘l(l'[(wn, wn+1))) oK (wo’ o (Z)Z(T)n(z(wrwll @ )N (@41, wn+2)))

v
o X | @y, @y,
( o (2)3(T)n+1(g(wn+1'wn+l)z(mn+2'wn+/1)n(wn+2twn+3))>

v
O X | wy, @y, O .-
( o (2)4(T)n+2(g(wn+1'mn+/1)g(wn+2'wn+l)z(mn+3'wn+/1)n(wn+3lmn+4))>

W, Wy,
o ()AL (r)n+A-2 (E(wn+1' @i ) (@42, Dnia) - E( @i a2, Ty )@ 422, zUnM—l))
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v
O R | @y, Wy,
( o (Z)A_I(T)n-“l_l (E((Un+1, ZD—n+/1)€(a7n+2: z‘Un+)l)8(w—n+3t zD—n+/1) o E(13—11+A—1' wn+l)))

Utilizing equations in (1) and for n — oo, we obtain

lim (@, Wy, V) =1% 1% x1=1
n—-oo

and
lim R(w,, @,43,v) =0000--00=0.
n—-oo

That is, {w,} is a CS. Therefore, (Z,,8,*,0) is a complete IFDCMLS, and there ex-
ists @w in Z.

Now investigate that @ is an FP of ¢, using (IFDL5), (IFDL10) and (2) of Definition
7, we obtain

v v
P59 20 (v i ) (205 )

v v
o526 (700 i5.5.05) (5 o)

v

v
o (@, Em,v) = <w, wn+1t—> *$ (w”’ ? 2 (E( @y, )

2(M(@, Wp4r))
asn — oo, and

)—»1*1=1

v v
N(@, éw,v) < X <w, wn+1,m> o (w”“’fw’ m>

v

v
R(w, fw,v) < X (m, wn+1,m) oK (fw"' fw'W)

v v
N(w,fw,v) < N(m’,wn+1,m) o) N(wn,w,m) -000=0

asn — . Hence, {w = @.
Uniqueness: Given another FP, i.e., {p = p for some p € =, then

12 p(p,m,) = p(Ep,ém,0) 2 o (pw,2) = 0 (8p.6w,)

zgo(p,w,:—z) > ... Zgo(p,w,rv—n) - lasn — o,

and

0 < R(p,w,v) = R(¢p, ém,v) < N(p, w,;) = N(fp, Ew,g)

<X l <...<X l -0 — 0
< (p, w,TZ) << (p, @, T") asn ,
by utilizing (IFDL3) and (IFDL8), we obtain @ = p. O

Definition 10. Suppose (%, , 8,*,0) is an IFDCMLS. A mapping &:E — E is said to be a D-
controlled intuitionistic fuzzy-like contraction if there exists 0 < T < 1, such that

1

1
oGo o) S lp@en | @

and

R(¢w, o, v) < R(w, 0,0), ()
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forall w,0 € Zandv > 0.

Theorem 2. Let (£, 0, 8,%,0) be a complete IFDCMLS with 11,E: E X £ - [1,0) and suppose
that

lim p(w,0,v) =1 and lim X(w,p,v) =0 (6)
VU—>0 VU—>0
for all w,0 € Z and v > 0. Suppose &:E - £ is a D-controlled intuitionistic fuzzy-like con-

traction. Moreover, assume that for a random point wy € =, for n,A € N, withw, = {"wy =
§wy_q. Then & has a unique FP.

