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Resum
Les Equacions Diferencials en derivades Parcials (EDPs) descriuen una gran varietat de fenò-
mens físics. En moltes situacions, es pot tenir accés a observacions d’un determinat sistema
físic i disposar d’alguna idea inicial sobre un aspecte qualitatiu de la seva dinàmica. Aquest
coneixement previ és suficient per a determinar l’estructura global de l’EDP, però no els seus
coeficients específics. De fet, els paràmetres dels models d’EDPs normalment codifiquen in-
terpretacions científiques rellevants, de manera que és de gran interès poder determinar els
seus valors. Aquests coeficients s’estimen a partir de mesures disponibles, que acostumen a
presentar soroll. Aquest projecte presenta un algoritme híbrid quàntic-clàssic per a inferir els
paràmetres d’una EDP donat un conjunt de dades d’observacions empíriques.

Per tal de dur a terme l’estimació de paràmetres, cal tenir accés a una solució de l’EDP. Aquesta
tesi proposa un algoritme quàntic per a resoldre EDPs basat en un circuit quàntic parametritzat.
Aquest circuit codifica les variables d’entrada utilitzant una aplicació coneguda com aChebyshev
feature map que ofereix una base de polinomismolt representativa i que posseeix gran expressiv-
itat. A continuació, la solució es calcula al circuit quàntic mitjançant mesures de valors esperats.
Les derivades espacials i temporals es calculen al circuit quànticmitjançant derivació automàtica
(a través de l’anomenada parameter shift rule) de forma analítica, de manera que s’eviten les in-
exactituds derivades dels procediments que utilitzen diferències finites per a calcular gradients.
Per últim, el circuit quàntic s’entrena per tal de satisfer l’EDP donada i les condicions de frontera
especificades.

Com a cas d’estudi, l’algoritme s’il·lustra a partir de diverses simulacions per tal de determinar
el circuit quàntic que resol l’equació de la calor ambmillor expressivitat i exactitud. Amb aque-
sta configuració es determinen els paràmetres de l’equació de la calor.

Paraules clau: circuits quàntics diferenciables, estimació de paràmetres, equacions diferencials
en derivades parcials, algoritmes quàntics, computació quàntica, aprenentatge automàtic quàn-
tic
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Resumen
Las Ecuaciones Diferenciales en derivadas Parciales (EDPs) describen una gran variedad de
fenómenos físicos. En muchas situaciones, se puede tener acceso a observaciones de un de-
terminado sistema físico y disponer de alguna idea inicial sobre un aspecto cualitativo de su
dinámica. Este conocimiento previo es suficiente para determinar la estructura global de la EDP,
pero no sus coeficientes específicos. De hecho, los parámetros de los modelos de EDPs normal-
mente codifican interpretaciones científicas relevantes, de manera que es de gran interés poder
determinar sus valores. Estos coeficientes se estiman a partir de medidas disponibles, que acos-
tumbran a presentar ruido. Este proyecto presenta un algoritmo híbrido cuántico-clásico para
inferir los parámetros de una EDP dado un conjunto de datos de observaciones empíricas.

Para la estimación de parámetros, hace falta tener acceso a una solución de la EDP. Esta tesis pro-
pone un algoritmo cuántico para resolver EDPs basado en un circuito cuántico parametrizado.
Este circuito codifica las variables de entrada usando una aplicación conocida como Chebyshev
feature map que ofrece una base de polinomios muy representativa y que posee gran expresivi-
dad. A continuación, la solución se calcula en el circuito cuántico mediante medidas de valores
esperados. Las derivadas espaciales y temporales se calculan en el circuito cuántico mediante
diferenciación automática (a través de la parameter shift rule) de forma analítica, evitando así las
inexactitudes derivadas de los procedimientos que usan diferencias finitas para calcular gradi-
entes. Por último, el circuito cuántico se entrena para satisfacer la EDP dada y las condiciones
de frontera especificadas.

Como caso de estudio, el algoritmo se ilustra a partir de varias simulaciones con el fin de deter-
minar el circuito cuántico que resuelve la ecuación del calor conmejor expresividad y exactitud.
Con esta configuración se determinan los parámetros de la ecuación del calor.

Palabras clave: circuitos cuánticos diferenciables, estimación de parámetros, ecuaciones difer-
enciales en derivadas parciales, algoritmos cuánticos, computación cuántica, aprendizaje au-
tomático cuántico
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Abstract
Partial differential equations (PDEs) describe a wide variety of physical phenomena. In many
situations, one can have access to observations on some physical system and some initial idea
of some qualitative aspects of its dynamics. This prior knowledge is enough to determine the
overall structure of the PDE, but not its specific coefficients. In fact, the parameters of PDE
models encode insightful scientific interpretations, so it is of great interest to determine their
values. These coefficients are estimated from the available noisy measurements of the system.
This project presents a hybrid quantum-classical approach to infer the parameters of a PDE
given a data-set of empirical observations.

In order to perform parameter estimation, it is necessary to have access to a PDE solver. This
thesis proposes a quantum algorithm to solve PDEs based on a parameterized quantum cir-
cuit. This circuit encodes the input variables in a Chebyshev quantum feature map that offers
a powerful basis set of fitting polynomials and possesses rich expressivity. Then, the surro-
gate of the real solution is computed by measuring expectation values. The spatial and tem-
poral derivatives of the surrogates are computed in the differentiable quantum circuit (DQC)
through automatic differentiation (via the so-called parameter shift rule) in an analytical form,
thus avoiding inaccurate finite difference procedures for calculating gradients. The DQC is then
trained to satisfy the given PDE and specified boundary conditions.

As a case study, the algorithm is illustrated via several simulations in order to determine the
DQC that solves the Heat equation with best expressivity and accuracy. The parameters of the
Heat equation are then estimated with this particular setting.

Keywords: Differentiable Quantum Circuits, Parameter inference, Partial Differential Equa-
tions, Quantum Algorithms, Quantum Computing, Quantum Machine Learning
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1 Introduction
It has recently been discovered that certain properties of quantum mechanics can be applied
to computation in what is known as quantum computer, a machine designed to process infor-
mation based on the laws of quantummechanics. More specifically, by using the superposition
principle and the interference1 effect of quantummechanics [4] [5], quantum computers appear
to be more powerful than the standard classical Turing machine model of theoretical computer
science. Quantum computing is the filed that investigates the computational power and other
properties of computers based on quantum-mechanical principles. Themultiple applications of
quantum computing rely on quantum algorithms, which are algorithms that run on a quantum
computer and achieve a speedup over some classical algorithm solving the same problem. In
fact, using only polynomial resources, these quantum algorithms can compute certain functions
which are not known to be computable on classical digital computers in less than exponential
time [6]. Some of the main reasons that justify the power of quantum computing are the fol-
lowing [7]:

• Quantum algorithms can be used for some classically intractable problems. There are
some problems that are hard for classical computers, but are easy to solve with quan-
tum algorithms2. The difficulty of a problem is classified into complexity classes, a key
concept in computational complexity theory [8]. If a problem is said to be complete for
a complexity class, it is essentially one of the ‘hardest’ problems in that class and every
other problem within that class essentially reduces to it.

• Quantum algorithms achieve an exponential speedup over some classical methods. The
speedup achieved thanks to quantum computers is normally measured according to com-
putational complexity theory. Hence, the efficiency of a quantum algorithm is measured
in terms of the complexity of the algorithm. In both classical and quantum settings, the
runtime is measured by the number of elementary operations used by an algorithm. In
the case of quantum computation, this can bemeasured using the quantum circuit model.
A quantum circuit is a sequence of elementary quantum operations called quantum gates,
each applied to a small number of qubits (quantum bits). One measures the "asymptotic"
complexity of the algorithm as the size of the input grows. The performance of algorithms
is compared using the notation O (f(n)

), which can be understood as "asymptotically"
upper-bounded by f(n) [9].

• No known classical algorithm can simulate a quantum computer efficiently in its full gen-
erality.

Since the use of the properties of quantummechanics allows to speed up certain computations,
the interest in quantum computation has been recently growing. However, quantum computing
presents several difficulties [10]:

• Decoherence3 tends to destroy the information in a superposition of states in a quantum

1Phenomenon that occurs when the positive and negative amplitudes for a quantum state cancel each other.
2The best known example is the problem of finding the prime factors of a large integer [6].
3Quantum computation involves manipulating the quantum states of objects that are in coherent quantum su-

perpositions. These superpositions, however, tend to be quite fragile and decay easily; this decay phenomenon is
called decoherence. One way of thinking about decoherence is to consider the environment to be “measuring” the
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computer, thus making long computations impossible.

• Inaccuracies4 in quantum state transformations can accumulate over the course of a com-
putation, rendering the output of long computations unreliable.

In fact, it is very challenging to build a quantum system that satisfies all of these criteria. Some
quantum error correcting codes5 have been built that are able to reduce both decoherence and
inaccuracy during transmission and storage of quantum data [11]. The idea of quantum error
correction is to encode the quantum system in a very highly entangled state in order to protect
it from damage. Unfortunately, there is a significant cost for doing quantum error correction,
becausewriting the protected quantum information into a highly entangled state requiresmany
additional qubits, so this discovery is not sufficient to ensure that a noisy quantum computer
can perform reliably. Hence, reliable quantum computers using quantum error correction are
not likely to be available very soon [7].

A device that works effectively even when its elementary components are imperfect is said to
be fault-tolerant. Through application of quantum error correction schemes, a fault-tolerant
quantum computer is able to avoid the uncontrollable cascade of errors caused by the interaction
of qubits.

Even though fault-tolerant quantum computers will likely not be available in the near future,
in 2016 access was granted to the first cloud-based quantum computer. The actual quantum
processors have been called Noisy Intermediate-Scale Quantum (NISQ)6 computers [7].

1.1 Quantum Computing applied to PDEs
One of the fields in which quantum algorithms can be applied is solving large systems of linear
equations. The best knownquantumalgorithm for solving systems of linear equations is the one
developed byHarrow, Hassidim and Lloyd (HHL) [12]. This same algorithm, or closely related
ideas, can also be applied to problems related to linear equations such as solving differential
equations, data fitting and various tasks in machine learning.

In fact, quantum computers possess algorithmically superior scaling for certain problems that
include amplitude amplification and Abelian hidden subgroup problems [8] [5]. For linear al-
gebra tasks, quantum computers have an exponential advantage over classical computers when

state of a quantum system by interacting with it. The laws of quantum mechanics establish that a quantum system
cannot be observed without producing an uncontrollable disturbance in the system. So in order to use a quantum
system to store and reliably process information, the system needs to be kept perfectly isolated from the outside
world. Decoherence prevents this isolation.

4As with an analog classical computer, the state of a quantum superposition depends on certain continuous
parameters. For instance, one of the most common quantum gates used in quantum computations is a rotation of a
quantum bit by an angle θ. When applying this transformation, there will be some inherent inaccuracy in this angle
θ.

5To carry out a quantum error-correction protocol, the quantum information that needs to be protected must first
be encoded. Then some recovery operations are repeatedly performed in order to reverse the errors that accumulate.
Since encoding and recovery are themselves complex quantum computations, errors will inevitably occur while
performing these operations. Thus, themethods for recovering from errors need to be robust enough so as to succeed
with high reliability even when committing some errors during the recovery step [10].

6“Intermediate Scale” refers to the size of quantum computers (with a number of qubits ranging from 50 to a few
hundred). “Noisy” emphasizes the imperfect control over those qubits, since the noise places serious limitations on
what quantum devices can achieve.
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it comes to solving linear system of equations (as offered by the HHL algorithm [12]), since
they give a very significant speed up [13].

Differential equations (DEs), which include ordinary differential equations (ODEs) and partial
differential equations (PDEs), are used to model a wide variety of physical phenomena. ODEs
describe the dynamics of continuously changing processes by relating a process and its rate of
change. PDE models are commonly used to model complex dynamic system in applied science
such as physics, biology and finance. Annex 9.1 introduces some mathematical notation and
theoretical background of PDEs that may help the reader follow this thesis.

PDEs are the expression of processes that occur across time and space. Most scientific phe-
nomena can typically be modelled by the evolution of a given quantity through space and time,
and thus can be translated into a PDE. Hence PDEs describe many engineering phenomena
and processes occurring in nature, and their field of application is very wide. Here are some
examples: plasma physics, finance, biology, wave propagation, fluid mechanics (air or liquid),
vibration, mechanics of solids, heat flow, electric fields and potentials, diffusion of chemicals in
air or water, electromagnetism and quantum mechanics...[14]

Although PDEs are extremely hard to solve (in general), classical computers are already able
to perform these calculations. In classical computers, PDEs are often solved by discretization in
order to produce a system of linear equations rather than a system of one or more differential
equations, since a system of discrete linear equations is indeed much easier to solve. Therefore,
being able to solve PDEs more efficiently than all known classical algorithms, using a quan-
tum computer, could significantly accelerate scientific progress. These developments, amongst
others, rely on the nascent field of quantum machine learning (QML) [15] .

1.2 Objective and research question
In many situations, an observed process can be modelled in the form of a differential equation.
While its solving constitutes an important task in phenomenological understanding, in many
practical settings this equation is not fully known. In such cases, one may have access to obser-
vations on some target system and some initial idea of some qualitative aspects of its dynamics
(e.g. Hamiltonian learning). This prior knowledge and understanding of the studied dynamic
system leads to the proposal of some model for a PDE. Even if the overall structure of the PDE
is known, its specific coefficients might often be unknown and need to be estimated from noisy
measurements of the system. In fact, the parameters of PDE models encode insightful scien-
tific interpretations, so it is of great interest to determine their values by inferring them from
empirical observations.

