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Abstract: Cyberattacks in the Internet of Things (IoT) are growing exponentially, especially zero-day
attacks mostly driven by security weaknesses on IoT networks. Traditional intrusion detection
systems (IDSs) adopted machine learning (ML), especially deep Learning (DL), to improve the
detection of cyberattacks. DL-based IDSs require balanced datasets with large amounts of labeled
data; however, there is a lack of such large collections in IoT networks. This paper proposes an
efficient intrusion detection framework based on transfer learning (TL), knowledge transfer, and
model refinement, for the effective detection of zero-day attacks. The framework is tailored to 5G
IoT scenarios with unbalanced and scarce labeled datasets. The TL model is based on convolutional
neural networks (CNNs). The framework was evaluated to detect a wide range of zero-day attacks.
To this end, three specialized datasets were created. Experimental results show that the proposed
TL-based framework achieves high accuracy and low false prediction rate (FPR). The proposed
solution has better detection rates for the different families of known and zero-day attacks than any
previous DL-based IDS. These results demonstrate that TL is effective in the detection of cyberattacks
in IoT environments.

Keywords: cybersecurity; convolutional neural network; intrusion detection systems; IoT networks;
transfer learning

1. Introduction

The rapid proliferation of IoT networks in a wide range of domains, such as manu-
facturing, transportation, energy, healthcare, and agriculture, among others, has intercon-
nected billions of devices. By the end of 2022, it is expected that the number of connected
devices will grow up to 46 billion. The pervasive use of IoT devices makes IoT networks
vulnerable to a wide range of cyberattacks. In 2020, the leading attacks in IoT networks
were worms, bots, and distributed denial of service (DDoS) [1], while in 2021 the number
of cyberattacks in IoT networks doubled, according to the antivirus and security service
provider Kaspersky. IoT systems are suffering devastating losses as traditional security
mechanisms (e.g., traditional IDS) are too resource-demanding for IoT environments. Even
worse, if we consider that IoT devices are often manufactured without appropriate security
controls, a considerable percentage of IoT devices present security vulnerabilities [2].

Recent works on IoT security focus their efforts on the adoption of machine learning
(ML) and deep learning (DL) techniques for intrusion detection systems (IDS). Initially,
they make extensive use of ML techniques [3], but they lack the feature engineering and
they have low detection rates [4]. In addition, ML-based solutions fail in the identification
of different types of threats and intrusions, especially for unforeseen and unpredictable
attacks. DL techniques have been subsequently adopted to overcome these constraints.
They improve the ability of ML-based solutions to prevent attacks by identifying patterns
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that are different from normal behavior, increasing detection accuracy and reducing the
false positives [5,6].

DL-based IDSs have demonstrated their capabilities to extract complex patterns when
a large collection of labeled data is available to train the classification models in order to
detect intrusions. However, in IoT environments, there is a lack of such large collection of
labeled data for unknown (zero-day) attacks, or even for known families of attacks. In these
networks, new training data are expensive and time-consuming to collect, or occasionally
nonexistent. Moreover, when a new intrusion is detected, DL models must be retrained
with the new data from scratch, involving a huge amount of computing resources and time.
Thus, DL-based IDSs are suffering the challenges of IoT networks where datasets are scarce
and unbalanced, and devices have limited computing capabilities.

The emergence of transfer learning (TL) [7] helps IDSs overcome their limitations
in the detection of zero-day attacks, evolving threats, and in the effective detection of
cyberattacks in networks with scarce and unbalanced datasets. TL is a recent ML progress,
which applies in a target domain the knowledge previously learned in a related source
domain. TL creates a high-performance learner for the target domain trained from the
related source domain. TL has been demonstrated to be effective in the areas of natural
language processing (NLP) [8] and computer vision (CV) [9]. Image classification models
trained to detect different categories of objects are repurposed for a new, different, but
related, domain. Transferring the knowledge gives better results than training the new
image dataset from scratch. Research works demonstrate that the performance of a model
built using TL is similar to that obtained by DL models even if the TL works with only
one to ten percent of the labeled training data. Recently, TL has been explored in IDSs. It
improves the detection of known attacks in domains with scarce data, such as IoT networks,
and in the detection of zero-day attacks. The results are promising in the detection accuracy
of new intrusions. Existing research works use TL to improve the detection of known
attacks in scarce datasets; to speed up the training process; and to detect zero-day attacks.
In some cases, they are focused on the detection of a specific new family of novel attacks or
on a specific IoT application, such as Internet of Vehicles (IoV). Thus, this paper overcomes
existing work defining a novel effective framework for the detection of different families of
known and novel attacks based on TL in IoT networks.

The goal of this work is to define and implement an efficient intrusion detection
framework based on TL, knowledge transfer, and model refinement. We evaluate detection
rate and accuracy for known and novel cyberattack families in IoT networks with scarce
and unbalanced datasets. The deep transfer learning solution developed is based on
convolutional neural networks (CNNs). Two different, but related, datasets in intrusion
detection are considered, containing normal and cyberattack traffic flows in the IoT domain.
The BoT-IoT dataset [10] is chosen for the source domain, since it is a large dataset with IoT
network traffic, and the UNSW-NB15 dataset [11] is chosen for the target domain, since it is
a scarce labeled dataset with IoT network traffic that comprises modern and contemporary
cyberattacks. The main contributions of this work are summarized as follows:

• First, we propose a novel framework for the detection of known and zero-day attacks
in IoT networks, based on TL and network fine-tuning.

