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Abstract—Recent byte-addressable persistent memory
(PMEM) technology offers capacities comparable to storage
devices and access times much closer to DRAMs than other
non-volatile memory technology. To palliate the large gap with
DRAM performance, DRAM and PMEM are usually combined.
Users have the choice to either manage the placement to
different memory spaces by software or leverage the DRAM
as a cache for the virtual address space of the PMEM. We
present novel methodology for automatic object-level placement,
including efficient runtime object matching and bandwidth-
aware placement. Our experiments leveraging Intel® Optane™

Persistent Memory show from matching to greatly improved
performance with respect to state–of–the–art software and
hardware solutions, attaining over 2x runtime improvement
in miniapplications and over 6% in OpenFOAM, a complex
production application.

Index Terms—data placement, hybrid memory systems, optane

I. INTRODUCTION

Large RAM spaces help mitigate overheads inherent to
distributed computing. One of the biggest challenges to build
faster supercomputers is to improve energy efficiency; the
main memory, traditionally built upon DRAM technology,
is among the biggest energy consumers of high-performance
computing (HPC) systems, posing over 25% of the system
energy consumption [24]. DRAM technology evolution shows
a flattening of the power consumption curve in the last years,
being a factor of 1.5 per generation from 2000 to 2010,
while being only a factor of 1.2 from 2010 to 2018 [37].
Since providing larger memory spaces is non-viable by means
of top-performance memory technology only, due to energy
consumption and dissipation constraints, HPC vendors are
incorporating different kinds of memory devices within their
compute systems. E.g., scratchpad or high-bandwidth memo-
ries bring high access speeds and reduced spaces; NVRAMs
are energy-friendly devices providing slow data access rates;
ECC-enabled memories deliver fault-tolerance at the cost of
some performance and space overhead; and compute-capable
memories offer processing–in–memory features.

In the past, deep memory hierarchies have been proposed to
try to address the memory wall problem. Current trends, how-
ever, advocate for bringing the different memory subsystems
as first-class citizens, building a set of explicitly-addressable
subsystems that must be managed by software.

Recent byte-addressable PMEM technologies, such as the
Intel® Optane™ Persistent Memory (PMem), offer dense bit
packaging, attaining capacities of up to 6 TB per compute
node and performance much closer to DRAM than other
non-volatile memory technologies. To palliate the still severe

gap with DRAM access latencies and bandwidth, which is
exacerbated at non-sequential access patterns due to large
access block sizes, DRAM and PMEM are usually combined.
Users can either manage placement to different memory spaces
manually (potentially assisted by research-class middleware),
or leverage the DRAM as a hardware-managed inclusive cache
for the virtual address space of the PMEM.

Deciding what data to host in each memory subsystem
is nontrivial and poses notable performance implications.
Whereas hardware-based mechanisms lack flexibility and
are not always efficient, yielding inconsistent performance,
software-based approaches pose management overheads and
often require expert knowledge and intrusive code changes.

While kernel-based approaches at page granularity are re-
active, we advocate for a proactive solution based on offline
data-oriented profiling at memory object granularity. Recent
research has proposed the use of secondary memory subsys-
tems for fault-tolerance purposes [41] or to host selected data
objects based on domain knowledge [31]; generic approaches,
however, have not demonstrated viability beyond simple use
cases. In this paper, we propose novel methodology for data
placement in hybrid memory systems at object level gran-
ularity, based on offline data-oriented profiling and runtime
memory allocation interception, that yields efficient executions
and simplified workflows beyond state of the art solutions. Our
implementations are released open source as ecoHMEM [1].

The contributions of this paper are summarized as fol-
lows: (1) we propose novel profiling–runtime object matching
methodology to greatly improve runtime performance with
respect to previous work based on call-stack comparison; (2)
we provide a novel object placement algorithm to address the
inefficiencies of previous work; and (3) we present, for the
first time in the literature, runtime benefits in complex codes.
Addressing the shortcomings of a previous solution with novel
methodology, we attain performance in pair with the state
of the art of data placement at object granularity for hybrid
memory systems while notably simplifying the workflow.

The rest of the paper is organized as follows. Section II
provides the necessary background to understand the contribu-
tions of this paper. Section III reviews related work. Section IV
discusses the basic methodology leveraged in this paper,
whereas sections V, VI and VII deepen into our contributions.
Section VIII presents the analysis of our evaluations and
Section IX concludes this manuscript.
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II. BACKGROUND: INTEL OPTANE PERSISTENT MEMORY

This technology, first released in 2019, offers high-density,
byte-addressable persistent memory in the standard DIMM
form factor. Currently, the largest capacity available is 6 TB
on dual-socket systems. These support up to 2666 MT/s.
Compared to DDR4 DRAM, PMEM latencies increase 2x–6x
for reads and 6x–30x for writes depending on the access pat-
tern, whereas bandwidth decreases around 75% for reads and
90% for writes in Intel’s first-generation implementation [14];
the recently-released second generation provides around 40%
additional performance. We note that in this work we use
the PMem as a RAM subsystem, and hence the persistence
capabilities are not leveraged.

PMem supports two different modes of operation. In mem-
ory mode, the DRAM acts as an inclusive cache for the PMem,
managed directly by the memory controllers. The PMem is
transparently exposed as the main system memory to the
operating system. Although there is no official information
on its internals, it is considered to be a direct-mapped, write-
back cache [13], [18]. This mode enables users to exploit
the high capacity of PMem DIMMs without the need for
software changes; however, for many workloads, such as those
featuring non-sequential access patterns or those pathological
cases suffering from numerous conflict misses, the DRAM
cache is not able to hide the increased latencies of PMem.

In the app direct mode, the DRAM is used as the system
memory, while the PMem is exposed through a Linux char
or block device. Applications may allocate buffers in PMem
using libraries like memkind [16], and are responsible to
decide which data is stored in each memory subsystem. This
places a burden on application developers, which may be
alleviated by a middleware layer to manage the placement.