A lot of statistical methods have been developed to estimate the parameters in PDE models
by repeatedly solving the models numerically, which is time consuming and leads to a high
computational load. Therefore, there is a growing need to develop efficient estimation methods
for PDEmodels. And this is the problem thatwill be addressed in this thesis. This project targets
parameter inference in partial differential equations, which is a direct application of scientific
machine learning and modelling in general that combines theoretical models with empirical
observations.

Hence, the objective of this project is to provide a framework to estimate the coefficients of the
PDE that models some given dataset in a quantum approach, by implementing a parameterized
quantum circuit.
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1.3 Structure of the project
This thesis has been divided into several sections in order to facilitate its understanding. Section
2 takes a look into the theoretical background of the different existing approaches for solving
PDEs, from classical methods (section 2.1) to quantum strategies (section 2.2). Section 3 gives
the general approach that will be followed through this project.

The main part of the thesis is then structured into two big sections: the theoretical description
and analysis of the parameterized quantum circuit and the optimization procedure (section 4)
and its practical implementation (section 5).

On one hand, the theoretical approach consists on: (1) establishing a solver for the PDE (sec-
tion 4.1), (2) describing and building the structure of the established solver (section 4.2), (3)
defining the optimization strategy and training the circuit parameters that allow to reproduce
the solution function (section 4.3).

On the other hand, the practical section contains a description of the experimental results ob-
tained through the built quantum circuit. Section 5.2 discusses which quantum circuit enables
the best expressivity, and section 5.3 analyses the parameter inferring technique for the most
expressive quantum circuit.

Finally, section 6 offers a discussion of the results and dives into the limitations of thework done.
Section 7 explores some open questions and improvements, and takes a quick look at potential
applications of the work presented in this thesis.
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2 State of the art: PDEs solvers
In the recent years, a lot ofwork has beendone related to solvingPDEswith numerical strategies,
ranging from classical to quantum methods. This section will analyse some of these solving
techniques and the theoretical background behind each type of solver.

What these solvers have in common is the need to calculate the partial derivatives of the objective
function u that participates in the differential equation. Each one of them follows a different
approach.

2.1 Classical methods
Classical numericalmethods have complexity that grows exponentially in the dimension, a phe-
nomenon called curse of dimensionality that constitutes a major challenge. The most common
approaches to solving PDEs on a digital computer are classified into local methods and global
methods.

2.1.1 Local methods
Local approaches are also known as grid or meshmethods, since they rely on the discretization
of the space of variables. In this case, derivatives are approximated using numerical differenti-
ation techniques (such as finite differencing [16] and Runge-Kutta methods).

The definition of the derivative is given by:

du

dx
= lim

h→0

u(x+ h)− u(x)

h
.

Since data is always sampled at a finite spacing, in practice a derivative must always be approx-
imated:

du

dx
≈ u(x+ h)− u(x)

h
.

This equation is the basis of numerical differentiation, where data is sampled on a grid with
spacing ∆x, allowing the use of a more natural notation in terms of the grid index i. The deriva-
tive can then be approximated as:

dui
dx
≈ ui+1 − ui−1

2∆x
.

The finite differencesmethod (FDM) is based on discretizing space into a regular lattice, solving
a system of linear equations that approximates the PDE on the lattice, and output the solution
on those grid points. If each spatial coordinate has n discrete values, then nd points are needed
to discretize a d-dimensional problem. The exponential scaling in the dimension is a great dif-
ficulty of classical methods.

Numerical differentiation through finite differences (FD) has some important drawbacks [17]:

• The precision of the derivatives depends on the step ∆x, hence the approximation is only
valid for small ∆x. If the samples are spaced far apart, the resulting derivative will be
inaccurate. And if there are abrupt changes between the samples (for example, in a delta
function), the derivative at those points will be inaccurate.
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• Higher order derivatives are calculated by successively applying the approximation. Con-
sequently, small errors in lower orders get propagated and amplified to higher orders,
making estimates of these higher-order derivatives highly inaccurate (see equation 1 as
an example for a second order derivative).

d2u

dx2
≈

u(x+h)−u(x)
h − u(x)−u(x−h)

h

h
=
u(x+ h)− 2u(x) + u(x− h)

h2
(1)

• At the edges of the dataset (boundary terms), the derivatives cannot be calculated. Doing
so would require extrapolating, which is highly inaccurate, so typically the data at the
edge is simply discarded.

• Since this method carries important errors in numerical differentiation, which lead to in-
accurate derivatives, it is not suitable on noisy experimental data.

Another mesh-method is the finite element method (FEM), which is based on approximating
the solution on an assemblage of simply shaped (triangular, quadrilateral) finite pieces or "ele-
ments" which together make up complexly shaped domains. Therefore, this method is suitable
for irregular and complex geometries, and it ismainly usedwhen the boundary conditions (BC)
are irregular or very complicated, but not for ordinary or simple BC. In this method, the differ-
ential equation is multiplied by functions with local support (restricted by the grid) and then
integrated. This produces a set of equations that the solution must satisfy, which are then used
to approximate the solution.

Another grid-based method is the finite volume method (FVM), which considers a grid by
dividing space into volumes or cells. The equation is then integrated over the volume. Applying
the divergence theorem, the volume integral over the cells is converted into a surface integral
across the boundaries of the cells. This method evaluates expressions for the average value of
the solution over some volume and uses this data to construct approximations of the solution
within the cells.

2.1.2 Global methods
An alternative to grid methods are global methods, also known as spectral methods. Spectral
methods use linear combinations of basis functions (such as Fourier basis states or Chebyshev
polynomials) to globally approximate the solution. These basis functions allow the construc-
tion of a linear system whose solution approximates the solution of the PDE.

Global methods work with surrogates7 p(x), which need to have enough degrees of freedom to
approximate the data u(x) reasonably: p(x) ≈ u(x).

A classical approach is to represent p(x) as a series expansion, in terms of a suitable basis set
h(x).

p(x) =
∑
n

anhn(x).

7Surrogates (also known as digital twins) are a widely used approach to approximate a dataset by a different
data-driven model with certain desirable properties [17].
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This recasts the problem to finding the optimal coefficients an for the polynomial approximation
of the sought function, such that p(x) ≈ u(x). The derivatives are then easily and accurately
calculated, since it is simply the sum over the derivatives of the basis functions:

du

dx
≈ dp(x)

dx
=
∑
i

ai
dhi(x)

dx
.

The flexibility of the surrogate strongly depends on the choice of basis functions. The most
well-known choices that form a basis are the following:

• Polynomials: hk(x) = xk

The main limitation of polynomials is that they do not have enough expressivity to model
most data. However, data can locally be approximated using a spline interpolation, a
method that locally fits a polynomial in a sliding window and ensures continuity at the
edges. They can also be used to smooth data, so they are a widely-used choice to calculate
derivatives. However, they offer inaccurate results with noisy data.

• Fourier basis: hk(x) = e2πikx

Using Fourier series has several properties: they are computationally efficient, well estab-
lished, and are particularly useful for calculating derivatives. Furthermore, the Fourier
representation allows to denoise the data by applying a low-pass filter. This is also known
as the spectral method to calculate derivatives, and it is often used when solving PDEs.
However, this method is not suitable when treating with nonlinear terms, since they cor-
respond to convolutions in Fourier spaces, making the derivative calculation much more
complicated.

• Chebyshev basis

The Chebyshev polynomials are two sequences of polynomials related to the cosine and
sine functions, notated as Tk(x) and Uk(x). The Chebyshev polynomials of the first kind
Tk(x) are defined by Tk(cos θ) = cos kθ. Similarly, the Chebyshev polynomials of the sec-
ond kind Uk(x) are defined by Uk(cos θ) sin θ = sin ((k + 1)θ). These expressions define
polynomials in cos θ, hence they are bounded in the interval [−1, 1].

The Chebyshev polynomials of the first kind {Tk(x)}k≥0 are defined recursively by:

Tk+1(x) = 2xTk(x)− Tk−1(x), T0(x) = 1, T1(x) = x, ∀k ≥ 1.

The Chebyshev polynomials of the second kind {Uk(x)}k≥0 are defined recursively by:

Uk+1(x) = 2xUk(x)− Uk−1(x), U0(x) = 1, U1(x) = 2x, ∀k ≥ 1.

The crucial properties of Chebyshev polynomials are their chaining properties, nesting
properties and simple differentiation rules, which account for the power representation
of these polynomials in approximation theory. In fact, the set of Chebyshev polynomials
form an orthonormal basis, so that any smooth function f(x) can be represented via the
expansion f(x) =

∑∞
k=0 akTk(x) on −1 ≤ x ≤ 1, so they offer a very accurate fitting for

oscillating functions defined in the region x ∈ (−1, 1).
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Since a Chebyshev series is related to a Fourier cosine series through a change of variables, all
of the theorems, identities and characteristics that apply to Fourier series have a Chebyshev
counterpart. In fact, Chebyshev polynomials are the most widely-used basis functions used in
spectral methods, and they are commonly used in spectral algorithms for solving PDEs [3].

2.1.3 Physics Informed Neural Networks (PINNs)
On classical hardware, a neural network consists of a matrix multiplication composed with a
non-linearity function,

h(x) = f(xW T + b)

where x is the input,W the kernel or weight matrix, b the bias and f the non-linearity function
[17]. These layers are composed to increase expressive power, yielding a deep neural network,

gθ(x) = hn ◦ hn−1... ◦ h0(x)

where θ are the network’s weights and biases.

Neural networks are universal function approximators (UFAs) [17], meaning that a network with
a single hidden layer of infinite width can approximate any continuous function. They are used
to represent an approximate surrogate solution û, since they scale well to higher dimensions,
are computationally efficient and are very flexible.

Physics Informed Neural Networks (PINNs) are one of the most widely-used ways to include
physical knowledge in neural networks and to obtain differentiable surrogates that respect this
physical prior information, therefore they have a lot of applications [18]. PINNs use (higher-
order) derivatives of neural network outputs with respect to neural network inputs as terms to
train neural networks [19]. Consequently, PINNs have become a very widely-used method for
both solving PDEs (given an equation, boundary conditions, and some measurements) and for
parameter inference, for various reasons [17]:

• They do not require specialized architectures or advanced numerical approaches, so they
are very straightforward to implement. They are not mesh methods, since the data or so-
lution are parameterized as a neural network. Not having to createmeshes is a simplifying
property.

• Automatic differentiation can beused to calculate the derivatives, yieldingmachine-precision
derivatives.

• When used for parameter inference, PINNs essentially act as consistent denoisers, making
them particularly robust and useful when working with noisy and sparse data.

2.2 Quantum methods
The local and global classical algorithms described above often consider the problem of out-
putting the solution at N points in space, which requires Ω(N) space and time. Quantum al-
gorithms often (though not always) consider the alternative problem of outputting a quantum
state proportional to such a vector, which requires only Ω(logN) space. The fact of working
with quantum states provides more limited access to the solution, but it can potentially be done
in only poly(logN) time [20].
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2.2.1 Discretization
In the recent years, a growing number of quantum algorithms have been developed for solving
PDEs. These quantumPDE solvers use several strategies, most of which are based on discretiza-
tion: either discretizing space or frequency domain (hence working in a Fourier or Chebyshev
subspace).

The common steps to solve a partial differential equation with a quantum computer are the
following:

1. Discretization of the PDE: Let f(x, t) be a function which is a solution of a given partial
differential equation, where x is a d-dimensional vector. In order to store and manipu-
late the solution of the PDE on a quantum device, discretization is applied either in space
(analogous to classical grid-based methods) or in frequency (analogous to classical spec-
tral methods).

2. Mapping: Most quantum algorithms apply either Hamiltonian simulation [21] or the
Quantum Linear System Algorithm (QLSA) [12].

(a) Schrödinger’s equation: the PDE is transformed into Schrödinger’s equation, and the
problem is solved with Hamiltonian simulation techniques.

The time evolution of the state of a closed quantumsystem is described by the Schrödinger
equation [5]

i~
d |ψ〉
dt

= H |ψ〉 . (2)
It is common to absorb the factor ~8 into H, effectively setting ~ = 1. H is a fixed
Hermitian operator known as the Hamiltonian of the closed system.

The basis of simulation is the solution of differential equations which capture the
physical laws governing the dynamical behavior of a system. Many simple quantum
systems are governed by Schrödinger’s equation 2. Then, an approach to solve PDEs
is to map the equation to a Hamiltonian simulation problem. For Hamiltonian simu-
lation, the matrix describing the system Amust be turned into an Hermitian matrix
H . Then, the goal of Hamiltonian simulation is to solve Schrödinger equation

d |ψ〉
dt

= iH |ψ〉

where H is a Hermitian N ×N matrix, by implementing the unitary evolution
|ψ〉 = e−iHt |ψ0〉

using a universal gate set. The problem of Hamiltonian simulation consists on im-
plementing e−iHt as a quantum circuit of gates. An efficient approximation of the
solution to this problem is possible for many classes of Hamiltonian, since in most
physical systems, the Hamiltonian can be written as a sum over many local interac-
tions [21].

H =

n∑
k

Hk.

8Physical constant given by Planck’s constant (h) divided by 2π
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Trotter formula states that, given A and B some Hermitian operators, then [5]:

ei(A+B)t = lim
n→∞

(
eiAt/neiBt/n

)n
.

Then one can apply Trotterization in order to obtain a decomposition for short-time
simulations [5]:

e−iHt ≈ e−iH1t · · · e−iHnt.

Hence, each unitary e−iHkt can be efficiently implemented.

Hamiltonian simulation can also be solved by writing the Hamiltonian as a linear
combination of unitaries (LCU) and applying the so-called LCU lemma [4].

(b) Linear system: solving the PDE reduces to solving a linear system of equations using
QLSAs.