Proof. Suppose @, is an arbitrary point in £ and define a sequence w, by w, =
§"®, = &wyp_1, n € N. By utilizing (4) and (5) forall v >0, n > A, we deduce

1 1
- - 1= -1
(@, @41, V) o (wy_q, $wy, V)

1 1 T
<t|—mm—=-1l|=—F—-7
go(wn_l,zzrn,v) so(wn—l' ZI)-n'v)

1
< ! +(1-1)

p(wn' Wnt1) U) - go(wn—l' Wy, U)

T2

<
So(wn—z' Wn-1, U)
Similarly, we deduce
1 "

<
p(wn! m-n+1! U) - S/J(wo, '(UI, U)

+t(1l-1)+ (1 —-1)

+I 1 -+ 2A -1+ -+l -1+ (1 —17)

" T
<S——+(@ T+ "2+ e+ DA - S ——+ (A -1
g)(WO! wl! U) ( )( ) (@(w(]f wl: U) ( )

We obtain

1
=D < P (@, Wy41,v) (7)

Pt ?

and

N(wn' Wn+1s v) = x(fwn—lt §wy, v) < ‘L'N(?D'n_l, Wy, v) = TN(f‘(D’n_z, §wy_q, v)
< T R(Wp—z, Wy—-1,V) < -+ < T"R(@p, Ty, V) )

for any A € N, using (IFDL5) and (IFDL10), we deduce

v v
Wy, Wy, V) = Wy, W1y —————————< | * Wn+1) Dn+ by
# @, @n,) 80( e Z(H(wn,wnﬂ))) 80( e Z(E(mn+1:wn+/1))>

v v
=6 Wy, Wn4t1s * §0 (wn » Wn42, )
( o Z(H(‘(D'n, wn+1))> i *2 (Z)Z(E(wn+1'wn+l)n(wn+1t wn+2))

v
* 0| Wyt Tt
( iz e (2)2(€(wn+1' zD'n+A)‘S(w'n+2'w'n+ﬂh)))

v v
| *#| T+ Dnt2s
Z(H(wnﬂwn+1))> ( o 2 (Z)Z(E(wrwliwn+l)n(wn+1ﬂwn+2))>

= (wnt Wn+1s
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v
* 80| Wnt2, Dntss
( e e (2)3(8(‘@}”_1, zz)'n+}L)E(w'n+2rw-n+)y)l_[(‘wn+2'w'n+3)))

v
* p w. , @ A )
( e (2)3 (E(wn+1' wn+l)z(wn+2’ ZD-n+/1)€(z‘7n+3' wn+l))

v v
> e —
= (mn’ P Z(H(Wn» ZUn+1))> " (?Un+1. P2 (Z)Z(E(wn+1' @ ) (@41, ZUn+2))>

v
* 0| W2 Wnys,
( s (2)3(E(wn+1'wn+/1)g(wn+2'wn+l)n(wn+2'wn+3))>

v
* 80 Wn3 D ) ) K ook
< m e (2)4(€(wn+1'wn+l)z(wn+2'wn+l)€(wn+3fwn+A)H(wn+3:wn+4-))

v
» (wn+l—2: Wnip-1s )

(2)/1_1 (E(wn+1’ wn+/1)€(wn+2' ZI"n+)L) E(wn+l—2r wn+A)H(wn+A—2’ ZD-n+/1—1))

v
* §0 (wn+l—1' Wy )

(2)/1_1 (E(wn+1’ wn+/1)z(wn+2: ZI"rL+)L)€(w-11+3: wn+l) o E(wnwl—l' zz)'n+)L))

and

v v
N(w,, @y, V) S K| @, 0y, ————< | ON| Dyt Tt s
( " i ) ( " s Z(H(wnfwn+1))) < m e Z(E(wn+1'wn+l)))

v v
————————— | O | W1, Do,
Z(H(Wn' wn+1))) ( e (2)2(€(wn+1: wn+l)n(wn+1!wn+2))>

=X (wn!wn+1'

v
OR| @pi2, Dnyas )
< e (Z)Z(E(Wnﬂ, @) (@12, wn+/1))

v v
—————— | OR| DWypq, Tyypas
Z(H(wn: wn+1))) ( e (2)? (E(wn+1' @ )@ 11, ZUn+2))>

