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ABSTRACT

Context. The next generation of extensive and data-intensive surveys are bound to produce a vast amount of data, which can be effi-
ciently dealt with using machine-learning and deep-learning methods to explore possible correlations within the multi-dimensional
parameter space.
Aims. We explore the classification capabilities of convolution neural networks (CNNs) to identify galaxy cluster members (CLMs)
by using Hubble Space Telescope (HST) images of fifteen galaxy clusters at redshift 0.19 . z . 0.60, observed as part of the CLASH
and Hubble Frontier Field programmes.
Methods. We used extensive spectroscopic information, based on the CLASH-VLT VIMOS programme combined with MUSE obser-
vations, to define the knowledge base. We performed various tests to quantify how well CNNs can identify cluster members on ht basis
of imaging information only. Furthermore, we investigated the CNN capability to predict source memberships outside the training
coverage, in particular, by identifying CLMs at the faint end of the magnitude distributions.
Results. We find that the CNNs achieve a purity-completeness rate &90%, demonstrating stable behaviour across the luminosity
and colour of cluster galaxies, along with a remarkable generalisation capability with respect to cluster redshifts. We concluded
that if extensive spectroscopic information is available as a training base, the proposed approach is a valid alternative to catalogue-
based methods because it has the advantage of avoiding photometric measurements, which are particularly challenging and time-
consuming in crowded cluster cores. As a byproduct, we identified 372 photometric cluster members, with mag(F814)< 25, to
complete the sample of 812 spectroscopic members in four galaxy clusters RX J2248-4431, MACS J0416-2403, MACS J1206-
0847 and MACS J1149+2223.
Conclusions. When this technique is applied to the data that are expected to become available from forthcoming surveys, it will be
an efficient tool for a variety of studies requiring CLM selection, such as galaxy number densities, luminosity functions, and lensing
mass reconstruction.

Key words. Galaxy: general – galaxies: photometry – galaxies: distances and redshifts – techniques: image processing –
methods: data analysis

1. Introduction

Over the past decade, the field of astrophysics has been expe-
riencing a true paradigmatic shift, moving rapidly from rela-
tively small data sets to the big data regime. Dedicated survey
telescopes, both ground-based and space-borne, are set to rou-
tinely produce tens of terabytes of data of unprecedented qual-
ity and complexity on a daily basis. These volumes of data can
be dealt with through a novel framework, delegating most of
the work to automatic tools and by exploiting all advances in

? The spectroscopic training set and the members identified in the
four clusters RX J2248-4431, MACS J0416-2403, MACS J1206-
0847 and MACS J1149+2223 are only available at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/643/A177

high-performance computing, machine learning, data science
and visualisation (Brescia et al. 2018). The paradigms of
machine learning (ML) and deep learning (DL) paradigms
embed the intrinsic data-driven learning capability to explore
huge amounts of multi-dimensional data by searching for hid-
den correlations within the data parameter space.

Here, we explore the application of ML techniques in the
context of studies of galaxy clusters, more specifically, to iden-
tify cluster members (CLMs) based on imaging data alone. In
fact, obtaining a highly complete sample of spectroscopic mem-
bers is an extremely expensive and time-consuming task, which
can be simplified and accelerated thanks to the use of a limited
amount of spectroscopic information in training ML methods.

Disentangling CLMs from background and foreground
sources is an essential step in the measurement of physical
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properties of galaxy clusters, measuring, for example, the galaxy
luminosity and stellar mass functions (e.g. Annunziatella et al.
2016, 2017), in addition to studies of the cluster mass distribu-
tion via strong and weak lensing techniques (e.g. Caminha et al.
2017a, 2019; Lagattuta et al. 2017; Medezinski et al. 2016). In
particular, the study of the inner mass substructure of clus-
ter cores with high-precision strong-lensing models and their
comparison with cosmological simulations requires the simul-
taneous identification of background multiply lensed images
and member galaxies to separate the sub-halo population from
the cluster projected total mass distribution (e.g. Grillo et al.
2015; Bergamini et al. 2019). Such studies provide tests for
structure-formation models and the cold dark matter paradigm
(Diemand & Moore 2011; Meneghetti et al. 2020). The need for
efficient and reliable methods to identify cluster member galax-
ies from the overwhelming population of fore and background
galaxies will become particularly pressing when a vast amount
of photometric information becomes available with forthcoming
surveys with, for example, the Large Synoptic Survey Telescope
(LSST, Ivezić et al. 2019) and Euclid (Laureijs et al. 2014).

Owing to their ability to extract information from images, con-
volution neural networks (CNNs, LeCun et al. 1989) have been
widely used in several astrophysical applications, generally show-
ing higher robustness and efficiency with respect to traditional
statistical approaches. For example, they have been applied to
phase-space studies of mock distributions of line-of-sight veloc-
ities of member galaxies at different projected radial distances.
These DL techniques were able to reduce the scatter of the relation
between cluster mass and cluster velocity dispersion by∼35% and
by ∼20% when compared to similar ML methods, for instance,
the support distribution machines (Ho et al. 2019). A similar DL
approach has been successfully used to predict cluster masses
from mock Chandra X-ray images, by limiting the parameter
space to photometric features only, thus minimising both bias
(∼5%) and scatter (∼12%), on average (Ntampaka et al. 2015,
2016, 2019). Such CNNs were also successfully used to discrim-
inate between degenerate cosmologies, including modified grav-
ity and massive neutrinos, by inspecting simulated cluster mass
maps. Merten et al. (2019) showed that the DL techniques are
able to capture distinctive features in maps mimicking lensing
observables, improving the classification success rate with respect
to classical estimators and map descriptors.

In recent years, the selection of CLMs has been addressed
in several ways: via the classical identification of the members’
red-sequence in colour-magnitude diagrams, aided by spectro-
scopic measurements (e.g. Caminha et al. 2019 for strong lens-
ing applications); by measuring photometric redshifts with a
Bayesian method (Molino et al. 2017, 2019); by exploiting an
ML approach based on the so-called multi-layer perceptron
trained by a quasi-Newton approximation (Biviano et al. 2013;
Cavuoti et al. 2015; Brescia et al. 2013); or by fitting a mul-
tivariate normal distribution to the colour distribution of both
spectroscopic members and field galaxies (Grillo et al. 2015).
All these methods require accurate photometric measurements,
which are difficult to obtain with standard photometric tech-
niques in galaxy clusters, due to the strong contamination from
bright cluster galaxies, including the brightest cluster galaxies
(BSGs), and the intra-cluster light (Molino et al. 2017).

In this work, we exploit the paradigm of DL by design-
ing a CNN that is able to identify cluster members using only
HST images, based on CLASH (Postman et al. 2012) and Hubble
Frontier Fields (HFF, Lotz et al. 2017, Koekemoer et al., in prep.)
surveys and spectroscopic observations for the training set
obtained with the VIMOS and MUSE spectrographs at the VLT.

The paper is structured as follows. In Sect. 2, we describe the
HST imaging, spectroscopy measurements, and data configura-
tion. We introduce the adopted DL approach in Sect. 3, includ-
ing a synthetic description of the training setup and the metrics
used to evaluate the network performance. In Sect. 4, we illus-
trate details regarding the experiment configuration and results,
as well as presenting a comparison of our model capabilities with
other methods. In Sect. 5, we describe the process to identify
new members by complementing the spectroscopic catalogues.
We discuss in Sect. 6 the potential and limitations of the method.
Finally, we draw our conclusions in Sect. 7.

Throughout the paper, we adopt a flat ΛCDM cosmology
model with ΩM = 0.3, ΩΛ = 0.7, and H0 = 70 km s−1 Mpc−1. All
of the astronomical images are oriented with north at the top and
east to the left. Unless otherwise specified, magnitudes are in the
AB system.

2. Data layout

In order to build a knowledge base, that is, to label a set of
sources deemed suitable for training the neural network, we
used the spectroscopic information based on the CLASH-VLT
VIMOS programme (ESO 200h Large Program 186.A-0798,
“Dark Matter Mass Distributions of Hubble Treasury Clusters
and the Foundations of ΛCDM Structure Formation Models”,
PI: P. Rosati; Rosati et al. 2014), combined with archival obser-
vations carried out with the MUSE spectrograph (Bacon et al.
2014) (see Table 1).

In the spectroscopic catalogues, we defined the CLMs as those
having velocities |v| ≤ 3000 kms−1, with respect to the cluster rest-
frame central velocity (Grillo et al. 2015; Caminha et al. 2016,
2017b). On the contrary, non-cluster-members (NCLMs) were
those having greater differences in velocity.

Cluster images were acquired by the HST ACS and WFC3
cameras as part of the CLASH (Postman et al. 2012) and HFF
(Lotz et al. 2017) surveys. The images were calibrated, reduced
and then combined into mosaics with spatial resolutions of
0.065′′ (see Koekemoer et al. 2007, 2011). The fifteen clusters
used in our study are shown in Fig. 1. Colour images were
produced with the Trilogy code (Coe et al. 2012), by combin-
ing HST filters from the optical to the near-infrared (NIR).
Among the 16 available HST filters used in our experiments, we
considered bands covering the spectral range 4000 Å−16 000 Å
(Postman et al. 2012), that is, the optical and NIR bands, exclud-
ing the UV filters for which the signal-to-noise ratio (S/N) of
faint CLMs was too low.

For each spectroscopic source within the HST images, we
extracted a squared cut-out with a side of ∼4′′ (64 pixels), cen-
tered on the source position. A sample of the dataset is shown in
Fig. 2, where CLMs were extracted from five clusters: Abell 383
(A383, z = 0.188), RX J2248-44311 (R2248, z = 0.346),
MACS J0416-2403 (M0416, z = 0.397), MACS J1206-0847
(M1206, z = 0.439), and MACS J1149+2223 (M1149, z =
0.542). Due to different pointing strategies and the fields of view
of HST cameras, many sources do not have a complete photo-
metric coverage, especially in the IR range. As a result, these
objects with missing information were not useful for the training
process (Batista & Monard 2003; Marlin 2008; Parker 2010).
With the aim of maximising the number of training samples
with available spectroscopic redshift information, we chose four
different band configurations:

1 Also known as Abell S1063.
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Fig. 1. Colour-composite images of the 15 clusters included in our analysis, obtained by combining HST bands from optical to near IR. The images
are squared cut-outs, ∼130′′ across, centred on the cluster core.

– ACS: only the seven optical bands (i.e. F435, F475, F606,
F625, F775, F814, F850) were included in the training set,
obtaining 1603 CLMs and 1899 NCLMs;

– ALL: the training set involved all twelve bands (i.e. the
seven optical bands and the five IR bands F105, F110, F125,
F140, F160), thus reducing the number of objects to 1156 and
1425, respectively for CLMs and NCLMs, due to the rejection
of missing data;

– Mixed: we selected five bands, corresponding to the fil-
ters available in the Hubble Frontier Fields survey, covering
the optical-IR range, namely, F435, F606, F814, F105, F140,
respectively. This includes 1249 CLMs and 1571 NCLMs;

– Mixed*: same band combination as in the previous case
(mixed), but including two further clusters, namely, Abell 2744
(A2744) and Abell 370 (A370), for which only HFF imaging
were available. This set is composed of 1629 CLMs and 2161
NCLMs.