III. RELATED WORK

Heterogeneous memory systems are recently becoming a
reality in the field of HPC and currently a hot topic in
the community. The first paper proposing this scenario and
methodology to address this situation, leveraged an emulated
system based on a Valgrind tool [28] and cache simula-
tion [29]. Early research focused on the discontinued Intel®

Xeon Phi™ x200 systems (KNL); Laghari and Unat [22]
proposed methodology based on object-level read and write
information extracted from hardware counters and simulations,
implementing a knapsack approach for distribution; Servat et
al. [35] developed a similar knapsack-based approach, lever-
aging only read counters extracted from hardware sampling,
but providing an allocation runtime interposer to prevent the
need for the programmer’s intervention. Dulloor et al. [7]
also demonstrated that a careful placement of data-structures
across memory tiers is necessary to incorporate NVM into
the processor memory hierarchy. Plenty of methodology has
been proposed for this purpose, including profiling based on
sampling of hardware counters [21], [35], runtime-assisted
profiling [3], or object-level placement granularity [8], [29]
versus its page-level counterpart [39], [40]. Wen et al. [38]
proposed ProfDP, a differential profiling mechanism (requir-
ing three profiling runs) to estimate per-object latency and

bandwidth sensitivity, and decide a priority to guide placement
decisions. This proposal, requiring manual source code mod-
ification, neither considers memory capacity or instantaneous
memory bandwidth usage nor provides any placement algo-
rithm that can optimize system performance for a given system
configuration. Since version 5.5, the Linux kernel includes
support to expose PMem devdax devices as NUMA nodes.
On top of this support, Intel [10] and other previous works
(e.g., [25]) provide kernel-level solutions that enable automatic
page migration between DRAM and PMem NUMA nodes.
Kernel-level page migration approaches are orthogonal to our
application-level design, and may be combined to leverage an
initial proactive object placement provided by the latter along
with reactive runtime page migration capabilities provided by
the former. This is an approach that we intend to explore
in future work, since it requires completely different object
weighting heuristics, in order to optimize for initial placement
instead of optimizing for the entire execution. There are also
works leveraging specific domain knowledge to improve upon
application-agnostic proposals [6], [31].

Extending the afore-mentioned framework proposed for the
KNL [35], we propose the first framework that, operating on
unmodified binaries, is able to cope with fully-featured pro-
duction applications, providing efficient executions in modern
hybrid memory systems. While other similar works to ours
required either manual source code modification or, at best,
source–to–source compilation phases to link against custom
allocation libraries [26], [27], we provide a runtime-based
solution to intercept unmodified allocation calls, developing
a novel object matching approach that prevents high object
identification overheads. We also provide a new object distri-
bution algorithm that is able to adapt to the complexity of the
access patterns incurred by production-level applications.

IV. METHODOLOGY

Our methodology (see Figure 1) is based in offline data-
oriented profiling at object granularity along with a runtime
allocation interposer, as described in [35] for the KNL plat-
form. The workflow starts by profiling a production-ready
binary to generate a trace-file and extract the performance
metrics around the data-objects created during the application
execution. Next, a profile analyzer reports an optimized ob-
ject distribution across memory subsystems. During runtime,
an allocation interposer substitutes heap memory allocations,
honoring the previous report on the same optimized binary
used during the profiling stage.

This section provides a brief overview of the methodology
we build on, as originally devised for the KNL, whereas
sections V, VI and VII discuss our key contributions to support
the specifics of PMEM and remove performance bottlenecks.

A. Data-Oriented Profiling

Data-oriented profiling is supported by Extrae [4], an open-
source instrumentation package that is injected into the ap-
plication by means of the LD_PRELOAD mechanism, hence
enabling the monitoring of unmodified optimized binaries.
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Fig. 1. Workflow. Note that this picture shows the name of our implementa-
tions of the different components instead of the original names in [35].

A configuration file specifies the performance metrics to be
collected, preventing unnecessarily large trace-files.

We use Extrae to collect information regarding data objects
and their related memory references, through instrumentation
on allocation, reallocation and deallocation routines [33], [34].
This includes the size, the frames of the invoking call-stack
and the returned address. Since most Linux systems imple-
ment Address Space Layout Randomization (ASLR) security
techniques, the call-stack addresses are subject to change from
run to run, and thus, Extrae translates the addresses (frames)
of the call-stack to a proper code location identification.

Memory references are captured using the Precise Event-
Based Sampling (PEBS) mechanism [17]. On our target ma-
chine, Extrae uses the counter MEM_LOAD_RETIRED.L3_-
MISS to sample load instruction misses in the last-level cache
(LLC). These have associated a data-linear address that is
matched to instrumented data-objects.

Once the application execution has finished and generated
a trace-file, we leverage Paramedir, the command-line tool
to explore Extrae trace-files, to extract the largest allocation
observed and the number of LLC misses for each allocation.

B. Placement Optimizer

The Heterogeneous Memory Advisor computes an opti-
mized object distribution among the available memory sub-
systems. The idea is to reduce the CPU stall cycles due to
memory accesses by placing the most accessed objects in the
memory subsystem with highest bandwidth.

To compute the object distribution, the Advisor uses
the object-differentiated memory access data extracted by
Paramedir. Since the latency of memory accesses that hit in
any level of the cache hierarchy is not affected by the backing
memory subsystem, we are only interested in LLC misses.

The base algorithm of the Advisor is based on a greedy
relaxation of the 0/1 multiple knapsack problem, where the
memory objects have to be distributed among the available
memory subsystems (the knapsacks) by solving a knapsack
problem for each of them, in descending order of their
provided performance. The memory objects’ value is the ratio
of cache misses divided by object size, to represent the density
of misses per object. Each memory subsystem features its
own coefficients representing read latencies, specified in a
configuration file, which enables the use of the framework in
systems with different heterogeneous memory configurations.