• Second, we propose the creation of three specialized datasets to train and evaluate the
framework: (i) the UNSW-NB15-Basic, with normal traffic and four different types
of known attacks; (ii) the UNSW-NB15-Test+, with normal traffic and five different
types of zero-day attacks; and (iii) the UNSW-NB15-Test, with normal traffic and nine
different types of attacks (four known and five zero-day attacks).

The proposed TL-based attack detection framework outperforms the state of the art
by achieving an overall accuracy of 97.89% and 0.05% FPR, while detection rates for the
different families of zero-day attacks range from 98.85% to 100%. The proposed framework
considers IoT network traffic, such as provided in the UNSW-NB15 dataset; it does not
consider real data from IoT networks.
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The rest of this article is organized as follows. Section 2 discusses the related work
on transfer-learning-based solutions for cyberattack detection in IoT networks. Section 3
provides the background used in our work. Section 4 presents the proposed TL-based
intrusion detection framework. Sections 5 and 6 describe the usage of the framework in IoT
networks and discuss the performance evaluation results. Section 7 concludes the paper
and outlines the future work.

2. Related Work

DL has been widely applied to network intrusion detection. However, currently
available datasets in IoT environments are, in most cases, inadequate to train systems
capable of detecting unknown intrusions. Transfer learning has been proposed to overcome
low-level intrusion detection rates. Initial works in this area propose the use of TL [7] by
means of CNN models in a two-stage learning process: first, learning from a base dataset,
the UNSW-NB15 [11], and then transferring the knowledge of the learning process to the
target dataset, the NSL-KDD dataset [12]. The system considers two concatenated CNNs,
and it is evaluated using the KDDTest-21 dataset for considering zero-day attacks. They
achieve an improvement of about 2.86% in the detection of novel attacks compared to
the traditional CNN mode. They achieve an accuracy (ACC) of 81.94%. In the same vein,
Masum et al. [13] explore transfer learning for the detection of novel intrusions. Their
solution is also based on a two-step process, but in this case, the first step uses the VGG-16
pretrained on ImageNet dataset, and in the second, a deep neural network (DNN) is applied
to the extracted features. The DNN consists of an input layer, two hidden layers, and an
output layer. The hidden layers are fully connected layers with 64 and 8 nodes, respectively.
They evaluate the solution also using the NSL-KDD dataset, achieving an accuracy of
70.97% in the detection of novel intrusions (KDDTest-21), slightly lower than [7].

Sameera et al. [14] use transfer learning in IDS to detect zero-day attacks minimizing
FPR, but restrict the solution to the detection of remote-to-local (R2L) attacks. The system
that they propose detects unlabeled R2L attacks of the NSL-KDD dataset making use of
labeled DoS attacks. They achieve an accuracy of 89.79% and FPR of 0.15%, improving
previous feature-based TL methods [15] by 11.79%. Similarly, Singla et al. [16] propose
a system for detecting specific families of novel attacks transferring knowledge from a
source domain to a target model with limited training data. They implement the TL model
using two DNN with two and five regular densely connected layers. They break down the
UNSW-NB15 dataset [11] into two parts: (i) a source dataset containing different categories
of attacks, and (ii) a target dataset containing just a new attack type. The accuracy of the
TL solution improves between 3.2% and 19.1%, depending on the type of new attack. The
baseline is the DL model trained from scratch. In the IoV, Li et al. [17] propose the usage of
TL for updating training models when a new attack is produced and the IoV cloud cannot
provide the labeled data in time. Then, multiple TL is performed using the pseudo-labeled
data. The experiments use two datasets of the public dataset AWID [18] and they achieve
96% detection accuracy, improving traditional schemes up to 8%. In the same area, but
with a different objective, to speed up the training process, Mehedi et al. [19] propose a
deep-TL-based ID model to classify normal traffic and attacks. The TL model makes use of
two CNNs and the datasets used for the source and target domain are two different subsets
of the new-generation labeled dataset for in-vehicle network [20], which considers three
different types of attacks: flooding, fuzzing, and spoofing. The detection model shows
optimal performance with an overall accuracy of 98.1%.

Fan et al. [21] bring together transfer and federated learning in 5G IoT environments.
They propose a federated framework to securely enable data aggregation from different IoT
networks. They use transfer learning to achieve a personalized intrusion detection model
for each IoT network. They implement transfer learning using CNN, and they evaluate the
solution with the CICIDS2017 [22] as base dataset and different custom target datasets for
the different IoT networks. They achieve a detection accuracy of 91.93% on average.
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Idrissi et al. [23] also propose the usage of transfer learning to overcome the limitation
of traditional DL-based IDS on the detection of novel attacks in IoT environments with
few labeled data. Their solution retrains a fine-tuned pretrained model where most of the
layers are fixed and just the last ones are trained using a CNN. They consider the BoT-IoT
dataset [10], generic for IoT systems, in the source domain, and update it in the target
domain with small data from the TON-IoT dataset [24], specific for Industrial IoT (IIoT).
They achieve an accuracy of 99% in the detection of novel attacks.