In practice, the three configurations, ACS, ALL and mixed,
share the same clusters, while exploring different spectral infor-
mation by varying the number of sources. The mixed* config-
uration considers an augmented cluster data set by including
additional spectroscopic members. A summary of the cluster
sample and the spectroscopic data sets is given in Table 1.

3. Methodology

In this work, we discuss the results achieved by a VGGNET-like2

model, which is a CNN implementation inspired by the VGG
network proposed by Simonyan & Zisserman (2014).

2 We tested different network architectures, e.g. Residual Net X
(He et al. 2015; Xie et al. 2016) and Inception Net (Szegedy et al.
2014). Due to their lower performances, we limited the description of
the results to the VGGNET-like model, to avoid weighing down the text.

As is customary in applications of ML methods, the data
require a preparation phase, which, in this case, consisted of a
data augmentation procedure, that is meant to construct a con-
sistent labelled sample, followed by a partitioning of the dataset
into training, validation, and blind testing sets.

Regarding data augmentation, given the relatively small sam-
ple of spectroscopic sources with respect to the typical size of
the knowledge base required by supervised ML experiments,
we increased the training set by adding images of spectro-
scopic sources, obtained from the original ones, through rota-
tions and flips. The inclusion of these images in the training
set also offered the possibility to make the network invariant to
these operations, which works as an advantage for astronomi-
cal images as there is no defined orientation for the observed
sources.

Concerning the partitioning of the data set, in order to fully
cover the input parameter space, we opted for a stratified k-
fold partitioning approach (Hastie et al. 2009; Kohavi 1995): the
whole data set was split into k = 10 non-overlapping folds,
of which, iteratively, one extracted subset was used as a blind
test set, while the others were taken as a training set. Such an
approach has several advantages: (i) increase of the statistical
significance of the test set; (ii) the blind test is performed only
on original images; and (iii) complete coverage of both training
and test sets, keeping them well-separated at the same time.

The classification performance, obtained through all the
experiments performed by this procedure, was evaluated by
adopting a set of statistical estimators, directly derived from
the classification confusion matrix (Stehman 1997), namely, the
classification efficiency (AE), averaged over the two classes
(members and non-members), the purity (pur), the completeness
(comp), and the harmonic mean of purity and completeness (F1,
see Appendix A.3). The last three estimators have been mea-
sured for each class. Completeness (also known as recall) and
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Fig. 2. Examples of cut-outs of cluster members extracted from HST
images (F435, F606, F814, F105, F140 bands), corresponding to five
clusters (from top to bottom): A383 (z = 0.188), R2248 (z = 0.346),
M0416 (z = 0.397), M1206 (z = 0.439), M1149 (z = 0.542). All the
cut-outs are 4 arcsec across.

purity (also known as precision) are the most interesting esti-
mators, suitable for measuring the quality of the classification
performed by any method. The completeness, in fact, measures
the capability to extract a “complete” set of candidates of a given
class, while purity estimates the capability of selecting a “pure”

set of candidates (thus, minimising the contamination). There-
fore, the classification quality is usually based on either one of
such two estimators or their combination, depending on the spe-
cific interest of an experiment (D’Isanto et al. 2016). In our case,
we were most interested in finding the best trade-off between
both estimators for the cluster members. The statistical evalu-
ation was completed by also using the receiver operating char-
acteristic curve (ROC, Hanley & McNeil 1982), which is a dia-
gram where the true positive rate (TPR, i.e. the completeness
rate) is plotted versus the false positive rate (FPR, i.e. the con-
tamination rate, which corresponds to 1-purity) by varying the
membership probability threshold. The model performances are
measured in terms of the area under the curve (AUC), thus pro-
viding an aggregate measure of performance across all possible
classification thresholds.

A full description of the data preparation procedure and the
statistical estimators is given in Appendix A, while details about
the architecture and configuration of the DL model are reported
in Appendix B.

4. Experiments

In this section, we describe several experiments designed to test
the performance of the CNNs and other methods. Specifically,
with the data described in Sect. 2, we performed the following
tests or experiments:
– EXP1: efficiency of the DL approach by stacking the data of
all the clusters in terms of:

– EXP1a: global evaluation
– EXP1b: redshift-dependence, namely separating CLMs into

redshift bins;
– EXP2: magnitude or colour dependence, by stacking data of a
group of three clusters and varying their redshift range through:

– EXP2a: separating bright and faint sources
– EXP2b: separating red and blue galaxies

– EXP3: a comparison of performances of our image-based CNN
technique with other approaches, based on photometric measure-
ments of field and cluster galaxies.

4.1. EXP1: Combination of all clusters

At the first stage, we evaluated the global efficiency of a DL
approach including all the available clusters, regardless of their
redshift (ranging between 0.2 and 0.6), by exploring different
combinations of photometric bands (as described in Sect. 2) and
assembling the data set by stacking the information from all the
images extracted from our cluster sample. We wanted to ver-
ify that DL models, given their intrinsic generalisation capa-
bilities, were able to learn how to disentangle cluster members
from non-member (foreground or background) sources, indepen-
dently from the cluster redshift (EXP1a). This although their
members have different characteristics, such as apparent mag-
nitudes or sizes, and also different signal-to-noise ratio at a
fixed apparent magnitude, due to the different image depths. The
results are shown in Fig. 4 and Table D.1, as a function of the
band configuration, described in Sect. 2.

For NCLM, we found similar values of the average efficiency
(87%−89%), the purity (stable around ∼90%) and the F1-score
(with variations within 1.5%), regardless of band configuration.
On the other hand, the CLM identification was, in general, char-
acterised by larger variation (83%−91%) in the statistical esti-
mators. With the mixed* configuration, CNN achieved the best
performances for CLM and it was also very stable in terms of
NCLM, reaching an overall efficiency of ∼89%.
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Table 1. Cluster sample description.

mixed* (mixed) ACS ALL
Cluster zcluster zmin zmax CLMs NCLMs CLMs NCLMs CLMs NCLMs Refs.

Abell 383 A383 0.188 0.176 0.200 59 51 91 79 59 51 (1, 2)
RX J2129+0005 R2129 0.234 0.222 0.246 47 124 66 132 40 118 (3, 1)
Abell 2744 A2744 0.308 0.288 0.331 156 (a) 279 (a) Only frontier-field bands (4, 1)
MS 2137-2353 MS2137 0.316 0.303 0.329 45 49 70 80 45 49 (3, 1)
RX J2248-4431 (b) R2248 0.346 0.332 0.359 131 112 203 166 117 86 (5, 1)
MACS J1931-2635 M1931 0.352 0.338 0.365 68 97 80 110 65 96 (3, 1)
MACS 1115+0129 M1115 0.352 0.338 0.365 78 69 116 111 62 55 (3, 1)
Abell 370 A370 0.375 0.361 0.389 224 (a) 311 (a) Only frontier-field bands (6, 1)
MACS J0416-2403 M0416 0.397 0.382 0.410 237 277 266 287 227 230 (7, 8, 9, 1)
MACS J1206-0847 M1206 0.439 0.425 0.454 172 216 226 242 149 203 (10, 1)
MACS J0329-0211 M0329 0.450 0.435 0.464 74 76 104 104 66 73 (3, 1)
RX J1347-1145 R1347 0.451 0.438 0.467 56 107 71 120 56 107 (3, 1)
MACS J1311-0310 M1311 0.494 0.477 0.507 52 54 69 95 52 54 (3, 1)
MACS J1149+2223 M1149 0.542 0.527 0.558 141 237 149 270 129 202 (11, 12, 1)
MACS J2129-0741 M2129 0.587 0.571 0.603 89 102 92 103 89 101 (1, 3)

TOTAL 1629 2161 1603 1899 1156 1425
(1249) (1571)

Notes. The name of the clusters, their redshift and their spectroscopic range to identify CLMs are reported in the first 5 columns. The four band
configurations, described in Sect. 2, are listed in Cols. 6–11. The references for each cluster can be found in the last column. (a)Different spectro-
scopic data sets are described in the text. The case mixed is similar to the mixed* one, with the only difference that it does not include the two
clusters A2744 and A370. (b)The cluster RX J2248.7−4431 is also known as Abell S1063.
References. (1) Rosati & Clash-VLT Team (in prep.); (2) Monna et al. (2015); (3) Caminha et al. (2019); (4) Mahler et al. (2018);
(5) Caminha et al. (2016);(6) Lagattuta et al. (2019); (7) Grillo et al. (2015), (8) Balestra et al. (2016); (9) Caminha et al. (2017b);
(10) Caminha et al. (2017a); (11) Grillo et al. (2016); (12) Treu et al. (2016).
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Fig. 3. Redshift distribution of 1629 spectroscopic members used for the
EXP2 configuration. The three clusters A370 (z = 0.375, 224 CLMs),
MS2137 (z = 0.316, 45 CLMs) and M0329 (z = 0.450, 74 CLMs) are
used as blind test set.

We also show, in Appendix D.1, the estimators obtained for
each cluster (Table D.2 and Fig. D.1). This analysis confirmed
that the mixed* combination showed the highest statistical values
for all the thirteen clusters. Moreover, as expected, we demon-
strated that there is a clear improvement of classification capa-
bilities as the number of sources increases (an accuracy gain of
∼2.3% for an increment of 500 samples). Furthermore, fluctua-
tions of these estimators tend to be better constrained for a large
set of objects, stabilising around 3% when the number of sam-
ples is ≥2000 and showing an average reduction of ∼9% by qua-
drupling the number of sources.

Since the training set we used in this study was composed
of galaxies spanning a large redshift range, as part of EXP1,
we investigated whether any dependence on redshift is present.
To this aim, the CLM redshift range was split into five equal-
sized bins (∼280 samples). The performances and fluctuations
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Fig. 4. Performance percentages of the CNN in the EXP1 experiment
with the four band configurations (see Sect. 2) in terms of the statistical
estimators described in Appendix A.3.

related to the mixed* band combination are shown in Fig. 5,
while details on the metrics are given in Table D.3. Despite the
dissimilarities between galaxies at different depths, the CNN did
not seem to be affected by the CLM redshift. In fact, CNN per-
formances achieved in different redshift bins were all compa-
rable, with a dispersion included within 0.04−1σ for the 65%
of cross-compared estimator pairs and a mean separation of
∼0.8σ.

