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A B S T R A C T

Network modeling is a critical component of Quality of Service (QoS) optimization. Current networks
implement Service Level Agreements (SLA) by careful configuration of both routing and queue scheduling
policies. However, existing modeling techniques are not able to produce accurate estimates of relevant SLA
metrics, such as delay or jitter, in networks with complex QoS-aware queueing policies (e.g., strict priority,
Weighted Fair Queueing, Deficit Round Robin). Recently, Graph Neural Networks (GNNs) have become a
powerful tool to model networks since they are specifically designed to work with graph-structured data. In
this paper, we propose a GNN-based network model able to understand the complex relationship between
(𝑖) the queueing policy (scheduling algorithm and queue sizes), (𝑖𝑖) the network topology, (𝑖𝑖𝑖) the routing
configuration, and (𝑖𝑣) the input traffic matrix. We call our model TwinNet, a Digital Twin that can accurately
estimate relevant SLA metrics for network optimization. TwinNet can generalize to its input parameters,
operating successfully in topologies, routing, and queueing configurations never seen during training. We
evaluate TwinNet over a wide variety of scenarios with synthetic traffic and validate it with real traffic traces.
Our results show that TwinNet can provide accurate estimates of end-to-end path delays in 106 unseen real-
world topologies, under different queuing configurations with a Mean Absolute Percentage Error (MAPE) of
3.8%, as well as a MAPE of 6.3% error when evaluated with a real testbed. We also showcase the potential
of the proposed model for SLA-driven network optimization and what-if analysis.
1. Introduction

Network optimization is typically achieved by combining two main
elements: (𝑖) a network model and (𝑖𝑖) an optimization algorithm
(e.g., [1]). The model predicts the performance (e.g., per-path delay)
for a specific configuration (e.g., routing), while the optimization algo-
rithm generates configurations that can potentially meet the expected
performance, for example, according to a Service Level Agreement
(SLA).

Emerging use cases have renewed interest in SLA optimization [2].
SD-WAN [3], 5G network slicing [4], networked control of industrial
systems, such as Industry 4.0 [5] and Tactile Internet [6,7], require new
stringent SLA requirements. In addition, novel forms of communication,
such as AR/VR or holographic telepresence, demand ultra-low deter-
ministic latency [8,9]. In order to efficiently offer such SLAs, network
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optimizers must consider both routing and queue scheduling mech-
anisms (e.g., Strict Priority, Weighted Fair Queueing, Deficit Round
Robin).

A fundamental aspect of network optimization is that we can only
optimize what we can model. For example, to optimize the delay of a
path traversing some nodes with different queuing policies, the model
must be able to understand how delay relates to queuing policies and
traffic.

Network modeling is a well-established topic and, as such, we have
witnessed a rich body of proposals in the literature [10,11]. The most
well-known models are analytical models, fluid models and packet-
level simulators. First, analytical models based on queuing theory have
been extensively used for this purpose [12]. However, queuing theory
struggles to model accurately realistic networks with multi-hop routing,
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including traffic multiplexing and demultiplexing along with queues.
In addition, it imposes strong assumptions on packet arrivals, which
typically do not hold in real networks [13].

Second, fluid models have become a popular alternative for network
optimization [11,14–17], as they are simple but practical in some
cases. Indeed, fluid models are useful for several optimization tasks,
such as balancing link utilization. Nevertheless, fluid models assume
constant per-link delays and do not consider the effects of queuing
delays, scheduling policies, and network losses. Therefore, they offer
limited accuracy in networks operating at high utilization regimes or
with complex queuing policies. We provide experimental evidence of
this in Section 3.

Third, packet-level network simulators are arguably among the most
accurate alternatives to traditional network models. However, these
simulators suffer from a high computational cost, as they rely on
simulating individual packet events. This often makes them unable to
handle real-world scenarios with large traffic volumes, and to operate
at short time scales (e.g., real-time QoS inference [18]).

Recent advances in Machine Learning (ML) [19] have led to a new
set of efficient techniques that can be leveraged in network model-
ing. Particularly, Deep Learning (DL) looks very promising for this
purpose [20]. The main advantage of DL models is that they are
data-driven, that is, they are trained with real-world data, achieving
unprecedented accuracy by effectively modeling the entire range of
complex network characteristics. Given its ambition, those models
are commonly referred to as Digital Twins [21–24]. Existing DL-based
solutions for network modeling [25,26] mainly rely on classic Neural
Network (NN) architectures, such as MultiLayer Perceptron (MLP), or
Recurrent Neural Networks (RNN). However, computer networks are
intrinsically represented in a graph-structured manner, and classic NNs
are not suited to learn from graphs. In this context, Graph Neural
Networks (GNN) [27] have recently emerged as an effective technique
to model graph-structured data. Particularly, these new types of neural
networks are tailored to understand the complex relationships between
the elements of a graph. More in detail, the internal architecture of a
GNN is dynamically built based on the elements and connections of
input graphs, and this allows to learn generic modeling functions that
do not depend on the graph structure. Please note that Digital Twins
can be built using different Machine Learning techniques other than
Deep Learning.

In this paper, we present TwinNet, a Digital Twin that models the
complex relationship between topology, routing, queue scheduling, and
input traffic, in order to produce accurate estimates of per-flow QoS
metrics (e.g., delay, jitter, loss). TwinNet is able to accurately estimate
the delay in paths traversing arbitrary concatenations of queuing poli-
cies, with different routing configurations, traffic matrices, and network
topologies. A critical feature of TwinNet is its ability to generalize to
unseen networks. This means that it can provide accurate estimates in
networks with different characteristics to those seen in training. We
refer the reader to Section 7.4 for a detailed analysis of this aspect.

The following paragraphs summarize the main contributions of this
paper:

Digital Twin: We propose TwinNet, a Digital Twin that can model
networks with arbitrary concatenations of queuing configurations (with
various scheduling policies, number of queues, and queue sizes), source–
destination routings, topologies, and traffic models. We train TwinNet
with a packet-accurate network simulator using an extensive dataset
with several real-world network topologies. TwinNet shows a worst-
case Mean Absolute Percentage Error (MAPE) of 3.88%. We also
validate TwinNet with real-world packet traces, obtaining a MAPE of
7.2% and with data from a real testbed observing a MAPE of 6.3%.

Generalization: A common downside of ML solutions is their poor
performance when operating in networks different from those seen
during the training phase, which is referred to as lack of generaliza-
tion [28]. Without generalization, training must be done at the same
2

network where the ML-based solution is expected to operate. However, w
this is not practical in production networks, because the ML model
needs to observe link failures, packet loss, etc. As expected, this is not
desirable in a production network. Hence, from a practical standpoint,
generalization is a crucial capability. TwinNet is capable of generalizing
to unseen scenarios by changing its internal structure based on the
input topology graph. We provide experimental evidence of the gen-
eralization capabilities of the model. Specifically, we evaluate TwinNet
with 106 real-world networks (never seen in training) from the Internet
Topology Zoo [29] and observe that the model achieves a MAPE of
4.5%.

Benchmark against the state-of-the-art: We benchmark TwinNet
gainst a Multi-Layer Perceptron as described in F. Krasniqi et al.
30], and a well-established standard Graph Neural Network architec-
ure [31]. Our results show that TwinNet outperforms both solutions.
Optimization: Lastly, we pair TwinNet with an optimizer to find

hich routing and/or scheduling policies fulfill complex SLAs, with
ncreasing traffic intensity. Our results show that, even in highly con-
ested scenarios, TwinNet manages to satisfy the imposed SLAs, while
tate-of-the-art techniques based on fluid models cannot guarantee
hem in the same scenarios.