C. Runtime Allocation

FlexMalloc [32] is an interposition library that reads the in-
dications obtained by the Advisor and drives the allocations of
application data-objects into different memory subsystems at
runtime. The library sits on top of a number of heap managers
(each targeting a specific memory subsystem) and forwards
the memory management calls invoked by the application
to a specific heap manager honoring the report and a given
memory-system configuration (such as, e.g., memkind, POSIX
malloc or libnuma’s numa alloc). For the experimentation in
this paper, memkind is used for PMem allocations, whereas
POSIX malloc is leveraged to target the DRAM space.

FlexMalloc supports a fallback memory subsystem for data-
objects not listed in the Advisor report. This subsystem (usu-
ally the largest) will also be used if other memory subsystems
run out of available space.

We note that FlexMalloc may alter performance because
of different heap management routine characteristics. E.g.,
NUMA affinity is determined on a first-touch policy in Linux
(i.e., memory pages are allocated on the NUMA domain from
the CPU that first touches the pages). However, when using
Intel Optane memory on top of memkind, NUMA affinity is
specified for the whole data-object at allocation point.

V. STORE OPERATIONS

Previous works [29], [35] derived object cost heuristics
exclusively from load operations, assuming that buffered write-
through cache implementations would absorb the impact of
most store operations. However, non-volatile memories have
brought RAM spaces in which store operations are particu-
larly penalized. This led us to consider store operations in
our heuristics. However, since PEBS store counters for LLC
misses are non-existent (due to technical reasons beyond the
scope of this paper), we explore the use of L1D store misses
to capture the effect of stores in cost heuristics.

To implement this feature, we configured Extrae to sample
the MEM_INST_RETIRED.ALL_STORES hardware counter,
which targets all store instructions. To control the influence
of loads and stores in the cost heuristics, we implemented
the Advisor’s algorithms to use two separate coefficients to
weight the data from the profiling trace. Accordingly, the
Advisor’s configuration file requires now separate load and
store coefficients per memory subsystem.

VI. BINARY OBJECT MATCHING (BOM)

Prior to this work, Extrae supported translating the frames
into pairs consisting of file and line numbers with the help of
the binutils package [9] and the debug information contained
on the binary. While this approach was useful for a later
source-code inspection, during the evaluation of this frame-
work we observed (1) severe runtime overhead when parsing
large binaries or long call-stacks, and (2) additional consid-
erable memory used when loading debugging information. In
order to circumvent these issues, we have modified Extrae to
translate the call-stack frames into a binary form consisting
of the binary object that contains the frame address and the
offset from the base address of the binary object (see Table I).
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This novel approach reduces the runtime overhead because it
no longer needs to translate the call-stack frames into human-
readable source code locations. Furthermore, it removes the
need for embedding debug information into the binary at
compile time, which was mandatory in previous approaches.

When leveraging BOM, during the process initialization the
library obtains the base address where each shared-library is
loaded in memory, and calculates the absolute addresses for
each frame of every call-stack. When the process invokes a
heap memory call, it is intercepted by FlexMalloc, where the
routine parameters and the call-stack are captured. If the call-
stacks in the report are in human-readable format, the library
has to translate the call-stack addresses into human-readable
(with the help of binutils) and then compare the translated
call-stack with those listed in the report. Conversely, if the
call-stacks in the report are in binary format, the library only
has to compare the captured call-stack addresses with the
absolute call-stack addresses calculated during initialization.
While using human-readable format suffers from the expense
of translating the call-stack, which may be significant on large
binaries, requiring multiple string comparisons, the new BOM
approach requires only a number of address comparisons.

VII. MEMORY BANDWIDTH AWARE OBJECT PLACEMENT

Due to limited capacity, even with dense packing (in terms
of LLC misses) of objects into DRAM, a large number of
off-chip accesses still target PMem and thus suffer from
its idiosyncratic behavior. Since memory access latency is
a complex function of size, lifetime, and object’s memory
bandwidth demand, it varies widely across objects. Figure 2
shows the variation in latency as bandwidth is scaled from
8 GB/s to 22 GB/s for both DRAM and PMem. As we see,
at low bandwidth, read and write latency variation is not
noticeable for both memories; however, the gap widens quickly
as bandwidth increases. At 22 GB/s, PMem costs 2.3x higher
latency than DRAM. If this difference is not considered, a
simple placement decision may well degrade performance.

Consider an application that consumes high memory band-
width during 20% of its execution time and in the remain-
ing 80%, its memory consumption remains low. For this
application, we want to place two objects, A and B, of the
same size S in the memory system composed of DRAM
and PMem. The size of the objects is such that only one
of these may fit in DRAM at a time. A spends 80% of its
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lifetime in low bandwidth region and the remaining 20% in
high bandwidth region. B spends 100% of its lifetime in high-
bandwidth region (thus, its lifetime is 20% of that of object A).
Both incur M off-chip accesses. If bandwidth variation during
the object’s lifetime is not considered and uniform latency
is assumed, a placement strategy relying on access density
may well favor A over B in DRAM because both objects
will be indistinguishable (same access/byte). However, this
placement will be counterproductive, causing higher overall
access latency. Using the data shown in Figure 2 (low/high
latency for DRAM: 90/117 ns; for PMem: 185/239 ns):

a) Strategy 1 — A is allocated in DRAM and B in PMem:
Since A spends 80% of its time in low bandwidth region and
20% of its time in high bandwidth region, on average, it will
experience 90 ns and 117 ns during 80% and 20% of the
execution time, respectively. B, on the other hand, will spend
239 ns throughout its lifetime. This results in 334 ns.

b) Strategy 2 — A is allocated in PMEM and B in
DRAM: In this case, A spends 185 ns during 80% of its
lifetime and 239 ns during the remaining 20% of its lifetime.
B, on the other hand, spends, on average, 116 ns throughout
its execution. This results in 311 ns.