Finally, deep transfer learning (DTL) is used for intrusion detection in scarce datasets,
but not considering zero-day attacks. Guan et al. [25] benefit from the work carried out in
traffic classification [26] to develop a method based on deep transfer learning for network
classification in IoT environments with scarce labeled data with devices with limited
computing capability. They make use of EfficientNet [27] and Big Transfer (BiT) [28], which
have demonstrated excellent performance for transfer learning in image recognition. They
evaluate the solution using the 10% USTC-TFC2016 labeled dataset [29]. The proposal
achieves an accuracy of 96.22% and 96.40% for BiT and EfficientNet, respectively. Table 1
summarizes the works reviewed in this section. Mehedi et al. [30] propose a residual neural
network based on DTL to effectively detect intrusions in heterogeneous IoT networks.
They construct its own dataset from various heterogeneous sources, which include seven
IoT sensors, and they detect nine different types of attacks: DoS, DDoS, data injection,
man-in-the-middle (MITM), backdoor, password cracking attack (PCA), scanning, cross-site
scripting (XSS), and ransomware. The overall accuracy of the CNN-based model is 87%.

The work proposed in this paper differentiates from those reviewed, as some of them
propose the usage of TL to improve the detection of known attacks in scarce datasets [25],
heterogeneous IoT networks [30], or personalizing the solution for different IoT net-
works [21], but without considering novel attacks. While others are restricted to specific
families of novel attacks [14,16,23] use datasets not specific to IoT environments [7,13], or
focus their solution on a specific IoT environment [19]. Finally, [17] has a different objective,
to speed up the training process.

Table 1. Transfer-learning-based intrusion detection in IoT environments.

Reference TL Source Dataset Target Dataset Accuracy

Wu et al. [7] (2019) CNN-CNN UNSW-NB15 NSL-KDD 81.94%
Masum et al. [13] (2020) DNN-DNN VGG-16 NSL-KDD 70.97%

Sameera et al. [14] (2019) PCA-KNN NSL-KDD
(DoS+ Normal)

NSL-KDD
(R2L+ Normal) 89.79%

Singla et al. [16] (2019) DNN-DNN UNSW-NB15 Subset UNSW-NB15 Subset
(single new attack) 95–98%

Li et al. [17] (2021) SVM-RF AWID AWID 96%
Mehedi et al. [19] (2021) CNN-CNN Custom Custom 98.1%

Fan et al. [21] (2021) CNN-CNN CICIDS2017 Custom 91.93%
Idrissi et al. [23] (2021) CNN-CNN BoT-IoT TON-IoT 99.43%
Guan et al. [25] (2021) BiT EfficientNet Custom 10% USTC-TFC2016 96%

Mehedi et al. [30] (2022) CNN Custom Custom 87%

3. Background
3.1. Convolutional Neural Networks

CNNs [31], also known as ConvNets, are one of the most popular DNNs. CNNs were
first used for the recognition of phonemes and words [32]. Later, CNNs were applied to
image classification [33]. CNNs have been recently considered in the cybersecurity field
for intrusion detection [34] and encrypted traffic classification [35]. The architecture of a
CNN (see Figure 1) consists of three different types of layers: convolutional, pooling, and
classification. Convolutional layers are the core of the CNN, where its units are organized
in feature maps. Each unit in a feature map is connected to the local patches in the feature
maps of the previous layer through a set of weights (filter bank). The result of applying
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these filters goes through a nonlinearity transformation. The role of the pooling layers is
to merge semantically similar features into a single one by applying a specific function.
Pooling layers reduce the size of the feature maps and the number of overfitting parameters.
The classifiers are usually formed by fully connected layers. The classification is performed
based on the detected features. Recently, different pretrained models used in TL are based
on CNNs [36], since the lower layers of the convolutional base of the CNN are used for
general features, while the higher layers are used for specialized features.

Figure 1. CNN architecture.

3.2. Transfer Learning

DL has been successfully used in many applications with abundant training data,
with the same distribution and input feature space as the testing data. However, in certain
scenarios, data are scarce or expensive to collect. In such situations, it is necessary to create
a high-performance learner for a target domain, with limited or no labeled examples, from
a related source domain with a large collection of labeled examples. This is the fundamental
purpose of transfer learning [37]. TL improves the resolution of new problems, applying
the knowledge previously learned. In TL, the domains, tasks, and distributions used in
training and testing can be different. For example, a model that has learned to identify cars
can be used when creating a model to identify trucks. In our domain, TL is used to detect
new families of attacks, applying the knowledge previously learned on the detection of
existing attacks in IoT networks.

TL is formally defined in [38]. Given a source domain DS, a source learning task TS, a
target domain DT , and a target learning task TT , TL contributes to improve the learning
of the target predictive function fT(.) in DT using the knowledge in DS and TS, where
DS 6= DT , or TS 6= TT .

There are two main dichotomies in the categorization of TL [38]. The first is based
on the availability of labeled data, which divide TL into three categories: transductive,
inductive, and unsupervised transfer learning. The second is based on the differences
in feature spaces, which categorize TL into four groups: instance-based, feature-based,
parameter-based, and relational-based approaches.