For a linear system Ax = b, a QLSA outputs a quantum state proportional to the
solution x. To learn information about the solution x, the output of the QLSA must
be post-processed.

The Harrow-Hassidim-Lloyd (HHL) algorithm is used for solving large systems of
linear equations [12]. Since most classical algorithms for PDEs involve matrix inver-
sion, the HHL algorithm is useful as a mapping method for solving PDEs. Given an
n× n real matrix A, and a vector b, the HHL algorithm can solve the systems of lin-
ear equations given by Ax = b in an amount of time that scales only logarithmically
with n, the number of equations and unknowns. Classically, n2 steps are required
to examine all of the entries of A, and n steps are needed to write down the solution
vector x. In contrast, by taking advantage of the exponential character of the wave
function, HHL solves the system of n equations in log(n) steps, and the solution is
stored in the amplitudes of a quantum state

|x〉 =
∑
i

xi |i〉 .

The power of HHL-based algorithms relies then on the amplitude encoding, since
this allows to compress large grids into a small qubit register, providing exponential
memory advantage. However, there are several caveats and drawbacks that should
be considered [22]:

i. The output of the HHL algorithm is not x itself, but rather a quantum state |x〉
of log2 n qubits which approximately encodes the entries of x in its amplitudes.
This ’approximately’ means that the algorithm obtains a functional of the solu-
tion with an error less than ε. Even in this quantum approach, reading out the
solution x = (x1, ..., xn) requires exponential sampling, representing a so-called
data "output problem". Having access to these amplitudes (hence to extract the
value of any specific entry xi) implies measuring the outcome through quantum
state tomography, losing the exponential speed-up. Then, the HHL algorithm
allows to extract information of the solution - a functional of the solution - but
not the solution itself. Therefore, the HHL algorithm is only useful when used
as a primitive for other algorithms, or when only a functional of the solution is
needed.
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ii. The HHL algorithm requires the preparation of the input state |b〉 =
∑n

i=1 bi |i〉.
General states cannot be prepared efficiently on a quantumcomputer. This prepa-
ration requires sophisticated techniques such as quantum random access mem-
ory (QRAM), thus leading to a so-called data "input problem". Classical data
has to be loaded into QRAM, and this cost kills the exponential speedup.

iii. The matrix A should be sparse9 in order for the quantum computer to efficiently
apply the unitary transformation e−iAt.

iv. The matrix A needs to be invertible or ’well-conditioned’ so that its condition
number κ10 is bounded.

The complexity of the HHL algorithm has been improved further to

O
(
κs log(n) log(1/ε)

)
with κ the condition number, s the sparsity and ε the precision [23].

3. Measurement: The solution is now stored as a quantum state. The last step is to perform
measurements to obtain a functional of the solution, since the global solution cannot be
easily extracted. There are many functions of a state that can be extracted efficiently, such
as the inner product with another state or a small set of amplitudes.

Using this methodology, combined with other methods, several PDEs have already been solved
using quantum algorithms. Several studies have developed generic quantum solvers for dif-
ferential equations, and have shown algorithmic improvements in terms of accessing quantum
oracles11. For instance: Poisson equation [24] (generalized to elliptic equations [20]), heat equa-
tion [25], wave equation [26]. Not only have second order linear PDEs been solved, but also
stochastic PDEs (which arise in mathematical finance) [27] [28] and nonlinear PDEs (such as
Burger’s equation) [29].

2.2.2 Variational Quantum Algorithms
Variational QuantumAlgorithms (VQAs) have emerged as the leading strategy to obtain quan-
tum advantage on NISQ devices, due to their optimization-based or learning-based approach
(which consists on using a classical optimizer to train a parameterized quantum circuit). This
approach allows to overcome the contraints imposed by NISQ computers (limited number of
qubits, limited connectivity of the qubits, and coherent and incoherent errors that limit quan-
tum circuit depth).

In particular, NISQ devices may provide advantages over classical methods when it comes to
using an hybrid quantum-classical approach. This hybrid algorithm corresponds to the varia-

9A n× nmatrix is said to be s-sparse if it contains at most s nonzero entries per row, for some s << n
10The condition number κ is defined as the ratio in magnitude between the largest and smallest eigenvalues of a

matrix A
(
κ =

∣∣λmax
λmin

∣∣). This number is important for numerical stability issues in solving systems of linear equa-
tions

11A quantum oracle is a "black box" operation that is used in quantum algorithms for the estimation of a function
f(x) given an input x and using qubits. The oracle is the black box implementation of this function f(x), that is later
used as input to another algorithm. The oracle takes a n-bit binary input x = (x0, ...xn−1) and produces a m-bit
binary output f(x), such that f : {0, 1}n 7→ {0, 1}m.
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tional quantum eigensolver (VQE), where a quantum computer is used to prepare parameter-
ized quantum states and classical optimization is used for finding the best variational parame-
ters.

The rise of variational quantum eigensolvers (VQE) has launched further development of vari-
ational quantum algorithms (VQAs). Since both VQAs and classical neural networks can be
thought of as layers of connected computational units controlled by adjustable parameters,
VQAs are also referred to as quantum neural networks (QNNs) [1].

VQAs are performedbyparameterized quantumcircuits (PQCs), which are typically composed
of fixed gates (e.g. controlled NOTs) and adjustable gates (e.g. qubit rotations). Even at low
circuit depth, some classes of PQCs are capable of generating highly non-trivial outputs, hence
allowing a remarkable expressive power. As an illustrative example, it was proven that constant-
depth quantum circuits are more powerful than constant-depth classical circuits, and that the
quantum advantage that comes from the quantum correlations present in quantum circuits can-
not be reproduced in analogous classical circuits [30]. Also, the power of VQAs for quantum
machine learning tasks (training models to fit datasets and making predictions) comes from
the high expressivity of quantum circuits, where data points are mapped to quantum states.

Quantum computers can be used to construct solutions to differential equations via variational
procedures using a Differentiable Quantum Circuit (or Derivative Quantum Circuit - DQC).
A DQC is a type of PQC that implements a quantum neural network that can be analytically
differentiated with respect to variational parameters and with respect to the network inputs.
DQCs deal with functions and their derivatives using automatic differentiation rules, hence
allowing to solve differential equations in a variational approach.

The recent progress in automatic differentiation on quantum computers has allowed to general-
ize classical scientific machine learning procedure to a quantum setting. These techniques have
already led to quantum methods for solving differential equations [3] which are analogous to
methods involving classical neural networks [31].

Although VQAs still face important challenges12, they have recently been proposed for essen-
tially all practical applications of quantum computers. The specific applications where VQAs
can provide quantum advantage include chemistry and material sciences, nuclear and particle
physics, data analysis, optimization and machine learning [2].

12The main challenges include trainability, accuracy and efficiency
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3 Problem approach
The general approach consists on inferring coefficients of known PDEs from artificial data. Ini-
tially, there is some available data that is governed by a PDE. The form of the PDE is known, but
the parameters are unknown. The goal is to infer the coefficients of this PDE; and this discovery
process will be performed using a differentiable quantum circuit.

Since the purpose of this thesis is to build a quantum circuit that is able to represent an accurate
solution of a given PDE rather than solving the PDE, the chosen PDE does not have to be very
complex. To this end, the PDE that has been chosen as an example to train the quantum circuit
is the one-dimensional Heat equation, which is the prototypical example of a parabolic PDE.
Additionally, it is one of the most widely studied topics in pure mathematics, and its analysis is
regarded as fundamental to the broader field of partial differential equations. In fact, it has been
proved that quantum computers can achieve a polynomial speedup over classical algorithms for
solving the Heat equation [13].

The optimization problem will be treated using a hybrid approach of quantum and classical
hardware to find approximate solutions. The hybrid computation includes classical and quan-
tum subroutines, executed on different devices. By implementing some subroutines on classi-
cal hardware, the requirement of quantum resources is significantly reduced, particularly the
number of qubits, circuit depth and coherence time. In fact, these hybrid algorithms turn out
to be successful when used for machine learning problems [1]. The general hybrid approach
is made of three main components, as shown in figure 1: the human, the classical computer
and the quantum computer. The role of the human is to set up the model using prior informa-
tion and assess the learning process (although in some cases the circuit can also be found via
reinforcement learning). Within the hybrid system, the quantum computer prepares quantum
states according to a set of parameters and performs measurements. Measurement outcomes
are post-processed by the classical computer, that implements a learning algorithm that adjusts
the parameters in order to minimize an objective function. The updated parameters, now defin-
ing a new quantum circuit, are fed back to the quantum hardware in a closed loop, as shown in
figure 2.

This project uses a hybrid quantum-classical approach, since the solver is a quantum neural net-
work and the optimization process for finding the best variational parameters of the quantum
circuit is done classically. The gradients w.r.t. inputs (in this example t and x) will be estimated
from the quantum circuit, and the gradients w.r.t parameters θ and the function coefficients w
will be computed classically.
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Figure 1: Depiction of hybrid algorithms. Extracted from [1].

Figure 2: Schematic diagram of a Variational QuantumAlgorithm (VQA). The inputs to a VQA
are: (1) a set of training data {ρk} used during the optimization, (2) a cost function C(θ), be-
ing θ a set of parameters that encodes the solution to the problem, and (3) an ansatz whose
parameters are trained to minimize the cost. The cost is expressed in terms of some set of func-
tions {fk}. The ansatz is shown as a parameterized quantum circuit (left), which is analogous
to a neural network (right). At each iteration of the loop, a quantum computer is used to effi-
ciently estimate the cost. This information is fed into a classical computer that uses the power
of optimizers to navigate the cost landscape C(θ) and solve the optimization problem. Once a
termination condition is met, the VQA outputs an estimate of the solution (surrogate) to the
problem. The form of the output depends on the concrete task that wants to be solved. The red
box indicates some of the most common types of outputs. Extracted from [2].
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4 Problem resolution
The PDE that will be studied in this thesis as a case study is the Heat equation. The heat equa-
tion governs heat flow and heat diffusion, as well as other diffusive processes, such as particle
diffusion or the propagation of action potential in nerve cells. Hence, it is also known as the
diffusion equation.

The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of
modeling how a quantity such as heat diffuses through a given region. For heat flow, the heat
equation is derived from the physical laws of conduction of heat and conservation of energy.
According to Fourier’s law for an isotropic medium, the rate of flow of heat energy per unit area
through a surface is proportional to the negative temperature gradient across it:

q = −λ∇u

whereλ is the thermal conductivity of thematerial, u = u(x, t) is the temperature andq = q(x, t)
is a vector field that represents the magnitude and direction of the heat flow at the point x of
space and time t.

For the sake of simplicity, this thesis will focus on the one-dimensional heat equation. Let’s
study the heat flow on an insulated wire (or a thin metal rod) of uniform section and material.
The wire has length L and is insulated except at the endpoints. It is initially heated to a temper-
ature of u0(x), and the temperature distribution in the bar is u(x, t). Let x denote the position
along the wire and t denote time. For 1D, the equation becomes

q

A
= −k∂u

∂x
.

Let Q = Q(x, t) be the internal heat energy per unit volume of the bar at each point and time.
In the absence of heat energy generation, from external or internal sources, the rate of change
in internal heat energy per unit volume in the material, ∂Q∂t is proportional to the rate of change
of its temperature, ∂u∂t . That is,

∂Q

∂t
= cρ

∂u

∂t

where c is the specific heat capacity (at constant pressure, in case of a gas) and ρ is the density
of the material [32]. In this derivation, one assumes that the material has constant density and
heat capacity through space as well as time.

Applying the law of conservation of energy to a small element of the medium, and combining
Fourier’s law with the transferred thermal power,

∂Q

∂t
= −∂q

∂x
.

From the above equations it follows that
∂u

∂t
= − 1

cρ

∂q

∂x
= − 1

cρ

∂

∂x

(
−λ∂u

∂x

)
=

λ

cρ

∂2u

∂x2
.

This is the heat equation in one dimension. This thesis will use a more convenient notation for
partial derivatives, writing ut instead of ∂u∂t and uxx instead of ∂2u

∂x2
. Hence, in reduced notation

the Heat equation reads:
ut − wuxx = 0; (3)
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where w = λ
cρ > 0 is a constant (the thermal diffusivity of the material).

In order to solve the Heat equation, there are some conditions that need to be specified. First
of all, fully determining the solution of an nth order differential equation usually involves n
arbitrary constants. These constants are determined from the boundary conditions, where the
value of the solution or its derivatives is specified along the boundary of a region. When these
conditions are specified as the initial value of the function and the first n − 1 derivatives, they
are called initial conditions. Finally, there are some additional conditions that the coefficient w
and the data must satisfy.

• Boundary conditions (BC): the most common boundary conditions are the following.

– Dirichlet: u(0, t) = 0 = u(L, t)

– Neumann: ux(0, t) = 0 = ux(L, t)

– Robin: ux(0, t)− a0u(0, t) = 0 and ux(L, t) + aLu(L, t) = 0

– Periodic: u(−L, t) = u(L, t) and ux(−L, t) = ux(L, t)

For this case, let’s assume that the endpoints of the wire are kept at a fixed temperature 0
(Dirichlet BC), so that u(0, t) = 0 and u(L, t) = 0.

• Initial conditions (IC): the temperature distribution at time t = 0 is given by the condition
u(x, 0) = u0(x). For this case, let’s take the function u0(x) = sin (π xL), since it is a positive
function that is zero at both x = 0 and x = L.