The remainder of this paper is structured as follows: First, in Sec-
ion 2 the considered network scenario is introduced. Second, Section 3
xplores the limitations of current State-of-the-Art optimizers. In Sec-
ion 4 the idea of Graph Neural Network is introduced and its internal
essage-Passing architecture is explained. Afterwards, Section 5 de-

cribes the proposed GNN-based network model, as well as its internal
essage Passing architecture. Section 6 talks about how the prototype

as been implemented and which hyperparameters have been used.
ection 7 evaluates TwinNet in four different simulated scenarios. Then,
ection 8 presents several relevant use cases that illustrate the potential
f TwinNet when paired with a network optimizer as well as one
cenario with a real testbed that re-evaluates the accuracy of TwinNet.
inally, Sections 9 and 10 present the related work and the conclusions
espectively.

. Network scenario

Novel network applications (Industry 4.0 [5], Tactile Internet [6],
tc.), are pushing further the requirements of network-offered SLAs.
t the time of this writing, there are substantial research efforts to
ccommodate such challenging SLAs with new protocols and archi-
ectures [2,8,9]. Many of such architectures take advantage of the
oftware-Defined Networking (SDN) paradigm, which enables a new
reed of centralized optimization algorithms [11]. Centralization en-
bles full visibility of the network configuration and state, as well as
ine-grained flow control.

In this paper, we consider a Wide Area Network (WAN) that im-
lements a classical SDN architecture: a centralized controller, and a
outhbound protocol that allows configuring the devices and collecting
etwork performance metrics, such as OpenFlow or NETCONF (Fig. 1).
he SDN controller has an SLA/QoS optimizer application, that guar-
ntees fine-grained SLAs by adjusting the routing and queuing policies
ccording to the network state. First, the network administrator defines
he desired set of SLAs, e.g. the maximum mean delay of flows. The
ranularity of the flows depends on the requirements of the admin-
strator, hence, we consider different flow granularities, ranging from
ource–destination to 5-tuple flows. Then, SLAs are mapped to the data
lane by tagging the packets of each flow using common fields from the
P header: Type-of-Service (ToS) for IPv4, and Differentiated Services
or IPv6.

Second, a network model – TwinNet in this case – is paired with
n optimizer (see Section 8 for further details) running on the SDN
ontroller. The controller has visibility of the local configuration of
ach data-plane element as well as up-to-date measurements of the net-

ork state: bandwidth, mean delay of each source–destination pair, and
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Fig. 1. Network scenario for SLA-based optimization.
Fig. 2. Blackbox representation of TwinNet.

link utilization. This can be achieved using readily available telemetry
methods [32,33].

Leveraging this information, the optimizer explores alternative con-
figurations that can meet the SLA for the current traffic load. In
TwinNet, configurations are combinations of source–destination rout-
ing and per-interface queuing configurations, i.e., scheduling algorithm
and queue parameters. Particularly, in this paper, we consider the
following queue scheduling policies: First In First Out (FIFO), Strict
Priority (SP), Weighted Fair Queuing (WFQ), and Deficit Round Robin
(DRR). Each configuration produced by the optimizer is tested by
TwinNet, which produces fast and accurate estimates of flow delays.
Once the optimizer finds a configuration that meets the SLAs, it is
applied to the data-plane elements.

Thus, our Digital Twin must satisfy three main requirements: (𝑖)
Generate accurate predictions of SLA metrics, (𝑖𝑖) Achieve fast op-
eration, to quickly adapt the configuration to traffic changes, and
(𝑖𝑖𝑖) Generalize to other network scenarios not seen during training.
While network packet-level simulators are accurate, they are slow since
they need to simulate the forwarding, transmission, and propagation of
each and every packet. On the other hand, traditional analytical models
such as queuing theory are fast but not accurate in the presence of non-
markovian traffic [34]. Finally and as we will see in the paper, many
Deep Learning architectures fail to generalize to scenarios not seen in
training.

The latter feature is of critical importance. In the context of com-
puter networks, training a Digital Twin requires generating a large
diversity of network scenarios (e.g., random routing and queuing con-
figurations, simulating link failures, etc.), which could render the net-
work unusable. This would be infeasible in production networks. Thus,
we argue that a practical way to build Network Digital Twins is training
them in controlled environments (e.g., in a networking lab). Then, they
can take advantage of their generalization capabilities to operate in
real network topologies unseen in advance. This is one of the main
limitations of existing network models based on traditional neural net-
works (e.g., Multi-layer Perceptron, Convolutional Neural Networks),
as they do not generalize well to other networks. Hence, they need to be
trained directly in the production network (where it is not admissible to
generate wrong configurations) or at least be re-adjusted using transfer
learning [35].

TwinNet exploits its internal Graph Neural Network (GNN) ar-
chitecture to model the complex relationships between the various
3

components that define the network state, in order to predict the global
QoS. Particularly, the proposed Digital Twin (Fig. 2) is fed with a
network state snapshot, defined by: (𝑖) a network topology, (𝑖𝑖) a src-
dst traffic matrix, and (𝑖𝑖𝑖) a routing and queueing policy. As output,
it produces estimated per-flow performance metrics. Note that in this
paper we train this model to predict the mean per-flow delay.

3. Limitations of state-of-the-art optimizers

State-of-the-art network optimization solutions mainly rely on fluid
models [11,14–17]. In order to discuss the limitations of such models
when dealing with complex SLA scenarios, we take DEFO [14] as a
representative of the state-of-the-art in this area [36].

DEFO is a constraint programming framework for network optimiza-
tion. This optimizer allows network administrators to set constraints
to the optimization problem, including maximum end-to-end delays.
To estimate the performance of candidate configurations, DEFO uses
a fluid model of the network. In DEFO, the per-link delay is a fixed
input variable of the network optimizer. Particularly, this value is either
provided by the network operator in real topologies, or computed
manually according to the link distance in synthetic topologies [14].
Then, the delay of a path is assumed to be equal to the sum of
transmission delays of the links that it traverses, without considering
any queuing delay.

To test the accuracy of the fluid model used by DEFO, the actual
delay is measured with an accurate packet-level simulator based on
OMNET++ [37]. In this particular case, the simulation of the network
scenario is defined by a topology, a src-dst traffic matrix, and a routing
configuration. In particular, we use three different real-world topolo-
gies (NSFNET [38], GEANT [39] and GBN [40]). The traffic matrix is
defined following the same approach as described in [31], generating
three network scenarios containing 0%, 0.8%, and 1.3% off packet
losses to see the effect of the network congestion on the accuracy of the
fluid model. Finally, the routing configurations are the ones returned
by DEFO after running its optimization process.

Fig. 3 plots the Cumulative Distribution Function (CDF) of the
relative error produced by the fluid model when estimating the per-
path delay in a network scenario from [14], optimized with DEFO. The
figure plots three different distributions according to the network load
(average packet loss from 0% to 1.3%). These results show that actual
delays are different from those estimated by the fluid model. Even for
scenarios without packet loss, the fluid model has a Mean Absolute Per-
centage Error (MAPE) of 21%, while estimations degrade significantly
with increasing network load (≈50% MAPE). This is due to the fact
that fluid models do not consider the queuing delay, which becomes
an important component of the end-to-end delay in the presence of
congestion.

Finally, it is worth noting that DEFO is just used in this section to
illustrate the limitations of fluid models for SLA-aware optimization,
but that contributions in [14] go well beyond the network model used
for optimization. Indeed, the DEFO optimizer could easily support more
complex network models, like the one proposed in this paper.
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Fig. 3. CDF of the relative error of the fluid model under various traffic loads.