Compared to Strategy 2, the traditional strategy leads to 7%
increase in latency. Compared to the low-bandwidth region, the
increase in latency during the high-bandwidth region is much
higher for PMem and the object lifespan in different regions
poses strong implications on its overall access latency.

A. Case Study: LULESH

We examine LULESH [20], an HPC miniapplication, to un-
derstand its memory bandwidth requirements. We further draw
insights from this data to develop a bandwidth-aware object
placement strategy. To this end, we execute LULESH on the
setup presented in Section VIII. We configured PMem in App.
Direct mode and used the access density based classification
to place objects as described in Section IV-B. We compiled
LULESH using icc 19.05 with O3 optimization and executed
25 iterations with 8 ranks and 3 OpenMP threads/rank.

The dotted graph in Figure 3 shows the change in PMem
bandwidth consumption in LULESH during one of its recur-
ring execution phases as objects are allocated and deallocated,
with bandwidth consumption on the primary y-axis. In the be-
ginning, PMem bandwidth consumption is considerably low;
however, as execution progresses, more objects are allocated
in PMem and its bandwidth consumption starts increasing,
attaining its maximum at 1.3 GB/s, to gradually diminish by
the end of the phase. To obtain a complete picture, we further



TABLE I
EXAMPLES OF THE SUPPORTED CALL-STACK FORMATS, IDENTIFYING ALLOCATION POINTS AND THE ASSIGNED MEMORY SUBSYSTEM

Human- new_op.cc:50 > lulesh-init.cc:500 > lulesh-init.cc:130 > lulesh.cc:2716 > libc-start.c:342 @ posix
Readable new_op.cc:50 > lulesh-init.cc:82 > lulesh.cc:2716 > libc-start.c:342 @ memkind/pmem
BOM lulesh2.0!004029df > lulesh2.0!00402979 > lulesh2.0!00402549 > libc-2.26.so!0002103a > lulesh2.0!004020ba @ posix

lulesh2.0!00402979 > lulesh2.0!00402549 > libc-2.26.so!0002103a > lulesh2.0!004020ba @ memkind/pmem
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Fig. 4. Lifetime and bandwidth use of objects in high bandwidth region.

complement the bandwidth consumption plot with the memory
objects using solid bars, with object size shown on the sec-
ondary y-axis. As the figure shows, the allocation size varies
widely across objects, spanning from a few KB to hundreds
of MB. Nonetheless, most of the large allocations occur at
the start of the phase while, in the remaining part, relatively
smaller objects are allocated. In the part of the phase where
PMem bandwidth consumption is low, most of the allocations
fall into DRAM, whereas, in the part where the bandwidth
consumption is high (while allocation is happening), most of
the allocations are directed to PMem. However, in the rest
of the phase (where small allocations happen that can be
cached in the upper part of the memory hierarchy), bandwidth
consumption primarily depends on the lifetime and bandwidth
requirement of the larger objects allocated earlier.

To gain understanding of the lifetime and bandwidth con-
sumption of the objects allocated in different memory sub-
systems, we profiled simultaneously-living objects. The top
panel (A) of Figure 4 shows the lifetime of PMem objects
as a bar chart. In this chart, the left end of the bar denotes
the allocation and the right end denotes the deallocation time.
On average, an object resides for about 18 seconds, which is
about 25% of the execution phase. The shortest living object
experiences a lifetime of 8 seconds and the longest, 27 sec-
onds. The bottom panel (B) of the figure shows bandwidth
consumed by each of these objects. On average, these consume
93 MB/s of memory bandwidth, where highest (206 MB/s) and
lowest (33 MB/s) bandwidth is consumed by objects 168 and
172, respectively. This data clearly shows that a small number
of objects contribute significant amount of PMem bandwidth
and these remain alive for a fraction of an execution phase.
If those objects can be moved to DRAM, a large amount of
PMem bandwidth can be released.
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To understand the state of DRAM objects that may free
the space for the PMem objects, Figure 5 shows similar
data for DRAM objects. On average, these objects remain
alive for 23 minutes, close to the overall execution time.
Panel B further shows the bandwidth consumed by each of
these objects. Despite all objects remaining alive for similar
amount of time, their bandwidth consumption experiences
wide variation. On average, an object consumes slightly above
1 MB/s of bandwidth, from a minimum of 50 KB/s to a
maximum of 10.5 MB/s. Nonetheless, compared to PMem,
objects in DRAM exhibit very small amount of bandwidth
consumption (the peak consumption is less than the minimum
consumed per object in PMem). In summary, this data shows
that an access density based object placement algorithm in
practice may place objects with low bandwidth requirement
into DRAM, whereas some of the most bandwidth demanding
objects are placed into PMem. Moreover, it is possible to
allocate high bandwidth objects into DRAM if some of the
less demanding objects are moved to PMem and in this way
substantial improvement in PMem bandwidth consumption
may be attained, leading to higher overall performance.

B. Memory Bandwidth Aware Object Placement Algorithm

This algorithm receives as input a set of objects already
classified for placement in DRAM or PMem using our access
density based algorithm and further divides these into groups
using additional criteria. In particular, we consider bandwidth
consumption, memory allocation pattern (single allocation/
multiple allocation), and access type (read-only, read-write).

1) Step 1 — Categorization: The objective is to find objects
currently in DRAM that experience low bandwidth demand.
These may be either moved to PMem directly or act as
replacement candidates for other objects currently assigned to



TABLE II
BANDWIDTH OF OBJECTS SHOWN IN FIGURES 4 AND 5

Object ID Allocation BW Execution BW
Blow Bmid Bhigh Blow Bmid Bhigh

114–134 T F F T T T
139–146 F T F T T T
168–179 F F T F F T

TABLE III
AVERAGE NUMBER OF ALLOCATIONS FOR OBJECTS IN FIGURES 4 AND 5

Object ID Allocations/Object Lifetime (s)
114–146 1 1411
168–179 200 17

PMem. It also identifies objects in PMem that experience high
bandwidth demand and would benefit if placed into DRAM.