• Data: the value of the temperature, as well as the spatial and temporal variables, during
the whole problem should be bounded in the interval (−1, 1). This condition is necessary
so that the data can be represented by an observable in the quantum circuit, as will be
further discussed in section 4.2. Hence, the independent variables are confined in the
interval x ∈ (0, 1) and t ∈ (0, 1). Regarding the temperature values, the chosen initial
condition forces the temperature to reach a maximum of 1, since the sine function takes
values comprised in [−1, 1]. In fact, there is no risk that the temperature overpasses this
maximum value (if surpassing 1, the data could no longer be able to be represented by
the quantum circuit), due to the maximum principle.

Maximumprinciple: if u(x, t) satisfies the heat equation 3 in the closed rectangle in space-
time

R := {0 < x < L, 0 < t < T} = [0, L]× [0, T ].

Then the maximum value of u(x, t) over the rectangle is assumed either initially (t = 0)
or on the lateral sides (x = 0 or x = L).

This means that the maximum temperature in R can increase only if heat comes inside
from outside R. This is a property of parabolic partial differential equations. Since there
is no addition of heat from outside, the temperature of the wire will always decrease until
it reaches the steady state. In this case, since the temperature u is 0 at the boundaries, it
reaches its maximum value of umax = 1 at the initial time.

• Diffusion coefficient w: it is essential that the coefficient is positive w > 0. A negative
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parameter w < 0 is equivalent to reversing time and applying a back-propagation in time.
Going backwards in time can lead to diverging values of the temperature and hence ob-
taining results u > 1 that the quantum circuit would be unable to represent.

All the previous conditions define an initial boundary value problem (IBVP) for the heat equa-
tion, consisting of the PDE and the domains of its independent variables, and three other con-
ditions specified at x = 0, x = L and t = 0. In the Heat equation 3, the heat diffusivity w is
the unknown parameter that needs to be inferred from some data. This calibrating process has
two main parts. The first part consists on, given the exact model of the PDE, building a param-
eterized quantum circuit that is able to solve this PDE and effectively expressing its solution.
Hence, equation 3 needs to be solved. For the sake of mathematical analysis, it is sufficient to
only consider the case w = 1. The second part makes use of the quantum circuit previously
built in order to train the variational parameters: given some initial data and an optimization
strategy, the circuit is able to estimate the unknown parameter w.

4.1 Solving the PDE
First of all, it is important tomake a distinction between the different types of data used through-
out this thesis. To this extent, the following notation will be used: u represents the real data/so-
lution of the PDE, û represents the surrogate obtained from the solver, and u∗ corresponds to the
optimal solution calculated by the solver. Hence, u∗ is the closest value of û that approximates
the real solution u.

An arbitrary PDE can be written in the form:

F (u, ∂tu, ∂xu, ∂
2
xu, ..., t, x) = 0 (4)

where x and t are dependent variables and u(x, t) is the sought solution.

This project considers the case of the Heat equation 3, which needs to be solved through some
method in order to obtain a surrogate ûwhich can be compared to the real data u.

Combining 4 and 3 results in the functional Fw(u, t, x) = wuxx−ut corresponding to the differ-
ential equation written in the form:

Fw(u, t, x) = 0. (5)

In order to solve 5, there exist 2 ways of treating w:

(A) Solver A: w is considered as a parameter; hence it is fixed. The data obtained from the
solver can be expressed as û = solver(x, t;w).

(B) Solver B:w is treated as a variable; hence it is another input of the solver. The data obtained
from the solver can be expressed as û = solver(x, t, w).

The optimization problem embedded in the solving process is based on the choice of a loss
function that contains several terms:

• LF ensures that the differential equation dynamics is fulfilled. To solve the PDE it is cru-
cial to provide a way to quantify howwell the solver trial function matches the conditions
to represent the solution of the problem being considered. The classical optimizer can
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then update the intrinsic parameters (θ) of the solver to reduce this distance, which cor-
responds to the difference between the differential equation (all terms collected on one
side) and zero. This difference is estimated on a grid of N points, and is normalized by
the grid size. The differential loss is defined as:

LF (w) =
1

N

N∑
i=1

L(Fw(û, ti, xi), 0).

This loss function is minimized when Fw(û, ti, xi) = 0, i.e. when û(t, x, θ) satisfies the
partial differential equation dynamics.

• LΩ includes all the boundary conditions that have to be fulfilled in order to fully specify
the PDE. It is important to check that the solutionmatches initial and boundary conditions.
The loss is evaluated at the set of M points that form the boundary and initial points, and
is normalized by the grid size. The boundary loss contribution reads:

LΩ(θ) =
1

M

M∑
i=1

L(û(ti, xi, θ), ui).

• Ld accounts for the fitting of the empirical dataset, evaluated at the N points of the grid.

Ld(θ) =
1

N

N∑
i=1

L(û(ti, xi, θ), ui).

L(a, b) is a function that describes how the distance between the two arguments a and b is being
measured.

The optimization process for training themodel is conditioned by the solver option anddepends
on the treatment of w (whether as a parameter or a variable). The optimization can be done
following two different procedures, according to the type of solver (A or B).

(A) Solver A: the strategy to estimate parameters is done in 2 steps, in the known two-stage
method.

(i) Stage 1: Given a fixed parameter of the PDE (w), the chosen solver is applied to find
the approximate solution û(t, x, θ;w) and its derivatives parameterized by θ. The
internal solver optimization works with a loss function formulated as:

L(θ;w) = LF (;w) + LΩ(θ).

The training over this loss function gives the optimal parameters θ∗ that best repro-
duce the solution of the PDE. With this value of θ∗, the algorithm goes to stage (ii).

(ii) Stage 2: Once the PDE has been solved and the surrogate of the solution û has been
obtained, the optimization consists on fitting the empirical dataset in order to obtain
w. The PDE parameter is estimated according to the cost function:

L(w) = Ld(θ∗(w)).

The training over this loss function gives the value of w that best fits the real data to
the data obtained from the solver. With this value of w, the algorithm goes back to
stage (i).
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(B) Solver B: the optimization can be done either in 1 or 2 steps. The option of direct optimiza-
tion treats the loss function as a function of bothw and θ. Then, since these two parameters
cannot be separated, they are optimized on an equal footing: they are trainedwith the same
learning rate and same optimizer.

L(θ, w) = LF (w) + LΩ(θ) + Ld(θ).

This project will use Solver A, since it is significantly more efficient numerically to treat w as a
parameter than as a variable, as will be discussed in section 4.2.3. The optimization will then
be performed in two separate steps, since it gives more accurate results than optimizing all the
parameters (w and θ) at the same time and it is easier to implement. Furthermore, the two-stage
strategy has been widely used in parameter inferring [33].

In order to effectively train such amodel, it is necessary to have access to a universal approxima-
tor û and its higher order derivatives, both with respect to inputs x and t, as well as parameters
θ. As it has been seen in section 2, there are both classical and quantum methods that imple-
ment a universal approximator and allow for the resolution of the PDE. In order to establish
an appropriate solver, the aim is to find an easily-differentiable surrogate to approximate the
data-set that needs to be differentiated.

As studied in section 2, the mesh-based methods do not perform well due to the exponential
scaling in the dimension. Therefore, it is desirable to find cost-effective alternatives such as
data-driven differentiable surrogate models which can be optimized via gradient-based means.
This leads to PINNs (classic alternative) or DQCs (quantum alternative). They share some
similarities, since they are both universal function approximators that can be differentiatedwith
respect to their inputs. To this extent, given these conceptual similarities between PINNs and
PQCs, this project will extend the parameter inference technique to a quantum PINN analogue.
To perform parameter inference on NISQ devices, the classical neural network will be replaced
with a DQC. In fact, a quantum computer can naturally provide an exponential advantage in
memory over classical methods.

4.2 Quantum Hardware: Differentiable Universal Function Approximator
The hybrid quantum-classical strategy starts with a quantum computer with n qubits that is
assumed to be a closed quantum system, whose state can be described as a unit vector living in
a complex inner product vector space C2n. The computation always starts with a state of simple
preparation in the computational basis. The most used initially prepared state is |0〉⊗n [1] (for
simplicity, the tensor notation can be dropped and this state can be referred to simply as |0n〉).

To perform quantummachine learning, first the input data has to be encoded in a quantum reg-
ister. For classical data this can be achieved by using quantum feature maps, where variables x
are embedded through nonlinearly transformed ϕ(x) phases of rotations represented by a uni-
tary operator Ûϕ(x). Next, a linear transformation is performed using a parameterized quantum
circuit Ûθ. Then, the unitary operator Û = ÛθÛϕ(x) is applied to the initial state, producing a
new state Û |0n〉. Here, the value of an observable quantity can be measured. Physical observ-
ables are associatedwithHermitian operators Ĉ =

∑
i λiPi, where λi is the ith eigenvalue and Pi

is the projector on the corresponding eigenspace. The Born rule states that the outcome of the
measurement corresponds to the one of the eigenvalues and follows the probability distribution
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p(λi) = Tr(PiÛ |0n〉 〈0n| Û†). Plugging this in the definition of expectation values yields

〈Ĉ〉 =
∑
i

λipi(λi) = Tr(CÛ |0n〉 〈0n| Û†).

Next, the building blocks of the DQCwill be described in detail: (1) quantum feature map, (2)
variational ansatz, and (3) Hamiltonian operator for the readout of the function.

1. Encoding: quantum feature map

The process of encoding classical data into a quantum state can be interpreted as a fea-
ture map from the data space to the Hilbert space of the states of n qubits. A quantum
feature map is a unitary circuit Ûϕ(x) that encodes the input variable x using a prede-
fined nonlinear function ϕ to the amplitudes of a quantum state Ûϕ(x) |0n〉 [1]. This is
also referred to as a latent space mapping. Unlike amplitude encoding, this latent space
encoding does not require access to each amplitude and is controlled by classical gate pa-
rameters, mapping the real parameter x to the corresponding variable value. Sometimes
this is also called quantum embedding [3], referring to the way data is embedded in the
circuit. The automatic differentiation of quantum feature maps allows derivatives to be
represented as DQCs, which will be explained further in section 4.2.1.

There are several ways to encode data into qubits and each one provides different expres-
sive power[1]. This choice of encoding is related to kernel methods13. In section 2.1.2
some basis sets for encoding the surrogates were described, the most useful of them be-
ing the Chebyshev basis. Hence, the chosenmapwill be the Chebyshev feature map. This
map belongs to the product feature map family, that uses qubit rotations and has a non-
linear dependence on the encoded variable x. In the simplest case, this corresponds to a
single layer of rotations, depicted in figure 3:

Ûϕ(x) =

n⊗
j=1

R̂Y,j
(
ϕj(x)

)

13Methods that use kernels (or basis functions) to map the input data into a higher dimensional feature space
where a specific problem may be easier to solve
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Figure 3: Chebyshev feature map, where single qubit rotations act at each qubit individually
and are parametrized by a function of variable x. The thin pink block represents the variational
ansatz, and the thin green block depicts the cost functionmeasurement. The nonlinear function
ϕ(x) is used as an angle of rotation. Extracted from [3].

The Chebyshev feature map is characterized by the nonlinearity ϕ(x) = 2k(j) arccosx,
where the coefficient k(j) may depend on the qubit position j. The factor 2 multiplication
of ϕ(x) = 2 arccosx, as compared to the product map ϕ(x) = arccosx, plays an important
role that will be discussed in section 5.

The rotation can be expanded using Euler’s formula, obtaining:

R̂Y,j(ϕ(x)) = exp

(
−i2k arccosx

2
Ŷj

)
= cos(k arccosx)1j − i sin(k arccosx)Ŷj

. This expression can be decomposed by applying a unitary operation with matrix ele-
ments defined by degree-n Chebyshev polynomials of first and second kind [3]:

R̂Y,j(ϕ(x)) = Tk(x)1j +
√

1− x2Uk−1(x)X̂jẐj

Within the Chebyshev featuremaps, there aremainly two interesting types: the sparse map
(with nonlinear function ϕ(x) = 2 arccosx) and the tower map (with nonlinear function
ϕj(x) = 2j arccosx).

Amongst all the feature maps, [3] proves that the best performing one is the Chebyshev
tower feature map, since it is the most expressible and it manages to converge close to the
true solution. So this will be the one implemented in this project:

Ûϕ(x) =

n⊗
j=1

R̂Y,j (2j arccosx) .

With this choice, the encoded degree grows with the number of qubits, creating a tower-
like structure of polynomials with increasing k = j. Furthermore, this choice allows to
obtain large expressibility without increasing the system size and number of rotations.
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The nonlinear function arccos(x) is defined in the domain Ω ∈ (−1, 1). This implies that
the independent variables x and t of equation 3 that need to be encoded must be confined
within the interval (−1, 1).

The state Ûϕ(x) |0n〉 represents a basis of n Chebyshev polynomials which can be read out
by measuring for example in the Z basis on each qubit. With a subsequent variational
circuit (with parameters θ) the Chebyshev basis functions are combined. In the limit of
large and controlled entanglement, such a setup allows access to up to O(2n) Chebyshev
polynomials, due to the chaining and nesting properties of products of these polynomials.

2. Variational Quantum Algorithm

The variational quantum circuit (typically referred to as a variational quantum ansatz)
allows tomanipulate the latent space basis function and bring the derivatives and function
to the required form. The ansatz is parameterized by a vector of variational parameters
θ that can be adjusted in a quantum-classical optimization loop. These parameters are
encoded in the unitary Ûθ(θ).

The most common ansatz structure used in machine learning problems is the Hardware
Efficient Ansatz (HEA) [1] with layers of parameterized rotations followed by layers of
CNOT gates between neighboring qubits. The structure of a HEA quantum circuit cor-
responds to concatenated layers of single qubit rotations and global entangling layers for
all n qubits, shown schematically in figure 4. Rotations are arranged in a R̂Z − R̂X − R̂Z
sequence parameterized by independent angles θ such that arbitrary single-qubit opera-
tions can be reproduced. The entangling layer is chosen as a network of CNOTs. The block
of rotations plus CNOTs is then repeated for a depth of d times. As the number of layers d
grows, the circuit’s expressive power14 increases. However, this comes with an increased
number of controlled parameters which can complicate the search for an optimal θ∗ for
the solution, which can be a problem in trainability.

