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Phononic crystals (PnC) are spatially periodic materials with band gaps that form by Bragg
scattering of elastic waves. Within the frequency range of a band gap, wave propagation is not
admitted. A long-standing limitation of this class of materials is that the wavelength for band-
gap formation must be on the order of the unit-cell size. This restricts the presence of band gaps
to relatively high frequencies for a given lattice spacing. Locally resonant metamaterials, on the
other hand, enable the opening of low-frequency, subwavelength band gaps through resonance hy-
bridization. However, their band gaps are characteristically narrow and require large or massive
local resonators to form. Here, we break both limitations using beam-based PnCs by (1) locking
the rotation degree of freedom at the edges of the primitive unit cell, and (2) coiling the PnC by
applying full beam-axis rotations at the locked locations. These respective kinematic and geometric
transformations convert a conventional beam PnC from its extended form with a nominal lattice
constant to an extremely compact coiled configuration with a greatly reduced lattice constant. With
the periodic rotational locking, the band gaps remain intact and are still large, and in fact increase
noticeably in size. With the subsequent coiling, the band gaps remain based on Bragg scattering
and are quantitively conserved except now appearing at lower frequencies as dictated by the ratio of
the extended-to-coiled lattice constants. This ratio defines a coiling factor which is a measure of the
reduction in the PnC unit-cell length in the direction of wave transmission while maintaining the
normalized band structure of its original extended form except for the favorable changes induced
by the periodic rotational locking. A coiling factor of β lowers, by construction, the location of the
central frequency of any given band gap by a factor of β. The only limitation is the need for lateral
space to accommodate the coiling of the beam segments. The vibration behavior of a finite version of
the coiled structure is experimentally tested demonstrating a matching band-gap response, despite
the reduction in length, to that obtained by finite-element analysis of the extended rotationally
locked version. This concept creates effectively subwavelength Bragg band gaps. It clears the path
for PnCs to serve in applications that are orders-of-magnitude smaller in scale than are currently
possible, while featuring band gaps that are significantly larger than those generated by locally
resonant metamaterials.

I. INTRODUCTION

Phononic crystals are artificially constructed spa-
tially periodic materials that resemble atomic crystals
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in their wave propagation characteristics. [1–3] One-
dimensional (1D) PnCs are typically constructed by al-
ternating between segments of two constituent materi-
als or cross-sectional areas that have differing mechan-
ical impedance. [4]. Elastic waves with wavelengths on
the order of the PnC periodicity are scattered due to
Bragg interferences, while waves at other frequencies are
able to propagate through the material [5–8]. The band-
width of nonpropagating waves within the PnC is de-
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Figure 1. (Color online) Schematic illustration of the two key classes of conventional phononic materials, phononic crystals (left)
and elastic metamaterials (middle), and of the proposed coiled phononic crystal concept (right). Top row: spatial configuration
of beam-based unit cells. Bottom row: schematics of typical band structure showing basic dispersion/band-gap characteristics.
The advantages (in bold) and disadvantages (underlined) of each type of material class are listed.

noted the phononic band gap. The frequency-dependence
of the propagation properties makes PnCs applicable to
noise and vibration mitigation, waveguiding, filtering,
etc. [9, 10]. Their ability to act as acoustic/elastic wave
filters depends on the geometric structure and material
properties of the constituent configuration at the unit-cell
level. When low-frequency acoustic/elastic wave mitiga-
tion is desired, a PnC is required to be overly large (i.e.,
long along the direction of transmission) because the pe-
riodicity of the unit cell must be on the order of the
large wavelength. In the seminal work of Liu et al, [11],
it is demonstrated that the introduction of intrinsic res-
onators in each unit cell allows for a subwavelength band
gap to be generated, bringing rise to the concept of a
locally resonant elastic metamaterial (EMM) which en-
ables band gaps at wavelengths much larger than the
unit-cell dimensions [5, 8, 12]. Unlike Bragg band gaps,
these are based on couplings between local resonances
and dispersion curves of the host medium−a mechanism
that characteristically produces narrow band gaps, how-
ever. Furthermore, for the local resonances to be suffi-

ciently low in frequency, usually large or heavy resonators
are needed [13–15], which imposes practical design limi-
tations. Some recent efforts explored geometrically com-
plex unit cells with resonant moieties [16, 17] or unit
cells with thin bistable elements [18] in pursuit of low-
frequency, lightweight metamaterials. Another approach
to placing the band gap at low frequencies without intro-
ducing large or massive substructures is to design EMMs
comprised of responsive materials, in which the appli-
cation of an active external force dynamically tunes the
location of the band gap to the frequency of interest [19–
22]. Another path for the generation of subwavelength
band gaps is via inertial amplification [15, 23]. This route
utilizes intrinsic lever-arm mechanisms to create band
gaps by inertial couplings with the base medium. While it
enables larger band gaps than local resonances, the band
gaps are still restricted in size compared to Bragg band
gaps and require relatively long moment arms to reach
low frequencies. Moreover, the amplifier mechanism often
comprises overly thin ligaments for practical realization,
causing load-bearing design limitations [24].