Our experiments show that although long living objects ex-
perience varied bandwidth demands throughout their lifetime,
short living objects primarily live in the bandwidth region of
their allocation. Moreover, object’s allocation count strongly
correlates with its movement across bandwidth regions. Ta-
ble II presents the bandwidth experienced by the objects shown
in figures 4 and 5 during their lifetime. Objects with similar
characteristics are grouped in rows; columns Blow, Bmid,
and Bhigh correspond to regions with demand <20%, 20–
40%, and >40% of the peak, respectively. We have also
separated bandwidth demand at (nearby) allocation and (rest
of) execution times. The cell is set to true (T) or false (F),
reflecting whether an object belongs to a particular region.

We see two clear trends: while objects 114–134 and 139–
146 experience different bandwidth demand during their life-
time than the demand at the time of their allocation, other
objects stay in the region of their allocation throughout their
lifetime. We further observe that object’s bandwidth region, in
fact, bears a strong correlation with its allocation frequency.
Table III shows the allocation count and the lifetime of the ob-
jects shown in Table II. The objects that live in more than one
bandwidth region are allocated and deallocated fewer times
and live longer, whereas objects that stay in one bandwidth
region for the entire execution are allocated and deallocated
frequently. This implies that, although exactly associating a
bandwidth region to objects with few allocations is difficult,
objects with high allocation count usually live for short
duration and most probably stay within the region of their
allocation. Thus, these objects may be categorized as low or
high bandwidth objects based on the region of their allocation,
which forms our second classification criterion.

Our algorithm classifies objects into three different groups:
Fitting, Streaming-D, and Thrashing. Fitting are those DRAM
objects that are allocated less than TALLOC times; thus, these
potentially feature long lifetime and experience bandwidth de-
mand below TPMEMLOW at allocation. Hence, these, despite
being allocated in the low bandwidth region, may experience
different bandwidth demand during the rest of their lifetime.
The DRAM objects with more than TALLOC allocations
and bandwidth demand below TPMEMLOW are classified
as Streaming-D. These objects feature a high number of

TABLE IV
CRITERIA FOR OBJECT CLASSIFICATION

Initial Memory Category Description

DRAM

Fitting
DRAM object with less than
TALLOC allocations and PMem
bandwidth below TPMEMLOW

Streaming-D

DRAM object having no writes
with more than TALLOC
allocations and incurring bandwidth
demand below TPMEMLOW

PMEM Thrashing
PMem object with more than
TALLOC allocations and PMem
bandwidth above TPMEMHIGH

allocations and only a few of these live simultaneously; thus,
their lifetime is short and tend to stay within the allocation
bandwidth region. Similarly, PMem objects allocated more
than TALLOC times and featuring bandwidth demand above
TPMEMHIGH are classified as Thrashing. We summarize
our classification criterion in Table IV. Based on empirical
observations, we set TALLOC = 2; TPMEMHIGH = 40%
and TPMEMLOW = 20% of peak PMEM bandwidth.

2) Step 2 — Placement: This step assigns objects cate-
gorized during Step 1 to DRAM and PMEM. Algorithm 1
presents the pseudocode for our placement logic, considering
inputs pre-placed as shown in Table IV. All objects in the
Streaming-D group are directly moved to PMEM, since that
releases DRAM capacity that may be used to move objects
from PMEM to DRAM. Next, objects in the Thrashing cate-
gory are sorted first by their bandwidth consumption and then
by their allocation and deallocation time and a replacement
object is searched from the Fitting category.

Algorithm 1: Placement in DRAM and PMEM
Result: Set of objects classified into DRAM and PMEM;
Input: Objects in Fitting, Thrashing, and Streaming-D;
for All objects in Streaming-D do

Set object allocation as PMEM;
end
for Each object in Thrashing do

Set object2 as smallest number in Fitting that can
accommodate object for its entire lifetime;

if object2 found then
Set object allocation as DRAM;
Set object2 allocation as PMEM;

end
end

To implement this feature within the Advisor, the output of
the post-processing stage adds information on allocation and
deallocation timestamps for all dynamic memory allocations in
the trace, which was not required in simpler heuristics. Band-
width consumption is derived from load and store hardware
counters (as described in sections IV-A and V), divided by
object’s lifetime.

VIII. EVALUATION

For our evaluation we used a combination of codes, ranging
from proxy applications demonstrating widespread scientific



TABLE V
CHARACTERISTICS OF THE APPLICATIONS USED IN THE EXPERIMENTAL EVALUATION

MiniFE MiniMD LULESH HPCG CloverLeaf3D LAMMPS OpenFOAM
Version 2.2.0 2.0 2.0.3 3.1 1.2 beta Stable Oct20 v1906
MPI Ranks/Threads 12/2 12/2 8/3 6/4 24/1 12/2 16/1

Input Size (400,400,400) t=2 s=224 -p i=10 s=224 (192,192,192) rt=0 (512,512,512) var=(8,8,8) rhodo.scaled 25 it. depth charge 3D
(240,480,240)

Memory High-Water
Mark (MB/Rank) 1989 2196 10658 6414 1467 4240 3360

computation problems, to production-ready scientific simula-
tion applications (see Table V):

• MiniFE [11]: A proxy application for unstructured im-
plicit finite element codes.

• MiniMD [11]: A proxy application for parallel molecular
dynamics simulation of a Lennard-Jones or EAM system.

• Livermore Unstructured Lagrange Explicit Shock Hy-
drodynamics (LULESH): Proxy application for simpli-
fied 3D Lagrangian hydrodynamics on unstructured mesh.

• High Performance Conjugate Gradient (HPCG) [12]:
Benchmark based on an additive Schwarz, symmetric
Gauss-Seidel preconditioned conjugate gradient.

• CloverLeaf3D [36]: Lagrangian-Eulerian hydrodynamics
• Large Atomic/Molecular Massively Parallel Simulator

(LAMMPS) [30]: Molecular dynamics for materials.
• OpenFOAM [19]: Computational fluid dynamics (CFD)

simulator widely used in engineering and science. Our
use case is a 3D compressible fluid simulation.