<KX (wn,wn+1,

v
ORX| @10, Wis,
( s (2)3 (E(wn+1' D D)E (@2, Ty ) (@2, wn+3))>

v
ON| @Wpnts3 Tnaas )
( Y (23 (E (@t 1 Tns DE @2 s ) E(@nrs, Tnin))

v v
———————— | O | W1, Do)
Z(H(Wn' wn+1))) ( e (2)2(€(wn+1: wn+l)n(wn+1!wn+2))>

=X (wn!wn+1'

v
OXN| @y a0, Whas,
< e s (2)3 (E(wn+1' ZI"n+/1)€(w-n+2: wn+l)n(wn+2’ ZD-n+3))>

v
le) x [0} 3 . 4 ) O .. 0
( m m (2)4(E(wn+1: D) E( @2, T ) E( @3, Ty DN (@43, ern+4))

v
| @ A-20 Wpia-1, )
( " " DY (E( @1, T4 2) (@2, Tnta) - L@y a-2 Tne DN @y 2-2, Tnsa-1))
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v
O R Dpia-1, Tnsns - )
( " " (2))L 1(E(‘wn+1' zD'n+)L)E:(w-n+2’ wn+/1)€(wn+3' ZI"n+)L) E(wn+l—1r wn+l))

1
go(wn'wrwb U) 2 n
+(1-1")
v
p w Jw ’—)
< o Z(H(wn'wn+1))
* T+l
+ (1 —1n*1)
v
o |
oo (Z)Z(E(wrwl’wn+/1)n(wn+1rwn+2))
1
* n+2 o
+ (1 — tn*2)
v
p <w ’w ) )
o (2)3(E(wn+11 wn+}.)€(wn+2'wn+l)n(wn+2'wn+3))
1
Tn+A—2
+ (1 _ Tn+/1—2)

v

60 <ZD-01 Wy,

1

Y E@ns1, BneD)E @tz @nia) -+ E@ns a2, Tne D ([ @n1a-2, wn+l—1))>

n+a-1

v

+ (1 — Tn+l—1)

v
$ (w , @D, - )
oo (2)}' 1(E(wn+11wn+}.)€(wn+2:wn+l)z(wn+3:m-n+}.) E:(w-n+/1—1' ZZ)'7’L+)L))
and
n v n+1
R(@y,, Tpyp, V) < TN wo,wl,m o "R | wy, wy,
n Yn+1

v

(2)2 (E (wn+1t wn+/1)n(wn+1' zD'n+2))

o T"+2R (zzro, @5,

v

(2)3 (E(wn+1' wn+l)z(wn+2’ wn+,1)l'[(zzrn+2, ZD-n+3))

.L.n+l—2 N (w()' @,

v

(2)/1—1(5(@“1, D ) E( @iz, Tnyn) - E(@nya—2 T DN (@ a2, wn+/1—1))

o Tn+/l—1x (.‘D.O, @,

Therefore,

(2)/1_1 (E(wn+1l ZD-n+/1)“—:(m'n+2: zD-n+/1)g(w-n+3t m-n+/1) o E(w-n+/1—1' zD'n+/1))

lim (@, Ty, V) =1 Lol =1
n—-oo

and

lim X(w,, w4+, v) =0000--00=0.
n—-oo

That is, {w,} is a CS. Therefore, let (£, %, X,*,0) be a complete IFDCMLS, so there
exists @ in Z. Now investigate that @ is an FP of ¢, using (IFDL5) and (IFDL10), we

have
1
o (@, $w,v)

o)

T

T p@, o)
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1
> = < p(¢w,, Ew,v).
P mn 7Y

Using the above inequality,

p@,fw,v) = o (w' wn+1';) * §0 (wn+1, {w ;)

Zn(w: ZI7n+1) ’ Zz(wn+1'fw)
v v
29 (i ) o )
. ( v ) 1 1+1=1
N m—n’wn ’ " e d * =
(2@, @arr)) : ta-0

# (o0 5o

asn — o, and

v v
R(@, {w,v) < R (@, @41, 55— | O 0 2 (@, E0)
(w, éw,v) (zzr (O (e, wn+1)) (wn+1 ¢w ZE(wn+1'fw))