14The expressive power is the ability to represent arbitrary n-qubit unitary gates
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Figure 4: Hardware Efficient Ansatz. It consists of a parameterized rotation layer forming
R̂Z − R̂X − R̂Z pattern, such that an arbitrary single qubit rotation can be implemented. Vari-
ational angles θ are set for each rotation individually. The rotation layer is then followed by
an entangling layer chosen as CNOT operations between nearest neighbours. The blocks of
“rotations-plus-entangler” are repeated d times to form the full variational circuit Ûθ. Extracted
from [3].

Variational quantum algorithms that are used for quantum machine learning rely on the
ability to automatically differentiate parameterized quantum circuits with respect to un-
derlying parameters, thanks to the parameter shift rule, whichwill be discussed in section
4.2.1.

3. Output

The output of the circuit û(t, x, θ) is read out as an expectation value of a predefined Her-
mitian cost operator Ĉ, which is measured as an observable. In general there are many
possible choices of cost operators. The simplest example corresponds to the magnetiza-
tion of a single qubit j, 〈Ẑj〉. This choice allows to represent functions in the range [−1, 1]
and requires rescaling for other intervals. This implies equation 3 to be confined within
the interval (−1, 1). Then, the chosen operator corresponds to the total magnetization in
the Z direction Ĉ =

∑n
j=1 Ẑj . Since the unitary observable is the Pauli matrix Ẑ, the mea-

sured values will be bounded between −1 and 1. In this way, the data readout problem
is avoided, since the solution is encoded in the observable of an operator, such that the
expectation can be routinely calculated.

The final universal approximator for the scalar input variables x and t and variational parame-
ters θ reads:

û(t, x, θ) = 〈0n| Û†ϕ(t, x)Û†θ (θ)ĈÛθ(θ)Ûϕ(t, x) |0n〉 . (6)

4.2.1 Parameter shift rule
For solving PDEs it is necessary to access the derivatives of the circuits representing the func-
tions ût ≡ ∂û

∂t , ûtt ≡ ∂2û
∂t2

, ûx ≡ ∂û
∂x and ûxx ≡ ∂û

∂x . This can be done using automatic differentiation
techniques for quantum circuits through the parameter shift rule.

The output of the variational circuit û(t, x, θ) 6 (i.e., the expectation of the observable) can be
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written as a “quantum function”

û(t, x) = 〈0n| Û†ϕ(t, x)M̂ Ûϕ(t, x) |0n〉 ; M̂ = Û†θ (θ)ĈÛθ(θ).

The partial derivatives of û(t, x) can be expressed as a linear combination of other quantum
functions that differ only in a shift of the argument. This means that partial derivatives of a
variational circuit can be computed by using the same variational circuit architecture.

The crucial step of the algorithm is the differentiation of the quantum featuremap circuit, dÛϕt (t)dt

and dÛϕx (x)
dx , which is the part that depends on the variables x and t. Analytic derivatives of

quantum circuits can be estimated by measuring overlaps between quantum states, and are
proven to benefit circuit optimization. This strategy is known as parameter shift rule [34] [35]
[36] [37] [38].

As an example, the derivatives will be computed using the parameter shift rule for the input
variable x. As a first step, the overall unitary Û†ϕ(t, x) that encodes the variable x is generated
by a sequence of single-parameter gates of Y-rotations R̂Y,j(ϕj(x)). Hence, equation 6 is fully
analytically differentiable via the parameter shift rule, which requires two evaluations of the
same circuit with shifted angles for each circuit-level parameter. For 1-qubit Pauli rotation gates,
the parameter shift rule is derived in Annex 9.2.

Let’s define the quantum function

f(ϕj) = 〈0n|
n⊗
j=1

R̂†Y,j(ϕj)M̂

n⊗
j=1

R̂Y,j(ϕj) |0n〉 ; M̂ = Û†θ (θ)ĈÛθ(θ).

Index j runs through the individual quantum operations used in the feature map encoding.

The first derivative reads:
∂û

∂x
=

1

2

n∑
j1=1

ϕ′j1(x)
(
F+
j,j1
− F−j,j1

)
(7)

with F+
j,j1

= f(ϕj + π
2 δjj1) and F−j,j1 = f(ϕj − π

2 δjj1).

Figure 5 shows the shifted angles for each qubit.
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Figure 5: Derivative quantum circuit for the Chebyshev feature map. Differentiation over vari-
able x follows the chain rule, with the expectation value of the derivative written as a sum of
separate expectations with shifted phases, repeated for each x-dependent rotation. Extracted
from [3].

Applying the parameter shift rule once again allows to obtain the second-order derivative with
four shifted terms for each generator.

∂2û

∂x2
=

1

2

n∑
j1=1

ϕ′′j1(x)
(
F+
j,j1
− F−j,j1

)
+

1

4

n∑
j1=1

n∑
j2=1

ϕ′j1(x)ϕ′j2(x)
(
F++
j,j1,j2

− F+−
j,j1,j2

− F−+
j,j1,j2

+ F−−j,j1,j2

)
(8)

with
F++
j,j1,j2

= f(ϕj +
π

2
(δjj1 + δjj2))

F+−
j,j1,j2

= f(ϕj +
π

2
(δjj1 − δjj2))

F−+
j,j1,j2

= f(ϕj +
π

2
(−δjj1 + δjj2))

F−−j,j1,j2 = f(ϕj +
π

2
(−δjj1 − δjj2)).

If implemented naively, the secondderivative requires 2n+4n2 evaluations of circuit expectation
values. This can be reduced by making use of symmetries in the shifted expectation values and
reusing previously calculated values, i.e. those for the function and its first-order derivative.
The reduced number of additional circuit evaluations required for the calculation of the second
derivative is 2n2. For instance, the total number of possible shifts is limited to four, due to the
periodicity of the rotation angles. Hence one can define a shift basis as s = {0, π2 , π,

−π
2 }.

When increasing the order of the derivative, several combinations of delta functions appear in
the analytical expression 8. Let’s denote ∆ the sum of deltas for a given derivative order (e.g.
∆ = δjj1 − δjj2 + δjj3 − δjj4 for one term of the 4th-derivative). Then, all the shifts are multiples
of ∆π

2 , ∆ = 0, 1, 2, .... Table 2 resumes the corresponding shift for every value of ∆.

The derivatives of the non-linear function ϕj(x) = 2j arccosx are computed as follows:

ϕ′j(x) = 2j
−1√

1− x2
; ϕ′′j (x) = 2j

−x
(1− x2)3/2
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∆ mod 4 Shift
0 0
1 π/2

2 π

3 −π/2

Table 2: Shift for every combination of deltas

The DQC technique can straightforwardly be extended to multiple variables (x, y, t...) by using
multiple feature maps, one for each variable, and differentiating only those feature maps rele-
vant to the variable differentiation of interest.

The parameter shift rule is designed to estimate an analytic (exact, zero-bias) gradient via the
measurement of expectation values, with quantum gate parameters being shifted to different
values (originally considered to be fixed). This algorithm uses automatic differentiation (AD)
to calculate all the spatial and temporal derivatives, returning machine-precision derivatives.
This approach is considerable more accurate than any form of numerical differentiation. Since
automatic differentiation provides an analytical derivative of the circuit at any value of variables
t and x, this scheme does not include the accumulated error from approximating the derivatives
that occurs when using other typical solvers that involve numerical differentiation, such as Eu-
ler’s method and finite differences, that suffer from imprecision errors.

This is the standard parameter shift rule, which is valid only for the specific type of generators
that are involutory (i.e. Ĝ2 = 1) and idempotent operators (Ĝ2 = Ĝ, for example projectors).
The rules work for unitaries generated by operators with no more than two unique eigenvalues
in the spectrum, as derived in section 9.2. Since the generator used in this work is based on
single-qubit rotations, the standard parameter shift rule is completely valid. In order to increase
the expressivity of the quantum universal approximator, it could be highly beneficial to use a
more intricate feature map. However, for arbitrary generators (and hence for arbitrary and
more complicated feature maps) with a generic non-degenerate spectrum, the parameter shift
rule no longer holds, and the rules have to be generalized as in [35]. This derivative evaluation
can be performed for instance using a spectral decomposition, where the derivative corresponds
to the weighted sum of measured expectations for circuits with shifted parameters. Then, the
number of function evaluations is equal to the number of unique positive nonzero spectral gaps
(eigenvalue differences) for the generator.

4.2.2 Different approaches for implementing the circuit
This section explores a more technical approach for implementing the circuit that is alterna-
tive to the general one. The general approach treats the gates as matrices and performs tensor
products and matrix multiplication in order to obtain the general matrix that describes the full
circuit. If working with n qubits, the matrix of the system has a size of 2n × 2n. The major
caveat of this technique comes when increasing the number of qubits, because the size of the
matrices will grow exponentially according to the number of qubits used. Then, performing
matrix multiplication is a high cost operation. In fact, during the experimental implementation
of the code, the number of qubits used was found to be a bottleneck because the computational
time increased exponentially. In order to solve this, another approach was considered based on
matrix decomposition.
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In section 4.2.1 it was seen that the output of the circuit could be expressed as

f(ϕj) = 〈0n|
n⊗
j=1

R̂†Y,j(ϕj)M̂

n⊗
j=1

R̂Y,j(ϕj) |0n〉 ; M̂ = Û†θ (θ)ĈÛθ(θ).

Matrix M̂ has a size of 2n× 2n, but it can be expressed by its decomposition into the Pauli basis.
That is,

M̂(θ) =
4n−1∑
i=0

ciσi

where ci are real coefficients and σi are Pauli operators, ij ∈ {∅, X, Y, Z}.

A given coefficient ck can be found through

Tr
[
σk · M̂

]
=
∑
i

ciTr [σk · σi] .

Since Pauli matrices are orthogonal
σk · σi = δk,i1,

then
Tr
[
σk · M̂

]
=
∑
i

ciδk,iTr [1] .

Since Tr [1] = 2n, one gets the final result:

ck =
1

2n
Tr
[
σk · M̂

]
.

Computing the trace of f(ϕj) one gets:

f(ϕj) = Tr[f(ϕj)] =
4n−1∑
i=0

ciTr

|0n〉 〈0n| n⊗
j=1

R̂†Y,j(ϕj)
n⊗
j=1

σij

n⊗
j=1

R̂Y,j(ϕj)

 .
Applying the property Tr[Â⊗ B̂] = Tr[Â] · Tr[B̂], one gets

f(ϕj) =

4n−1∑
i=0

ci

n∏
j=1

〈0| R̂†Y,j(ϕj)σij R̂Y,j(ϕj) |0〉 .

The main advantage of using this approach is that instead of working with a Pauli string σi of
size 2n × 2n, one works with a single-qubit Pauli matrix σij of size 2× 2.

With this approach, the tensor product of matrices gets reduced to a multiplication of 3 single-
qubit matrices: R̂†Y σij R̂Y . The tensor product produces matrices of size 2n × 2n with a high
level of sparsity, so most of the entries are 0 values and contain no information. To this extent, it
is far more advantageously to work with 2×2 matrices due to the less number of entries, which
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reduces the computational cost of storing data in the matrix elements.

This approach is also very useful when dealing with the shifts introduced by the differentiation
of the outputs. As discussed in section 4.2.1, the calculation of the first and second derivative
involves the circuit evaluation f(ϕ + ∆π

2 ), ∆ = 0, 1, 2.... Due to the periodicity of the rotation
angles, this expression can be simplified to f(ϕ + s), s = {0, π2 , π,

−π
2 }. Hence it is sufficient to

analyze just 4 different cases, as the following change of variable applies: s = (∆ mod 4)π2 .

Remembering the expression of Y-Pauli rotation gate:

R̂Y (ϕ) = e−
i
2
ϕY .

When applying a shift one gets:

R̂Y (ϕ+ s) = e−
i
2

(ϕ+s)Y = e−
i
2
ϕY · e−

i
2
sY = R̂Y (ϕ)R̂Y (s).

Then, for any shift s, the matrix multiplication that needs to be performed is the following:

R̂†Y (ϕ+ s)σij R̂Y (ϕ+ s) = R̂†Y (ϕ)R̂†Y (s)σij R̂Y (s)R̂Y (ϕ).

Since the shift s is a multiple of π2 , the following transformation holds:

T̂ = R̂†Y (s)σij R̂Y (s) −→ σik .

That means that every Pauli matrix maps into another Pauli matrix, depending on the value of
the shift. The corresponding transformations are given in table 3.

s σij = 1 σij = X σij = Y σij = Z

0 1 X Y Z
π/2 1 Z Y -X
π 1 -X Y -Z
−π/2 1 -Z Y X

Table 3: Values of T̂ according to the transformation given by the shift and the Pauli matrix

According to table 3, applying a shift translates into mapping the shift and initial Pauli matrix
into another Pauli matrix.

R̂†Y (ϕ+ s)σij R̂Y (ϕ+ s) = R̂†Y (ϕ)σikR̂Y (ϕ).

This transformation simplifies the calculations. However, the drawback of this approach is that
this decomposition contains many terms. In this case, the number of distinct Pauli strings scales
as 4n where n is the number of qubits.
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4.2.3 Encoding for multiple variables
To solve the Heat equation, the UFA has two inputs (t, x) and one output û. Therefore, every
input variable needs a feature map for its encoding. In this case, every variable is encoded with
the same feature map, corresponding to a RY rotation.