In the DL context, TL takes advantage of pretrained models, which, in most cases, are
based on CNNs [36,39]. A typical CNN, as introduced in the previous section, has two
main parts: the convolutional base for feature extraction, and the classifier. In DL models,
the features computed by the first layers are general, while features extracted in the last
layers are specific, more biased towards the learning task. General features can be then
used in different problem domains. Yosinski et al. [40] develop the first deep transfer neural
network. On this basis, three different TL strategies were conducted depending on the
amount of data of the target domain. They all first substitute the original classifier by a new
classifier for the target problem. Then, the resulting model is fine-tuned. However, they
differentiate in the number of layers that are trained or that are fixed, ranging from training
the entire model, where a large dataset is needed, to training some layers and leaving the
others fixed, for small datasets with a large number of parameters. Another option is to
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fix the convolutional base and use its outputs to feed the classifier. It is used for small
datasets or when solving really similar problems. The later approach is the chosen one in
our framework since we have a small dataset without observations for the zero-day attacks
and the source and target domain deal with the same problem, the detection of intrusions
in IoT networks.

4. TL-Based Intrusion Detection Framework

This paper proposes a deep-TL-based intrusion detection framework for known and
novel attacks families in IoT networks. The framework has two phases: (i) an initial training
phase on the source domain, and (ii) a transfer learning phase to the target domain.

Both phases use a CNN as their learning core, CNN-B and CNN-TL, respectively,
and our strategy is to fix the convolutional base and use its output to feed the classifier.
Figure 2 shows the different stages of the detection process. These can be grouped into data
treatment and transfer learning:

• Stage 1: Source domain dataset preprocessing.
• Stage 2: Source domain learning (CNN-B training—source dataset).
• Stage 3: Target domain dataset preprocessing.
• Stage 4: Transfer learning to the target domain (CNN-TL training—target dataset).
• Stage 5: Attack detection (target dataset).

Figure 2. Overall structure of the proposed intrusion detection framework.

4.1. Data Treatment and Preprocessing

Stages 1 and 3 of the TL-based intrusion detection framework accomplish the data
treatment and preprocessing of the datasets, source, and target, respectively. In IoT en-
vironments, the records of network activity include traffic flows of normal and different
families of cyberattacks. Raw network packets are processed to extract features and to
generate the datasets. Features in IoT datasets include flow, connection, content, and time
features. The types of these features usually are nominal, integer, float, timestamp, and
binary. On the other hand, when considering CNN models, raw data must be converted to
image format. Given all that, data treatment and preprocessing for IoT datasets usually
include the following steps:

• One hot encoding (OHE) transformation: Transforms nominal fields to numeric using
the OHE method.

• Decimal conversion: Converts hexadecimal fields to decimal format.
• Logarithmic method: Applies logarithm procedure to features with values concen-

trated in 0.
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• Standardization: Standard normalization of the dataset to prevent model overfitting
and biased results.

• Image transformation: Converts raw data to image format.

4.2. Transfer Learning

The TL-based framework developed for the ID framework encompasses stages 2, 4,
and 5. It consists of two main phases: first, the generation of the ID-model in the source
domain, and second, the update of the model, where base knowledge is transferred, to the
target domain.

4.3. Training Phase—Source Domain

The first phase of the TL-based framework consists of the generation of the base
ID-model on the source domain. To this end, it is built and trained in the source training
dataset. The model accuracy is validated using the source domain validation dataset. The
structure of the CNN-B is depicted in Figure 3. It consists of two convolutional layers,
with 32 and 64 filters, respectively, two pooling layers to reduce the sample size of the
convolution output, which contribute to the selection of most useful features, improving
next step learning, and a flattening and a dense layer. The fully connected layer uses the
ReLu activation function. The output layer has two outputs, with softmax activation, to
determine if it belongs to normal traffic or attack.

Figure 3. CNN-based IDS-model structure.

4.4. Transfer Learning Phase

The second phase of the TL-based framework consists of applying the knowledge
learned in the source domain to the target domain. In the CNN-TL, the convolutional
base of the original base ID-model is frozen and the classifier is fed with its outputs. The
convolutional base is frozen to avoid weights modification when the model is retrained.
The structure of the CNN-TL model is depicted in Figure 4, and it consists of the frozen
convolutional base of the CNN-B model followed by concatenated fully-connected layers
as an output layer. The dropout is randomly set on a fixed probability, to reduce overfitting.
The ReLu activation function is chosen in the hidden layers of the fully connected network.
The number of neurons in the different layers decreases up to the output layer. The output
layer contains a fully connected network with softmax activation function. The CNN-TL
model is trained using the target training dataset.

Figure 4. CNN-TL IDS-model structure.
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5. Evaluation

This section proposes a possible application of the TL-based ID framework in IoT
environments. We choose two datasets for the source and transfer domain that contain
normal and cyberattack IoT traffic flows. For the source domain, we require a large IoT
network activity dataset, then we choose the the BoT-IoT dataset [10], while for the target
domain, we choose a scarce, unbalanced dataset with IoT network traffic that comprises
modern and contemporary cyberattacks, the UNSW-NB15 [11] dataset. To evaluate the
detection of zero-day attacks, we created four different datasets, as explained below.