. Background on Graph Neural Networks

Graphs are a fundamental data type used to represent relational in-
ormation. Particularly, a graph 𝐺 ∈ {𝑉 ,𝐸} is defined by a set of objects

(vertices) with some relationships between them 𝐸 (edges). GNNs [27]
re a recent family of Neural Networks (NN) especially conceived to
ork with graph-structured data. These models dynamically build their

nternal architecture based on the input graph. They use a modular
N structure that explicitly represents the elements and connections
f the input graph. As a result, they support graphs of variable size
nd structure. Moreover, their graph processing mechanism is invariant
o node and edge permutation, which eventually endows them with
trong generalization capabilities over graphs (a.k.a., strong relational
nductive bias [41]).

GNNs have already been successfully applied to many different
roblems where data is fundamentally represented as graphs, such
s prediction of molecular properties in chemistry [42], modeling of
omplex gravitational systems in physics [43], deciphering protein
nteractions in biology [44], or recommendation systems for social
etworks [45].

Despite GNNs comprise a broad class of neural network models for
raphs with different architectural variants (e.g., [27,43,46]), all of
hem share a basic principle: first, an iterative message-passing phase,
nd then a readout phase that produces the output of the model. The
ollowing subsections elaborate on the different modules that shape

basic GNN, including all the functions these modules implement
nternally.

.1. Message-passing architecture

As mentioned earlier, a key feature that distinguishes GNNs from
ther well-known NN families is that the internal NN architecture is
ot fixed, but depends on the structure of the input graph. In a GNN,
ach graph element is represented with a hidden state ℎ𝑖 (encoded as
n n-element vector initialized with some features), and hidden states
re combined according to the graph connections, through an iterative
essage-passing process. During each message-passing iteration the
idden state of each node is updated with the states received from
ts direct neighbors, thus the information is gradually propagated over
he whole graph after several iterations. Each node maintains a specific
epresentation of the graph based on its local perspective, since it only
eceives information from its neighbors. As a reference, the information
s potentially propagated over the full graph when the number of
essage-passing iterations is equal to the graph diameter (i.e., number

f hops between the two most distant elements in the graph).
Specifically, a GNN is comprised of two main modules: (𝑖) Message-

assing, and (𝑖𝑖) Readout.
4

t

essage-passing module
This first module executes an iterative message passing over the

raph elements. It can be executed for a fixed number of iterations
, or until a convergence criterion is satisfied [27]. In general, each
essage-passing iteration can be defined by the following equations:
∗
𝑖𝑗 = 𝑚(ℎ𝑡𝑖, ℎ

𝑡
𝑗 , 𝑒𝑖𝑗 ) (1)

𝑡+1
𝑖 = 𝑎𝑔𝑔𝑟(𝑀∗

𝑖𝑗 ) (2)

𝑡+1
𝑖 = 𝑢(ℎ𝑡𝑖,𝑀

𝑡+1
𝑖 ) (3)

In other words, the message-passing module runs three different
unctions that are executed over all the graph elements:

1. Message function [𝑚𝑖𝑗 (ℎ𝑖, ℎ𝑗 , 𝑒𝑖𝑗 )]: This function encodes infor-
mation about the relation of two connected elements in the
graph. It takes as input the hidden states of two nodes (ℎ𝑖 and
ℎ𝑗), and optionally a vector describing some properties of their
relation (𝑒𝑖𝑗). Its output is a message (n-element vector) that
encodes information about this relation (𝑀∗

𝑖𝑗).
2. Aggregation function [𝑎𝑔𝑔𝑟(𝑀∗

𝑖𝑗 )]: This function aggregates all
the messages computed for each element with its neighbors so
that the result is a fixed-size vector (𝑀𝑖) that encodes infor-
mation about the local neighborhood of the node. The main
objective of this aggregation function is to keep a fixed-size
output representation combining all the messages received by
each node, independently of the number of neighbors. This
enables to handle an arbitrary number of connections per node
(i.e., graphs with arbitrary node degrees). Typically, this func-
tion is implemented with an element-wise summation, although
other aggregation functions such as mean, min, max, variance,
or combinations of them can be used [47].

3. Update function [𝑢(ℎ𝑡𝑖,𝑀
𝑡+1
𝑖 )]: Lastly, the hidden states of each

node (ℎ𝑡𝑖) are combined with the aggregated message computed
for the node (𝑀𝑖), producing an updated hidden state represen-
tation (ℎ𝑡+1𝑖 ). This new hidden state is then used as input to the
next message-passing iteration — executing again Eqs. (1)–(3).

In this module, the Message (𝑚) and Update (𝑢) functions are
mplemented with two independent neural networks (typically fully
onnected) whose internal parameters (i.e., neuron weights and biases)
re learned during the training phase.

eadout module
Once the message passing has finished, the resulting node hidden

tates (ℎ𝑖) are passed through the readout module. In this last phase,
he information encoded in the hidden states is converted to the output
alues or labels of the GNN [�̂�=𝑟(ℎ𝑖|𝑣 ∈ 𝑉 )]. Note that GNNs may typi-
ally produce two different output types: (𝑖) node-level, or (𝑖𝑖) global
raph-level labels. In the former case, the outputs are obtained by
pplying a readout function (𝑟𝑛) individually on each node hidden state,
hile global outputs are computed by first aggregating all the hidden

tates and then applying a global readout function over the resulting
ggregated vector (𝑟𝐺). Similar to the message-passing module, the
ggregation function allows the GNN to support graphs of arbitrary
ize, as it produces a fixed-size vector regardless of the number of nodes
n the input graph. Readout functions (𝑟𝑛 or 𝑟𝐺) are also approximated
y a neural network (e.g., fully connected), while the aggregation
unction is often implemented as an element-wise summation.

At this point, it is important to note that a basic GNN typically
omprises four unique functions (𝑚, 𝑎𝑔𝑔𝑟 and 𝑢, 𝑟) that are replicated
nd combined according to the input graph, so the same Message,
ggregation, Update and Readout functions are applied to all the graph
lements. During training, the functions implemented by NNs (𝑚, 𝑢, and
) are gradually approximated by applying a common backpropaga-

ion algorithm [48] over the whole GNN architecture, considering the
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Fig. 4. Schematic representation of the network model implemented by TwinNet.

output labels of the GNN and those of the training dataset (i.e., end-to-
end training). The key aspect of this process is that, for each training
sample, the NN parameters are jointly optimized across all the instances
of the NN within the GNN model. This process builds generic Message,
Update and Readout functions jointly learned from the local perspective
of each individual node in the graph. Then, these generic functions can
be applied to other graphs unseen in advance, as long as they are used
for the same purpose they were trained for, e.g. predicting path delays
in our case.

5. TwinNet: Digital Twin with GNN

In this section, we describe TwinNet, a GNN-based Digital Twin
for SLA modeling and optimization. This model accurately infers the
impact of different routing and queueing configurations (scheduling
algorithm and queue parameters) on network performance. Likewise,
it is tailored to generalize to different network topologies and traffic
intensities not seen before.

5.1. Overview

TwinNet implements a novel and custom GNN architecture inspired
by the inherent behavior of computer networks, where there are differ-
ent components (e.g., forwarding devices, configuration, traffic) that
interact with each other and have a complex non-linear impact on
network performance.