The experiments were performed in a machine equipped
with 2 Intel® Xeon® Platinum 8260L processors running at
a nominal frequency of 2.3GHz, 4×8 GB DDR4 DIMMs
and 12×512 GB Intel® Optane™ PMem 100 series DIMMs
running at 2666 MT/s. The ratio of DRAM to PMem is
intentionally lower than the recommended by the vendor,
advocating for more energy friendly and cost-efficient system
configurations [23]; results with only 4 PMem DIMMs are also
presented to assess the impact of this ratio. The server runs
Linux Fedora 27 (kernel 4.18.8) and we used the Intel compiler
and Intel MPI version 2019.5.281. The object placement
strategy is released as ecoHMEM v1.0 [1].

We compare our results with the server configured in
memory mode (baseline) and with two other state–of–the–
art approaches: (1) a kernel-level online page migration im-
plementation, version tiering-0.71 of the experimental line of
Linux kernels developed at Intel [10]; and (2) a state–of–the–
art user-level data distribution approach, ProfDP [38], which
uses a profile–analyze–run approach similar to our framework,
built on top of HPCToolkit [2]. While reproducing the ProfDP
workflow for our benchmark applications, we faced a few tech-
nical difficulties; since ProfDP is currently not integrated in
the main HPCToolkit branch, we used the datacentric-master
branch (the ProfDP-related branch with most recent activity).
However, we could not manage to obtain the ProfDP specific
metrics from the tools and we computed those following the
formulas presented in [38], using profiling data obtained with
the HPCToolkit profiler configured with the flags required to
collect the data needed by ProfDP. Besides this, we faced

another question not addressed in the ProfDP paper: how
to aggregate profiling data in multi-process applications. We
have used two alternatives: sum and average. Combined with
the latency-based or bandwidth-based metrics, we obtained
four different ProfDP memory object relevance rankings. For
each ProfDP experiment, we used all four and present that
providing the highest performance. To implement the data
distribution we use FlexMalloc, which avoided the need for
modifying the application’s source code manually. This way,
we provide an apples–to–apples comparison—note that the
output from the Advisor may also be used to modify the source
code manually—but we also demonstrate the generality of
FlexMalloc’s methodology outside our framework. Last, since
profiling with HPCToolkit, unlike Extrae, modifies some call-
stack frames, we had to manually fix some of these when gen-
erating the FlexMalloc input file in order to ensure matching
call-stacks at the production run (without HPCToolkit) with
those obtained during the profiling run.

To control the amount of DRAM used by the hardware-
managed cache in memory mode, and to limit the variability
introduced by NUMA effects, we perform our experiments
pinning the threads and memory allocation to a single NUMA
node. This limits the maximum DRAM available to 16 GB,
and disk swap is disabled to avoid inadvertently overpassing
this limit. We use a sampling rate of 100 Hz for both loads
and stores in PEBS data collection. The profiling stage covers
full runs with the same inputs as those in the performance
evaluation stage. Applications showing input-dependent be-
haviors would require specific profiling runs to fine-tune
runtime performance, whereas a study of the sensitivity of
our heuristics to different data inputs is left for future work.

A. Profiling Metrics and DRAM Size

We first evaluate the performance of the object placement
generated by the main algorithm of HMem Advisor based on
density of LLC misses, as described in Section IV-B. Figure 6
shows the performance of a subset of the evaluated applica-
tions, exploring two configurations for the profiling metrics
and three different maximum DRAM limits for dynamic
memory allocations used by the HMem Advisor. PMem-6
results leverage our target DRAM-PMem ratio, while PMem-2
features a reduced PMem capacity and bandwidth of 1/3 (by
physically removing DIMMs). For the Loads configuration,
only LLC load misses are used to compute the memory
objects’ cost heuristics, while the Loads+stores configuration
leverages the new adaptation of LLC load misses plus L1D
store misses to derive the cost heuristics. Although there are



(a) MiniFE (b) CloverLeaf3D

(c) LULESH (d) HPCG
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Fig. 6. Performance using different profiling metrics and limits on DRAM
usage in HMem Advisor, for two PMem–DRAM memory ratios.

TABLE VI
MEMORY-RELATED PROFILING OF THE MEMORY MODE EXECUTIONS

MiniFE MiniMD LULESH HPCG CloverLeaf3D
Memory Bound
Pipeline Slots 90.2% 41.5% 65.5% 80.5% 93.5%

DRAM Cache
Hit Ratio 39.9% 61.5% 61.7% 54.4% 59.2%

16 GB of DRAM available in a NUMA node, we have to
reduce the DRAM limit in the HMem Advisor configuration
file to 12 GB, to account for the other memory usage within
the application (e.g. stacks, statically allocated data, etc.)
and the memory used by the operating system. We also
performed experiments with 4 and 8 GB limits to evaluate the
performance impact of further reducing the amount of DRAM.
Note that the memory mode baseline features all 16 GB of
DRAM available to be used as cache. Each data point is the
arithmetic mean of five executions, and the maximum relative
standard deviation (RSD) is under 3%.

For the PMem-6 configuration and a 12 GB DRAM limit,
executions using our framework experience higher perfor-
mance than leveraging memory mode for all five miniapplica-
tions. More specifically, we observe three distinct behaviors:
for MiniFE and HPCG our results reveal a significant perfor-
mance improvement even when reducing our DRAM limit to
4 GB, attaining speedups of up to 2.22x for the former and
1.67x for the latter. CloverLeaf3D shows a 10% slowdown in

the most restricted DRAM case, but for the other two DRAM
limits it shows a reasonable improvement, attaining 39% over
the baseline in the 12 GB case, which is the fairest comparison
with memory mode in terms of available DRAM. In the
other two applications, our performance improvement is less
notable, reaching 8% for MiniMD and 7% for LULESH for the
12 GB DRAM experiments. Due to this lower advantage over
the memory mode baseline, limiting the DRAM introduces a
performance degradation compared to the baseline, reaching a
maximum of 12% for LULESH.