The global featuremap can be built either stacking the previousmaps onto one circuit in parallel
or in series. In the parallel case, the global feature map reads:

Ûϕ(t, x) = Ûϕt(t)
⊗
Ûϕx(x) =

( n/2⊗
j=1

R̂Y,j
(
ϕj(t)

) )⊗( n/2⊗
j=1

R̂Y,j
(
ϕj(x)

) )
.

In the series case, the global feature map reads:

Ûϕ(t, x) = Ûϕt(t) · Ûϕx(x) =
( n⊗
j=1

R̂Y,j
(
ϕj(t)

) )
·
( n⊗
j=1

R̂Y,j
(
ϕj(x)

) )
.

In this project, the chosen feature stacking is the parallel one [39], since it treats the independent
variables (t, x) separate from one another. The main advantage of using the parallel map is that
every variable map acts on its own qubits, which do not interact with the qubits of the other
variable map; thus separating independent variables.

On the other hand, the series stacking can also be an option [40]. In this case, acting on the initial
state, every feature map uses a different rotation: one for the time-dependence embedding and
the other for the latent variable embedding.

When working with multiple variables, the main limitation comes when increasing the number
of dimensions, a phenomenon known as the curse of dimensionality. Every independent variable
added in the circuit needs its own encoding. In a parallel setting, this implies increasing the
number of qubits, gates and evaluations of the circuit, since the derivatives of the input variable
need to be calculated. This translates into an increase in the computational cost and time. As
mentioned in section 4.1, this is the main reason for treating w as a parameter rather than as a
variable, since it would be an extra input in the DQC that would need its own encoding.

4.3 Classical hardware: optimization process for inferring the PDE parameters
In the example of this work, the Heat equation with scalar variable u is parameterized with the
parameter w to be identified. The coefficient w must be inferred from some given data-set. In
the Heat equation it is important not to introduce a trainable coefficient to ut, since it would
allow equation 5 to be satisfied trivially with coefficients as zero.

The classical part of the hybrid quantum-classical algorithm consists on performing an opti-
mization in 2 stages, as resolved in section 4.1: (1) obtaining the optimal parameters θ∗ that
allow to express the solution and (2) use this optimal circuit to train a particular loss function
and estimate the unknown parameter w∗.

4.3.1 Step 1: solving the PDE
Just like classical models, PQC models are trained to perform data-driven tasks. The task of
learning an arbitrary function from data is mathematically expressed as the minimization of a
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loss function L(θ), also known as the objective function, with respect to the parameter vector
θ. According to section 4.1, the parameters θ (phases of unitary operators that form the circuit)
are adjusted variationally based on a training objective defined by the loss function:

Lθ(θ) = λfLf (θ) + λbLb(θ); λf , λb > 0.

As discussed in section 4.1, w is passed as a fixed parameter and is used to calculate the first
term of the loss function, which makes use of w in order to fit the PDE (with N being the total
number of points in the data-set):

Lf (θ) =
1

N

N∑
i=1

L(wûxx(ti, xi, θ)− ût(ti, xi, θ), 0).

The second term of the loss function accounts for boundary conditions (withM being the num-
ber of boundary and initial points):

Lb(θ) =
1

M

M∑
i=1

L(û(ti, xi, θ), ui).

Each term of the loss function has some coefficient λ > 0 that controls the weight of its con-
tribution in the optimization procedure. In particular, the boundary terms play an important
role, since larger boundary weights ensure that the boundary is prioritised and represented to
higher precision. In order to have more control over the contribution of the boundaries, their
loss function will be split and each boundary will be treated separately. This allows to adjust
each contribution independently of the others in a decoupled system.

Lb(θ) = λblLXl(θ) + λbrLXr(θ) + λb0LT0(θ).

• Left boundary: LXl

LXl(θ) =
1

MXl

MXl∑
i=1

L(û(ti, 0, θ), ui)

withMXl being the points with x = 0.

• Right boundary: LXr

LXr(θ) =
1

MXr

MXr∑
i=1

L(û(ti, L, θ), ui)

withMXr being the points with x = L.

• Initial boundary: LT0

LT0(θ) =
1

MT0

MT0∑
i=1

L(û(0, xi, θ), ui)

withMT0 being the points with t = 0.

This thesis considers two approaches for calculating the weights of each loss term: λf , λbl, λbr
and λb0. In both approaches the weights are normalized so that∑i λi = 1.
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1. Approach 1: it gives more importance to the boundary terms.

Each term is calculated as λi = 1/Ni∑
i 1/Ni

being N the number of points.

2. Approach 2: it gives more importance to the interior points of the data-set.

Each term is calculated as λi = Ni∑
iNi

being N the number of points.

The exact expressions for each approach are gathered in Table 4. Depending on the occasion, it
might be interesting to reinforce the boundary and initial conditions (hence using approach 1 -
Λ1) or the interior points of the domain (hence using approach 2 - Λ2).

Weights Λ1 Λ2

λf
1/N

1/N+1/MXl
+1/MXr+1/MT0

N
N+MXl

+MXr+MT0

λbl
1/MXl

1/N+1/MXl
+1/MXr+1/MT0

MXl
N+MXl

+MXr+MT0

λbr
1/MXr

1/N+1/MXl
+1/MXr+1/MT0

MXr
N+MXl

+MXr+MT0

λb0
1/MT0

1/N+1/MXl
+1/MXr+1/MT0

MT0
N+MXl

+MXr+MT0

Table 4: Different approaches for calculating the weights of each loss term

Then, the loss function that will be used for the optimization reads:
Lθ(θ) = λfLf (θ) + λblLXl(θ) + λbrLXr(θ) + λb0LT0(θ).

The best choice for the parameters that allows the DQC to express the solution of the Heat
equation corresponds to:

θ∗ = arg min
θ
Lθ(θ).

However, this is a highly non-convex optimization. This is the main reason why the classical
optimization problems associated with VQAs are expected to be NP-hard in general, because
they involve cost functions that can have many local minima and the optimizer can be trapped
in those local minima, thus not providing with the actual solution.

This thesis considers several choices of the loss defined by three distance definitions L.

(A) Mean Square Error (MSE): L(a, b) = (a− b)2

(B) Mean Absolute Error (MAE): L(a, b) = |a− b|

(C) Maximum Absolute Error (MAX): the definition of the loss function is different, since it
computes a maximum rather than a mean. Given a = (a1, ...aN ) and b = (b1, ...bN ), the
loss function defined by the MAX approach is given by:

L = (max{|ai − bi|: 1 ≤ i ≤ N})2.

The choice of loss functions dictates how the optimizer perceives the distance between vectors
and therefore affects the convergence. MSE places a greater emphasis on larger distances and
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smaller weight on small distances, strongly discouraging terms with large L. Both MAE and
MAX do not place such an emphasis and may have slower convergence. However, once close to
the optimal solution they can achieve higher accuracy than MSE.

There are two deterministic approaches to optimization problems:

• First-order derivative methods (gradient descent method): they rely on following the
derivative (or gradient) downhill/uphill to find the optimal solution.

• Second-order derivative methods (Newton’s method): they are based on the Hessian, the
matrix containing the second derivatives. They require the calculation of the inverse of
the Hessian, which can be a computationally expensive operation.

The optimizer chosen for obtaining the variational parameters θ∗ is the L-BFGS-B, since it is
a widely-used algorithm for parameter estimation in machine learning. This algorithm has
several variants:

• Broyden–Fletcher–Goldfarb–Shanno (BFGS): it is a second-order optimization algorithm
that belongs to the class of quasi-Newton methods. The quasi-Newton methods approxi-
mate the inverse of the Hessian (instead of intensively calculating it as Newton methods)
using the gradient, which is calculated by finite-differences [41]. Hence the BFGSmethod
updates the calculation of the Hessian matrix at each iteration rather than precisely recal-
culating it for each iteration of the algorithm.

• Limited-memory BFGS (L-BFGS): it approximates the BFGS algorithm using a limited
amount of computer memory. In the BFGS algorithm, the size of the Hessian and its in-
verse depends on the number of input parameters to the objective function. When dealing
with a very large number of variables, the size of the Hessian becomes extremely large.
The L-BFGS alleviates this problem by assuming a simplification of the inverse of the Hes-
sian in the previous iteration. Since theDQC can have a lot of parameters θ to be optimized
(depending on the number of qubits and the depth of the circuit), the L-BFGS is a better
choice than BGFS.

• L-BFGS-B: it extends L-BFGS to handle simple box constraints (bound constraints) on
variables; that is, lower and upper bounds. The method works by identifying fixed and
free variables at every step (using a simple gradient method), and then using the L-BFGS
method on the free variables only to get higher accuracy, and then repeating the process.
Since the θ parameters of the circuit are rotation angles, they are bounded in the interval
θ ∈ [0, 2π].

The L-BFGS-B optimizer computes the gradient of the loss function with respect to the varia-
tional parameters θ and updates these angles from iteration nj = 1 into the next one nj+1,

θnj+1 ← θnj − α∇θLθ

with α being a learning rate (a hyperparameter controlling themagnitude of the update). ∇θLθ
is the gradient vector, whose partial derivatives are calculated numerically using a finite dif-
ference scheme. The optimizer repeats this steps until it reaches the exit condition. The exit
condition and the convergence criterion of the optimizer depend on its intrinsic characteristics
[42]. For this problem, they have been settled as follows:
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• ftol= 1e−9 −→ tolerance for the value of the loss function.

• gtol= 1e−5 −→ tolerance for the value of the loss gradient.

• eps= 1e−8 −→ the absolute step size used for numerical approximation of the gradient
using forward differences.

• maxfun= 15000 −→maximum number of function evaluations

• maxiter= 15000 −→maximum number of iterations reached

The optimizer trains over the variational parameters θ, which are set to initial values θ0 as ran-
dom angles contained in the interval [0, 2π]. With a random initial guess, the circuit obtains a
good expressivity. Alternatively, in the case where the DQC was not able to correctly express
the solution of the PDE, the technique of regularization can be used to achieve a good initial
guess. The regularization procedure [3] helps the optimizer to avoid getting trapped in local
minima. However, the built DQC was able to provide good optimal values θ∗, so the regular-
ization technique was not necessary.

There are other parameters that play an important role in the expressivity of the DQC. For
instance, the number of qubits (n) and the depth or number of layers of the variational circuit
(d). The initial thought is that increasing the size of the DQC will result in an increase of the
expressivity of the circuit. The influence of this parameters will be discussed in section 5.

4.3.2 Step 2: inferring the correct parameters
For a given w, step 1 obtains the optimal parameters θ∗(w). According to the solving strategy
discussed in section 4.1, the second stage is to fit the empirical data-set with the surrogate û(θ∗)
obtained from the circuit in the previous stage. From this fit, the new parameter w can be in-
ferred.

The fitting is adjusted through the loss function

Lw(w) = Ld(θ∗(w)) =
1

N

N∑
i=1

MSE(û(ti, xi, θ
∗(w)), ui).

The optimal value of w for the given θ∗ corresponds to the value that minimizes this loss func-
tion.

w∗ = arg min
w
Lw(w).

In stage 1 of the optimization process, the variable passed to the optimizer (θ) is a vector with
several components. However, in this second stage the optimization is performed over a single
variable w which is one-dimensional. Hence, one does not need to use such complex optimizer
as L-BFGS-B, that allows for the optimization over a vector of variables. Instead, it is enough
to use a 1D scalar optimizer. Some of the most used optimizers for scalar functions are the
following:

• Golden: thismethoduses the golden section search technique. TheGolden-Searchmethod
minimizes a one-dimensional function f(x) on the initially defined interval [a, b]. This
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method uses the analog of the bisection search to decrease the bracketed interval. Golden-
Search however divides the interval [ai, bi] into two sub-intervals by using the points xi,1
and xi,2 with

xi,j = ai + αj(bi − ai); α1 =
3−
√

5

2
; α2 = 1− α1 =

√
5− 1

2
.

The values α1 and α2 are chosen in a way such that the interval [ai, bi] is intersected ac-
cording to the golden ratio. The function values f(xi,j) are computed for j = 1, 2 and are
compared so that the next iteration’s interval is chosen according to this comparison:

– If f(xi,1) < f(xi,2) −→ ai+1 = ai; bi+1 = xi,2

– If f(xi,1) > f(xi,2) −→ ai+1 = xi,1; bi+1 = bi

The problem with Golden-search is its slow convergence.

• Brent: this method uses Brent’s algorithm to find a local minimum of a scalar function
f(x). The algorithm uses inverse parabolic interpolation when possible to speed up the
convergence of the golden section method. It relies on parabolic approximations of the
function f(x). If a parabola is given by Ax2 + Bx + C, then its minimum is located at
x = − B

2A . The method starts with the initial interval [a, b] and computes the intersection
point x1 = a+b

2 . The method then computes a parabola that contains exactly the three
points (a, f(a)), (b, f(b)), (x1, f(x1)). The minimum of this parabola is calculated as:

x2 = b− 1

2

(b− a)2{f(b)− f(x1)} − (b− x1)2{f(b)− f(a)}
(b− a){f(b)− f(x1)} − (b− x1){f(b)− f(a)}

.

Then b is replaced with x2 and a new parabola is computed through the new points. The
method is repeated until convergence is reached. In every iteration step, only one query to
the function is needed (the value at the new point), in contrast to the two queries needed
in the Golden method.

• Bounded: it can perform bounded minimization. It uses the Brent method to find a local
minimum in the interval x1 < xopt < x2.

Since the w variable is not bounded (only lower bounded, since w > 0), the chosen method to
minimize the scalar function L(w) will be Brent’s one.