3

Acoustic coiling
Liang and Li, Phys. Rev. Lett., 2012 [25] Rigid-mass coiling supported by 

elastic foundation 

Jeon and Oh, Phys. Rev. Appl., 2021 [48] 

Structural coiling
(Current work)

- No band gaps (useful 

for applications that do 

not require band gaps)  

- Subwavelength band gaps

but requires elastic foundation

(not stand alone structure; 

not statically load bearing) 

and perfect coiling not possible   

- Subwavelength band gaps

(stand-alone structure; 

statically load-bearing) 

and perfect coiling of 

φ=90° possible   

Elastic coiling

Frequency band gap

Transmission direction Lateral direction

Frequency band gap

2p02p02p0

www

Cavity Mass Beam

Wave number kw

F
re

q
u

e
n

cy
 w

w
/!
p

c

Wave number kw

F
re

q
u

e
n

cy
 w

w
/!
p

c

Wave number kw

F
re

q
u

e
n

cy
 w

w
/!
p

c

Figure 2. (Color online) Schematic illustration of the concept of coiling as applied to acoustic waves (left) and elastic waves
(middle and right). Proposed structural coiling concept (right) is contrasted to rigid-mass coiling with the support of an elastic
foundation (middle). Top row: spatial configuration of coiled unit cells. Bottom row: schematics of typical band structure
showing basic dispersion/band-gap characteristics. The advantages (in bold) and disadvantages (underlined) of each type of
material-coiling are listed.

One approach to achieve space-saving design in
resonant metamaterials is to coil the material in
space [25]. This was shown to enable large refractive in-
dex and extreme effective properties. For sound mitiga-
tion, acoustic metamaterials (AMM) have been created
from ducts with sub-wavelength widths, and lengths that
support Fabry-Perot resonances, [26] capable of extraor-
dinary acoustic transmission (EAT). Conventional con-
trol of high frequencies allows for the use of a fairly short
duct set into a rigid sheet, but when frequencies are low,
and acoustic wavelengths are long, a thick sheet is re-
quired. To solve this problem, multiple research groups
have coiled the length of the cavity, either in a flat coiled
duct with perforated face and backing sheets, as in [27],
or by coiling the duct in a serpentine pattern along the
direction of net wave transmission through the sheet, re-
ferred to as labyrinthine AMM, as in [28, 29], or interdigi-

tated channel AMM, as in [25, 30]. While these structures
do facilitate EAT, they also come with the drawback of a
longer path length of wave propagation leading to higher
losses [31, 32]. In spite of these challenges, EAT AMM
have been used in applications such as lensing [33], acous-
tic analog computing [34], a passive multiplexer [35], a
component for energy harvesting [36], and for tunable
acoustic absorption [37, 38]. Efforts at investigating re-
lated structures composed of coiled acoustic cavities cre-
ated by fractal repetition of rigid walls have been carried
out as well [39–42].
While space coiling has been demonstrated to be fea-

sible in acoustics, this is not the case for elastic struc-
tures given the tensorial and coupled nature of elastic
waves. Lattice materials comprising a periodic pattern of
inclined interconnected beam elements [43, 44] achieve
some space savings for band-gap performance compared
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to a square lattice created from an arrangement of hori-
zontal and vertical beams [45]. Wang et al. considered a
2D beam-based lattice configuration with the beam ele-
ments forming a “zig-zag” pattern [46]. It was shown that
band gaps form and drop in frequency when the inclina-
tion angle in the zig-zag element is increased. However,
band-structure conservation is not possible in such sys-
tems, and, furthermore, the zig-zag inclination angle is
limited by the 2D geometry of the unit cell. Thus per-
fect and maximum elastic coiling is not possible in con-
ventional lattice materials. Liu et al. examined full (i.e.,
90◦) elastic coiling but only in the context of a circular
device designed to manipulate a point source [47]. The
coiled elements in this device were designed to enable
control of phase discontinuity and not space savings for
band-gap properties.