Since the mixed* band combinations provided the best
results, all further experiments in the next sections refer to this
band configuration.
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4.2. EXP2: Selection of clusters as blind test set

A second set of experiments was devoted to the study of the CNN
capability to predict cluster membership of sources belonging to
clusters that are not included in the training set, that is, avoid-
ing having member galaxies belonging to the same cluster pop-
ulating both the training and test sets. Thus, we considered
A370 (z = 0.375), MS 2137-2353 (MS2137, z = 0.316), and
MACS J0329-0211 (M0329, z = 0.450) as blind test clusters,
while the remaining clusters were organised into three differ-
ent training sets based on different redshift ranges, as shown in
Fig. 3. Specifically:

– Narrow: clusters with redshift 0.332 ≤ z ≤ 0.412 (514
CLMs, 555 NCLMs)

– Intermediate: clusters with redshift 0.286 ≤ z ≤ 0.467 (898
CLMs, 1157 NCLMs)

– Large: clusters with redshift 0.174 ≤ z ≤ 0.606 (1286
CLMs, 1725 NCLMs).

The training set configurations were mostly organised to
identify CLMs in A370. This is the most significant test bench
since it includes 535 spectroscopic sources and is in the mid-
dle of CLM redshift range. The other two clusters, MS2137 and
M0329, were chosen as additional test sets located at redshifts
lying outside the narrow and intermediate ranges, while remain-
ing well within the large training set.

The results are shown Fig. 6 and detailed in Table D.4. They
show that: (i) the large training set reached best results in most
cases, with an average improvement between 1.1% and 4.3%
with respect to the intermediate case; (ii) the narrow training
ensemble provided, in most cases, the worst results, showing
a lower trade-off between purity and completeness, particularly
evident (larger than 3σ) for A370 and M0329. This confirmed
that the best performances were reached by extending the knowl-
edge base, that is, when the CLM training sample covers the
largest available redshift range.

We also analysed the CNN classification performances sep-
arately on bright and faint (EXP2a) galaxies, as well as on
red and blue galaxies (EXP2b). The magnitude values adopted
to split the CLM into equally sized samples are F814 = 22.0,
21.7, and 21.6 mag for A370, M0329, and MS2137, respec-
tively. For the analysis of the colour dependence, we used the
(F814 − F160) colour. However, since this colour depends
on the F814 magnitude, we defined the difference between
the observed colour and the colour-magnitude relation, that is,

(F814 − F160)diff = (F814 − F160)obs− [colour–magnitude
(F814)]. The colour-magnitude relation was fitted for each clus-
ter with spectroscopic confirmed members, using a robust lin-
ear regression (Cappellari et al. 2013), which is a technique that
allows for a possible intrinsic data scatter and clips outliers, adopt-
ing the least trimmed squares technique (Rousseeuw & Driessen
2006). By applying the correction for the colour-magnitude, we
found that blue members can be defined as galaxies having
(F814 − F160)diff < −0.160, −0.165, −0.157 for A370, M0329,
and MS2137, respectively. Both experiments (a and b) were per-
formed using the large redshift configuration.

The results of the CLM identification are shown in Table 2.
In EXP2a, all the statistical estimators indicated a very good
performance of the method, although with a slightly lower
efficiency in identifying faint objects. In fact, brighter mem-
bers were detected with higher completeness (90%−98%) and
purity (81%−91%), with a significant F1 score improvement
(89%−92%), when compared to fainter members (completeness:
80%−85%; purity: 77%−85%; F1 score: 78%−83%), obtaining
remarkable results for A370, in which purity and complete-
ness of CLMs are ∼88% and ∼97%, respectively. Neverthe-
less, fainter CLMs were identified with an acceptable F1 score
(∼80%).

The experiment, EXP2b, also showed good performances of
the method for both red and blue objects, although the colour
dependence of the results was evident. In particular, red galax-
ies were classified with a mean F1 score of ∼91%, decreasing
down to ∼77% for blue objects. The results reflect the underlying
similarity between blue members and background objects, which
implies that they cannot be separated easily. This was confirmed
by the analysis of false positives and false negatives discussed in
Sect. 6.

4.3. EXP3: Comparison with photometric approaches

This section is dedicated to a comparison of the classifica-
tion performance of cluster members using the image-based DL
method described above along with two different techniques
based on photometric catalogues. The first is a random for-
est classifier (developed by our team) and the second one is
a photometry-based Bayesian model described in Grillo et al.
(2015) and in Appendix C.

In this experiment, our CNN was trained with the mixed* fil-
ter set (see Sect. 2). We focused on the results obtained by these
three methods on R2248, M0416, M1206, and M1149. The sta-
tistical estimators are shown in detail in Table D.5 and in Fig. D.3
as ROC curves, while in Fig. 7, the performances are sum-
marised by combining the results from the four clusters based
on their ROC curves (top), the trade-off between purity and com-
pleteness (middle), and the usual statistical estimators (bottom).
The photometric techniques show an average efficiency around
86−89%, with some values &96% for the Bayesian approach,
although the F1 scores always remain between 83% and 88%.
The CNN confirmed its ability to detect CLMs with an F1 score
between 87% and 91%. The upper panel in Fig. 7 shows that
globally CNN reaches an AUC of ∼94%, which is ∼8% higher
than the Bayesian method, while exhibiting the sharpest rise
and the highest plateau. This means that for the CNN method
there is a larger probability range in which the performances
remain stable, while for the other methods a fine-tuning of the
probability value is needed to balance purity and completeness.
Furthermore, CNN reached the best trade-off between purity
and completeness with a cross-over at ∼89%. A summary of
the results is shown in the bottom panel of Fig. 7, where the
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Fig. 6. Summary of the EXP2 experiment. The statistical performances for the three clusters (A370, M0329 and MS2137) are reported in each
row, while results for the three training configurations (i.e. narrow, intermediate and large) are organised by column. The global performances
achieved by stacking together the three clusters are reported in the bottom row. For each test set, we display the ROC curves (grey lines refer to the
performances achieved by any training fold, while the main trend is emphasised in red, together with its AUC score); the box plots represent the
fluctuation of measured estimators related to the CLMs, together with the average efficiency measured for both classes. As in Fig. 5, such boxes
delimit the 25th and 75th percentiles, while error bars enclose the maximum point variations.

differences among the CNN and the two photometric methods
are measured using the four statistical estimators. The CNN per-
formances were overall near 90% and remained consistently
higher than those of photometric-based methods. Finally, we
analysed the common predictions among the three methods, both
in terms of correctly classified and misclassified sources, sepa-
rately for CLMs and NCLMs. Such results are graphically repre-
sented in Fig. D.2. All three methods share ∼76% of their com-
monalities (i.e. summing of correct and incorrect predictions), of
which, ∼97% (i.e. 74.6% with respect to the whole set of com-
mon sources) were correctly classified. Common true positives
and true negatives (i.e. CLMs and NCLMs that have been cor-
rectly classified) were ∼75%. The CNN and Bayesian method
shared the largest fraction of predictions ∼90% (of which ∼93%
were correct) with respect to the joint classification of CNN and
RF (∼82%); this implied that RF had a significant fraction of
uncommon predictions (∼14%).

Concerning the misclassified objects, the methods shared
∼2% of incorrect predictions, of which: ∼1% of CLMs were
common false negatives (FNs, i.e. CLMs sources wrongly pre-
dicted as NCLMs), while 2.5% were common false positives
(FPs, i.e. NCLMs sources wrongly predicted as CLMs). The
CNN exhibited the least fraction of misclassifications (about
10%). The CNN showed a percentage of FNs larger than

Bayesian (10% versus 7%), which, in turn, had a wider FP
rate (11% versus 17%). Therefore, although CNN and Bayesian
methods shared a significant fraction of incorrect predictions
(85% of common misclassifications, suggesting the existence
of a fraction of sources for which the membership is particu-
larly complex for both of them), these two models exhibit a dif-
ferent behaviour: the CNN tended to produce more pure than
complete CLMs samples, whereas the Bayesian method showed
the opposite, which is in agreement with what is reported in
Table D.5.

5. Photometric selection of CLMs

The experiments described in the previous sections are mostly
focused on the classification efficiency and limits of the image-
based CNN approach and evaluating its dependence from
observational parameters such as redshift, number of CLM,
photometric band compositions, magnitude, and colour. In this
section, we are mainly interested in evaluating the degree of
generalisation capability of the trained CNN in classifying new
sources as cluster members, a step process that is commonly
referred to as run in the ML context.

In particular, we applied the CNN model to the photomet-
rically selected CLMs in R2248, M0416, M1206, and M1149.
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Table 2. Statistical performances of the CNN model in EXP2.

Stacked

% Bright Faint Redder Bluer

pur 85.9 ± 0.4 82.2 ± 0.8 91.0 ± 0.5 79.4 ± 0.9
compl 95.2 ± 0.7 81.4 ± 1.0 95.2 ± 0.6 75.7 ± 1.0
F1 90.3 ± 0.4 81.7 ± 0.8 93.1 ± 0.7 77.6 ± 0.8

A370
% Bright Faint Redder Bluer
pur 88.4 ± 0.7 83.6 ± 0.9 90.5 ± 0.7 79.8 ± 1.0
compl 96.8 ± 0.7 80.8 ± 1.2 93.9 ± 0.4 77.4 ± 1.2
F1 92.4 ± 0.7 82.1 ± 0.9 92.2 ± 0.8 78.6 ± 0.9

M0329
% Bright Faint Redder Bluer
pur 80.7 ± 0.6 81.1 ± 1.7 88.3 ± 0.9 74.4 ± 1.2
compl 98.0 ± 1.0 85.1 ± 0.6 95.1 ± 0.6 78.6 ± 0.8
F1 89.3 ± 0.5 83.0 ± 1.7 91.7 ± 0.7 76.5 ± 1.0

MS2137
% Bright Faint Redder Bluer
pur 90.8 ± 1.0 76.7 ± 1.5 87.5 ± 0.3 72.0 ± 1.3
compl 88.9 ± 1.2 80.0 ± 0.9 90.6 ± 0.6 76.2 ± 1.0
F1 89.7 ± 1.1 78.3 ± 1.2 89.0 ± 0.4 74.1 ± 1.1

Notes. Best results are emphasised in bold.

The training set was constructed by combining all clusters with
the mixed* band configuration, using the k-fold approach (see
Sect. 3).

Similarly to what was done to build the knowledge base
(see Sect. 2), for the run set we used squared cut-outs ∼4′′
across, centered on the source positions as extracted by SExtrac-
tor (Bertin & Arnouts 1996). Thus, the run set was composed
by 5269 unknown sources, of which 1286, 1029, 1246, and
1708 were in the FoV of R2248, M0416, M1206, and M1149,
respectively.

The CNN identified a total of 372 members with F814 ≤
25 mag, which is approximately the magnitude limit of the spec-
troscopic members (only ∼3% of spectroscopic members has
F814 > 25), with ∼46% of candidate CLMs having membership
probabilities larger than 90%. The spatial distribution of both
spectroscopic and predicted CLMs are shown in Fig. 8, while the
magnitude (F814) distribution and the colour-magnitude rela-
tions (F606−F814 versus F814) for both spectroscopic and pre-
dicted members are shown in Fig. 9. The magnitude distributions
indicate that the CNN was able to complete the spectroscopic
CLMs sample down to F814 = 25. This was also confirmed by
the analysis of the colour-magnitude diagrams, which show that
the photometrically identified CLMs complete the spectroscopic
red-sequence at F814 < 25, emphasising the CNN capability
to disentangle CLMs from background objects. We counted also
the number of recognised CLMs within, respectively, 1, 2, and
3σ from the median of differential colour (F606 − F814)diff .