R ——

sx(  Bess
@ Ot 28(@nyy, E0)

2N (w, Wppq)

v v

——— | > 000=0asn - o
28 (@1, fw))

<X (wn, Wt ) o X (wn, w,

ZH(w, ZD-n+1)

Thatis {w = @.
Uniqueness: Suppose another FP, i.e., {p = p for some p € Z, then we have

1 1
P pGwinn
<7 ; - 1] < ; -1
$(@,p,v) $(@,p,v)
a contradiction, and
R(@,p,v) = R(¢w,¢ép,v) < R(w, p,v) < R(w, p,v)
a contradiction. Therefore, we must have (@, p,v) = 1 and X(w, p,v) = 0, hence @w = p.

O

Example 4. Let £ = [0,1] and I1,E: £ X £ — [1,00) be non-comparable functions defined by

lifw=op,
N(w,0) =11+ max{w,0e} .
minto,g) U "¢
and
lifw=op,
E(w,0) =41+ max{w? 0%}
min{o?, 0%} if @ # o.
Define fo,R:E X £ x (0,00) = [0,1] as
v max{w, 0}*
50(13', Q,U) = N(W,Q,U) =

v + max{w, 0}*’ v + max{w, 0}*

Then, (£, ,R8,%,0) is a complete ITDCMS with CTN ¢*® =¢® and CTCN ¢0o o =
max{¢, ®}.
Define &2 - E by §(w) =

1—

277 and take T € [3, 1), then
3 2
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1—-27% 1-27¢ )
, TV

pw,so,m) = o

3 ’ 3
B TV - v — o )
- -2 1-2-02 > v+ max(m,e)z L@@V
T+ max{ 33 }
and
X( )_N(l—Z‘wl—Z‘Q )
¢w,&p, V) = 3 , 3 , TU
max {1 A 2_9}2 2
3 ' 3 max{w,
= 5> < (@, 0} = R(w, 0,V).
1—2-@ 1 —2-¢ v + max{w, 0}?
v+ max{ 33— 3 }

This is seen in Figures 5 and 6, which depict the behavior of contraction mapping.

0.95

0.9

0.85

2 10 10 e

Figure 5. The graphical behavior of @(¢w, o, 1v) = $(@, 0,v), where the yellow color shows the
left-hand side and the blue color shows the right-hand side, when v = 10 and 7 = 0.5.
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0.1

0.08

0.06

0.04

0.02

Figure 6. The graphical behavior of X(¢w, &g, 7v) < K(w, 0,v), where the yellow color shows the
left-hand side and the blue color shows the right-hand side, when v = 10 and 7 = 0.5.

Hence, all conditions of Theorem 1 are satisfied and 0 is a unique FP for ¢ asshown
in Figure 7.

4
Tx

0.9 1

08 1

0.7 T 1

0.6 1

0.5 1

04r 1

0.3 1

0.2 1

01r 1

1 14 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Figure 7. Shows that the FP of ¢ is 0 and is unique.

4. Application to an Integral Equation

Suppose Z = C([9,u],R) is a set of all the real-valued continuous functions on the
closed interval [9, u].
Suppose the following integral equation:

u
@) = () +6 L FO @A) fory,j € [9, 4] ©)
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where § >0, F € £ and n(j) is a fuzzy function of j:j € [0, u]. Now, we define g and &
by
v

v+max{@(),0(1)}? forall w,0€Z and v >0

o @), e(y),v) = sup
vE[9,u]

and

=1— - v =
R(@(y),e(y),v) =1 YEHJL] T——— forall w,0 €% and v>0

with CTN and CTCN defined by ¢ * ® = ¢.® and ¢ © ® = max{¢, ®}. Define I,&:Z X £ -

[1,00) as
lifw = g;
=<{1+ ma g :
N(w, 0) _ x{w, 0} %0
min{w, o}
lifow =p,

E(w,0) = {1+ max{w? 0?}

min{w?, 0%}

Then, let (Z, ,K,*,0) be a complete IFDCMLS.
Let max{F(y, Nw®),F(,De()}* < max{a'f(y),e(y)z}z for all w0 €Z, 7 € (0,1)
and for ally,j € [9,u]. Additionally, suppose (5 ) ; Aj) < 7 < 1. Then, integral Equa-

ifw + o

tion (9) has a unique solution.