Despite the limitations associated with elastic coiling,
a recent study has examined subwavelength elastic coiling
by linking a series of discrete units via ”fluidlike connec-
tions” realized by springs whereby the entire configura-
tion necessarily follows an “isocurvature path” and must
be supported on a elastic foundation such as a rail [48].
While this approach produces a Bragg-type band gap in
the subwavelength regime, the system does not yield a
stand-alone load-bearing structure that exhibits a static
stiffness in the long-wave limit. This is in addtion to the
degree of coiling being limited fundamentally by the level
of curvature permitted.

In this paper, we present a coiled PnC configuration
that exhibits both wide and subwavelength band gaps,
and that is a stand-alone load-bearing structure with a
well-defined static stiffness in the long-wave limit. Our
configuration is based on two key transformations applied
to an extended beam structure consisting of repeated seg-
ments with a localized mass attached at each junction
between the segments. The first transformation is kine-
matic, whereby we impose rotational locking at the edges
of the segments where the masses are located. With rota-
tional locking, only longitudinal and transverse displace-
ments are admitted at these junctions; everywhere else
along the beam segments a rotational degree of freedom
also exists. We demonstrate that the periodic rotational
locking constraint preserves the Bragg band gaps and in
fact markedly increases their sizes. The second transfor-
mation is purely geometric, whereby each beam segment
is fully rotated, by construction, to form a final serpen-
tine configuration with a full |ϕ| = 90◦ angle of rotation
enforced along the beam axis for each segment, thus pro-
viding extreme coiling as demonstrated in the top-right of
Fig. 1. These two transformations combined enable dras-
tic space-saving along the direction of wave transmission
while allowing for wide Bragg band gaps to still appear,
except now with the profound advantage of lying deep in
the subwavelength regime. This is in contrast to the wide
but necessarily superwavelength band gaps permitted by
the conventional extended form of the beam PnC and
to the subwavelength but narrow band gaps enabled by
attaching local resonators to the PnC. Figure 1 provides

a schematic illustrating the contrast between the three
concepts−the two classical types of phononic materials
and the proposed coiled type−with a summary of the
pros and cons. The same fundamental limitations apply
to other configurations (1D, 2D, and 3D) of conventional
PnCs and locally resonant elastic metamaterials [10]. Fig-
ure 2, on the other hand, contrasts the proposed concept
to the notions of acoustic coiling and elastic coiling with
the support of an elastic foundation, and again listing the
advantages/disadvantages of each−noting that acoustic
coiling has not been shown to produce subwavelength
band gaps.
To visually demonstrate the practical utility of the pro-

posed concept, we show in Fig. 3 an example in which
two competing sets of PnC structures support a common
piece of domestic rotating machinery (e.g., a standard
washing machine) to prevent the transmission of vibra-
tions to the floor. In the first case, shown in Fig. 3(a), a
conventional PnC−in its usual extended form−is used.
The PnC comprises elastic beam segments with rigid
masses at the junctions between the segments to induce
periodicity. Due to the low operating frequency (less than
50 Hz), this structure is too long for practical considera-
tion. In contrast, in the second case, shown in Fig. 3(b),
the proposed corresponding coiled PnC is utilized. This
structure is extremely short, thus suitable for practi-
cal deployment, yet also exhibits both large and low-
frequency band gaps as needed by the application. The
space savings along the vertical direction enabled by this
outcome is indicated by the dashed black box. The only
drawback is the need for lateral space to accommodate
the coiling, which in this case, as in many applications,
is available. In addition to conventional vibration isola-
tion applications, contemporary phononics-based tech-
nologies would also benefit immensely from space sav-
ings, such as phononic subsurfaces (PSubs) used for pas-
sive flow control [49]. Perfect elastic coiling would also
advance the engineering of elastic metasurfaces with de-
sired refractive properties through advanced control of
phase shifting [47]−in analogy to current applications of
acoustic coiling [25].