6. Discussion

One particular aspect that is often addressed when using ML
methods is the impact on the classification performances carried
by the amount of data available, both in terms of the number of
features (photometric bands) and amount of training objects. The
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Fig. 7. Comparison among the image-based CNN and two photomet-
ric catalogue-based approaches, namely, a random forest and Bayesian
method (EXP3), by combining results from the four clusters (R2248,
M0416, M1206, M1149). Upper panel shows the ROC curves for
the three methods with measured Area Under the Curve (AUC). The
middle panel reports the trends of purity and completeness as a func-
tion of the probability thresholds used to obtain the ROC curves. In the
three diagrams, we mark the intersection between such curves, i.e. the
probability for which completeness and purity are equal. Bottom panel
shows the differences between the three methods based on the statistical
estimators described in Appendix A.3.

EXP1 (see Sect. 4.1) enabled an analysis of the trade-off between
the information carried by the imaging bands and the number of
samples in the dataset. As reported in Table D.1 and Table D.2,
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RX J2248 z=0.346 MACS J0416 z=0.397

MACS J1206 z=0.439 MACS J1149 z=0.542

spec CLMs run CLMs

Fig. 8. CNN member selection (marked with open magenta squares) obtained with the run set, together with the spectroscopic CLMs (marked
with open green squares), in the core of the four clusters R2248 (z = 0.346), M0416 (z = 0.397), M1206 (z = 0.439) and M1149 (z = 0.542). All
images are 130 arcsec across.

there was a small improvement of efficiency (∼3%) by increas-
ing the size of the training sample by 34%, when comparing
the two mixed and mixed* configurations. However, these two
data samples included both optical and infrared information. To
better understand this important aspect, we performed a compar-
ison between data samples with and without the infrared bands.
Such analysis was carried out by directly comparing the two
ACS and ALL configurations, although the sample size of the
second one was ∼30% smaller. The results, shown in Table D.1

and Table D.2, suggested that the addition of infrared imaging
adequately compensated the smaller size of the training set.

We also investigated the dependence of member classifi-
cation performance on the magnitudes and colours. Here, the
EXP2a showed very good performances of the method for both
bright and faint sources, although with a slightly lower efficiency
in identifying fainter objects. On the other hand, EXP2b showed
a mean efficiency of ∼91% in classifying red galaxies, which
was reduced to ∼77% for blue objects (see Table 2).
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Fig. 9. CNN membership prediction (run) together with spectroscopic sources, represented as (i) CLMs distribution of F814 magnitudes (first row),
(ii) differential colour – magnitude sequence for both CLMs and NCLMs. Spectroscopic CLMs are shown in green, candidate members in purple,
spectroscopic NCLMs with blue squares and candidate NCLMs with open cyan circle. We only plot CNN cluster members with F814 ≤ 25 mag.
The grey region within the CM diagrams limits the area corresponding to ±1σ from the median (dashed horizontal line) of (F606 − F814)diff .
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Fig. 10. Ensemble of object cut-outs with a size of 64 pixels (∼4′′), corresponding to some specific CNN predictions in the clusters R2248 (first
three rows) and M0416 (last two rows). The True Positives (TPs), i.e. the CLMs correctly identified, are shown on first and fourth row with
green boxes, while False Positive and False Negative (FPs and FNs) are shown on the second, third and fifth row, framed by red and blue boxes,
respectively. The images were obtained by combining five HST bands: F435, F606, F814, F105, F140. The figure shows sources in the F814
band with a magnitude F814 ≤ 25 mag. TPs are shown together with their spectroscopic redshift, while FNs together with their cluster rest-frame
velocity separation. For convenience, in the case of FPs, their cluster velocity separations are quoted when within ±9000 km s−1, otherwise their
redshift is shown.
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Fig. 11. Same of Fig. 10 for the cluster M1206 (first three rows) and M1149 (last three rows).

To further investigate the robustness in the identification of
cluster members (i.e. the positive class), from the classification
confusion matrices, we defined true positives (TPs) the CLMs
correctly classified, false positives (FPs) NCLMs classified as
CLMs, false negatives (FNs) the CLMs classified as NCLMs,
and, finally, true negatives (TNs) as NCLMs correctly classified.
A short sample of TPs, FPs and FNs in R2248 and M0416, and in
M1206 and M1149 are shown in Figs. 10 and 11, respectively.
We explored the model predictions, by inspecting the TPs and
the distribution of FPs and FNs as function of their magnitude
and colour.

A critical aspect of the classification of members within the
central cluster region is the impact of crowding. Therefore, we
specifically focused on the DL ability to predict cluster member-
ship in such circumstances (see a few examples of cut-outs in
Figs. 10 and 11).

We introduced a contamination index (CI) for each cut-out,
defined as: CI =

∑Nc
i=1 1/(di · F814i), where Nc is the num-

ber of contaminants in the cut-outs, di is the distance in arcsec
between the central source and i−th contaminant, while F814i is
the magnitude of the contaminating source. The indices for cut-

outs without contaminants were set to zero. Then, we normalised
this index in the [0, 1] interval. Figure 12 shows that the four
contamination index distributions of, respectively, TPs, TNs, FPs
and FNs mostly overlapped and followed the same trend. In fact,
the 48% of FNs and 28% of FPs had a non-zero contamination
index, as well as the 31% and 43% of TNs and TPs. The lack
of a correlation between the contamination index and incorrect
prediction rates (FPs and FNs) suggests that the source crowding
did not significantly affect the CNN classification efficiency.

By analysing the FP and FN rows in Figs. 10 and 11, we can
see an interesting dichotomy: FPs appear as red galaxies, while
FNs as blue; in addition, the FPs have F814 < 24, whereas FNs
are found also down to F814 ∼ 25. In order to quantify such
behaviours, we analysed the distribution of FPs and FNs in terms
of: (i) the F814 magnitude for both FPs and FNs (Fig. 13a);
(ii) the correlation between the CNN incorrect predictions and
differential colours (F606 − F814)diff (Fig. 13b). These results
are summarised in Table 3.

Figure 13a and Col. 4 in Table 3 showed that almost all
CLMs fainter than F814W = 25 (representing a small fraction
with respect to the total, see Col. 2 in Table 3) were FNs. This
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was not due to any failure on the part of the model, but, rather,
to the poor sampling of such objects within the parameter space
available to train the model. This was also confirmed when com-
paring the percentage of FPs and FNs with respect to the percent-
age of CLMs and NCLMs in Table 3 as a function of magnitude.
In fact, Table 3 showed that the model tried to reproduce the dis-
tribution in terms of fractions of CLMs for FPs, and in terms of
the fraction of NCLMs for FNs.

Finally, we analysed the correlations between the CNN
incorrect predictions and colours. These distributions are shown
in Fig. 13b using the differential colour (F606−F814)diff , while,
in Table 3, the misclassification percentages are summarised.
Also in this case, the distributions of FPs and FNs as a func-
tion of colours, are mimicking, respectively, the distributions of
CLMs and NCLMs in Table 3.

Very blue sources ((F606−F814)diff < −0.5) populated only
5.8% of CLMs and represented the ∼35.4% of incorrect predic-
tions, which is very similar to the fraction of very blue sources
in the population of NCLMs (i.e. 43.2%). Conversely, redder
sources were typically correctly classified, showing a FN rate of
16.6%. Moreover, from the fraction of FN/CLMs, we observed
that almost all the blue cluster members were wrongly classified
as NCLMs (see Col. 4 in Table 3 and Fig. 13b).

Regarding FPs, there was not a real classification prob-
lem with faint and very blue objects, whose rates in terms
of CLMs were, respectively, 3.4% and 5.8%, corresponding
to 2.2% and 4.3% of incorrect predictions, respectively. From
Table 3, it was also evident that within red misclassifications,
FPs were more frequent than FNs (29.5% versus 16.6%), repro-
ducing the distributions of CLMs (39.2%) and NCLMs (15.4%),
respectively.

Figure 14 shows the colour-magnitude relation of CLMs
(green squares), overlapping the FP (red cross), FN (blue cross)
and NCLM (grey circle) distributions. It emphasises the CLMs
undersampling of the blue and faint region, together with the
large concentration of FNs among bluer and fainter sources
(see blue crosses). Among all the FNs, ∼35% are very blue
((F606 − F814)diff < −0.5), ∼40% of these had F814 >
25 mag, suggesting that in the bluer region the FNs follows the
NCLM distribution, while among FPs, ∼64% of them are red
((F606 − F814)diff > −0.1), but only ∼1% of these have magni-
tude fainter than F814 > 25 mag. On the other hand, ∼35% of
all FPs were within the yellow contours, which refer to the 1σ
colour-magnitude relation, indicating that they were on the red
sequence.

In order to understand the impact of this misclassification of
faint and very blue sources, we report, in Table 4, the statistical
estimators for the stacked sample and, individually for R2248,
M0416, M1206, M1149), considering either the whole sample
or by removing sources with F814 > 25 and very blue objects,
that is, with (F606 − F814)diff < −0.5. By comparing these
results, we observed a relevant increase of the completeness (for
the stacked sample, it goes from 84.8% to 90.8%). This was
mainly motivated by the sensible reduction of the FNs amount,
which, by definition, had a higher impact on the completeness,
rather than on other estimators. In fact, the purity and F1 score
showed a smaller improvement, going, respectively, from 87.9%
to 88.4% and from 86.3% to 88.9%.

In summary, the FNs were mainly blue and faint. This was
expected, given their under-representation in the dataset and
their similarity with NCLMs. We note, in fact, that we were map-
ping a population of cluster members in the central and high-
est density region of clusters, dominated by a high fraction of
bright and red members. Nevertheless, the simple exclusion of

0.0 0.2 0.4 0.6 0.8 1.0

contamination index

10−1

100

101 TPs

TNs

FPs

FNs

Fig. 12. Logarithmic distribution of the contamination index for true
positives (TPs, green), true negatives (cyan), false positives (red), and
false negatives (blue). The distribution includes all available clusters.

fainter sources with F814 > 25 and (F606 − F814)diff < −0.5
improved the CNN performance. Similar performances in terms
of the distribution of false positives and negatives for sources
with F814 > 25 and (F606− F814)diff < −0.5 were obtained by
the random forest classifier and the photometry-based Bayesian
method. By comparing the behaviour of these three models on
four clusters (R2248, M0416, M1206 and M1149), we found
that the rate of blue FN is 28% for the Bayesian method and
25% for the random forest versus the 20% for the CNN. The rate
of faint FN is 1% for the random forest and 6% for the Bayesian
method versus the 5% of CNN. For what concerns FPs, the CNN,
being the purest method, preserved the lowest contamination for
both bluer and fainter members, with only four NCLMs clas-
sified as CLMs, compared with the 12 and 24 NCLMs for the
Bayesian method and the random forest, respectively.