The main intuition behind this architecture is as follows. The model
considers an input graph with three main network components: (𝑖)
the links that shape the network topology, i.e. connections between
network devices, (𝑖𝑖) the queues on each output port of network devices,
and (𝑖𝑖𝑖) the src-dst paths resulting from the input routing configu-
ration. Each of these elements is explicitly represented in the GNN
with n-element vectors that encode their hidden states (ℎ𝑙, ℎ𝑞 , and
ℎ𝑝 respectively). They are combined through a message-passing algo-
rithm that aims to capture the relation between the topology, traffic,
routing and queueing policy of the input network scenario. Fig. 4
represents how TwinNet models these three components. First, the
state of paths is affected by the concatenation of the queues and the
links they traverse. For instance, in Fig. 4, 𝑝𝑎𝑡ℎ1 follows the sequence:
[𝑞𝑢𝑒𝑢𝑒3, 𝑙𝑖𝑛𝑘1, 𝑞𝑢𝑒𝑢𝑒5, 𝑙𝑖𝑛𝑘2...]. At the same time, the state of queues and
links depends on all the paths passing through them. Hence, there is
a circular dependency between the states of paths, links, and queues
that the GNN model must resolve to eventually produce accurate per-
path QoS estimates. Note that we assume that the forwarding engine of
network devices is constant and ideal, hence it does not introduce any
other potential hardware-level effects on the delay of queues.
5

5.2. Notation

We define the network topology as a set of links 𝐿 = {𝑙𝑖 ∶ 𝑖 ∈
(1,… , 𝑛𝑙)} and the queues on output ports of network devices 𝑄 =
{𝑞𝑖 ∶ 𝑖 ∈ (1,… , 𝑛𝑞)} and a set of source–destination paths 𝑃 = {𝑝𝑖 ∶
𝑖 ∈ (1,… , 𝑛𝑝)}. Let us also consider a path as a sequence of tuples
with the queues and links they traverse defined by the routing scheme.
Hence, we define the paths as: 𝑝𝑖 = {(𝑞𝑃𝑄(𝑝𝑖 ,0), 𝑙𝑃𝐿(𝑝𝑖 ,0)),… , (𝑞𝑃𝑄(𝑝𝑖 ,|𝑝𝑖|),
𝑙𝑃𝐿(𝑝𝑖 ,|𝑝𝑖|))}, where 𝑃𝑄(𝑝𝑖, 𝑗) and 𝑃𝐿(𝑝𝑖, 𝑗) respectively return the index
of the 𝑗th queue or link along the path 𝑝𝑖. Let us also define 𝑄𝑝(𝑞𝑖)
as a function that returns all the paths passing through queue 𝑞𝑖, and
𝐿𝑞(𝑙𝑖) as a function that returns the queues injecting traffic into link 𝑙𝑖
— i.e., the queues at the output port to which the link is connected.

Each queue, link and path are initialized with some features 𝑥𝑙𝑖 , 𝑥𝑞𝑗
and 𝑥𝑝𝑘 , respectively. In our particular case, we set the initial features
of links (𝑥𝑙) as (𝑖) the link capacity, and (𝑖𝑖) the scheduling policy (FIFO,
Strict Priority, WFQ, or DRR) configured in the egress port that injects
traffic into the link, using one-hot encoding. The initial features of
queues (𝑥𝑞) are: (𝑖) buffer size, (𝑖𝑖) priority order (one-hot encoding),
and (𝑖𝑖𝑖) weight (only for WFQ and DRR). Lastly, we set the initial
path features (𝑥𝑝) as the traffic volume (bits and packets) sent from
the source to the destination node of the path.

5.3. Network model

We initialize the state of links ℎ𝑙, queues ℎ𝑞 , and paths ℎ𝑝 re-
spectively with their initial feature vectors (𝑥𝑙, 𝑥𝑞 and 𝑥𝑝), and apply
zero-padding to fit the size of the target vectors, which is a config-
urable parameter of the GNN. After the message-passing phase, these
hidden states are expected to encode some meaningful information
about links (e.g., utilization), queues (e.g., load, packet loss rate), and
paths (e.g., end-to-end delay, packet loss) based on the information
exchanged along the graph. Thus, TwinNet is based on these basic
principles:

1. The state of a path depends on the states of all the queues and
links that it traverses.

2. The state of a link depends on the states of all the queues that
inject traffic into the link.

3. The state of a queue depends on the states of all the paths that
inject traffic into the queue.

These principles can be mathematically formulated as follows:

ℎ𝑞𝑖 = 𝑓𝑞(ℎ𝑝1 ,… , ℎ𝑝𝑚 ), 𝑞𝑖 ∈ 𝑝𝑘, 𝑘 = 1,… , 𝑗 (4)

ℎ𝑙𝑗 = 𝑓𝑙(ℎ𝑞1 ,… , ℎ𝑞𝑚 ), 𝑞𝑚 ∈ 𝐿𝑞(𝑙𝑗 ) (5)

ℎ𝑝𝑘 = 𝑓𝑝(ℎ𝑞𝑘(0) , ℎ𝑙𝑘(0) ,… , ℎ𝑞𝑘(|𝑓𝑘 |) , ℎ𝑙𝑘(|𝑓𝑘 |) ) (6)

where 𝑓𝑞 , 𝑓𝑙, and 𝑓𝑝 are some unknown functions.
A direct approximation of functions 𝑓𝑞 , 𝑓𝑙 and 𝑓𝑝 is complex given

that: (𝑖) Eqs. (4)–(6) define a complex non-linear system of equations
with the states being hidden variables, (𝑖𝑖) they encode complex mutual
dependencies between different network components (topology, rout-
ing, queueing policies, traffic), and (𝑖𝑖𝑖) the dimensionality of possible
states is extremely large.

GNNs have shown an outstanding capability to work as universal
approximators over graph-structured data [41,49]. As a result, thanks
to its internal GNN-based architecture, TwinNet is able to approximate
flexible 𝑓𝑞 , 𝑓𝑙 and, 𝑓𝑝 functions, which can later be applied to un-
seen topologies, routing schemes, queueing configurations, and traffic
distributions.
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Algorithm 1 Internal architecture of TwinNet
Input: 𝐿, 𝑄, 𝑃 , 𝑥𝑞 , 𝑥𝑙, 𝑥𝑝
Output: ℎ𝑇𝑞 , ℎ𝑇𝑙 , ℎ𝑇𝑝 , 𝑦𝑝
1: for each 𝑙 ∈ 𝐿 do ℎ0𝑙 ← [𝑥𝑙 , 0...0]

2: for each 𝑞 ∈ 𝑄 do ℎ0𝑞 ← [𝑥𝑞 , 0...0]

3: for each 𝑝 ∈ 𝑃 do ℎ0𝑝 ← [𝑥𝑝, 0...0]

4: for t = 0 to T-1 do
5: for each 𝑝 ∈ 𝑃 do
6: for each 𝑞, 𝑙 ∈ 𝑝 do
7: ℎ𝑡𝑝 ← 𝑅𝑁𝑁𝑝(ℎ𝑡𝑝, [ℎ

𝑡
𝑞 , ℎ

𝑡
𝑙])

8: �̃�𝑡+1
𝑝 ← ℎ𝑡𝑝

9: ℎ𝑡+1𝑝 ← ℎ̃𝑡𝑝
10: for each 𝑞 ∈ 𝑄 do
11: 𝑀 𝑡+1

𝑞 ←
∑

𝑝∈𝑄𝑝(𝑞) �̃�
𝑡+1
𝑝,𝑞

12: ℎ𝑡+1𝑞 ← 𝑈𝑞(ℎ𝑡𝑞 ,𝑀
𝑡+1
𝑞 )

13: �̃�𝑡+1
𝑞 ← ℎ𝑡+1𝑞

14: for each 𝑙 ∈ 𝐿 do
15: for each 𝑞 ∈ 𝐿𝑞(𝑙) do
16: ℎ𝑡𝑙 ← 𝑅𝑁𝑁𝑙(ℎ𝑡𝑙 , �̃�

𝑡+1
𝑞 )

17: ℎ𝑡+1𝑙 ← ℎ𝑡𝑙
18: 𝑦𝑝 ← 𝐹𝑝(ℎ𝑝)

5.4. Proposed GNN architecture

Algorithm 1 describes the internal architecture of TwinNet. This
custom GNN architecture is especially designed to solve the circular
dependencies described in Eqs. (4), (5) and (6) by executing an iterative
message-passing process. First, the hidden states ℎ𝑙, ℎ𝑞 , and ℎ𝑝 are
initialized (lines 1–3) using 𝑥𝑙, 𝑥𝑞 , and 𝑥𝑝 respectively and padded

ith zeros to the specific hidden state dimension. After the hidden
tate initialization, the message passing phase begins. During this step,
ach state is combined with their connected elements according to
he relations described in the input graph. This process is repeated 𝑇

iterations (loop from line 4). Thus, by the end of the message-passing
execution, hidden states ℎ𝑙, ℎ𝑞 , and ℎ𝑝 should eventually converge to
some fixed values after exchanging information with their neighbors in
the graph [27].