II. FINITE-ELEMENT MODELING OF COILED
PHONONIC CRYSTAL

We consider a general coiled beam PnC configura-
tion as shown by the schematics provided at the top
of Fig. 4. Given its periodicity, only a single unit cell
is examined for dispersion analysis. The unit cell con-
sists of a central beam segment and a half-beam segment
at each side. A rigid mass is attached at each junction
connecting the segments; the addition of this mass will
be shown to be valuable for experimental realization of
the model. The angle ϕ, referred to earlier, is defined as
shown in Fig. 4, to represent the angular orientation of
the beam segments. In one extreme, at ϕ = 0◦, we ob-
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Figure 3. (Color online) Application of coiled PnC concept to
rotating machinery such as a washing machine. To reduce the
transmission of vibrations to the ground, the machine can be
isolated by (a) a conventional beam-mass-based PnC where
the unit cells are necessarily long to target the frequency of
interest (impractical), or by (b) the proposed coiled beam-
mass-based PnC which may be orders of magnitude shorter in
the direction of transmission (practical). The region of space-
saving along the vertical direction is highlighted.

tain a beam PnC in its conventional extended form as
shown in the top-left of Fig. 4. At the other extreme,
at ϕ = 90◦, a fully coiled PnC configuration emerges as
shown on the top-right of Fig. 4. At intermediate angles,
a lattice structure with inclined beam segments is gener-
ated as the one depicted at the top-center.

We model the beam segments using a combination
of rod theory and Euler-Bernoulli theory [50] such that
each material point along the beam’s neutral axis admits
three local displacements: longitudinal u(x, t), transverse
v(x, t), and rotational θ(x, t) = dv/dx. The longitudinal
motion is governed by the rod equation

c2ru
′′ − ü = 0, (1)

and the transverse and rotational motions by the Euler-
Bernoulli beam equation

c2v′′′′ + v̈ = 0, (2)

with constants cr =
√

E/ρ and c =
√

EI/ρA, where
E, ρ, A, and I denote the Young’s modulus, density,
area, and moment of inertia of the cross-section, respec-
tively. The primes refer to a derivative with respect to
the neutral axis coordinate, while the overdots refer to
differentiation with respect to time.
We use the finite-element (FE) method [51] to dis-

cretize the beam segments, yielding what is commonly
referred to as frame elements in which both axial and flex-
ural motions are incorporated [52]. The stiffness and mass
matrices for frame elements are given in Appendix A, and
the mass matrix for the rigid mass placed at the junction
between each beam segment is given in Appendix B.
The above elemental formulation is used to formulate

the assembled global set of equations of motion for the
unit cell, which takes the form Mq̈ + Kq = 0, where
the matrices M and K denote the global mass and stiff-
ness matrices, respectively. The vectors q and q̈, re-
spectively, denote the nodal displacements and their cor-
responding accelerations. For any jth node, the nodal
displacement vector in global coordinates is given by
qj = (uj , vj , θj)

T.
Assuming harmonic motion in time,

q = Ueiωt, (3)

where ω and t denote frequency and time, respectively,
and i =

√
−1 is the imaginary unit, the matrix equation

becomes

(K− ω2M)U = DU = 0, (4)

where D is the dynamic stiffness matrix. Dispersion
curves and associated mode shapes may then be readily
computed. Given that our model is comprised of serially
connected units admitting 1D wave propagation, the dis-
placement of the first and last nodes in the unit cell are
related by the phase shift imposed by the wavenumber κ
of a traveling Bloch wave [53]. Specifically, we write

U =


I . . . 0
...

. . .
...

0 . . . I
eiκxI . . . 0

UB = TUB , (5)

where UB is the Bloch-wave displacement vector and I is
the identity matrix. Substituting the Bloch-wave matrix
relationship into Eq. 4, the Bloch-wave reduced eigen-
value problem is obtained as

T∗DTUB = DBUB = 0, (6)

where DB is the Bloch wave reduced dynamic stiffness
matrix and the “∗” superscript is the complex conjugate
(Hermitian) transpose. Equation 6 is solved for a range
of wavenmubers κ sweeping the irreducible Brillouin zone
to obtain the dispersion curves. The reader is referred
to Refs. [54] and [44] for a detailed description of FE
modeling of beam-based lattices and calculation of their
dispersion curves by Bloch’s theorem.
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III. BAND-STRUCTURE TRANSFORMATION
DUE TO ROTATIONAL LOCKING AND

COILING

We now use FE analysis to examine the effects of both
the periodic rotational locking and the coiling of the
beam segments on the dispersion behavior, and to quan-
tify the implications on space saving. In all studies, 20
finite elements per beam segment were shown to provide
sufficiently converged numerical results.