This comparison, while it confirms the good performances
of the CNN, also shows that the three methods have comparable
efficiencies in the faint and blue region of the parameter space,
which is likely due to undersampling of members in this region
of the knowledge base, as pointed out above. This is due to the
fact that the population of galaxies in the densest central cluster
regions is brighter and redder than that of the less dense and outer
cluster regions (see Annunziatella et al. 2014; Mercurio et al.
2016 for the specific study of M1206). Clearly, an improvement
of the model’s performances would require including member
galaxies in the outer cluster regions and balancing the number
of bluer and fainter members. In our case, even if the spectro-
scopic data cover more than two cluster virial radii, multi-band
HST imaging with sufficient depth is only available in the central
cluster regions.

Finally, we used both spectroscopic members and candi-
date CLMs identified by CNN to estimate the cumulative pro-
jected number of cluster members and the differential number
density profiles (Fig. 15). According to our previous analysis,
we excluded candidate CLMs with F814 > 25 mag, where
only ∼3% of spectroscopic members were present. To prop-
erly compare profiles of clusters with different virial masses,
we computed the values R200 from of the values of M200c
obtained by Umetsu et al. (2018) with independent weak lensing
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Fig. 13. Magnitude (left panel) and colour (right panel) logarithmic distributions of FPs (red) and FNs (blue), overlapped to the CLM (green)
and NCLM distributions, for the fifteen clusters (stacked) included in our study. The number of objects for each plotted distribution is quoted in
brackets in the legend. The differential colour (F606 − F814)diff is obtained by applying the correction for the mean colour-magnitude relation for
each cluster. Table 3 outlines such results.

Table 3. Summary of FP and FN distributions.

CLMs FPs FPs/NCLMs
Total number 1187 139 0.084

F814 < 25.0 96.6% 97.8% 0.131
F814 ≥ 25.0 3.4% 2.2% 0.005
(F606 − F814)diff < −0.5 5.8% 4.3% 0.008
(F606 − F814)diff < 0.0 60.8% 70.5% 0.070
(F606 − F814)diff ≥ 0.0 39.2% 29.5% 0.161

NCLMs FNs FNs/CLMs
Total number 1655 181 0.152
F814 < 25.0 62.7% 79.0% 0.125
F814 ≥ 25.0 37.3% 21.0% 0.950
(F606 − F814)diff < −0.5 43.2% 35.4% 0.928
(F606 − F814)diff < 0.0 84.6% 83.4% 0.209
(F606 − F814)diff ≥ 0.0 15.4% 16.6% 0.065

Notes. Fractions of CLMs (Col. 2), False Positives (FPs) (Col. 3) and
the ratio of FPs to NCLMs (Col. 4) as a function of magnitude (second
and third row) and colours (fourth to sixth row). The total number of
spectroscopic CLMs and FPs are quoted in the first row. Fractions as
a function of colours are computed only for sources whose F814 and
F606W magnitudes are available (∼84% of the whole dataset). Similar
fractions for NCLMs, FNs (False Negatives) and FNs/CLMs are quoted
in the bottom half of the table.

measurements3. We then computed all profiles as a function of
the projected radius in units of R200 and rescaled them by the
number of members, N0, found within the radius R/R200 = 0.15
in each cluster. In Fig. 15, we showed the cumulative pro-
jected number and the differential projected number density pro-
files of cluster members after applying such renormalisations,

3 We note again that R200 =
(

2G
H(zcl)2

M200c
200

) 1
3 , where H(zcl) is the Hubble

constant computed at the cluster redshift.

Table 4. Comparison among CNN performances considering the whole
sample (Col. 2) and by removing sources with F814 ≥ 25 and (F606 −
F814)diff < −0.5 (Col. 3).

Complete sample F814 < 25.0 &
(F606 − F814)diff ≥ −0.5

true CLMs 1187 1100
pred CLMs 1145 1130
TPs 1006 999
FPs 139 131
FNs 181 101
pur 87.9% 88.4%
compl 84.8% 90.8%
F1 86.3% 89.6%

where the shaded areas correspond to 68% confidence levels.
Interestingly, we found that the radial distributions of all clus-
ters followed a universal profile, including M0416, which is an
asymmetric merging cluster. We noted that a similar homology
relation among rescaled projected mass profiles was found in
Bonamigo et al. (2018) and Caminha et al. (2019), using strong
lensing modelling. This result confirms that our methodology
was able to identify the CLM population with a high degree of
purity and completeness.

7. Conclusions

In this work, we carry out a detailed analysis of CNN capabili-
ties to identify members in galaxy clusters, disentangling them
from foreground and background objects, based on imaging data
alone. Such a methodology, therefore, avoided the time con-
suming and challenging task of building photometric catalogues
in cluster cores. We used OPT-NIR high quality HST images,
supported by MUSE and CLASH-VLT spectroscopic observa-
tions of fifteen clusters, spanning the redshift range zcluster =
(0.19, 0.60).
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Fig. 14. Colour-magnitude relation for the
CLMs (green squares), with the overlapped
distributions of FPs (red crosses), FNs (blue
crosses) and NCLMs (grey circles), for the
sample of fifteen clusters (stacked). The yel-
low contour delimits the red-sequence at 1σ
confidence level. Colours reported on the y-
axis are corrected for the mean red-sequence
of each cluster (see Sect. 4).

We used this extensive spectroscopic coverage to build a
training set by combining CLMs and NCLMs. We performed
three experiments by consecutively varying the HST band com-
binations and the set of training clusters to study the depen-
dence of DL efficiency on (i) the cluster redshift (EXP1); and
(ii) the magnitude and colour of cluster galaxies (EXP2). We
also compared the CNN performance with other methods (ran-
dom forest and Bayesian model), based instead on photometric
measurements (EXP3). The main results can be summarised as
follows:

– Despite members belonging to clusters spanning a wide
range of redshift, the CNN achieved a purity-completeness
rate & 90%, showing a stable behaviour and a remarkable
generalisation capability over a relatively wide cluster red-
shift range (Sect. 4.1).

– The CNN efficiency was maximised when a large set of
sources was combined with HST passbands, including both
optical and infrared information. The robustness of the
trained model appeared reliable even when a subset of clus-
ters was moved from the training to the blind test set, caus-
ing a small drop (<5%) in performance. We observed some
performance differences for bright and faint sources, as well
as for red and blue galaxies. However, the results main-
tained the purity, completeness and F1 score greater than
72% (Table 2 in Sect. 4.2).

– By using images, rather than photometric measurements, the
CNN technique was able to identify CLMs with the low-
est rate of contamination and the best trade-off between
purity and completeness, when compared to photometry-
based methods, which instead require a critical fine-tuning
of the classification probability.

– The false negatives, that is, the NCLMs wrongly classified as
CLMs were mainly blue and faint. This was simply the result
of their limited under-sampling in the training dataset, as
well as their similarity with NCLMs. However, by excluding

sources with F814 > 25 mag and (F606 − F814)diff <
−0.5, the CNN performance improved significantly. These
performances reflected the capability of the CNN to clas-
sify unknown objects, from which a highly complete and
pure magnitude limited sample of candidate CLMs could be
extracted for several different applications in the study of the
galaxy populations and mass distribution of galaxy clusters
via lensing techniques.

Therefore, based on an adequate spectroscopic survey of a lim-
ited sample of clusters as a training base, the proposed method-
ology can be considered a valid alternative to photometry-based
methods, circumventing the time-consuming process of multi-
band photometry, and working directly on multi-band imaging
data in counts. To improve CNN performance to recognise the
faintest and blue CLMs, it would be desirable to plan both HST
and spectroscopic observations also covering control fields in the
outer cluster regions, with the same depth and passbands as the
central regions.

Furthermore, the generalisation capability of this kind of
models makes them both versatile and reusable tools. In fact, the
convolution layers of a trained deep network can be reused as
shared layers in larger models, such as the Faster Region CNN
(Ren et al. 2015) and Masked Region CNN (He et al. 2017),
which exploit kernel weights to extract multidimensional infor-
mation suitable to performing object detection. Such architec-
tures have already found interesting astrophysical applications,
for example, in the identification of radio sources (Wu et al.
2019) and the automatic deblending of astronomical sources
(Burke et al. 2019).

In future works, we will extend this analysis to wide-
field ground-based observations and explore other promis-
ing deep learning architectures, such as deep auto-encoders
(Goodfellow 2010) and conditional generative adversarial net-
works (Mirza & Osindero 2014), to integrate the ground-based
lower resolution images with the high quality of HST images
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Fig. 15. Cumulative (left) and differential (right) projected number of CLM for the four clusters (R2248, M0416, M1206, and M1149), including
spectroscopic CLMs and candidate members identified by CNN (limited to F814 ≤ 25 mag). The areas correspond to the 68% confidence level
regions. All profiles are normalised by the number N0 of members with R < 0.15 R200 in all clusters. The number of spectroscopic, CNN-identified
members (“run”), and N0 values are quoted in the left panel. The adopted values of R200 are quoted in the right panel, the computed values of
N0 are quoted in the left panel, together with the corresponding numbers of spectroscopic and “run” members. The dashed line in the right panel
corresponds to R = 0.15 R200.

in cluster fields. We also plan to investigate new techniques to
overcome the problem of missing data, thus increasing the size
of the training set with a more homogeneous sampling of the
entire parameter space.
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Appendix A: Methodology

Fig. A.1. Data augmentation example for a CLM at redshift z = 0.531
(e.g. within the gravitational potential of M1149). Five HST bands
are represented from the top to the bottom (F435, F606, F814, F105,
F140). The first column shows the original cut-out, while the three rota-
tions (90◦, 180◦, 270◦) are reported in Cols. 2–4. The two vertical and
horizontal flips are shown in the last two columns.

The data preparation phase, preceding the application of the ML
based classifiers, is organised as a series of pre-processing steps,
detailed in the following sections.

A.1. Data augmentation

The cut-outs have been rotated around the three right angles and
flipped with respect to the horizontal and vertical axes (an exam-
ple of such process is shown in Fig. A.1). Given the consider-
able number of model parameters to fit (∼105), deep learning
networks require an adequate amount of samples, in order to
avoid overfitting (Cui et al. 2015; Perez & Wang 2017). How-
ever, an uncontrolled augmentation could introduce false corre-
lations among the training samples. Therefore, only a fraction
of sources have been subject to these transformations: 15% of
the available images have been randomly extracted and used for
such transformations mentioned above. The resulting augmen-
tation factor was 1.75 times the original dimension of the train-
ing set. Obviously, such augmentation process involved only the
training images.

A.2. Setup of training and test sets

Before the k-fold splitting and the augmentation process,
described above, we randomly extracted a small sample of
sources (10% of the data set), reserved as validation set dur-
ing the training phase in order to control the gradual reduction
of the learning rate on the plateau of the cost function (Bengio
2012) and an early stopping regularisation process (Prechelt
1997; Raskutti et al. 2011). The data preparation flow is depicted
in Fig. A.2: (i) the dataset is composed by multi-bands images;
(ii) a fraction of sources (10%) is extracted as validation set; (iii)
the remaining samples are split into k = 10 folds without over-
lapping; (iv) for each of them, a fraction (15%) of samples is
augmented through cut-out rotations and flips; (v) the training
sets are built by concatenating k − 1 folds (composed by the

Table A.1. Generic confusion matrix for a binary classification prob-
lem.