Unlike standard GNN models (see Section 4), TwinNet implements
a more complex message passing that can be divided into three differ-
ent stages involving message exchanges between heterogeneous graph
elements. The loops from line 5, line 10, and line 14 in Algorithm 1
represent these different message-passing stages, where for each path
(line 5), for each queue (line 10), and for each link (line 5), the
hidden states are exchanged with their connected elements and updated
based on the information received. More specifically, each path collects
messages from all the queues and links that it crosses (loop from line
6), then each queue receives messages from all the paths that pass
through it (summation from line 11) and lastly, each link collects
information from all the queues that inject traffic into it (loop from
line 15). To aggregate the paths’ hidden states on queues (line 11)
we use an element-wise summation. In the case of links and queues,
it is important to consider that there is a sequential dependence on
the elements connected. For instance, the order of queues and links
that a path traverses is important in case there is packet loss, as the
packets dropped by one queue will not be injected into the subsequent
links and queues. For this reason, we use a Recurrent Neural Network
(RNN) to aggregate the sequences of queues and links on the paths’
hidden states (line 7). Similarly, the model aggregates the queue states
on their related links using another RNN (line 16), as it is important
6

to maintain the order of queues to model the behavior of the queuing h
policy (e.g., the priority order). For simplicity of the GNN architecture,
we implement some message and update functions as direct variable
assignments, except for the case of the update function for queues
𝑈𝑞 (line 12), which is implemented using a Gated Recurrent Unit to
facilitate the convergence of the algorithm [50].

Finally, the function 𝐹𝑝 (line 18) represents a readout function that
is applied individually on each path hidden state ℎ𝑝 and, in this case,
is used to finally produce the estimated mean per-path delays (𝑦𝑝).
Particularly, we modeled the readout function 𝐹𝑝 with a fully connected
NN using a SELU activation function [51].

This architecture provides flexibility to represent any routing con-
figuration and queuing policy (including QoS-aware scheduling algo-
rithms with multiple queues). This is achieved by the direct mapping of
the paths resulting from the routing configuration 𝑃 to specific message
passing operations with queues, links, and other paths.

6. Prototype implementation

We implemented a prototype of the full TwinNet message-passing
structure using TensorFlow. The source code of TwinNet and the train-
ing/evaluation datasets used in this paper are publicly available at [52].

6.1. Simulation setup

In order to train our GNN-based Digital Twin, we built the ground
truth leveraging a packet-level network simulator (OMNeT++ v5.5.1
[37]). Each sample in the training set corresponds to the simula-
tion of a specific network scenario, defined by a topology, a src-dst
traffic matrix, and a routing and queuing policy. Then, the simula-
tor labels this sample with the mean per-packet delay measured on
each source–destination path. Regarding the training dataset, each
sample represents a random selection of input features (topology, traf-
fic, routing, and queuing configuration) according to the following
descriptions:

6.1.1. Traffic
We generate the input Traffic Matrices (𝑇𝑀) following the same

approach described in [31]. In our particular case, traffic matrices are
generated to cover a wide range of operational scenarios from low
traffic loads to highly loaded networks. Depending on the capacities
of the links, as well as the routing configuration of the network, this
𝑇𝑀 will result in a certain packet loss. Particularly, we generated
these 𝑇𝑀s to obtain a maximum packet loss of 3% according to [53].
Since some 𝑇𝑀𝑠 lead to traffic aggregates that exceed the capacity
n some links, they will cause congestion and packet loss due to
he accumulation of packets in the queues. Note that we also use
raffic extracted from real packet traces, which is later described in
ection 7.5. Finally, we randomly assign a Type-of-Service (ToS) label
o each source–destination traffic flow (ToS∈[0–9]), which is then used
o map traffic flows to specific queues at egress ports of network devices

as shown below.

.1.2. Queueing configuration
Each node is configured randomly with: (𝑖) a queue scheduling

olicy, that can be First In First Out (FIFO), Strict Priority, Weighted
air Queueing (WFQ) or Deficit Round Robin (DRR), (𝑖𝑖) a random
umber of queues, and (𝑖𝑖𝑖) a random queue size. For WFQ and DRR,
e define a set of random queue weights. Finally, we map ToS labels to
ueues in decreasing order of priority, including a random component
nd depending on the number of queues. Hence, lower ToS labels are
ssigned to higher priority queues. Note that the dataset contains sam-
les of a wide range of queuing configurations from the simulator, this

elps the GNN model understand their effect on network performance.
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Fig. 5. CDF of relative error. 𝑦 represents the true delay, while �̂� denotes the predicted
one.

6.1.3. Topologies
In order to train and evaluate the model, we use three different real-

world topologies (NSFNET [38], GEANT [39] and GBN [40]). Later,
in Section 7.4, we also evaluate the generalization properties of our
solution with 106 real-world topologies from the Internet Topology
Zoo [29].

6.2. Machine learning framework

We train the model using 100k samples from each training network
(NSFNET and GEANT). Note that for a given network topology, a data
sample is defined as a random combination of routing, queuing policy,
and traffic matrix. The randomly generated configurations are within
the operational ranges defined in Section 6.1.

Our model has two relevant hyper-parameters that can be fine-
tuned: (𝑖) The size of the hidden states ℎ𝑙, ℎ𝑞 and ℎ𝑝, and (𝑖𝑖) the number
of message-passing iterations (𝑇 ). Based on preliminary experiments we
use 32-element vectors for all the hidden states, and 𝑇 = 8 iterations. In
this context, 𝑇 should correlate to the network diameter, which in real
networks approximately scales with 𝑙𝑜𝑔(𝑁), where 𝑁 is the number of
nodes of the input graph [54].

We choose the Mean Squared Error (MSE) as a loss function, which
is minimized using an Adam optimizer with an initial learning rate of
0.001 and a decay rate of 0.6 executed every 80,000 steps. In addition
to this, we added a 𝐿2 regularization loss of 𝜆=0.1.

Fig. 5 shows the CDF of the relative error when predicting the
mean per-path delay for the three topologies. In the two topologies
seen in training (NSFNET and GEANT), TwinNet obtains a MAPE of
2.59% and 3.01% respectively. Int the GBN topology, only used in the
evaluation, obtains a 𝑀𝐴𝑃𝐸 = 3.88%. Also, the error distribution is
centered around 0, which means that the model predictions are not
biased towards under- or overshooting.

7. TwinNet evaluation

Our evaluation focuses on several relevant properties of TwinNet
including: (𝑖) the accuracy of the delay prediction of source–destination
pairs, in a wide variety of topologies, routing, queueing configurations,
and traffic matrices with various load levels, (𝑖𝑖) the generalization
capabilities of the model in networks never seen during training, (𝑖𝑖𝑖)
the accuracy when working with real-world data, and (𝑖𝑣) the speed
and the scalability of its estimations.

7.1. Baselines

To benchmark the performance of TwinNet we compare it against
two state-of-the-art ML-based models. The first one, based on the work
7

Table 1
Comparison of performance metrics.