A. Simple canonical model of coiled PnC:
Dispersion and coiling factor

A canonical model is considered to investigate the tran-
sition from the extended form of our PnC to the fully
coiled form by varying the beam segment rotation an-
gle ϕ by increments of 15°. Using the 2D frame-based
FE analysis framework described in Section II, we exam-
ine cases where the rotation at the beam-segment edges
(where the rigid masses are located) is locked versus un-
locked. The material and geometric parameters of the
model are listed in Table I. The results are shown in
Fig. 4 where the dispersion curves are plotted as a func-
tion of the wavenumber normalized with respect to the
actual unit cell size w, which gets smaller with increas-
ing ϕ. A clear contrast is displayed between the unlocked
(thin black dashed) and locked (thick blue dashed) cases.

The band structure for the extended PnC (ϕ = 0◦)
clearly has two subsets of independent dispersion curves,
where one corresponds to longitudinal wave motion (ax-
ial rod behavior), and the second corresponds to bend-
ing wave motion (flexural beam behavior). The compu-
tational unit cell considered at this angle comprises two
primitive unit cells, thus band folding occurs. Once ϕ is
changed from zero, the structure contained within the
unit cell becomes unique and representative of the prim-
itive configuration.

Without locking, the dispersion curves undergo a
“monotonic” transition with ϕ. In contrast, with locking,

Parameter Value Unit
Beam thickness, t 10 mm
Beam width, b 1 mm
Beam-segment length, L 120 mm
Mass edge length, h = d 20 mm
Primitive-cell length for ϕ = 0, a = L 120 mm
Primitive-cell length for ϕ = 90◦, w90 = 4s 20 mm
Offset, s = d/4 5 mm
Coiling factor, β = a/w90 6
Young’s modulus, E 68.9 GPa
Density, ρ 2700 kg/m3

Periodic mass, m 1 g
Loss factor, η 0

Table I. Properties of canonical PnC studied in Fig. 4, Fig. 5,
and Fig. 6.

the curves transform until the midway angle of ϕ = 45◦

and then display a symmetric reversal in their trans-
formation with further increase in ϕ, until the band-
structure is fully recovered with full coiling at ϕ = 90◦. At
intermediate angles, the longitudinal and transverse dis-
placements are coupled, providing 2D deformation mech-
anisms. At the extreme coiling case of ϕ = 90◦, without
locking, the local axial and bending motions in the beam
segments are still uncoupled, but the full coiling alters
the transmission kinematics for the transverse motion.
However, with the introduction of the periodic locking,
the decoupled motions are kinematically unaltered lead-
ing to complete conservation of the flexural character of
the displacement fields when compared to the nominal
extended case of ϕ = 0◦. This behavior represents the
key finding that enables the proposed concept of an elas-
tically coiled PnC. In summary, a fully coiled beam-based
PnC with rotational locking exhibits an identical band
structure (when normalized with respect to the actual
unit cell size w) to that of the extended version of the
periodically locked PnC−leading to the remarkable ad-
vantages highlighted in Fig. 1 with the only limitation
that the coiling requires space availability in the lateral
direction. In the remainder of this work, we will only con-
sider the extended and fully coiled configurations, where
it follows−given the uncoupling and kinematic preser-
vation phenomena described above−that standard 1D
beam FE modeling produces identical dispersion curves
to that obtained by the 2D FE frame-based model for the
ϕ = 90◦ configuration when periodic rotational locking
is enforced.

Figure 5 presents four sets of dispersion curves
for the extended-unlocked (thin black dashed) and
extended-locked (thick red), shown in (a), and coiled-
unlocked (thin black dashed) and coiled-locked (thick
blue dashed), shown in (b). Associated band gaps are
marked by transparent pink and blue backgrounds corre-
sponding to the extended-locked and coiled-locked PnC,
respectively. The extended-unlocked and coiled-unlocked
band gaps are both shaded in gray, Note that in Fig. 5(a),
the extended-unlocked band gap is always encompassed
within the extended-locked band gap, and thus it ap-
pears as a darker pink due to being shown through the
transparency. In each case, the lower band-gap edge fre-
quency is identical between the extended-unlocked and
extended-locked PnCs, but the rotational locking at the
edges of the beam segments has a favorable effect on the
upper band-gap edge frequency, driving it up noticeably
from that of the extended-unlocked PnC.
As observed in Fig. 4, both extended-locked and coiled-