Predictions

Positive Negative

True Positive TP FN
Negative FP TN

Notes. In a confusion matrix, columns indicate the number of objects
per class, as predicted by the classifier, while rows are referred to the
true (known) objects per class. Hence, the main diagonal terms report
the number of correctly classified objects for each class. While, the
terms FP and FN count, respectively, the false positives and false nega-
tive quantities.

original images and the artefacts) and the learning is evalu-
ated on the kth fold (without artefacts), acting as blind test; (vi)
finally, the model performances are evaluated on the whole train-
ing set, obtained by stacking all its (test) folds.

A.3. Statistical evaluation of performance

In order to assess the model classification performances, we
chose the following statistical estimators: “average efficiency”
(among all classes, abbreviated as “AE”), “purity” (also know as
“positive predictive value” or “precision”, abbreviated as “pur”),
“completeness-” (also known as “true positive rate” or “recall”,
abbreviated as “comp”), and F1-score (a measure of the combi-
nation of purity and completeness, abbreviated as “F1”).

In a binary confusion matrix, as in the example shown in
Table A.1, columns indicate the class objects as predicted by the
classifier, while rows refer to the true objects per class. The main
diagonal terms contain the number of correctly classified objects
for each class, while the terms FP and FN report the amount of,
respectively, false positives and false negatives. Therefore, the
derived estimators are computed as:

AE =
TP + TN

TP + FP + TN + FN
(A.1)

pur =
TP

TP + FP
(A.2)

comp =
TP

TP + FN
(A.3)

F1 = 2 ·
pur · comp
pur + comp

(A.4)

The AE is the ratio between the sum of the correctly clas-
sified objects (for all the involved classes) and the total amount
of objects; it describes an average evaluation weighted on all
involved classes. The “purity” of a class is the ratio between the
correctly classified objects and the sum of all objects assigned
to that class (i.e. the predicted membership); it measures the
precision of the classification. The “completeness” of a class
is the ratio between the correctly classified objects and the
total amount of objects belonging to that class (i.e. the “true”
membership), it estimates the sensitivity of the classification.
Finally, the F1-score is the harmonic average between purity and
completeness. By definition, the dual quantity of purity is the
“contamination”, a measure which indicates the amount of mis-
classified objects for each class.

Moreover, from the probability vector (i.e. the set of values
stating the probability that an input belongs to a certain class),
it is possible to extract another useful estimator, the receiver
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Fig. A.2. Data preparation flow: from the whole dataset (i.e. the knowledge base) a validation set is extracted. The rest of the dataset is split
through a k-fold partitioning process (in this image, we simplified the figure assuming k = 4 folds, while in reality we used k = 10). The training
samples are then arranged, by permuting the involved augmented folds, while the test samples dof not include the artefact images generated by the
augmentation process. These sets are finally stacked in order to evaluate the global training performances.

operating characteristic (ROC) curve. It is a diagram in which the
true positive rate is plotted versus the false positive rate by vary-
ing a membership probability threshold (see Fig. 6). The over-
all score is measured by the area under the ROC curve (AUC),
where an area of 1 represents a perfect classification, while an
area of 0.5 indicates a useless result (akin to a toss of a coin).

Appendix B: Convolution neural networks

In this appendix, CNNs theory and our specific implementation
are briefly described. while a synthetic view of the implemented
model is shown in Fig. B.1.

As any other artificial neural networks, convolution neural
networks (CNNs, LeCun et al. 1989) are inspired by biologi-
cal behaviours. Artificial neurons are arranged in several layers,
where each neuron takes as input the signal coming from neu-
rons belonging to the previous layer; such as biological neurons,
the variation of the synaptic connection sensibility (with respect
to a certain input signal) is correlated to the learning mechanism
(Hebb 1949). During the training, these connection sensibilities
among layers (i.e. the weights) are adapted through a forward-
backward mechanism, at the base of the iterative learning
process (Bishop 2006). After training, supervised Machine
Learning methods define a non-linear relation between the input
and output spaces, which is encoded within the weight matrices.

CNNs represent one of the most widely-used super-
vised techniques among the Deep Neural Networks (DNN,
Goodfellow et al. 2016), whose peculiarity is an ensemble of
receptive fields which trigger neuron activity. The receptive field
is represented by a small matrix (called as kernel or filter), which
connects two consecutive layers through a convolution opera-
tion. Similar to the adaptation mechanism imposed by super-
vised machine learning, the kernels are modified during the
training. The peculiarity of such kind of models is the capability
to automatically extract meaningful features from images (such
as edges and shapes), which become the input vector to any stan-
dard ML model that outputs the class of the input image. The
idea behind CNN is a convolution-subsampling chain mecha-
nism: deep networks are characterised by tens of layers (in some

cases hundreds, as proposed by He et al. 2015 and Xie et al.
2016), where at each depth level, the convolution acts as a filter,
emphasising (or suppressing) some properties; while the sub-
sampling (often called pooling) makes sure that only essential
information is moved towards the next layer.

CNNs are organised as a hierarchical series of layers, typi-
cally based on convolution and pooling operations. Convolution
kernel is represented by a 4-D matrix K, where the element Ki, j,k,l
is the connection weight between the output unit i and the input
unit j, with an offset of k rows and l columns. This kernel is
convoluted with the input signal and adapted during the training.
Given an input V, whose element Vi, j,k represents an observed
data value of the channel i at row j and column k, the neuron
activity can be expressed as (Goodfellow 2010):

Zi, j,k = c(K,V, s)i, j,k + b

=
∑
l,m,n

Vl,( j−1)×s+m,(k−1)×s+nKi,l,m,n + b (B.1)

Zi, j,k ← p(Z, d)i, j,k (B.2)
Zi, j,k ← f (Z, {a}q)i, j,k (B.3)

where c(K,V, s) is the convolution operation between the input
V and the kernel K with stride s; b is an addend that acts as bias;
p(Z, d) is the pooling operation with down-sampling factor d;
f (Z, {a}q) is the activation function characterised by the set of
hyper-parameters {a}q. The pooling function reduces the dimen-
sion, by replacing the network output at a certain location with a
summary statistic of nearby outputs (Goodfellow et al. 2016).

Unlike traditional artificial neural networks (e.g. Multi-
Layer Perceptron), where all neurons of two consecutive layers
are fully connected among them, the connection among neurons
in a CNN is “sparse”, that is, the interaction between neurons
belonging to different layers is limited to a small fraction. This
reduces the number of operations, the memory requirements and,
thus, the computing time. The output layer consists of an ensem-
ble of sub-images with reduced dimensions, called feature maps,
each of them represents a feature extracted from the original sig-
nal, processed by the net in order to solve the assigned problem.
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Fig. B.1. Streamlined representation of the architecture designed for the CNN model used in this work. Orange and blue items describe two
different block operations, respectively: (i) convolution and activation function, (ii) convolution, activation function and pooling. The simultaneous
reduction of the square dimensions and their increasing amount intuitively represent the abstraction process typical of a CNN. Green circular units
are arranged in order to describe the fully connected (i.e. dense) layers. The dimensions of the feature maps are reported for each pooling operation,
together with the number of features extracted by the CNN.

Another common operation performed during the training of
a CNN is the random dropout of weights. This function pre-
vents units from co-adapting, reduces significantly overfitting
and gives major improvements over other regularization methods
(Srivastava et al. 2014). At the end of the network, the resulting
feature maps ensemble is fully connected with one or more hid-
den layers (also called “dense layers”), the last of which, in turn,
is fully connected to the output layer. The net output must have
the same shape of the known target: within the supervised learn-
ing paradigm, the comparison between output and target induces
the kernel adaptations. When the net task is a classification prob-
lem (as in this work), the output is a matrix of probabilities, that
is, each sample has a membership probability related to any class
of the problem. In order to transform floating values into proba-
bilities (i.e. forced to the constraint

∑nclasses
j=1 p j = 1), the activation

function of the final dense layer is typically a softmax, which nor-
malises a vector into a probability distribution (Bishop 2006). In
order to solve a classification problem, the network learns how
to disentangle objects in the train set, minimising a loss function
(or cost function). The most common choice for the loss function
is the cross-entropy (Goodfellow et al. 2016):

C(y, ȳ) =

nclasses∑
j=1

y j ln ȳ j + (1 − y j) ln (1 − ȳ j) (B.4)

where y is the target and ȳ is the output of the final layer. Thus,
during the training, images extracted from the train set are propa-
gated through the network, while weights and biases are adapted
along with a backward flow in order to minimise the cost func-
tion. To perform such optimization, it is necessary to state the
minimization algorithm. The simplest and most used optimiser is
the Stochastic Gradient Descendent (Bishop 2006), but in recent
years several optimisers have been proposed (e.g. Duchi et al.
2011; Zeiler 2012; Kingma & Ba 2014), which offer a faster

convergence to the minimum, avoiding the local dump of the cost
function. In this work we chose Adadelta (Zeiler 2012) as opti-
miser. Furthermore, we included (i) an early stopping regulari-
sation criterion (Prechelt 1997; Raskutti et al. 2011), preventing
overfitting; and (ii) a gradual reduction of the learning rate on the
plateau of the loss function (as function of epochs, Bengio 2012).
Both techniques exploit a validation set, extracted from the train
set, used to compute and evaluate the learning efficiency within
the training cycles. In our case, to avoid memory loss, the net-
work has been trained with input data batches of size equals to
64 patterns.

The architecture of our VGGNET-like model is reported in
Table B.1. It is composed of 47 layers and convolution ker-
nels with a window size of 3 × 3. The max pooling criterion
was preferred to the average algorithm, in order to reduce the
noise contribution. We set the Leaky version of a Rectified Lin-
ear Unit (LeReLU, Maas et al. 2013) as activation function for
all the neurons. This type of activation allows (i) a small, non-
zero gradient also when the unit is saturated and not active, (ii)
a gain of the convergence with the increase of the units, defined
as:

out(x) =

{
alpha · x x < 0
x x ≥ 0 (B.5)

where α is a hyper-parameter set to 0.3.
This network has been implemented through keras (Chollet

2015), with tensorflow (Abadi et al. 2015) as backend system.
Both of them are open-source Python libraries, allowing the
automatic handling of the Graphic Processing Unit (GPU),
achieving a huge gain in terms of computational cost (∼700
see Simard et al. 2005). In this work the experiments were per-
formed with an NVIDIA GPU Titan Xp and an NVIDIA GPU
Quadro P5000, requiring ∼30 minutes to complete the training
(on a single fold, see Appendix A.2).
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Table B.1. VGGNET-like model configuration.