(a) Performance comparison for NSFNET and GEANT networks, seen during training

NSFNET GEANT

MAPE MSE MAE R2 MAPE MSE MAE R2

MLP 0.46 4.23 0.779 −0.158 0.358 1.114 0.303 −0.039
RouteNet 0.667 4.366 0.847 −0.193 0.581 1.172 0.336 −0.093
TwinNet 0.033 0.077 0.06 0.978 0.039 0.028 0.034 0.973

(b) Performance comparison for GBN network, never seen
during training.

GBN

MAPE MSE MAE R2

MLP 0.874 3.093 0.537 −0.078
RouteNet 0.533 3.124 0.523 −0.089
TwinNet 0.034 0.067 0.046 0.976

described at [30], where the per-path delay is modeled using a multi-
layer perceptron (MLP). In this particular case, the model takes as input
the traffic matrix (TM) and the queue and link configuration, similarly
to the ones described in 5.4. In our particular case, the MLP consists of
four layers (an input, an output, and two hidden layers) of nonlinearly-
activating nodes. Each node in each layer is connected to every node
in the following layer via a certain weight 𝑤𝑖𝑗 . These weights (𝑤𝑖𝑗) are
pdated during the training phase based on the amount of error in the
utput compared to the expected result. The second, RouteNet [31]
s a GNN-based model specially designed to model networks. Similar
o TwinNet, RouteNet models the network by performing a two-stage
essage passing between the links and paths in the network.

.2. Performance metrics

Performance metrics are a critical component of the evaluation
rameworks in Machine Learning. They are mainly used to monitor
nd measure the performance of a model. Since we are in a regression
roblem and following the approach described in [55], we provide 4
ifferent metrics. Two absolute metrics: Mean Squared Error (MSE)
nd Mean Absolute Error (MAE), as well as two relative metrics: Mean
bsolute Percentage Error (MAPE) and the Coefficient of Determination

R2).
We believe that combining the four of them provides a good picture

of the performance of the different models evaluated in the following
sections. Mainly, we focus on MAPE as, in contrast to MAE and MSE, it
is a relative metric that does not depend on the units of the predicted
variable (delay).

7.3. Accuracy

We evaluate the accuracy of TwinNet and both baselines using 100k
samples of each of the aforementioned topologies (NSFNET, GEANT,
and GBN). Note that the GBN topology has never been seen during the
training phase for any one of the models.

Table 1 shows the results for the three topologies. In this par-
ticular case, we show the Mean Absolute Percentage Error (MAPE),
the Mean Squared Error (MSE), the Mean Absolute Error (MAE), and
the Coefficient of determination (R2). As we can see, TwinNet clearly
outperforms both baselines, achieving a MAPE of 3.8% and an R2 of
0.976 for the GBN topology.

7.4. Generalization capabilities

GNN models have shown a great potential to generalize over data
structured as graphs [41,49]. This section presents an analysis of the
generalization capabilities of TwinNet. Particularly, we refer to gener-

alization as the capability of the model to make accurate predictions in
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Fig. 6. CDF of relative error over 106 unseen real-world topologies.

Table 2
Performance metrics comparison over 106 real-world topologies never seen during
training.

TOPOLOGY ZOO

MAPE MSE MAE R2

MLP 0.852 16.864 0.336 −0.174
RouteNet 0.643 14.44 0.322 −0.006
TwinNet 0.038 0.476 0.0258 0.966

new network scenarios unseen during the training phase. In our case, it
involves different topologies, routing and queuing configurations, and
traffic distributions never seen during training.

To this end, we evaluate the accuracy of the proposed GNN-based
model as well as both baselines, with 106 real-world topologies from
the Internet Topology Zoo [29] that were not present in the training
set. For each topology, we use the network simulator previously de-
scribed (Section 6.1) to generate the delay labels for the ground truth,
considering a variety of traffic matrices and configurations. Then we
analyze the accuracy of the model trained only with the NSFNET and
GEANT topologies (Section 6.2).

Fig. 6 shows the CDF of the relative error for this experiment. As
the figure shows, our model provides good generalization capabilities,
achieving a 𝑀𝐴𝑃𝐸 = 3.8% over the 106 real-world topologies never
seen during training. As expected, both baselines perform poorly in
generalization scenarios with a MAPE greater than 70%.

Table 2 shows a summary of the different metrics evaluated on
the 106 real-world topologies obtained from the Internet Topology
Zoo. Again, TwinNet outperforms both baselines, which perform poorly
when the topologies evaluated are different from the ones seen during
training.

We have experimentally analyzed what features have more impact
on the model’s accuracy, and have found that there is little variability
in the error across the different topologies (≈0.8% MAPE between the
topologies with less and more error). Fig. 7, shows how the error
correlates with the traffic intensity. This is in line with the accuracy
results we obtained in previous experiments where the model showed
slightly less accuracy in samples from highly congested networks. As
an example, networks with very low traffic obtain an average error of
1.5%, while networks with a high level of congestion produce an error
of 5.3% on average.

7.5. Experiments with real traffic

In the previous experiments, we evaluated TwinNet with synthetic
traffic. In this section, we validate the accuracy of this model when
applied to real traffic, without retraining the model.
8

Fig. 7. Correlation matrix of the topology size, traffic intensity, path length, and
MAPE.

Table 3
Performance metrics comparison over 106 real-world topologies with

realistic traffic never seen during training.
TOPOLOGY ZOO WITH REALISTIC TRAFFIC

MAPE MSE MAE R2

MLP 0.758 13.32 0.299 0.071
RouteNet 0.686 14.48 0.351 −0.008
TwinNet 0.071 0.104 0.028 0.992

For this purpose, we use real-world traffic matrices from the SNDlib
library [56]. Since the traffic matrices only contain traffic aggregates
of each source–destination pair, we use a recent snapshot from the
MAWI repository (SamplePoint-F, Oct. 2020) [57] to extract realistic
packet inter-arrival times. Then, we scale these inter-arrivals according
to the values in the traffic matrices. Regarding the mapping of source–
destination flows to ToS classes, we follow the same distribution from
a real ISP [58].

We create a new dataset only for evaluation, not training. This
dataset contains three different topologies: GBN (NOBEL), GEANT, and
ABILENE, extracted from SNDlib [56], and the aforementioned traffic
matrices. Note that the dataset contains: (𝑖) two new topologies (GBN
and ABILENE), not present in the training dataset, and (𝑖𝑖) traffic ma-
trices completely different from the ones used in training. We evaluate
the accuracy of the previous model from Section 7.3 directly in this
dataset, without retraining it.

Fig. 8 shows the CDF of the relative error in this new scenario.
As we can observe, TwinNet produces accurate delay estimates even
in scenarios emulating real traffic. Particularly, the model achieves a
MAPE of 5.6% for the ABILENE topology, 7.1% for GEANT, and 8.9%
for GBN. As mentioned previously, the model has been trained with
synthetic traffic, and here we test it using real traffic. Despite the traffic
seen by the model following a slightly different traffic distribution
than that seen during training, the model still achieves good accuracy.
Compared with the results from Fig. 5, the MAPE increases from 3.9%
(results with synthetic traffic) to 5.6%–8.9% MAPE (best and worst case
results with real traffic).

Finally, we evaluate TwinNet using a dataset that combines the 106
real network topologies previously used (Section 7.4), and with traffic
matrices that follow the inter-arrivals times and ToS classes mentioned
used in the previous experiment [57,58]. Fig. 9 and Table 3 show the
performance of TwinNet with respect to the baselines. Following the
trend of the previous experiments, TwinNet outperforms both baselines,
achieving a MAPE of 7.1%.
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Fig. 8. CDF of the relative error using real traffic.