5.1. Source Domain Dataset

In this use case, the BoT-IoT dataset [10] was chosen to train the TL framework. This
dataset is created by the Australian Center for Cyber Security (ACCS), developing a realistic
network environment in the Cyber Range Lab of UNSW Canberra. It consists of records
of network activity in a simulated IoT environment, including both normal and several
cyberattack traffic flows. It is based on the activity of a network composed of 62 hosts
(based in the network mask 192.168.100.0/26). The dataset has 46 features and 5 different
output classes, one for normal traffic and four for the different types of attacks. The dataset
includes denial of service (DoS), distributed DoS (DDoS), reconnaissance, and information theft
attacks. DoS and DDoS attacks address malicious attempts to disrupt normal traffic of a
server, service, or network, overloading them with a flood of Internet traffic. DoS and DDoS
attacks have the subcategories TCP, UDP, and HTTP. Reconnaissance represents attacks that
gather information from the target. It has the subcategories OS fingerprinting and service
scanning. Finally, information theft represents the steal of personal user information. It
has the subcategories keylogging and data exfiltration. The BoT-IoT dataset comprises
over 73 millions of records, but in our work, only 10% of the full dataset is considered
for easy handling, maintaining the normal traffic, since it is scarce, and preserving the
proportionality between the different types of attacks. Table 2 provides the details.

Table 2. BoT-IoT Dataset.

Category Subcategory Records Description

Normal Normal 9543 Natural transaction data.

DoS
TCP
UDP

HTTP
38,532,480

A malicious attack to cripple the services offered by a site,
server, or network overloading the target of its associated
infrastructure by flooding the site with many requests.

DDoS
TCP
UDP

HTTP
33,005,194 Attack where multiple compromised computer systems

attack a target, causing a DoS.

Reconnaissance OS fingerprinting
Service scanning 1,821,639 All the different strikes simulating attacks

gathering information.
Information

Theft
Keylogging

Data exfiltration 1587 Stealing of personal user information.

5.2. Target Domain Dataset

To validate the framework, four different datasets were derived from the UNSW-NB15
dataset [11]. This dataset is also developed by the ACCS in collaboration with researchers
worldwide. It consists of normal and synthesized attack activities in a simulated IoT
environment. This dataset contains normal traffic and nine different types of attacks, which
include generic, exploits, fuzzers, DoS, reconnaissance, analysis, backdoor, shellcode, and
worms. Table 3 provides the description and distribution (number of records) in the dataset.

The UNSW-NB15 dataset has 49 different features and it comprises over 2 million
records stored in four different CSV files. The distribution between normal and malicious
traffic is 87%/13%.
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Table 3. UNSW-NB15 dataset.

Category Records Description

Normal 2,218,761 Natural transaction data.
Generic 215,481 Attack against blockciphers with a given block and key size (not

considering its structure).
Exploits 44,525 Attack that exploits vulnerabilities, taking advantage of security

problems (of an operating system or a piece of software) known by
the attackers.

Fuzzers 24,246 Attack that suspends a program or network, feeding it with ran-
domly generated data.

DoS 16,353 A malicious attack that makes a server or network resource un-
available, overloading the target of the associated infrastructure
with a flood of Internet traffic.

Reconnaissance 13,987 Comprises different attacks that gather information.
Analysis 2677 Different attacks on penetrations (HTML files, spam, and

port scan).
Backdoors 2329 An attack that bypasses a system security mechanism to access a

computer or its data.
Shellcode 1511 Attack that exploits software vulnerabilities using small pieces of

code as payloads.
Worms 174 Attack where the attacker replicates itself to spread to other computers.

In order to validate the effectiveness of the TL-based ID framework in the detection of
novel attacks, three different datasets are generated in the target domain:

• UNSW-NB15-Basic: Dataset with normal traffic and four different types of known
attacks (generic, exploits, DoS, and reconnaissance) used for training. It is divided
into two:

– UNSW-NB15-Basic-Train: Dataset to train the initial model.
– UNSW-NB15-Basic-Test: Dataset to evaluate the effectiveness in the detection of

known attacks (generic, exploits, DoS, and reconnaissance).

• UNSW-NB15-Test+: Dataset to evaluate the effectiveness in the detection of zero-day
attacks (fuzzers, analysis, backdoor, shellcode, and worms).

• UNSW-NB15-Test: Dataset to evaluate the effectiveness in the detection of known and
zero-day attacks (generic, exploits, DoS, reconnaissance, fuzzers, analysis, backdoor,
shellcode, and worms).

The first dataset created, the UNSW-NB15-Basic, is made up of normal traffic and four
out of the nine types of attacks of the UNSW-NB15 dataset. The attacks considered are DoS,
exploits, generic, and reconnaissance. This dataset was subsequently balanced to become
closer to a real scenario, resulting in 50% of normal traffic and 50% of attacks. A total of
75% of this dataset is used for training (UNSW-NB15-Basic-Train), and the remaining 25%
for testing (UNSW-NB15-Basic-Test).