Proof. Define &:Z — E by
Eo(y) =n() +6 [} Fr,))9()4j forall y,j € [9,ul.

For all @, € £, we obtain

TV

plom).Le)Tv) = S o e (), )

TV

= sup
veldulry + max{n(j) + 6 [ Fr, N9G)A] ,n() + 8 [X Fr, oA

TV

= sup >
velul rv + max{8 [} F(y, )94}, 8 [} F(y, )9 (¥)4j}

TV

= sup
veldul v + max{F (v, @), F(v, Do)} (8 [X 4))°

v
> su
yeto v + maxiw(y), e (P

= p@¥),o(y),v).

TV

RE@ (), $o(y),Tv) =1 yiggl] v + max{¢w(y), {o(y)}?

TV

=1-— sup
velou v + max{n() + 6 [ Fr, NOWA] n() + 8 [ Fr, )94}

TV

=1-— sup >
veloul tv + max{s [} F(v, )94}, 8 [} F(r, )94}
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=1- sup

velultv + max{F (y, D@ ¥), F(y, Do)} (6 f: Af)z

v
<1- su
ye[ﬂl,)u] v+ max{@(y), e(y)}?

< R@¥), 0e(y),v).

Observe that all the conditions of Theorem 1 are satisfied. Hence, the integral Equa-
tion (9) has a unique solution. o

5. Conclusions

In this paper, we introduced the notion of an IFDCMLS. In this new setting, we es-
tablished a number of new types of FP theorems. In order to demonstrate the viability of
the suggested methods, we provided non-trivial examples together with their graphs.
This research is supported by an application that demonstrates how the created method-
ology outperforms the methods that are based on the literature, since our structure is more
general than the class of previously published results. It is easy to extend this research to
the structure of intuitionistic fuzzy triple-controlled metric-like spaces, neutrosophic dou-
ble-controlled metric-like spaces, and neutrosophic triple-controlled metric-like spaces. In
the future, we will work on more than one self-mapping to find the existence and unique-
ness of a fixed point in different generalized fuzzy metric structures.
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IFDMSs Intuitionistic fuzzy double-controlled metric spaces
IFDCMLSs Intuitionistic fuzzy double-controlled metric-like spaces
FP Fixed point
FDMSs Fuzzy double-controlled metric spaces

Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338-353.

Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87-96.

Schweizer, B.; Sklar, A. Statistical metric spaces. Pac. . Math. 1960, 10, 314-334.

Kramosil, I.; Michlek, J. Fuzzy metric and statistical metric spaces. Kybernetika 1975, 11, 336-344.

George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395-399.

George, A.; Veeramani, P. On some results of analysis for fuzzy metric spaces. Fuzzy Sets Syst. 1997, 90, 365-368.



Symmetry 2022, 14, 2364 19 of 19

10.

11.
12.

13.
14.
15.
16.
17.

18.
19.

20.
21.

22.
23.
24.
25.
26.
27.
28.
29.

30.

Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Set Syst. 1988, 27, 385-389.

Harandi, A. Metric-like paces, partial metric spaces and fixed point. Fixed Point Theory Appl. 2012, 204.
https://doi.org/10.1186/1687-1812-2012-204.

Mlaiki, N. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194.

Mlaiki, N.; Souayah, N.; Abdeljawad, T.; Aydi, H. A new extension to the controlled metric type spaces endowed with a graph.
Adv. 2021, 94. https://doi.org/10.1186/s13662-021-03252-9.