locked PnC dispersion curves are exactly the same when
the abscissa is normalized with respect to w and the ordi-
nate is fixed (or normalized with respect to the extended
version unit cell length a). However, when the same
curves are plotted with respect to a frequency that is also
normalized with respect to w, as shown in Fig. 5 (b), the
dispersion curves of the coiled-locked case look substan-
tially different due to the reduced lattice spacing.
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Figure 6. (Color online) Impact of coiling factor on space saving. (a) First three band gaps for the extended-locked PnC
(transparent pink) with frequency scaling a/2πc (red axis), and the coiled-locked PnC (blue) with frequency scaling w/2πc
(blue axis) are plotted as functions of the coiling factor β. (b) Normalized bandwidth of the first three band gaps (1st: solid,
2nd: dot-dashed, and 3rd: dotted) are plotted for the locked (black) and unlocked (grey) PnC configurations versus β; this
relative quantity is independent of the lattice constant. In (b), the non-monotonic behavior at low values of β for the unlocked
case is due to varying the beam segment length while keeping the masses constant. The vertical lines mark the β = 6 value
considered in Fig. 4 and Fig. 5.

The scaling of the dispersion curves frequencies with
respect to the reduced lattice constant w versus the ex-
tended lattice constant a allows us to directly observe
the achievements gained by coiling. On the red vertical
axis, the extended PnC has band gaps at frequencies lim-
ited by the Bragg condition. By coiling, the same PnC
produces band gaps at lower frequencies. The extent of
this reduction is directly characterized by a coiling factor,
defined as

β = a/w
90
, (7)

which opens the opportunity for the realization of a
Bragg band gap for unit cells with subwavelength di-
mensions along the direction of transmission, as demon-
strated in Fig. 5. The ϕ = 90◦ case shown in Fig. 4 and
Fig. 5 is for β = 6.
The relative intervals of the first three band gap ver-

sus the coiling factor for the extended-locked (transpar-
ent pink) and the coiled-locked (blue) PnCs are shown in
Fig. 6(a). The drops in the band-gap locations are shown
to be most severe at lower values of β and then nearly
saturate at higher values. The normalized bandwidth of
each band gap is defined as

∆ω/ωc = 2(ωu − ωl)/(ωu + ωl), (8)

where ωu and ωl are the upper and lower edge frequencies
of each band gap calculated for a given coiling factor.

The relative bandwidth of the same band gaps, the
first (solid), second (dot-dashed), and third (dotted),
are plotted in Fig. 6(b). One set of curves is shown
for the locked cases since the normalized band-gap

bandwidths are the same for both the extended-locked
and coiled-locked PnC band gaps. The second set of
curves correspond to the extended-unlocked case. In
this model, the extended primitive cell length a is taken
to be equal to the beam-segment length L, while the
coiled unit cell length w is 4s where s is the offset
of the attachment point of the beam-segment end
to the rigid mass. Since the rigid mass size is kept
constant, the increase in β is achieved by increasing
only the length of the beam segments. As the coiling
factor increases, the normalized band-gap bandwidths
drop; this reduction stems from changes in the Bragg
interferences as the segments grow in length, which is
independent of the coiling. However, these drops in the
relative band-gap size eventually nearly level off with
increase in β, and, importantly, their values are still sub-
stantially higher for the locked configuration compared
to the unlocked configuration. For the locked PnC, the
normalized bandwidth of the first band gap is approx-
imately 80% or greater for β≤50, and the third band
gap is approximately 35% or greater in the same β range.

B. Practical model of coiled PnC: Dispersion and
mode shapes

The second study investigates a model of a more prac-
tical configuration for both experimental characterization
and industrial deployment. Here we investigate only ex-
tended and fully coiled PnC configurations and use only
flexural beam elements as done in standard 1D FE anal-
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ysis, i.e., only the mass and stiffness submatrices of the
frame elements governing bending wave motion are con-
sidered, and longitudinal rod displacements are disre-
garded. An experimental validation will then follow, in
Section IV, on a very similar coiled PnC configuration
that uses a symmetric design to enable practical realiza-
tion of the periodic rotational locking.
Figure 7 shows representations of the (a) extended-

unlocked, (b) extended-locked, and (c) and (d) coiled-
locked PnC structures with labeled dimensions. In both
extended PnC configurations, the lattice constant is a
which, as shown in the figure, is the length of the prim-
itive cell for the extended configuration. As illustrated
in Fig. 7, the transformation from the extended-locked
to the coiled-locked configuration occurs by cutting the

extended-locked unit cell vertically at the half-mass point
on either side and imposing an offset ∓s between the
mass center and the neutral axis of the beam segment,
resulting in the dynamic unit cell shown in the pink box
in Fig. 7(c). Note, the dynamic unit cell is equivalent to
the extended-locked unit cell, due to the rotation lock-
ing. The coiled-locked lattice is built by alternating the
sign of the offset at either end of the unit cell that have
offsets of opposite sign where the masses are bonded at
the top/bottom surfaces, rather than the left/right sur-
faces as was done in the extended configurations. This
impacts the shape of the masses (i.e., they become longer
in the Y direction and thinner in the X direction); how-
ever this has no dynamical consequence since the masses
are rigid and the rotational degree of freedom at their