The second dataset generated is the UNSW-NB15-Test+. This dataset is used to
evaluate the effectiveness of the framework in the detection of unknown families of attacks.
This dataset comprises normal traffic and five different types of new attacks (fuzzers,
analysis, backdoors, shellcode, and worms). The new types of attacks considered are the
ones in the UNSW-NB15 dataset not considered in the UNSW-NB15-Basic dataset.

The third dataset generated for evaluating the effectiveness of the framework in the
detection of known and unknown families of attacks is the UNSW-NB15-Test. It consists
of normal traffic and the nine types of attacks of the UNSW-NB15 dataset. Tables 4 and 5
summarize the devised datasets.
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Table 4. UNSW-NB15-Basic-Train and UNSW-NB15-Basic-Test datasets.

UNSW-NB15-Basic-Train UNSW-NB15-Basic-Test

Name Records Percentage Records Percentage

Normal 217,552 49.95% 72,794 50.14%
Generic 161,865 37.17% 53,616 36.93%
Exploits 33,408 7.67% 11,117 7.66%
DoS 12,196 2.80% 4157 2.86%
Reconnaissance 10,498 2.41% 3489 2.40%

Table 5. UNSW-NB15-Test+ and UNSW-NB15-Test datasets.

UNSW-NB15-Test+ UNSW-NB15-Test

Name Records Percentage Records Percentage

Normal 30,937 50.00% 321,283 50.00%
Generic - - 215,481 33.53%
Exploits - - 44,525 6.93%
DoS - - 16,353 2.54%
Reconnaissance - - 13,987 2.18%
Fuzzers 24,246 39.19% 24,246 3.77%
Analysis 2677 4.33% 2677 0.42%
Backdoor 2329 3.76% 2329 0.36%
Shellcode 1511 2.44% 1511 0.24%
Worms 174 0.28% 174 0.03%

For the source domain, we use 10% of the BoT-IoT dataset, randomly split into 75%
for training and 25% for testing. Table 6 details the datasets created in terms of normal and
malicious traffic. Note that the distribution of attacks is different for the UNSW-NB15-Test+
and UNSW-NB15-Test, since the former only considers zero-day attacks, while the latter
considers known and zero-day attacks.

Table 6. Dataset summary showing the number of records corresponding to normal and malicious
traffic, the corresponding percentage of attacks, and the percentage of novel attacks.

Dataset Normal Attack % Attack % Novel Attack

BoT-IoT 9543 5,823,226 99.84% -
UNSW-NB15-Basic-Train 217,552 217,967 50.04% -
UNSW-NB15-Basic-Test 72,794 72,379 49.85% 0.00%
UNSW-NB15-Test+ 30,937 30,937 50.00% 100.00%
UNSW-NB15-Test 321,283 321,283 50.00% 9.63%

5.3. Data Treatment and Preprocessing

Stages 1 and 3 of the framework perform data preprocessing. First, we must bear
in mind that the TL model designed uses the output of the convolutional base to feed
the classifier. Then, the datasets for the source and the target domain have to be trained
with the same input shape and features. To this end, we generated a new version for both
datasets with their 15 common features, which are shown in Table 7.

The next step is the data preprocessing. First, the fields with a string format are
transformed to numeric format using the one hot encoding (OHE) method. The fields
in hexadecimal format are converted to decimal formal. The logarithm procedure is
applied to fields (dur, sbytes, dbytes, and spkts) with values concentrated in 0. A standard
normalization of the datasets is performed to prevent overfitting and possible biased results.
Finally, data are transformed to image format, converting from 1D to 3D (i.e., vectors of
length 24 results on dimension (24,1,1)).
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Table 7. Common features for the BoT-IoT and UNSW-NB15 datasets.

BoT-IoT UNSW-NB15 Type Description

1 proto proto nominal Textual representation of transaction protocols
present in network flow.

2 saddr srcip nominal Source IP address.
3 sport sport integer Source port number.
4 daddr dstip nominal Destination IP address.
5 dport dsport integer Destination port number.
6 spkts spkts float Source-to-destination packet count.
7 dpkts dpkts float Destination-to-source packet count.
8 sbytes sbytes float Source-to-destination byte count.
9 dbytes dbytes float Destination-to-source byte count.
10 state state nominal Transaction state.
11 stime stime timestamp Record start time.
12 ltime ltime timestamp Record last time.
13 dur dur float Record total duration.
14 attack label binary Class label: 0 for normal traffic, 1 for attack.
15 category attack_cat nominal Cyberattack family.

5.4. Transfer Learning

First, in stage 2 of the framework, the BoT-IoT dataset is used for the generation of
the base ID-model on the source domain. To this end, it is built and trained in the BoT-
IoT training dataset, which represents 75% of the whole dataset. The model accuracy is
validated using the BoT-IoT validation dataset, which comprises the remaining 25% of
the dataset. Then, stage 4 of the framework applies the knowledge learned in the source
domain to the target domain. In the CNN-TL, the convolutional base of the original base
ID-model is fixed and the classifier is fed with its outputs. The CNN-TL model is trained
using the UNSW-NB15-Basic-Train dataset, which represents 75% of the UNSW-NB15-
Basic dataset. Finally, stage 5 of the framework performs the detection of known and
zero-day attacks. To this end, the CNN-TL model is tested using the UNSW-NB15-Test
and UNSW-NB15-Test+ datasets, to consider both known and novel families of attacks.
Table 8 summarizes the parameters for the different classification layers of the CNN-TL
model. It should be noted that in a real scenario, instead of using the UNSW-NB15-Test
and UNSW-NB15-Test+ datasets, we would use the corresponding real traffic preprocessed
as described in the previous section.