Fig. 9. CDF of relative error over 106 unseen real-world topologies with realistic
traffic.

7.6. Speed

An important application of TwinNet is its integration with an
optimization algorithm (see Section 2). This requires operating in short
timescales to quickly adapt to the network conditions (e.g., traffic
changes); especially in novel communication paradigms with stringent
QoS requirements (e.g., Tactile Internet [6,7], ultra-low deterministic
latency for AR/VR, holographic telepresence [8,9]).

In TwinNet, the inference cost is proportional to the number of
nodes, queues, and links in the network, which offers better scalability
properties than packet-level simulators. In our experiments, TwinNet
obtained average execution times of 42 ms (ms) for the smallest net-
works in the Internet Topology Zoo (10–15 nodes) and 145 ms for the
larger ones (85–95 nodes). In contrast, the average execution time with
a packet-level simulator (OMNet++ [37]) was 71 s for the smallest
networks (10–15 nodes) and over 1 h (1 h 10mins, on average) for the
larger ones (85–95 nodes). These figures represent the cost per sample
(e.g., input traffic, routing, and queuing policy). However, they should
be multiplied by a large number of combinations (e.g., routing, queuing
policies) typically explored by a network optimizer before producing a
solution that meets the optimization goals (see Section 8).

The scalability limitations of packet-based simulators are explained
by the fact that they have to simulate every single packet transmit-
ted over the network (e.g., several million packets per second for a
9

single 10Gbps link). In contrast, the cost of TwinNet is independent s
of the number of packets.1 These experiments were made using a
single-thread process in a machine with a CPU of 4 GHz. However,
the execution times of TwinNet could be dramatically reduced using
GPU/TPU hardware acceleration [59].

8. SLA-driven optimization use cases

In this section, we present several relevant use cases that illustrate
the potential of TwinNet for SLA-driven optimization. In all of them,
TwinNet is paired with an optimization algorithm in order to produce
routing and queuing configurations that meet a set of SLAs. Finally, we
evaluate the accuracy of TwinNet using data from a real testbed.

8.1. Methodology

We combine TwinNet with an optimization algorithm based on
Direct Search. This algorithm uses a custom search heuristic based on
common network metrics (link utilization, traffic, path length, etc.),
which guides the exploration within the high-dimensional space of
solutions. Note that more sophisticated optimization algorithms can be
paired with TwinNet. However, we leave this out of the scope of this
paper, as the goal of this section is to showcase how TwinNet can be
effectively used for SLA-aware optimization.

In all the experimental setups, we generate traffic flows with two
different SLA levels (ToS0=Top priority, ToS1=high priority), and some
background traffic labeled as Best effort. The goal for the optimizer is to
find a configuration that fulfills the predefined SLAs for ToS0 and ToS1
while minimizing the mean delay for the best-effort traffic. In all the
experiments, we use the TwinNet model previously trained in NSFNET
and GEANT (Section 6.2) and perform optimization over scenarios not
seen during training (in the GBN topology).

As a benchmark, we also show the performance of a shortest-path
policy using FIFO scheduling on all network devices, as well as the
configuration that results from running an optimizer that integrates a
fluid model instead of TwinNet.

8.2. Routing

In this use case, the goal is to optimize the mean delay of the
best-effort traffic while satisfying the set of SLAs for each ToS by only
modifying the (src-dst) routing scheme. We evaluate the performance
across various traffic intensities ranging from 1000 (middle traffic load)
to 1900 (high network congestion).

We compare the results obtained using TwinNet with those achieved
using a traditional fluid model. This latter case represents a baseline
of state-of-the-art optimization tools that rely on fluid models, such as
DEFO [14]. However, note that this reference benchmark is not exactly
the same as DEFO, as we do not consider middle-point routing or ECMP.
Our focus is to make a direct comparison of both network models, under
the same conditions. Hence, we use the same optimization algorithm.
In both cases, the exploration is guided by the delay estimates of the
network model: TwinNet or fluid models. Additionally, we compare the
results with the performance of a traditional Shortest Path (SP) policy.

Figs. 10(a) and 10(b) show the results of the optimization. Fig. 10(a)
shows how the TwinNet-based optimizer finds a solution that fulfills
the SLA requirements for both ToS (top and high priorities). Fig. 10(b)
shows that the optimizer paired with TwinNet achieves remarkable
performance when minimizing the mean delay of the best-effort traffic,
outperforming both the fluid and the SP for low traffic intensities. For
high traffic load, TwinNet manages to fulfill the SLAs for both ToS

1 Note that in our experiments we only use a packet simulator during the
raining phase. After training, TwinNet can produce accurate estimates in the
cale of milliseconds for networks unseen in training (see Section 7.4)
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Fig. 10. SLA-driven optimization with routing (top), scheduling (middle) and both routing & scheduling (bottom)
Fig. 10(a)), while this has an impact on the mean delay of best-effort
raffic (Fig. 10(b)).

Regarding the fluid model, we can observe that the optimizer could
ot find solutions that satisfy the SLAs for medium to high traffic
ntensities. The reason for this is that despite the fluid model estimates
hat the delay experienced by flows is within the SLA terms, the packet-
evel simulator shows that such estimates are not accurate – as shown
arlier in Section 3 – and exceed the SLA thresholds. This is because the
luid model ignores queuing delay. Thus, in highly congested scenarios,
here queuing delay becomes more significant, the fluid model-based
10

ptimizer leads to SLA violations.
8.3. Scheduling

This use case also attempts to minimize the mean delay on best-
effort traffic, while satisfying the SLAs assigned to each ToS. However,
in this section, we aim to evaluate the potential of optimizing the
queuing configuration using TwinNet. The main difference with the
previous experiments is that now the optimizer only explores different
queuing configurations, while routing is fixed to a standard shortest
path scheme. Then, we leverage the flexibility of TwinNet to make de-
lay estimates under different queue scheduling policies and parameters.

Note that in this case, we cannot compare the results with a fluid model
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Fig. 11. SLA-driven optimization with link failures.

given that it does not have support for queuing policies beyond FIFO.
Because of this, optimizers based on fluid models are typically limited
to exploring different routing configurations.

Figs. 10(c) and 10(d) show that the optimizer is able to fulfill
all SLAs, while also minimizing the delay of best-effort traffic. More
importantly, if we compare these results with the previous ones, we
can observe that by modifying the queuing configuration we achieve
better results than modifying the routing. These results illustrate the
remarkable impact of the queue scheduling configuration in the overall
network performance, particularly in the presence of different ToS.

8.4. Routing and scheduling

Based on the previous results, in this section , we aim to evaluate the
optimization potential when optimizing both the routing and queuing
configuration. The objective is the same as before, minimizing the mean
delay on best-effort traffic while satisfying the SLAs.

Figs. 10(e) and 10(f) show the evaluation results. As we can observe
the improvement is remarkable compared to the previous results. The
TwinNet-based optimizer satisfies all SLAs while pushing the mean
delay of best-effort traffic even lower. For instance, in the scenario with
the highest traffic load, it achieves a reduction on the mean delay of
≈60% with respect to the SP+FIFO policy.

8.5. Robustness against link failures

In this use case, we evaluate if our model is able to generalize in
the presence of link failures. When a certain link fails, we need to find
a new routing and queuing configuration to avoid such link. As the
number of link failures increases, fewer paths are available and the
network becomes more saturated.

We run our TwinNet-based optimizer in scenarios with a number
of random link failures. The initial network scenario is the same as
in the previous experiments (i.e., routing & scheduling optimization),
considering the highest traffic intensity (𝑇 𝐼 = 1900).