These performance results correlate well with the memory
subsystem behavior of the memory mode executions as pre-
sented in Table VI (obtained with Intel® VTune™). We observe
that the memory mode for MiniFE and HPCG experiences a
lower hit ratio than for the other three cases, which indicates
that the active workload size is sufficiently large to cause more
capacity misses, or these suffer from further conflict misses.
Moreover, the performance of these two applications is highly
dependent on the memory subsystem latencies, as shown by
the memory bound pipeline slots statistic, which represents an
approximation of the processor pipeline slots that are stalled
due to memory loads and stores. Both characteristics combined
leave more room for improvement for our framework to
exploit, and explain the observed performance in MiniFE
and HPCG. CloverLeaf3D is also markedly memory bound,
but it experiences a higher DRAM cache hit ratio, limiting
the possible improvement. MiniMD and LULESH show a
more extreme case of this limitation: their performance is less
memory bound and these feature a high hit rate, which reduces
the room for improvement.

In these experiments, the effect of including the L1D store
miss data in the HMem Advisor algorithm is negligible in
all cases except for CloverLeaf3D. For HPCG, there is slight
improvement of 5% in the 4 GB DRAM limit cases, but for the
8 and 12 GB cases the difference is negligible. For MiniMD
with 8 GB of DRAM, considering the store data removes
the 4% improvement over the baseline to a 2% slowdown.
However, in CloverLeaf3D, including store data enables the
HMem Advisor cost heuristics to capture relevant memory
objects that were missed by the loads-only case. The 8 GB
DRAM case improves the speedup over the memory mode
baseline by an additional 9% and by an additional 19% for
the 12 GB DRAM case. As discussed in Section IV, the lack
of precise LLC store miss profiling events prevents our cost
heuristics for stores from being more precise, which may result
in lower-quality memory object placements.

All the results with the PMem-2 configuration show lower
performance due to the reduction of the available bandwidth.
This poses a larger impact for our proposal, because the
memory mode can mitigate the reduction with the DRAM
cache. Still, we obtain better performance for MiniFE, Min-
iMD and HPCG, attaining a maximum speedup of 1.74× in the
former. We consider the PMem-6 configuration more relevant
because performance-focused scenarios will alleviate the lower
bandwidth of PMem by installing as many DIMMs as possible.

Kernel-level page migration shows lower performance than
our framework, although outperforming memory mode for



TABLE VII
FUNCTION BREAKDOWN OF RELATIVE AVERAGE IPC AND LOAD ACCESS

LATENCY OF CLOVERLEAF3D WITH RESPECT TO MEMORY MODE

Function IPC Latency
advec cell kernel 122.6% 77.6%
calc dt kernel 201.8% 44.3%
flux calc kernel 211.8% 51.4%
pdv kernel 163.7% 50.2%
viscosity kernel 126.3% 76.8%
advec mom kernel 98.3% 118.9%
ideal gas kernel 43.6% 132.8%
clover pack message top 78.4% 129.0%
clover pack message front 77.3% 107.2%
reset field kernel 76.9% 123.0%
update halo kernel 74.3% 127.7%
accelerate kernel 87.6% 97.2%
clover pack message right 87.3% 94.1%

MiniFE and HPCG. Enabling the NUMA node backed by
PMem poses a DRAM cost for page management metadata
proportional to PMem size (∼15GB in our case) that limits
the DRAM left for application use, impacting its performance.

Performance differences when compared to ProfDP (with
12 GB DRAM limit) are marginal. Our approach is slightly
faster for LULESH, where our highest speedup over memory
mode is 1.07×, while the highest for ProfDP is 1.04×.
MiniFE, HPCG and CloverLeaf3D show slightly higher per-
formance for ProfDP; the largest difference is for Clover-
Leaf3D, where we obtain a speedup of 1.39× versus 1.44×
with ProfDP. We could not obtain ProfDP results for MiniMD
because HPCToolkit crashed. These results confirm that our
methodology attains similar performance to the state–of–the–
art ProfDP approach, while providing several advantages:
(1) a single profiling run instead of three, (2) no need for
using a custom tool to link the application (HPCToolkit
requires linking with hpclink), and (3) efficient runtime
methodology that enables users to deploy the devised data
distribution without the need for changing the source code or
even recompiling their application.

B. Average Memory Access Latency

We present a detailed examination of CloverLeaf3D to
assess how the object placement generated by the HMem
Advisor affects the average memory access latency and the
application performance. We profiled an execution of this
application when run with FlexMalloc to compare the perfor-
mance metrics with those obtained in the initial profiling exe-
cution. The memory access latency, in CPU cycles, is obtained
using the PEBS counters for loads (PEBS store data does not
include access latency). We collected the PAPI_TOT_INS
and PAPI_TOT_CYC counters to compute the instructions
per cycle (IPC). This information is filtered to the duration of
one of the application iterations (all iterations exhibit similar
behavior), aggregated by the function performing the memory
access, and averaged across MPI ranks. Table VII contains the
computed IPC and memory access latency of the execution
using FlexMalloc, as a percentage of the same data computed
from the memory mode execution. Functions that account for
<1% of the time are not included.

Most of the functions in Table VII (first two groups) show
the expected inverse correlation between IPC and memory
access latency, where a reduction in latency results in higher
IPC, or vice versa. We observe both cases because the
memory object placement from HMem Advisor may improve
the performance of the functions accessing the objects that
are placed into DRAM, but the functions accessing objects
placed into PMem are penalized. When the cost heuristics
are able to identify the most performance-relevant objects,
the overall application performance improves, as it is the
case of CloverLeaf3D. A few functions (third group) show
unexpected relationships between IPC and memory latency;
besides memory latency, other kinds of pipeline stalls may
influence the IPC, whereas the sampling nature of the collected
latency data may be injecting some distortion.