Shukla, S.; Abbas, M. Fixed point results in fuzzy metric-like spaces. Iran. ]. Fuzzy Syst. 2014, 11, 81-92.

Javed, K,; Uddin, F.; Aydi, H.; Arshad, M.; Ishtiag, U.; Alsamir, H. On Fuzzy b-Metric-Like Spaces. |. Funct. Spaces 2021.
https://doi.org/10.1155/2021/6615976.

Park, ].H. Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2004, 22, 1039-1046.

Konwar, N. Extension of fixed results in intuitionistic fuzzy b-metric spaces. J. Intell. Fuzzy Syst. 2020, 39, 7831-7841.
Shatanawi, W.; Gupta, V.; Kanwar, A. New results on modified intuitionistic generalized fuzzy metric spaces by employing
E.A property and common E.A property for coupled maps. J. Intell. Fuzzy Syst. 2020, 38, 3003-3010.

Gupta, V.; Saini, R K.; Kanwar, A. Some coupled fixed point results on modified intuitionistic fuzzy metric spaces and applica-
tion to integral type contraction. Iran. J. Fuzzy Syst. 2017, 14, 123-137.

Sezen, M.S. Controlled fuzzy metric spaces and some related fixed point results. Numer. Methods Partial. Differ. Equ. 2021, 37,
583-593.

Saleem, N.; Isik, H.; Furqan, S.; Park, C. Fuzzy double controlled metric spaces. J. Intell. Fuzzy Syst. 2021, 40, 9977-9985.

Itoh, S. Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl.
1979, 67, 261-273.

Rafi, M.; Noorani, M.5.M. Fixed theorems on intuitionistic fuzzy metric space. Iran. ]. Fuzzy Syst. 2006, 3, 23-29.

Sintunavarat, W.; Kumam, P. Fixed Theorems for a Generalized Intuitionistic Fuzzy Contraction in Intuitionistic Fuzzy Metric
Spaces. Thai . Math. 2012, 10, 123-135.

Alaca, C.; Turkoglu, D.; Yildiz, C. Fixed points in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2006, 29, 1073-1078.
Mohamad, A. Fixed-point theorems in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2007, 34, 1689-1695.

Dey, D.; Saha, M. An extension of Banach fixed point theorem in fuzzy metric space. Bol. Soc. Parana. Mat. 2014, 32, 299-304.
Farheen, M.; Ahmed, K ; Javed, K.; Parvaneh, V.; Ud Din, F.; Ishtiaq, U. Intuitionistic Fuzzy Double Controlled Metric Spaces
and Related Results. Secur. Commun. Netw. 2022, 2022, 6254055.

Peng, F.; Wang, Y.; Xuan, H.; Nguyen, T.V. Efficient road traffic anti-collision warning system based on fuzzy nonlinear pro-
gramming. Int. ]. Syst. Assur. Eng. Manag. 2022, 13, 456—461.

Nguyen, T.V.; Huynh, N.T.; Vu, N.C;; Kieu, V.N.; Huang, S.C. Optimizing compliant gripper mechanism design by employing
an effective bi-algorithm: Fuzzy logic and ANFIS. Microsyst. Technol. 2021, 27, 3389-3412.

Wang, C.N,; Yang, F.C.; Nguyen, V.T.T.; Vo, N.T. CFD Analysis and Optimum Design for a Centrifugal Pump Using an Effec-
tively Artificial Intelligent Algorithm. Micromachines 2022, 13, 1208.

Uddin, F; Ishtiaq, U.; Hussain, A.; Javed, K.; Al Sulami, H.; Ahmed, K. Neutrosophic Double Controlled Metric Spaces and
Related Results with Application. Fractal Fract. 2022, 6, 318.

Mustafa, Z.; Parvaneh, V.; Abbas, M.; Roshan, J.R. Some coincidence point results for generalized (i, ¢)-weakly contractive
mappings in ordered G-metric spaces. Fixed Point Theory Appl. 2013, 326. https://doi.org/10.1186/1687-1812-2013-326