Table 8. Classification layers parameters summary: CNN-TL model.

Classification Head Layer 1 Layer 2 Layer 3 Output Layer

Number of neurons 448 224 112 2
Dropout probability 0.4 0.3 0.3 -
Activation ReLu ReLu ReLu Softmax

6. Results
6.1. Metrics

To evaluate the TL-based cyberattacks detection solution, we consider accuracy, preci-
sion, recall, FPR, and F1-score metrics. These metrics use properties from a confusion matrix,
i.e., the matrix representation of the classification results, where true positive (TP) and true
negative (TN) denote the number of attack and normal records correctly classified, whereas
false positive (FP) and false negative (FN) denote the number of normal and attack records
incorrectly classified.

Accuracy (ACC) is the ratio of correctly classified predictions over the total number of
instances evaluated.

ACC =
TP + TN

TP + TN + FP + FN
(1)
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Precision (p) is the ratio of items correctly classified from the total of items predicted.

p =
TP

TP + FP
(2)

Recall (r) is the ratio of items correctly classified from the total of corrected items.

r =
TP

TP + FN
(3)

False prediction rate (FPR) represents the ratio of items incorrectly classified (attack
or normal).

FPR =
FP

TN + FP
(4)

F1-score is the weighted harmonic mean of precision and recall.

F1-score =
2 ∗ (p ∗ r)

p + r
(5)

6.1.1. System Setup

The experimental environment is built on the Lenovo IdeaPad 320-15IKB with Intel®
Core™ i7-8850U CPU @ 1.8 GHz processor and 8 GB RAM. The TL-based solution is imple-
mented using the TensorFlow backend [41], the frontend Keras [42], Pandas, and Scikit-
learn packages. The project code is uploaded and available in the GitHub repository [43].

6.1.2. Training

The proposed framework is pretrained using the BoT-IoT dataset (source domain).
The CNN-B is trained with 25 epochs, a batch-size of 2048, and the Adam optimizer has a
learning rate of 5× 10−4 to minimize the error function. We also use a categorical cross-
entropy loss function. The CNN-TL is trained using the UNSW-NB15-Basic-Train dataset
(target domain). The training consists of 15 epochs, a batch size of 4096, an Adam optimizer
with a learning rate of 2× 10−5, and categorical cross-entropy loss function. The learning
rate used is very small to achieve a better performance of TL. The training parameters for
both models are summarized in Table 9.

Table 9. TL model training parameters summary.

Model Epochs Batch Size Optimizer Learning Rate Loss

CNN-B 25 208 Adam 5× 10−4 Categorical cross-entropy
CNN-TL 15 4096 Adam 2× 10−5 Categorical cross-entropy

6.1.3. Validation

The TL solution is tested using the UNSW-NB15-Test+ dataset (which only comprises
zero-day attacks) and the UNSW-NB15-Test (which comprises both known and zero-
day attacks).

First, to validate the efficiency of the TL model in the detection of zero-day attacks, we
evaluate the model using the UNSW-NB15-Test+ dataset. The model achieves a 99.04% ac-
curacy, 99.06% precision, 99.04% recall, 0.05% FPR, and 99.05% F1-score. Table 10 presents
the number of detected samples—TP + TN, non-detected samples—FP + FN, and the de-
tection rate for the five different types of zero-day attacks, showing that the DR exceeds 98%
in all cases.
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Table 10. Attack detection summary UNSW-NB15 dataset: Zero-day attacks.

Traffic Detection Rate Detected Samples Non Detected Samples

Normal 98.34% 30,358 513
Analysis 100.00% 622 0
Backdoor 100.00% 357 0
Fuzzers 99.95% 21,507 10
Shellcode 99.93% 1510 1
Worms 98.85% 172 2

The TL model is also evaluated on the detection of known and zero-day attacks. To
this end, the UNSW-NB15-Test dataset is used for testing. The CNN-TL model achieves a
97.89% accuracy, 98.22% precision, 97.89% recall, 0.05% FPR, and 97.97% F1-score. Although
the model statistics are slightly lower than when only considering zero-day attacks, the
detection rate for the different families of zero-day attacks is also greater than 98%, as
shown in Table 11.

Table 11. Attack detection summary UNSW-NB15 dataset: Known and zero-day attacks.