11

Wave number ka
Reduced 
magnifica"on

Bloch wave modes (k = p/2)(a) (b)

Extended-

unlocked

Coiled-

locked
0 p

Wave number kw0 p

F
re

q
u

e
n

cy
  f

 (
k

H
z)

6

Extended-locked

Coiled-locked

Extended-unlocked

Extended-

locked

5

4

3

2

1

0

Branch 1

Branch 2

Branch 1 Branch 3

Branch 2

Branch 1 Branch 2

Extended-

1

1

2

1

2

1 2

1 3

2

2

Reduced 
magnifica"on
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center is locked. Finally, the entire coiled-locked PnC is
rotated by −90◦ in Fig. 7(d), to align the Bloch wave di-
rections of the extended-unlocked, extended-locked, and
coiled-locked configurations, where the coiled lattice unit
cell is shown in the blue box and has the reduced lattice
constant w. The dynamic unit cell defines the minimum
collection of system components that can properly repre-
sent the periodic motion of the unit cell, while the lattice
unit cell is the one that is tessellated by repeated trans-
lations to form the total coiled PnC. Other permutations
in the coiling of the PnC are possible. In this paper, the
discussion is restricted to a single 2D case for simplicity,
but the authors have previously conceived of a 3D coiled
PnC in [56].

A comparison between the extended-unlocked (thin
black dashed), extended-locked (thick red), and coiled-
locked (thick blue dashed) dispersion curves using pa-
rameters of an experimental system, to be discussed in

Sec. IV, are presented in Fig. 8(a), which includes the
first three branches of the extended-unlocked PnC and
the first two branches of both locked PnC configura-
tions. The dispersion curves for the unlocked and locked
cases are labeled with increasing indices in order of as-
cending pass-band frequency range and differentiated by
either gray or purple circular markers, respectively. The
band gaps of the extended-unlocked PnC are indicated by
a gray shaded area, while the locked PnC band gaps are
indicated by a light transparent magenta shading. No-
tice that the frequency axis is presented on a kHz scale,
and thus the extended-locked and coiled-locked disper-
sion curves are identical (coiled-locked lies over extended-
locked). The regions that are dark magenta correspond
to shared band gap ranges, and the dark color is a result
of the extended-unlocked gray band gap showing through
the transparent magenta of the PnCs with rotation lock-
ing.
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To visualize the differences between the spatial wave
propagation behavior associated with each dispersion
branch in Fig. 8(a), the Bloch mode shapes correspond-
ing to a wavenumber of κa = κw = π/2 are plotted in
Fig. 8(b). In each case, the unit cell mode shape is cal-
culated, and then extended to three additional unit cell
segments by the angular spectrum method [57, p. 90] in
order to show a full Bloch wave period. The extended-
unlocked Bloch modes graphically illustrate the rotation
of the masses; where, in contrast, both the extended-
locked and coiled-locked show no rotational displacement
of the masses as dictated by the locking constraint.

IV. EXPERIMENTAL VALIDATION

An experimental embodiment of the coiled-locked PnC
is realized in this section. Flexible aluminum beam seg-
ments are linked together by aluminum beam masses
which are geometrically more stiff, to form the coiled
PnC. Figure 9 shows a conceptual schematic of a sym-
metric back-to-back coiled PnC. By forming a symmetric
structure, a symmetry axis (dashed orange) is imposed.
It is known from elementary kinematics that when forces
are applied along a symmetry axis, an equivalent half-
model (blue boxed area) may be analyzed with rotations
locked along the boundary created by the axis of symme-
try. [52, pp. 256-260]. The presence of rigid-like masses
(by appropriate choice of their material) in this symmet-
ric setup enforces, to some approximation, the periodic
rotational locking constraint imposed in the theoretical
model. Since a half model is analyzed, the symmetric
PnC must have two times the amount of mass at the
masses lying on the symmetry axis to ensure proper pe-
riodicity of the unit cell in the analyzed half model. Addi-