Fig. 11 shows the optimized mean delay with respect to the number
of link failures (𝑛). Each point in the plot corresponds to the optimal
delay obtained over 10 experiments with 𝑛 random link failures. We
observe that the mean delay increases gradually on best-effort traffic
as there are more link failures and the network becomes increasingly
congested. Nevertheless, the optimizer is able to meet all the SLAs even
with up to 4 link failures.

8.6. What-if: Budget-constrained network upgrade

In this last use case, we show how our Digital Twin can be used to
reason about the network and provide recommendations. Particularly,
we use it to answer the following question: What is the optimal link
upgrade in the network? The question is put in the context of a network
administrator that has a static and well-known traffic matrix and that
11
Table 4
Optimal link placement with various TMs.

Traffic
matrix

Optimal new
link placement

Previous
delay

Delay with
new link

Delay
reduction

𝑇𝑀1 (6,16) 0.446 0.259 41.9%
𝑇𝑀2 (8,13) 0.508 0.303 40.3%
𝑇𝑀3 (7,15) 0.409 0.239 41.5%
𝑇𝑀4 (6,14) 0.499 0.253 49.3%
𝑇𝑀5 (7,15) 0.551 0.322 41.5%
𝑇𝑀6 (6,16) 0.458 0.209 54.3%
𝑇𝑀7 (5,12) 0.419 0.251 40.1%
𝑇𝑀8 (6,14) 0.590 0.312 47.1%

Fig. 12. Schematic representation of the network testbed.

is willing to upgrade the capacity of the network by adding one link
that minimizes the mean traffic delay.

To answer this question we use our TwinNet-based optimizer, con-
strained to adding only one link. Table 4 shows the results for scenarios
with 8 different random traffic matrices of traffic intensity TI=1500.
We can see that the optimizer achieves a considerable delay reduction
(40.1%–54.3%) by properly selecting the best link placement.

8.7. Evaluating TwinNet in a testbed

In previous sections, we explored the use of TwinNet in several
relevant use cases. This section evaluates the performance of TwinNet
in a network scenario using real hardware and packet traces similar to
the ones used in Section 7.5.

To generate the data used for training and testing the model, we use
a physical network testbed, which is depicted in Fig. 12. This testbed
comprises the following hardware: (𝑖) 8 Routers Huawei NetEngine
8000 M1 A (4*10GE+12*GE) (𝑖𝑖) 2 Switches Huawei S5732-H48UM
2CC 5G Bundle (48*100M/1G / 2.5G/5G Ethernet ports), and (𝑖𝑖𝑖) 4
servers, two of them used for traffic generation, and the the other
two used for traffic capture and analysis. We generate traffic using the
TRex traffic generator [60], and we capture traffic with the PF_RING
software [61].

We generate 6,000 samples with realistic topologies (with a max-
imum of 8 nodes), a routing and a queueing configuration, and a
traffic matrix. From these 6,000 samples, 4,000 are randomly selected
for training the model, and the remaining 2,000 samples are used for
testing.

Table 5 shows the results obtained when evaluating TwinNet over
the 2,000 test samples unseen during the training phase. As it can
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Table 5
Accuracy evaluation with data from a real testbed.

TESTBED

MAPE MSE MAE R2

TwinNet 0.063 2.30 × 10-9 1.45 × 10-5 0.915

be seen, TwinNet is able to produce accurate delay estimates in these
scenarios from a real testbed. Particularly, the model obtains a MAPE
of 6.3% with respect to the real values measured in the testbed. This
error is in line with the accuracy levels observed previously in Section 7
with simulated data.

9. Related work

In the context of network optimization, a fundamental goal of
network models is providing a cost function that is later used for
optimization. Over the years, many attempts have been made to obtain
accurate cost functions. This includes fluid models, analytical models
(e.g., queuing theory, network calculus), and discrete-event network
simulators (e.g., ns-3, OMNet++).

Among all the existing techniques, queuing theory is arguably the
most popular [12]. Queuing theory remains an open problem for
realistic multi-point to multi-point queuing networks, and holds hard
assumptions on traffic models (e.g., packet inter-arrival times). This
makes it impractical in several real-world operations. Alternatively,
fluid models are efficient and popular for traffic engineering problems.
However, they make important simplifications and, as shown in Sec-
tion 3, produce inaccurate estimates in scenarios where queuing delay
is significant. Likewise, network calculus operates over the worst-case
scenario of networks [62]. However, this type of scenario is rarely
observed in operational environments.

The use of Deep Learning for network modeling has recently at-
tracted a lot of interest from the networking community [26]. The main
advantage of this approach is that it is data-driven and, as such, it can
potentially model the complexity of real networks. Existing proposals
mainly use traditional fully-connected neural networks (e.g., [25,63]).
However, the main limitation of these solutions is that they do not gen-
eralize to other network topologies and configurations (e.g., routing).
In this context, more recent works propose more elaborated NN models
like Variational Auto-encoders [18], Convolutional NNs [64], or Graph
NNs [65–67]. Nevertheless, these models have fundamentally different
goals compared with TwinNet and do not consider the core components
of real networks. For instance, they are not able to predict the effect of
multi-hop queuing policies along arbitrary paths.

Another recent work [68] proposes to combine GNN with Deep
Reinforcement Learning to perform automatic and efficient network op-
timization. However, they use a basic GNN architecture that considers
a simplified model of the network, including only support for link-
level features (e.g., capacity, utilization), and is particularly designed
to optimize routing and channel allocation in an Optical Transport
Network scenario, i.e. a circuit-switched network without queues.

Finally, there is a growing body of work that leverages GNNs in
different networking scenarios, such as network planning [69], that
exploits the capabilities of GNNs to encode the network topology, and
uses Reinforcement Learning to prune the search space of Integer Linear
Programming problems. Another application is flow selection: a GNN
selects the most critical flow, and it is then rerouted using Linear
Programming techniques [70]. Other applications include distributed
Traffic Engineering optimization [71] (using a GNN+MARL solution),
or load balancing in multi-region networks [72], which leverages a
GNN coupled with a collaborative approach. However, we must remark
that all of these works take advantage of GNNs to encode the state of
the network at a certain moment, but do not directly produce delay
estimates. In addition, the scenarios described in these works do not
consider the impact of the different scheduling policies.
12
10. Conclusions

Network models are a central component for network control and
optimization, as they enable the evaluation of network performance
under alternative configurations and what-if scenarios. Reproducing
the behavior of real networks involves a series of complex non-linear
relationships among multiple components that define the network state
(e.g., topology, routing, queuing configuration, traffic).

In this paper, we presented TwinNet, a GNN-based Digital Twin
that implements a custom message-passing NN architecture particu-
larly designed to model these complex relationships. For this purpose,
TwinNet explicitly defines network elements and their relations in its
internal neural network architecture and learns how to reason on this
graph-structured information. We applied TwinNet to estimate per-path
delays in networks, covering a wide variety of topologies, configura-
tions (routing and queuing), and traffic load levels. Our evaluation
shows that TwinNet is able to generalize accurately to samples of 106
real-world networks (from Internet Topology Zoo) unseen in advance,
after being only trained on samples of two different networks (NSFNET
and GEANT). Also, our evaluation shows how TwinNet is capable of
understanding the complex relationships in a real testbed scenario.
This reflects the capability of this model to abstract deep insights from
network scenarios seen during training and then apply this knowl-
edge effectively to new network topologies, including different traffic
matrices, routing, and queuing configurations.

Finally, we presented several relevant use cases that illustrate the
potential of the proposed model for SLA-driven optimization. To this
end, we paired TwinNet with an optimization algorithm to produce
routing and queuing configurations that meet a set of SLAs in a specific
network scenario. We also used it to test the robustness of the network
against link failures and to find the optimal link placement in a network
planning use case.
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