Layer Output shape Params #

Input layer (64, 64, NC) 0
Conv2D (64, 64, 64) 6976
Leaky ReLU (64, 64, 64) 0
Conv2D (64, 64, 64) 36928
Leaky ReLU (64, 64, 64) 0
Max Pool2D (32, 32, 64) 0
Conv2D (32, 32, 128) 73856
Leaky ReLU (32, 32, 128) 0
Conv2D (32, 32, 128) 147584
Leaky ReLU (32, 32, 128) 0
Max Pool2D (16, 16, 128) 0
Conv2D (16, 16, 256) 295168
Leaky ReLU (16, 32, 256) 0
Conv2D (16, 16, 256) 590080
Leaky ReLU (16, 16, 256) 0
Conv2D (16, 16, 256) 590080
Leaky ReLU (16, 32, 256) 0
Conv2D (16, 16, 256) 590080
Leaky ReLU (16, 16, 256) 0
Max Pool2D (8, 8, 256) 0
Conv2D (8, 8, 512) 1180160
Leaky ReLU (8, 8, 512) 0
Conv2D (8, 8, 512) 2359808
Leaky ReLU (8, 8, 512) 0
Conv2D (8, 8, 512) 2359808
Leaky ReLU (8, 8, 512) 0
Conv2D (8, 8, 512) 2359808
Leaky ReLU (8, 8, 512) 0
Max Pool2D (4, 4, 512) 0
Conv2D (4, 4, 512) 2359808
Leaky ReLU (4, 4, 512) 0
Conv2D (8, 8, 512) 2359808
Leaky ReLU (4, 4, 512) 0
Conv2D (4, 4, 512) 2359808
Leaky ReLU (4, 4, 512) 0
Conv2D (4, 4, 512) 2359808
Leaky ReLU (4, 4, 512) 0
Max Pool2D (2, 2, 512) 0
Flatten (2048) 0
Dense (4096) 8392704
Leaky ReLU (4096) 0
Dropout (4096) 0
Dense (4096) 16781312
Leaky ReLU (4096) 0
Dropout (4096) 0
Dense (2) 8194
Output Layer (2) 0

Notes. The columns specify the layer operation, the shape of the output
and the number of parameters to fit. The output shape of a layer is a
4-D matrix, but, since the first dimension is the fixed size of the input
data batch (with a size of 64 patterns), we do not mention this number
to prevent confusion. The total amount of trainable parameters is larger
than 45M. The last dimension of the input layer is the involved num-
ber of channels (i.e. the number of photometric bands used), a quantity
depending on the specific experiment (see Sect. 2).

Appendix C: Benchmark methods

We compared CNN performances with two techniques based on
photometric catalogues: a random forest (RF, Breiman 2001) and
a Bayesian Method (briefly described in Grillo et al. 2015).

A Bayesian classifier is a model able to minimise the error
probability (Devroye et al. 1996), defined as: L(g) = P[g(X) ,
Y], where (X,Y) are pair values ∈ Rd × {1, . . . ,M} (i.e. Y is the
ensemble of class labels related to the manifold X), g is a classi-
fier (i.e. a function g : x ∈ X ⊆ Rd → y ∈ {1, . . . ,M}), L is an
application mapping g into probabilities. The minimal probabil-
ity error is denoted L∗ = L(g∗), that can be written as:

g∗ = argmin
g:Rd→{1,...,M}

P[g(X) , Y]

Given a classical linear model ȳi =
∑p

j=1 xi jθ j, i = 1, . . . , n, the
method estimates {θ}pi in order to minimise a coherent combi-
nation of the residuals ri = yi − ȳi. The implemented method
exploits a minimum covariance determinant method (Rousseeuw
1984), which is based on the minimization of the median of
squared residuals.

Random forest is a machine learning classifier consisting of a
collection of tree-structured classifiers {h(x, θk), k = 1, . . .}where
the {θk} are independent identically distributed random vectors
and each tree casts a unit vote for the most popular class at input
x. The generalisation error for this algorithm depends on the
strength of single trees and from their correlations through the
raw margin functions. To improve the model accuracy by keep-
ing trees strength, the correlation between trees is decreased and
bagging with a random selection of features is adopted. Bag-
ging, or bootstrap aggregating, is a method designed to improve
the stability and accuracy of machine learning algorithms. It
also reduces variance and helps to avoid overfitting. In this
work, we used the RF provided by Scikit-Learn python library
(Pedregosa et al. 2011).

Appendix D: Technical descriptions of our
performed experiments

In this appendix, we report tables and figures describing in detail
the analysis performed for each experiment.

D.1. EXP1

Table D.1. CNN percentage performances in the EXP1 experiment.

Class % mixed ACS ALL mixed*

AE 86.7 87.4 87.7 89.3
pur 83.1 85.0 86.4 88.3

CLM compl 88.4 88.5 86.4 86.7
F1 85.6 86.7 86.4 87.4
pur 90.0 89.9 88.9 90.0

NCLM compl 85.5 86.7 88.9 91.2
F1 87.7 88.3 88.9 90.6

Notes. The performances are related to the four band configurations (see
Sect. 2) and expressed in terms of the statistical estimators described in
Appendix A.3. The overall best results are highlighted in bold.
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With this experiment, we evaluated the CNN capabilities to iden-
tify CLMs at different cluster redshifts, zcluster ∈ (0.2, 0.6), using
different HST band combinations (see Sects. 2 and 4.1). Further-
more, in this experiment, we studied the dependence on redshift
and on the number of spectroscopic sources involved in the train-
ing. The results related to this experiment have been summarised
in Sect. 4.1.

In Table D.1, we report the results achieved globally by
CNN, that is, by combining the available clusters (see also
Fig. 4), while Table D.2 outlines the performances for each
involved cluster, varying the band combinations. The experiment
has been carried out with the k-fold approach, stacking sources
in the FoV of 13 (15 only for the mixed* configuration) clusters,
ensuring that the k-est fold is populated by objects extracted from
each involved cluster, proportionally to the number of available
spectroscopic sources, that is, providing adequate coverage of
the training set respect to the test set.

The comparison between the band configurations is also
shown in Fig. D.1, in which performances and their fluctuations
are displayed as function of the involved number of samples. For
each configuration, we split the knowledge space into ten dis-
jointed subsets, which have been progressively merged in order
to build a dataset with which CNN has been trained and tested,
always using the k-fold approach.

In order to analyse the dependence on redshift, we split the
CLM redshift range into five equally populated bins and, to com-
plete the knowledge space, with extracted without repetitions
from the NCLM population an appropriate number of objects.
The network has been trained within each ensemble adopting the
k-fold approach, using only the mixed* band combination. The
result is graphically shown in Fig. 5 and it is stored in Table D.3,
in which, we have specified the fluctuation of estimators as an
error estimated on the ten folds.

D.2. EXP2

In this experiment, we explored the limits of the CNN in terms
of its classification efficiency. With this aim, we excluded three
clusters from the training sample, respectively, A370 (z =
0.375), MS2137 (z = 0.316) and M0329 (z = 0.450), which
were considered as the blind test set. Such experiment is par-
ticularly suitable to evaluate the model capability to predict the
cluster membership of sources extracted from clusters unused
during training. Furthermore, in this experiment, we varied the
training configuration based on three redshift ranges centered
on A370 cluster redshift (named as narrow, intermediate and
large, see Sect. 4.2 and Fig. 3), exploiting the mixed* band
configuration. This experiment has been described in Sect. 4.2.
Table D.4 outlines the results achieved on the three config-
urations together with Fig. 6. As second step, we analysed

the CNN classification capabilities by separating, respectively,
brighter from fainter (EXP2a), and redder from bluer objects
(EXP2b). Concerning the magnitude threshold, we split the
CLM F814 distribution into two equal-sized sets (F814 limits
are 22.0 mag, 21.7 mag, and 21.6 mag for, respectively, A370,
M0329 and MS2137). Regarding the colour split, we exploited
the correlation between the Balmer break and the differential
colour, as shown in Girardi et al. (2015): (F814 − F160)diff =
(F814 − F160Wobs − CM(F814), that is, the difference between
the observed colour and the one of the colour-magnitude (CM)
relation at a given magnitude. For each cluster, we fitted the
CM sequence using a robust linear regression (Cappellari et al.
2013) involving spectroscopic confirmed members. By apply-
ing this kind of correction to the source colour, redder members
were centered around zero, while bluer objects have differen-
tial colours around −0.2 mag. The differential colour thresh-
olds were −0.160, −0.165, −0.157 mag for, respectively, A370,
M0329 and MS2137. For both experiments, we opted for a large
ensemble and mixed* band configuration. The results are shown
in Table 2.

D.3. EXP3

This test was devoted to the comparison of CNN perfor-
mance with two different photometry-based methods, exploit-
ing a random forest classifier (Breiman 2001) and a Bayesian
model (Grillo et al. 2015). Both techniques critically use multi-
band photometric information, for example, magnitudes and
colours. This experiment has been outlined in Sect. 4.3. The
Bayesian method has already been applied in order to enlarge
the cluster member selection, including galaxies without spec-
troscopic information, for four clusters: R2248, M0416, M1206,
and M1149 (Grillo et al. 2015; Caminha et al. 2016, 2017a;
Treu et al. 2016). We compare these methods with our CNN,
trained with the mixed* band configuration, constraining the
results to these four involved clusters. The comparison is sum-
marised in Table D.5 in term of statistical estimators, whereas,
in Fig. 7 and Fig. D.3, it is shown in terms of ROC curves
(see Appendix A.3), in Fig. D.2 in terms of commonalities
among predictions. Particularly, we also compared performances
between CNN and photometric methods by computing the dif-
ferences: ∆estim = estimCNN − max{estimRF, estimBayesian} for
estim ∈ [pur, compl, F1, AE], that is, the difference between
CNN metrics and the corresponding maximum scores achieved
by RF or Bayesian model. All these differences are listed in the
last column of Table D.5, together with the average among these
∆s for each cluster (rows µ∆).

An additional comparison of the three methods based on
common membership predictions (see Fig. D.2), is discussed in
Sect. 4.3.
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Table D.2. CNN percentage performances evaluated for each cluster and for each band configuration related to the EXP1 experiment.