Parameter Value Unit
Bar thickness, t 1 mm
Bar width, b 5.08 mm
Bar length, L 29.5 mm
Mass height, h 17.79 mm
Mass width, d 17.4 mm
Unit-cell length (X-dir.), a 46.9 mm
Unit-cell length (Y -dir.), w = 4s 40.15 mm
Offset, s 10.04 mm
Coiling factor, β = a/w 1.17
Young’s modulus, E 68.9 GPa
Density, ρ 2700 kg/m3

Periodic mass, m 2.58 g
Adapter mass, ma 3.17 g
Loss factor, η 0 or 4×10−3

Table II. Properties of practical coiled PnC studied in Fig. 7,
Fig. 8, and Fig. 9. Euler-Bernoulli beam theory can be safely
applied for these parameters since the slenderness ratio is
σr = 29.5, which is within the limits of the theory [55]. Note,
dispersion curve calculations do not include damping, but the
frequency response function in Fig. 9 (c) uses η = 4× 10−3.

tionally, only half the force is applied to the half model to
ensure the correct response amplitude is obtained. The
experimental symmetric coiled-locked PnC is shown in
Fig. 9(b).
The symmetric coiled-locked PnC is characterized

using a 4809-type vibration exciter, and a 8001-type
impedance head by BKSV™ to acquire the acceleration
and force at the input point, which are used to generate a
single-point accelerance frequency response function, i.e.,
ainp/finp, where a = v̈. An equivalent FE model is used
to generate the same accelerance curve over the frequency
interval from 0 to 6.4 kHz. This is done by solving the
governing equations of motion the finite extended-locked
version of the structure based on Euler-Bernoulli beam
elements as done in the preceding dispersion analysis. A
loss factor is included in this calculation by replacing E
with a damped Young’s modulus Ed = E + iηE, where
η = 4 × 10−3, to provide damping that was calibrated
experimentally. Results of the FE computation and ex-
periment are plotted in Fig. 9(c), and extremely good
agreement is observed. The first band gap is shown as
a gray shaded area, and within it no resonances are ob-
served. The symmetry of the experimental PnC had the
intended effect of locking the rotational degree of freedom
at the masses, and the coiled PnC concept is experimen-
tally validated.

V. CONCLUSIONS

This work presents a formal and unequivocal solution
to the long-standing problem of elastic coiling, accompa-
nied by a rigorous band-structure analysis demonstrating
a complete and perfect conservation of normalized band
structure with coiling. The concept is based on beam
PnCs and comprises two simple, yet fundamental, me-
chanical transformations, namely, (1) a prescription of
periodic rotational locking in the displacement field, and
(2) full structural coiling at the locked locations. Rigid
masses are added to the locked locations to facilitate ex-
perimental realization. A symmetric version of the con-
figuration is implemented in the experiment to further
enforce the periodic rotational locking constraint. The fi-
nal outcome is a coiled PnC that represents an unprece-
dented physical mechanism in phononics, where a sim-
ple kinematic constraint is shown to enable perfect elas-
tic coiling and realization of wide, subwavelength Bragg
band gaps.
Since the discovery of phononic crystals (in the 1970’s

as periodic structures and early 1990’s as phononic crys-
tals) and locally resonant elastic metamaterials (in 2000),
a key limitation has been the inability to simultaneously
realize both wide and subwavelength band gaps. The
coiled PnC concept proposed in the current investigation
has overcome these fundamental limitations.
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Appendix A: Stiffness and mass matrices of frame
elements

Using an appropriate choice of FE shape functions, the
elemental stiffness matrix of a frame element is written
as

kf =



AE

2α
0 0 −

AE

2α
0 0

3EI

2α3

3EI

2α2
0 −

3EI

2α3

3EI

2α2

2EI

α
0 −

3EI

2α2

EI

α
AE

2α
0 0

sym.
3EI

2α3
−
3EI

2α2

2EI

α



, (A1)

where α is the half-length of the frame element, and sym.
denotes that the matrix is symmetric.

The consistent mass matrix for the same element,
formed using the same shape functions utilized for the

stiffness matrix, is written as

mf =
ρAα

105


70 0 0 35 0 0

78 22α 0 27 −13α
8α2 0 13α −6α2

70 0 0
sym. 78 −22α

8α2

 . (A2)

Appendix B: Mass matrix for rigid mass

Rigid elements with distributed mass are represented
using a mass matrix written as

mm =

 m 0 0
m 0

sym. Im

 , (B1)

where m is the rigid mass value, and Im is the mass
moment of inertia. In this work, all rigid masses are
assumed to be cuboids, and thus

Im = m(h2 + d2)/12, (B2)

where h and d are the height and width of the rigid
mass, respectively.
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