C. Impact of the Bandwidth-Aware Placement

To evaluate the bandwidth-aware memory object place-
ment algorithm, we use LULESH and two full applications,
LAMMPS and OpenFOAM. While for the applications dis-
cussed in Section VIII-A the main algorithm of HMem Advi-
sor improves performance with respect to memory mode, for
these two cases it is not able to outperform the baseline. This
is mainly due to the more complex memory allocation and
access patterns, which require a more advanced algorithm. On
the other hand, applying the bandwidth-aware algorithm poses
no noticeable difference on those simpler cases.

Both applications are executed with the largest DRAM
limit that the available 16 GB permit. For OpenFOAM,
the limit is 11 GB, whereas in the case of LAMMPS, we
could use different limits for the main and bandwidth-aware
algorithms: 14 GB and 16 GB, respectively. This means that
the bandwidth-aware algorithm is being less aggressive trying
to utilize all the DRAM available; otherwise, the experiments
would be running out of memory. Each experiment is repeated
5 times to compute the average (the maximum RSD is 0.8%).

For LAMMPS, we can see in Table VIII that there is
almost no difference between the speedup with respect to
memory mode of the main and the bandwidth-aware algorithm.
We further analyzed this application with the VTune and
Paraver [5] profilers, and observed that the room for im-
provement is limited. Aggregate statistics from VTune reveal
that only 29.2% of stalls may be related to memory access
latency, and the DRAM cache experiences a hit ratio of 63.5%.
Comparing these metrics with the applications discussed in
Section VIII-A, LAMMPS is markedly the least memory-
bound code. From the analysis with Paraver, we observe that
for the bulk of the compute iteration time, most of the working
set fits into L2. The overhead of our executions originates
in the MPI communication phases that occur in between
each iteration. This suggests that memory objects related to
MPI communications are being placed into PMEM, which
introduces delays in the critical path. Since the communication
phases represent a small proportion of the iteration time, the
lower number of samples captured affects the capacity of
HMem Advisor to identify the relevance of these objects.
Nevertheless, even in this unfavorable case, the bandwidth-



TABLE VIII
SPEEDUP OF OPENFOAM AND LAMMPS W.R.T. MEMORY MODE

OpenFOAM LAMMPS
Main algorithm Ld+St 0.65 0.97
Bandwidth-aware Ld 1.03 0.96
Bandwidth-aware Ld+St 1.06 0.97
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Fig. 7. PMem bandwidth usage with the main HMem Advisor algorithm
(baseline) and the bandwidth-aware algorithm.

aware algorithm does not introduce any performance penalty,
and the slowdown of our framework is kept below 4%.

The bandwidth-aware placement algorithm provides sig-
nificant improvement for OpenFOAM and LULESH. Open-
FOAM improves by 6.1% over memory-mode (whereas the
base algorithm had a 2x slowdown), while for LULESH the
improvement increases from 7% to 19%. Since our algo-
rithm tries to reduce PMem bandwidth demand by moving
demanding objects into DRAM, Figure 7 presents the effec-
tiveness of our algorithm towards this objective for LULESH
and OpenFOAM. For LULESH, as soon as objects causing
high bandwidth demand (referring to Figure 3, most of the
bandwidth demanding objects are allocated in the start of the
high bandwidth phase) are moved to DRAM, improvement
in bandwidth perfectly follows the bandwidth demand curve.
This also demonstrates that most of the high bandwidth
demand is originated by the small number of objects allocated
at the start of the phase. OpenFOAM exhibits a much more
complex memory access pattern and its bandwidth demand
varies considerably throughout the execution. Nonetheless, our
algorithm effectively reduces some of the demand by moving
objects from high bandwidth regions.

D. Impact of the Call-Stack Format
We leverage OpenFOAM to showcase the impact of the

call-stack format in runtime performance and memory con-
sumption. The speedup with respect to memory mode for
the bandwidth-aware Loads+stores experiment using human-
readable call-stacks is 0.66, where we would lose almost all
the improvement provided by the bandwidth-aware algorithm.

This overhead is originated by two factors. First, the ad-
ditional space in DRAM required for the debug information
needed to generate human-readable call-stacks reduces the
DRAM limit that can be used by the HMem Advisor to 9 GB.
This large difference is due to the fact that the same data is
loaded in each MPI process, 16 in this case. Second, when
using the BOM format, we avoid translating the call frame
memory addresses to source file and line pairs. The lower
DRAM limit seems to be the main contributor to overhead, and
we planned to confirm this by storing the debug information
in PMEM. However, with the current memkind, FlexMalloc
cannot control allocation calls when already handling an
allocation call from the application. Nevertheless, the new call-
stack format we devised solves these issues while still allowing
the matching of call-stacks across different executions.

IX. CONCLUSION

In this paper we have proposed methodology for memory
object placement in hybrid memory systems. Our methodology
requires no source code modification, outperforms production
solutions and is able to address, for the first time in the
literature, complex production applications from unmodified
binaries, while notably simplifying the workflow with respect
to similar state–of–the–art solutions. Our contributions include
novel object-matching runtime methodology and a bandwidth-
aware placement algorithm. Our detailed experimentation,
including 5 miniapplications and 2 production applications, re-
veals runtime improvements with respect to the state of the art,
hardware-based methodology used in production, up to over 2x
in miniapplications, and up to 6% for OpenFOAM, a complex
production application, whereas we have not found any use
case in which our methodology yields considerably lower
performance than the baseline. Our experiments also reveal
performance improvements with respect to a reference kernel-
level approach, as well as potential for substantial DRAM re-
duction within negligible performance penalty, hence enabling
more cost-efficient and energy-friendly computing platforms.
We expect the presented methodology and our implementation
to be easily applicable to upcoming systems based on HBM
and DRAM, as well as those leveraging CXL memory pools.
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