The exit condition and the convergence criterion of the optimizer depend on its intrinsic char-
acteristics [43]. For this problem, they have been settled as follows:

• xtol= 1e−8 −→ relative error in the optimal solution acceptable for convergence.

• maxiter= 500 −→maximum number of iterations to perform.

The optimization over w was performed both using Brent’s algorithm and the L-BFGS-B algo-
rithm. Both methods lead to the optimal result, but Brent’s algorithm converges much faster,
hence being the preferable method. The time to reach convergence was used as the criterion for
establishing the optimizer type.
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5 Experimental results and discussion
The input of the DQC is a regular equidistant grid ofN = 200 sampling points: 20 points for the
spatial variable (x) and 10 points for the temporal (t). The spatial variable runs in the interval
0 ≤ x < 1 and the temporal variable runs in the interval 0 ≤ t ≤ 0.1.

The artificial data is obtained by solving the Heat equation 3 for w = 1, i.e. ut − uxx = 0.
This equation, together with the initial boundary value problem, is solved using the Matlab
PDE solver named pdepe [44]. This solver solves initial-boundary value problems for systems
of PDEs in one spatial variable x and time t. pdepe requires at least one parabolic equation in
the system, so it is valid for solving the Heat equation. The Matlab code for obtaining the real
data u(x, t) is attached in Annex 9.3.
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Figure 6: Real solution of the Heat equation with coefficient w = 1

Figure 6 shows the temperature distribution of a wire of length L = 1. According to the IBVP,
the extremes of the wire are kept at a fixed temperature of uL = 0. At the start of the simulation
(t = 0) the centre of the wire is heated up to u0 = 1. At this point, the wire reaches its maximum
temperature. As time goes by, one expects the heat to diffuse or be lost to the environment until
the temperature of the bar is in equilibrium with the air (u→ 0).

According to the second law of thermodynamics, heat flows from hotter bodies to adjacent
colder bodies, in proportion to the difference of temperature and of the thermal conductivity of
the material between them. So one should expect the temperature profile to decrease with time
until reaching the steady state.
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Figure 7: Evolution of the temperature profile over time.

In fact, the solutions of the heat equation are characterized by a gradual smoothing of the initial
temperature distribution by the flow of heat from warmer to colder areas of the wire. This
behaviour is exactly represented in figure 6: the temperature shows a very steep and clear
parabolic profile at initial times that gradually dissipates into an almost flat line. In Figure 7
one can see that after 0.1s, the system has hardly reached the stationary state (since the tem-
perature is not homogeneous all through the wire), but it has barely entered it, and so one
can already guess the tendency that will follow the temperature in a near future (eventually
reaching a flat line).

5.1 Workflow
For the experimental part, a code was programmed using Python that implemented the hybrid
quantum-classical machine learning problem. The original code can be found in Annex 9.4
and it was built from scratch. In fact, there is some software that facilitates the implementation
and programming of any quantum circuit using quantum gates (such as Qiskit, PennyLane and
Cirq amongst others). However, the present code does not use any of them. Themain reason for
creating all the matrix and gate operations from scratch is the need to get acquainted with the
mathematical part of the quantummechanics behind the gate operations, whichwas believed to
be useful from a mathematical understanding point of view. To this extent, this present section
will describe the workflow followed by the code.

First the input for the solver is specified: a set of points X for each equation variable (t, x),
comprised in a regular equidistant grid, and the grid is initialized. The set of boundary points
XBC is also extracted from the data-set X .

Next, the derivative quantum circuit is built:

(a) The type of quantum feature map and the nonlinear function define the encoding for a
single variable. This encoding is the same for both the temporal Ûϕt(t) and the spatial
Ûϕx(x) independent variables. Then, the full encoding (Ûϕ(t, x) is built stacking the single
encoders in parallel or in series. As discussed in section 4.2.3, the chosen stacking is the
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parallel distribution.

(b) The ansatz of variational quantum circuit Ûθ depends on the variational parameters θ and
the number of layers according to the depth d.

(c) The cost operator is chosen as a total magnetization in the Z direction Ĉ =
∑n

j=1 Ẑj .

(d) The type of loss function Lθ and the strategy to match the boundary terms are defined
according to the error distance strategy (L) and the weights of each loss term (λ). The loss
function Lw accounting for the data fitting is also established.

(e) The classical optimizers are specified: L-BFGS-B for the variational angles (θ) and Brent
for the unknown parameter (w) of the PDE.

The variational parameters are set to initial random values θ0 ∈ [0, 2π]. The expectation value
over the variational quantum state |uϕ,θ(t, x)〉 for the cost function is estimated using the quan-
tum hardware for a chosen pointXi = (ti, xi). Then the output solution û(ti, xi, θ) at this point
is constructed. Apart from the value of the function û, the derivatives ût, ûx and ˆuxx are also
calculated for that particular point using the parameter shift rule and different circuit evalua-
tions.

The procedure of calculating û, ût, ûx and ˆuxx is repeated for all Xi in X and also for all Xi in
XBC . All these values are collected and the loss functionLθ can be composed for the entire grid.

At this point, the optimization strategy is performed in two different stages:

• Stage 1: The goal of the loss function Lθ is to quantify how well the potential solution û
(parametrized by the variational angles θ) satisfies the differential equation (parametrized
by w). So the aim is to minimize the loss function Lθ. In order to do so, the optimizer L-
BFGS-B computes the gradient of the loss function with respect to variational parameters
θ (using a classical optimization procedure) and updates the variational angles at every
iteration. The previous steps are repeated until the loss function value converges. After
exiting the classical loop, the solution is chosen as a circuit with angles θ∗ that minimize
the loss. Finally, the full solution u∗(θ∗) is extracted by sampling the cost function for
optimal angles 〈uϕ,θ∗(t, x)| Ĉ |uϕ,θ∗(t, x)〉.

• Stage 2: Once the optimal solution u∗(θ∗) is obtained, the goal of the loss Lw is to quantify
how well the optimal solution for those θ∗ fits the empirical data-set u (obtained through
the Matlab solver). In order to minimize Lw, the optimizer Brent computes the gradient
of the loss function with respect to w and updates the value of w at every iteration. This
step is repeated until the loss function value converges. After exiting the classical loop,
the value that minimizes the loss function is w∗ and this is given as a parameter to Lθ,
going back to Stage 1. The goal is now to find the new θ∗ that make the surrogate û satisfy
the PDE parameterized by the new w∗.

This optimization in two steps is repeated until eventually both loss functions converge, leading
to the final surrogate û and the inferred parameter ŵ that was initially unknown.
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5.1.1 Benchmarking
During the programming of code for the classical-quantum approach, several intermediate ver-
sionswere developed and eventually discarded, until reaching the actual and optimized version
presented in Annex 9.4.

The code adapted and evolved as different modifications were added. Although only the latest
version is available here, several sanity checks were performed throughout the process in or-
der to guarantee that the code did not contain errors. For instance, during the computation of
the derivatives it was checked that the derivatives calculated through the parameter shift rule
matched the ones calculated using finite differences.

Let û(t, x) denote the surrogate of the DQC and ût(t, x), ûx(t, x) and ûxx(t, x) the corresponding
derivatives of the output calculated with the quantum circuit through the parameter shift rule.
The derivatives using finite differences were computed as follows:

uFDt =
û(t+ h, x)− û(t, x)

h
,

uFDx =
û(t, x+ h)− û(t, x)

h
,

uFDxx =
û(t, x+ h) + û(t, x− h)− 2û(t, x)

h2
.

Since the goal is to check the implementation of the parameter shift rule and the performance of
the DQC rather than its expressivity, it is sufficient to conduct this check with an arbitrary num-
ber of qubits, layers and random variational parameters (e.g. n = 4 and d = 5). The step for the
numerical differentiation was chosen to be h = 10−5. Figures 8, 9 and 10 show the relative error
of the first and second temporal and spatial derivatives between the values computed via the
parameter shift rule and the finite differences. In all this cases, the relative error at every point
of the grid is smaller than 0.2%. This implies that the parameter shift rule is an accurate method
for computing derivatives. The relative error function follows a completely random behaviour,
with some points showingmore error than others. There is not a reasonable explanation for this
behaviour, since at each simulation the points with more error were different. Furthermore, it
is not relevant to study the error difference between points, since it is of the order of 10−3.
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Figure 8: Relative error of the 1st time derivative εut =
|uFDt −ût|
uFDt

· 100

Figure 9: Relative error of the 1st spatial derivative εux = |uFDx −ûx|
uFDx

· 100
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Figure 10: Relative error of the 2nd spatial derivative εuxx = |uFDxx −ûxx|
uFDxx

· 100

Another sanity check was to analyse the behaviour of the loss function Lθ in terms of the values
of the variational parameters θ. Since θ correspond to rotational angles, they should present
a 2π-periodicity. For a given rotation angle θ1, when plotting the loss function for different
values of θ1 one should expect to obtain a sinusoidal behaviour. Indeed, figure 11 exhibits this
behaviour. Furthermore, the periodicity appears every 2π, independently of the parameter θi
chosen.

Figure 11: Loss function Lθ for different values of θ1 (left) and θ2 (right)

Also, different trials of the simulations were done changing the quantum feature map. The
product map ϕj(x) = j arccosx did not offer good results, since the accuracy of the surrogate
came to be very weak in comparison with ϕj(x) = 2j arccosx. The results were discarded, so
they are not included in the thesis. However, they provided further proof that the choice of the
nonlinear encoding function can indeed change the expressivity of the circuit, as discussed in
section 4.2, and that the factor 2 plays an important role in the expressive power of the DQC.

Some other simulations were done using the matrix decomposition into single qubits Pauli
gates, as described in section 4.2.2. This approach is quite useful when dealing with more
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qubits, since the size of the matrices scales with up to 2n. The simulations performed in this
thesis were limited to at most n = 6 qubits. Thus for this amount of qubits, the usual matrix
multiplication method was found to be faster than the matrix decomposition method. With the
only purpose of reducing the computational time, all the further simulations will be performed
using the usual 2n × 2n matrix multiplication. However, whenever increasing the number of
qubits significantly, the approach of decomposition should also be considered and, if possible,
prioritized, since it can achieve an important speedup.

5.2 Expressivity of the quantum circuit
The accuracy of the surrogate û obtained by the hybrid combination DQC (quantum) - opti-
mizer (classical) depends on several variables that can be adjusted. This first section takes a
look into the impact of these variables upon the surrogate û and the effect of changing the mag-
nitude of these variables. There are four "control variables" that can be adjusted: (1) number
of qubits n, (2) depth or number of layers of the VQA d, (3) the error distance function L that
quantifies the loss function, (4) the weights λ of the loss function. The number of qubits and
of layers act on the DQC (quantum hardware), and the error types and the weights act on the
optimizer (classical hardware).

In this section the DQC will be used as a solver for the Heat equation with w = 1 in order to
obtain a surrogate of the solution. This surrogate û will be analyzed and compared to the real
one u obtained via theMatlab solver. Several trials will be performed, each changing the "control
variables". The values that will be considered for each variable are the following:

1. Number of qubits (n): 2, 4, 6. It is important to note that, due to the implementation of a
parallel feature map (as discussed in section 4.2) the number of qubits of the circuit must
be even.

2. Number of layers (d): 5, 10, 20

3. Error distance (L): MSE, MAE, MAX

4. Weights: Λ1, Λ2

In order to calculate the numerical values of every weight, it is necessary to know the
number of points of every boundary. For this particular case: N = 200,MXl = 10,MXr =
10, MT0 = 18. Applying the mathematical expressions described in Table 4, one obtains
the following values, gathered in Table 5.

Weights Λ1 Λ2

λf 0.0192 0.84
λbl 0.384 0.042
λbr 0.384 0.042
λb0 0.213 0.0756∑
i λi 1 1

Table 5: Numerical values of the weights of each loss term.

The effect of changing each variable is resumed in Table 6, which includes the values of each
loss function term after the optimization process has converged.
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n d L Λ L Lf LXl LXr LT0
2 5 MSE 1 0.0617 0.017 0.00639 0.00354 0.0411
2 10 MSE 1 0.0721 0.00543 0.0122 0.00269 0.0518
4 5 MSE 1 0.00760 0.00261 0.000444 0.000821 0.00373
4 10 MSE 1 0.00733 0.00247 0.000486 0.000837 0.00354
4 10 MSE 2 0.00783 0.000850 0.000609 0.000854 0.00551
4 10 MAX 1 0.0132 0.00565 0.000258 0.000561 0.00672
4 10 MAX 2 0.0146 0.00183 0.00151 0.00212 0.00910
4 10 MAE 1 0.0398 0.0123 0.0000567 0.000541 0.0269
4 10 MAE 2 0.0274 0.00126 0.00261 0.00332 0.0202
4 20 MSE 1 0.00757 0.00261 0.000448 0.000965 0.00354
4 20 MSE 2 0.00873 0.000778 0.00221 0.00096 0.00479
6 5 MSE 1 0.00485 0.00197 0.000206 0.000630 0.00205

Table 6: Values of the loss function terms for every combination of "control variables"

Let’s analyse the effect of each "control variable" independently.

5.2.1 Number of qubits
From Table 6, one can see that the combination of variables that exhibits the least total loss
function corresponds to n = 6 qubits. Indeed, it makes sense that increasing the number of
qubits will translate into an increase in the accuracy and expressive power of the surrogate
calculated by the DQC. However, the increase in qubits also increases the computational cost
and time. In fact, simulations for n = 6 qubits took over 10 hours, while simulations for n = 4
qubits took a little more than 1 hour. So, there exists a compromise between efficiency (related
to time consuming resources) and accuracy (related to the total loss function). For the same
depth, error distance and λ configuration, increasing the number of qubits from n = 6 to n =
4 decreases the loss function by a 0.6 factor (increasing the accuracy) but increases the time
consumption by a factor of 10 (decreasing the efficiency). Hence, since using n = 4 still offers
accurate results, the higher order of qubits will be discarded. The next combination that offers
the lowest loss function corresponds to: n = 4, d = 10, L = MSE. As an initial hypothesis, this
will be considered the best option for the circuit variables.