A383 z = 0.188 R2129 z = 0.234 A2744 z = 0.308

mixed ACS ALL mixed* mixed ACS ALL mixed* mixed ACS ALL mixed*
AE 77.0 81.8 78.3 83.0 89.7 91.6 93.7 92.3 93.6
pur 77.2 82.9 82.5 86.3 76.5 84.6 86.5 84.4 95.3

CLM compl 81.5 82.9 75.0 81.5 90.7 91.7 88.9 88.4 86.5
F1 79.3 82.9 78.6 83.8 83.0 88.0 87.7 86.4 Only mixed* 90.7
pur 76.7 80.6 74.4 79.6 96.2 95.6 96.2 95.5 92.8

NCLM compl 71.7 80.6 82.1 84.8 89.3 91.6 95.3 93.8 97.6
F1 74.2 80.6 78.0 82.1 92.6 93.6 95.8 94.6 95.2

MS2137 z = 0.316 R2248 z = 0.346 M1931 z = 0.352
mixed ACS ALL mixed* mixed ACS ALL mixed* mixed ACS ALL mixed*

AE 83.7 81.5 88.2 88.4 89.5 86.5 90.2 88.1 84.0 86.0 84.9 90.0
pur 80.0 79.7 85.7 89.7 88.6 85.2 90.7 88.3 91.3 85.3 83.6 100.0

CLM compl 87.8 81.0 90.9 85.4 92.4 91.3 92.5 89.8 67.7 80.6 78.0 75.8
F1 83.7 80.3 88.2 87.5 90.5 88.1 91.6 89.1 77.8 82.9 80.7 86.2
pur 87.8 83.1 90.9 87.2 90.6 88.3 89.5 87.9 80.8 86.4 85.7 85.4

NCLM compl 80.0 81.9 85.7 91.1 86.1 80.7 87.2 86.1 95.5 89.9 89.7 100.0
F1 83.7 82.5 88.2 89.1 88.3 84.3 88.3 87.0 87.5 88.1 87.6 92.1

M1115 z = 0.352 A370 z = 0.375 M0416 z = 0.397
mixed ACS ALL mixed* mixed ACS ALL mixed* mixed ACS ALL mixed*

AE 88.1 84.9 89.6 92.5 88.9 90.3 90.0 91.5 92.2
pur 85.7 82.5 90.9 91.8 85.8 92.4 90.3 95.7 93.3

CLM compl 93.0 89.5 89.3 94.4 87.6 87.1 88.8 86.8 87.1
F1 89.2 85.8 90.1 93.1 Only mixed* 86.7 89.7 89.5 91.0 91.5
pur 91.2 87.9 88.2 93.4 89.5 88.6 89.7 88.1 89.0

NCLM compl 82.5 80.0 90.0 90.5 87.9 93.3 91.1 96.1 96.9
F1 86.7 83.8 89.1 91.9 88.6 90.9 90.4 91.9 92.8

M1206 z = 0.439 M0329 z = 0.450 R1347 z = 0.451
mixed ACS ALL mixed* mixed ACS ALL mixed* mixed ACS ALL mixed*

AE 87.7 90.3 87.4 89.7 81.6 81.9 83.3 85.0 91.2 90.7 89.7 89.9
pur 83.7 89.8 84.2 89.9 76.9 76.8 79.1 83.3 79.7 81.6 80.4 81.0

CLM compl 89.7 90.2 86.7 86.5 89.6 91.5 88.3 91.0 100.0 96.9 93.8 92.2
F1 86.6 90.0 85.4 88.2 82.8 83.5 83.5 87.1 88.7 88.6 86.5 86.2
pur 91.3 90.8 89.9 89.6 87.9 89.5 88.1 90.0 100.0 97.9 96.2 95.6

NCLM compl 86.2 90.4 88.0 92.3 73.9 72.3 78.8 78.3 86.6 87.0 87.5 88.7
F1 88.7 90.6 88.9 90.9 80.3 80.0 83.2 83.7 92.8 92.2 91.7 92.0

M1311 z = 0.494 M1149 z = 0.542 M2129 z = 0.587
mixed ACS ALL mixed* mixed ACS ALL mixed* mixed ACS ALL mixed*

AE 77.1 82.5 75.8 78.1 85.9 90.7 88.0 89.4 85.5 86.4 84.9 86.1
pur 72.7 80.3 75.0 76.0 74.5 83.3 80.5 82.3 85.9 87.3 91.0 91.3

CLM compl 85.1 77.8 78.3 80.9 94.5 92.6 91.5 91.3 82.7 83.1 75.3 77.8
F1 78.4 79.0 76.6 78.4 83.3 87.7 85.6 86.6 84.3 85.2 82.4 84.0
pur 82.9 84.1 76.7 80.4 96.1 95.6 94.0 94.5 85.3 85.6 81.0 82.7

NCLM compl 69.4 86.0 73.3 75.5 80.8 89.7 85.7 88.3 88.0 89.2 93.4 93.5
F1 75.6 85.1 75.0 77.9 87.8 92.6 89.7 91.3 86.6 87.4 86.7 87.8
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Table D.3. Statistical estimators measured in each redshift bin for the EXP1a experiment.

k-fold Global k-fold Global k-fold Global k-fold Global k-fold Global

zCLM ∈ (0.18, 0.32) zCLM ∈ (0.32, 0.37) zCLM ∈ (0.37, 0.41) zCLM ∈ (0.41, 0.46) zCLM ∈ (0.46, 0.60)
AE 86.4 ± 1.1 86.2 89.0 ± 1.2 89.2 88.8 ± 1.4 88.6 88.1 ± 1.0 87.9 89.6 ± 1.3 89.6
pur 84.9 ± 2.6 84.1 87.0 ± 1.7 86.9 87.9 ± 1.6 87.3 87.1 ± 1.0 87.0 87.7 ± 2.0 87.3

NCLM compl 89.6 ± 1.6 89.2 92.1 ± 1.8 92.4 90.3 ± 1.5 90.3 89.5 ± 1.6 89.2 92.8 ± 0.9 92.7
F1 86.9 ± 0.9 86.6 89.3 ± 1.2 89.5 89.0 ± 1.3 88.8 88.2 ± 1.0 88.1 90.0 ± 1.2 89.9
pur 89.3 ± 1.1 88.5 91.7 ± 1.7 91.8 90.2 ± 1.5 89.9 89.4 ± 1.5 88.9 92.5 ± 0.9 92.2

CLM compl 83.1 ± 3.2 83.1 85.9 ± 2.1 86.0 87.3 ± 1.8 86.9 86.6 ± 1.2 86.6 86.5 ± 2.2 86.5
F1 85.7 ± 1.4 85.7 88.5 ± 1.3 88.9 88.6 ± 1.4 88.4 87.9 ± 1.0 87.8 89.2 ± 1.4 89.2

Notes. Due to the k-fold approach, the performances are reported as pairs of mean and error (evaluated on the 10 folds) and as a single global
value.
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Fig. D.1. Comparison among the four band configurations (see Sect. 2), in terms of F1 score and average efficiency (AE) percentages (top panels),
together with their square root of variances (bottom panels), as the number of spectroscopic sources in the training set increases (EXP1). In all
panels, the linear best-fit trends are displayed as dashed lines. Due to the k-fold approach, performances have been averaged over the 10 folds, i.e.
the x-axis shows the dimension of the training set, thus, the k-est fold used as test set has a size of N/9.
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of ROC curves for the four clusters: R2248 (top-left panel), M0416 (top-right panel), M1206 (bottom left panel), M1149 (bottom right panel).
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Table D.4. Percentage performances on a blind test set related to the
EXP2 experiment.

Stacked Narrow Intermediate Large

AE 84.5 ± 0.6 85.5 ± 0.4 86.6 ± 0.3
CLM pur 79.6 ± 1.2 83.2 ± 0.2 82.5 ± 0.6
% comp 87.6 ± 0.8 83.9 ± 0.8 88.5 ± 0.4

F1 83.3 ± 1.2 83.6 ± 0.2 85.4 ± 0.6
A370 Narrow Intermediate Large

AE 85.4 ± 0.7 86.6 ± 0.3 87.4 ± 0.3
CLM pur 80.3 ± 1.4 84.5 ± 0.2 83.9 ± 0.7
% comp 86.5 ± 0.7 83.1 ± 0.6 86.6 ± 0.6

F1 83.3 ± 1.4 83.8 ± 0.2 85.1 ± 0.7
M0329 Narrow Intermediate Large

AE 81.7 ± 0.5 83.5 ± 0.5 84.8 ± 0.3
CLM pur 76.9 ± 0.7 79.2 ± 0.5 79.2 ± 0.4
% comp 90.0 ± 0.6 90.4 ± 0.4 93.9 ± 0.4

F1 82.9 ± 0.7 84.4 ± 0.5 85.9 ± 0.4
MS2137 Narrow Intermediate Large

AE 84.1 ± 1.1 82.4 ± 2.3 85.4 ± 0.7
CLM pur 81.5 ± 1.9 84.4 ± 1.8 82.3 ± 1.0
% comp 87.6 ± 1.5 77.1 ± 4.8 88.9 ± 0.7

F1 84.2 ± 1.9 80.0 ± 1.8 85.4 ± 1.0

Notes. Performances have been split between the three test clusters:
A370 (z = 0.375), MS2137 (z = 0.316), M0329 (z = 0.450) and their
stacking. Best results are emphasised in bold. For ease of reading, only
statistics related to the CLM class are reported, together with the aver-
age efficiency (AE), which refers to both classes.

Table D.5. Comparison between our image-based CNN model and two
different photometric catalogue-based approaches, referred to the EXP3
experiment.

R2248 z = 0.346
CNN RF Bayesian ∆

AE 88.1 86.5 85.9 1.6
pur 88.3 87.7 80.9 0.6

CLM compl 89.8 87.7 96.1 −6.3
F1 89.1 87.7 87.8 1.3
pur 87.9 85.1 94.4 −6.5

NCLM compl 86.1 85.1 74.4 1.0
F1 87.0 85.1 83.2 1.9
µ∆ −0.91 ± 1.42

M0416 z = 0.397
CNN RF Bayesian ∆

AE 92.2 89.2 87.1 3.0
pur 93.3 93.0 84.6 0.3

CLM compl 87.1 86.5 91.2 −4.1
F1 91.5 89.7 87.8 1.8
pur 89.0 84.5 90.0 −1.0

NCLM compl 96.9 92.3 82.7 4.6
F1 91.5 88.3 86.2 3.2
µ∆ 1.11 ± 1.12

M1206 z = 0.439
CNN RF Bayesian ∆

AE 89.7 87.9 85.0 1.8
pur 89.9 90.4 80.2 −0.5

CLM compl 86.5 81.9 91.2 −4.7
F1 88.2 85.9 85.3 2.3
pur 89.6 86.3 90.8 −1.2

NCLM compl 92.3 92.9 79.4 −0.6
F1 90.9 89.7 84.7 1.2
µ∆ −0.24 ± 0.90

M1149 z = 0.542
CNN RF Bayesian ∆

AE 89.4 86.9 85.5 2.5
pur 82.3 78.8 71.8 3.5

CLM compl 91.3 88.5 98.0 −6.7
F1 86.6 83.4 82.9 3.2
pur 94.5 92.7 98.6 −4.1

NCLM compl 88.3 86.0 78.4 2.3
F1 91.3 83.4 87.4 3.9
µ∆ 0.66 ± 1.60

Notes. The comparison involves two different model: a Random For-
est and a Bayesian method, applied on photometric tabular informa-
tion of four clusters: R2248 (z = 0.346), M0416 (z = 0.397), M1206
(z = 0.439) and M1149 (z = 0.542). Last column (∆) shows the differ-
ence between CNN estimators and the best between the two photomet-
ric approaches, i.e. ∆estim = estimCNN − max{estimRF, estimBayesian} for
estim ∈ [pur, compl, F1, AE], while rows µ∆ list the averages among
these ∆s for each cluster.
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