Traffic Detection Rate Detected Samples Non Detected Samples

Normal 98.53% 315,902 46,081
DoS 99.43% 3841 22
Exploits 99.75% 28,249 68
Generic 99.98% 213,678 40
Reconnaissance 99.94% 11,848 6
Analysis 99.84% 621 1
Backdoor 99.44% 355 2
Fuzzers 99.79% 21,472 45
Shellcode 99.93% 1510 1
Worms 98.85% 172 2

To draw a comparison with existing DL-based IDS, we implement a solution based on
CNN and compare its performance with our proposed TL-based solution. The CNN model
is evaluated first on the detection of zero-day attacks with the NSW-NB15-Test+ dataset. It
achieves an overall accuracy of 71.85%, a precision of 80.77%, a recall of 71.85%, an FPR of
63.64%, and an F1-score of 68.14%. We also evaluate the CNN model for the detection of
both known and zero-day attacks using the UNSW-NB15-Test+ dataset. In this case, the
accuracy is 85.38%, precision is 91.44%, recall is 85.38%, FPR is 16.04%, and the F1-score is
87.29%. If we compare the overall metrics for both solutions, we can conclude that the TL
model outperforms the CNN model for all metrics.

Accuracy is improved by 27.19% in the detection of zero-day attacks, and 12.51% when
considering both known and zero-day attacks. The main reason for this improvement
is that the optimizing algorithm converges faster to optimal weights when the CNN-TL
model has weights initialized on a similar domain, unlike the CNN model that starts from
scratch, in our case using random weights.

Another metric that improves significantly is FPR. The non-transfer-learning-based
solution has higher FPR values due to two main factors: the occurrence of zero-day attacks
and the imbalanced nature of the dataset. From these experiments, we can conclude that
TL helps reduce false positives in intrusion detection, an important concern in the industry
of cyberattack detection systems.

Finally, we analyze the detection rate (DR) for each family of attacks. We consider two
IDSs—the CNN-based and the TL-based—and for the two scenarios: (i) considering only
zero-day attacks (UNSW-NB15-Test+), and (ii) considering both known and zero-day attacks
(UNSW-NB15-Test).

Table 12 shows the complete picture from which we can draw the following conclu-
sions. The TL-based IDS has better detection rate for all the different types of attacks,
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known and zero-day. The DR achieved for the different families of zero-day attacks remains
practically the same when only considering zero-day attacks, or when also considering
known attacks, ranging from 98.85% to 100%. When compared with the CNN-based IDS,
the TL-based framework improves DR for zero-day attacks up to 33.28%, and up to 7.1%
for known attacks. Therefore, the TL-based IDS significantly improves the detection of
zero-day and known attacks with less representation in the dataset, when compared with
the CNN-based IDS.

Table 12. Attack detection rate for known and zero-day attacks.

UNSW-NB15-Test UNSW-NB15-Test+

Traffic CNN TL Improvement CNN TL Improvement

Normal 99.65% 98.54% -1.11% 98.52% 98.34% -0.18%
DoS 96.73% 99.43% 2.7 0% - - -
Exploits 97.90% 99.76% 1.86% - - -
Generic 99.16% 99.98% 0.82% - - -
Reconnaissance 92.85% 99.95% 7.10% - - -
Analysis 86.14% 99.84% 13.7% 66.72% 100.00% 33.28%
Backdoor 83.62% 99.44% 15.82% 89.64% 100.00% 16.38%
Fuzzers 80.76% 99.79% 19.03% 69.20% 99.95% 30.75%
Shellcode 89.43% 99.93% 10.50% 98.34% 99.93% 1.59%
Worms 96.31% 98.85% 2.54% 95.97% 98.85% 2.88%

7. Conclusions and Future Work

In this paper, we investigate the feasibility of deploying transfer-learning-based intru-
sion detection for zero-day attacks in IoT networks with scarce and unbalanced datasets. To
this end, we develop an efficient intrusion detection framework that combines knowledge
transfer and model refinement, with excellent detection accuracy for known and novel
cyberattacks families. We implement the solution considering the BoT-IoT dataset to learn
the knowledge (source domain) and applying it onto the UNSW-NB15 dataset (target
domain). In order to evaluate the TL-based ID framework for zero-day attacks, we generate
a test dataset with five different types of novel attacks. We find that transfer learning and
network fine-tuning improve IDS even in unbalanced datasets with enough labeled data
for the detection of zero-day attacks. The experimental results show that the TL-based
framework achieves an excellent accuracy and a very low FPR. DRs significantly improve
for the different families of known and novel attacks, compared to previous DL-based
IDS. The proposed framework considers IoT network traffic, provided in the UNSW-NB15
dataset, and future work will consider real data from IoT networks, as well as extending the
proposed solution on the detection of other types of zero-day attacks, but also evaluating
its performance on lightweight IoT devices with real IoT network traffic data.
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Abbreviations
The following abbreviations are used in this manuscript:

ACC Accuracy
ACCS Australian Center for Cyber Security
BiT Big Transfer
CNN Convolutional Neural Network
CV Computer Vision
DDoS Distributed Denial of Service
DoS Denial of Service
DL Deep Learning
DNN Deep Neural Network
DR Detection Rate
FN False Negative
FP False Positive
FPR False Prediction Rate
HTTP Hypertext Transfer Protocol
ID Intrusion Detection
IDS Intrusion Detection System
IoT Internet of Things
IoV Internet of vehicles
MITM Man-in-the-Middle
ML Machine Learning
NLP Natural Language Processing
p Precision
r Recall
R2L Remote-to-Local
TCP Transfer Control Protocol
TL Transfer Learning
TN True Negative
TP True Positive
UDP Datagram Protocol
XSS Cross-Site Scripting
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