Figure 12: Evolution of the temperature profile over time for n=2, n=4, n=6
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Figure 13: Temperature profile at t=0 for n=2, n=4, n=6

Keeping the other "control variables" constant at the optimal configuration (d = 5, L = MSE),
figures 12 and 13 show that for n = 2 the DQC is not able to recover the original behaviour of
the solution u. However, the behaviour of the surrogate û does not change significantly when
increasing the number of qubits from n = 4 to n = 6.

5.2.2 Number of layers
The control variables will be fixed at n = 4, L = MSE.

Figure 14: Evolution of the temperature profile over time for d=5, d=10, d=20

Figure 15: Temperature profile at t=0 for d=5, d=10, d=20

When taking into account time-computing resources, for lower depths the solver is slower to
converge and does not reach as high accuracy as it does for higher depths. As depth increases
more layers of parametrized gates are included in the variational ansatz and so the number of
variational angle parameters increase. This causes an increase in the number of gate operations
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needed in each iteration and howmany parameters the classical optimizer needs to update, rais-
ing the time taken per iteration. Hence the lower and higher depths will be discarded, keeping
an intermediate value of d = 10. Nevertheless, figures 14 and 15 show that the behaviour of the
surrogate û does not change significantly when changing the depth of the VQA.

5.2.3 Error distance and weights
As previously discussed, the variables that obtain the optimal results correspond to n = 4,
d = 10.

The first configuration of weights emphasizes the boundary terms.

Figure 16: Evolution of the temperature profile over time for L=MAE, L=MAX, L=MSE and Λ1

Figure 17: Temperature profile at t=0 for L=MAE, L=MAX, L=MSE and Λ1

The second configuration of weights emphasizes the interior points of the domain.

Figure 18: Evolution of the temperature profile over time for L=MAE, L=MAX, L=MSE and Λ2
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Figure 19: Temperature profile at t=0 for L=MAE, L=MAX, L=MSE and Λ2

Independently of the weights’ configuration, the error distances MAE and MAX are more ac-
curate at the boundary points. However, the MSE gives a better expression of the surrogate of
the solution at the interior domain. In fact, according to Table 6, the more accurate combination
with a lower loss function corresponds to the MSE treatment of the error.

For the final configuration n = 4, d = 10 and L = MSE, the surrogate temperature profile of
the wire can be plotted in Figure 20. In both cases, the diffusive behaviour of the heat equation
can be appreciated.
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Figure 20: Surrogate solution of the Heat equation with w = 1 for Λ1 (up) and Λ2 (down)

Comparing the surrogate temperature with the real temperature map leads to Figures 21 and
22.
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Figure 21: Absolute error for Λ1 (up) and Λ2 (down)
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Figure 22: Relative error for Λ1 (up) and Λ2 (down)

Since Λ1 gives more importance to the boundaries, its maximum error occurs in the interior
domain with a value of 0.2. On the other hand, since Λ2 gives more importance to the interior
points, its maximum error occurs at the boundaries (particularly, for the initial time t = 0) with
a value of 0.42.

The training of the L-BFGS-B optimizer for the θ parameters is shown in Figure 23. It can be
seen that the loss function converges to 0 within 4000 iterations.
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Figure 23: Convergence of the loss function L(θ) for Λ1 (left) and Λ2 (right)

5.3 Parameter inferring
Once the control variables have been analysed, one can establish that the setup that gives the
more accurate result corresponds to a DQC with n = 4 qubits, d = 10 layers and L = MSE as
loss function. With this setting, a quantum neural network will be used as the UFA to approxi-
mate û and perform parameter inference.

For the parameter inference, the simulations were performed under two different conditions:
(1) non-noisy data, (2) data with 5% of Gaussian noise. The results obtained after the simula-
tions are summed up in Table 7.

w∗ Λ Noise level [%] εrel [%]
1.14 1 0 14
1.11 2 0 11
1.31 1 5 31
1.27 2 5 27

Table 7: Estimation of the coefficient w for noisy and non-noisy data

The relative error in Table 7 is used as a measure to compare the PDE parameter ŵ estimated by
the DQC with the true coefficient w = 1 that generated the data (called truth). Even under the
effects of noise, the DQC is able to estimate the unknown parameter with a relative error of 27%.

In order to do the optimization over w, it is very important for the loss function L(w) to be
convex, i.e. to have only one minimum. Otherwise, the optimizer could get trapped into a local
minimum. Figures 24, 25 and 26 show that the loss function, no matter the noise level and the Λ
configuration, is convex in the domain of interest and has a singleminimum,which corresponds
to the optimal value w∗ of the parameter w to be estimated. Once it has been proven that the
loss function is convex, the training can be done.
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Figure 24: Loss function L(w) with non-noisy data and Λ2
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Figure 25: Loss function L(w) with 5% noisy data and Λ1
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Figure 26: Loss function L(w) with 5% noisy data and Λ2
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The training of the Brent optimizer for the w parameter is shown in Figure 27. It can be seen
that the loss function converges to 0 with 10 iterations.

Figure 27: Convergence of the loss function L(w) for Λ1 (left) and Λ2 (right)

Both for noisy and non-noisy data, the most accurate results for w correspond to the setting
Λ2, i.e. for the configuration that gives more weight to the data-set and less to the boundary
conditions. For the case of the Heat equation, the boundary conditions were not so relevant. It
could be, though, that some other PDE has important conditions to be fulfilled at the boundary.
In this case, the optimal setting would be to use the Λ1 configuration.
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6 Conclusions
This work has presented an hybrid quantum-classical approach for inferring unknown param-
eters of PDEs.

• The quantum part makes use of a differentiable quantum circuit on gate-based quantum
hardware in order to solve the PDE. The method makes use of quantum feature map
circuits to encode function values into a latent space. This allows to consider spectral
decompositions of the trial solutions to differential equations. As shown in section 5.2,
the method proposed in this thesis can accurately represent solutions using the high-
dimensionalHilbert space of a qubit register thanks to the large spectral basis set of Cheby-
shev polynomials. The project also shows how analytical circuit differentiation via the
parameter shift rule can be used to represent the function derivatives that appear in the
PDE of interest, and how to construct loss functions whose aim is to improve the prepared
trial solution.

• The classical part performs the optimization technique that allows to update the parame-
ters that need to be trained: both the internal variational θ parameters and the ones that
need to be estimated w.

This hybrid strategy has been able to correctly infer the unknown coefficients of a PDE even
when the empirical observations are under the effect of Gaussian noise. As an example, the
project presents solutions and parameter inference of the Heat equation.

It is important to note that the experiments performed here involve classical simulators of quan-
tum computerswith unrealistic assumptions such as zero sampling noise, no environment noise
and no measurement noise. Some simulations were made including Gaussian noise in the ex-
perimental data, but the other sources of noise are still to be considered, since the effect of noise
could highly affect the accuracy of the VQA.

This thesis has also performed an exhaustive analysis of the treatment and consideration of
boundary and initial conditions. This study allows to conclude to what extent the boundary
and initial conditions can affect the dynamics of a system.

This project has implemented a solver and an automated parameter inference approach using
a differentiable quantum circuit strategy. In particular, the numerical experiments in section 5
show that relatively small quantum circuits can be used for meaningful computations in sci-
entific machine learning. Thus, these results are a vivid example that the fields of quantum
computing and scientific machine learning are moving closer together.

6.1 Bottlenecks and limitations
Due to the high time-consuming circuit, the simulations were performed using at most 6 qubits.
It would be interesting to investigate the performance of the circuit for a larger number of qubits.
Nevertheless, increasing the number of qubits can lead to the barren plateaus15 phenomenon,
which directly impacts on the trainability of the circuit. When a loss function exhibits a barren
plateau (BP), it can have gradients that vanish exponentially in the number of qubits n. That

15Areas in the cost landscape where the gradient of a parameterized circuit becomes negligible.
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is, the magnitude of its partial derivatives will decay exponentially with the system size [2],
meaning that the deeper the circuit, the more it will be affected. Since gradients of the loss
function are crucial in the optimization procedure, analyzing the existence of BPs in a given
VQA is fundamental to preserve the quantum advantage achieved with the PQC.

Since deep PQCs exhibit BPs when randomly initialized [2], the probability of finding the so-
lution when randomly initializing the ansatz is exponentially small. There are two approaches
for avoiding or mitigating the effects of BPs:

• Parameter initialization: randomly initializing an ansatz can lead to the algorithm start-
ing far from the solution, near a local minimum, or even in a region with barren plateaus.
Hence, optimally choosing the seed for θ at the beginning of the optimization is an im-
portant task. There exist several strategies for wisely initializing θ0 [2]. In this work, the
randomization of the parameters was restricted in the interval [0, 2π], because the param-
eters to be optimized correspond to angles; hence they have a 2π-periodicity.

• Ansatz strategies: another strategy for preventingBPs is usingparticular structured ansatzes
in order to restrict the space explored by the ansatz during the optimization procedure. As
the depth of the ansatz continues to increase, eventually the problem of barren plateaus
can be encountered. However, there are certain architectures of QNN that are immune to
barren plateaus, and hence are trainable even for large problems.

In order to find the optimal circuit angles θ∗, the gradient of the loss functionw.r.t the parameters
θ is computed by the L-BFGS-B optimizer via finite-differences. The vanishing gradients caused
by BPs can cause the solver to struggle to improve the parameters. Hence, BPs will impact on
optimization strategies that go beyond (first-order) gradient descent, which is the case of the L-
BFGS-B solver. The solution to this problem comes with changing the approach for calculating
the gradients w.r.t. θ. For instance, analytically evaluating any high-order partial derivative
on the DQC using automatic differentiation through the parameter shift rule in an approach
known as stochastic gradient descent [45] [46]. This implies taking advantage of the DQC not
only to compute the derivatives w.r.t. the inputs t and x, but also w.r.t. θ. This approach is
one of the most common in optimization, and it is based on making iterative steps in directions
indicated by the gradient. Given that only statistical estimates are available for these gradients,
these strategies are known as stochastic gradient descent (SGD) methods. One SGD method
that is widely used in machine learning is Adam [2], which adapts the size of the steps taken
during the optimization to allow for more efficient and precise solutions than those obtained
through basic SGD.

Using the chain rule, the derivative ∂L
∂θj

can be written as a function of the derivatives of the
variational circuit∇θÛθ, which are measured using the automatic differentiation approach (pa-
rameter shift rule), as presented in section 4.2.1. In particular, the work done by [45] shows
an example of how to apply the chain rule to decompose the mean square error (MSE) loss
function into the derivatives of the expectation values of the circuit output.

As analysed in section 4.1, circuit learning using analytical gradient outperforms any finite dif-
ference method. This is done by showing that for n qubits and precision ε, the query cost of an
oracle for convex optimization in the vicinity of the optimum scales as O(n

2

ε ) for the analytical
gradient, whereas finite difference needs at least Ω(n

3

ε2
) calls to the oracle [1].
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6.2 Time and economic cost
Regarding the time dedication, the effective starting day of the project was 1st February 2022.
The last working day was 31st August 2022, the day onwhich the presentation of the thesis took
place. This adds up to almost 30 weeks of full-time dedication. The daily working hours in the
office add up to 7-8 h/day. Supposing a normal week of 5 working days, this implies a total of
35 to 40 h/week. In global, the whole thesis demanded more than 1000 hours of work.

The project has been divided into several tasks in order to facilitate the organization and assess-
ment of the full problem.

1. Task 1: reading and collection of theoretical information about quantum algorithms ap-
plied to solving PDEs and choice of the research question.

2. Task 2: understanding of the theoretical background and implementation of parameter-
ized quantum circuits and quantum machine learning.

3. Task 3: generation of usable experimental data (throughMatlab) and code programming
(with Python).

4. Task 4: application of modifications, improvements and new versions of the code. Code
optimization and speed up.

5. Task 5: performing simulations and obtaining results.

6. Task 6: writing the thesis and preparation of the oral presentation.

Figure 28 shows theGantt diagram for this project according to the tasks described above. Gantt
diagrams are widely used in engineering when it comes to project management. They show a
list of the different activities that need to be developed, their duration and the resources to be
used next to a calendar-like table. Each task is represented with an horizontal bar based on its
initial and ending date, covering the calendar time needed to complete each task. Gantt dia-
grams are useful when planning the development of projects, since they are very simple and
easy to interpret. However, they do not allow to represent the dependencies between tasks.
Furthermore, a Gantt diagram is not so accurate when performing a scientific project, because
research is completely unpredictable and new. This novelty introduces a degree of uncertainty
that translates into alterations of the initial plan and strategy and leads the researcher to con-
stantly adapt to the arisen problems. Another characteristic of scientific research is the rate of
completion of the stages of a project: since it implies a learning process, the later stages are usu-
ally completed faster than the initial ones, since the researcher obtains knowledge and becomes
acquainted with the theory background and techniques of the studied subject. In the sameway,
the stages that involve research and novel topics that have not been discovered yet (tasks 3, 4,
5) do not promise an end date and can prolong further in time, so they usually take longer than
those that are sure to be completed (tasks 1, 2, 6).
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Figure 28: Gantt’s diagram

Regarding the financial side of the project, it is quite hard to estimate the economic cost, since
no additional resource was needed other than a computer to program the code. The computer
also granted access to the cluster of the Lorentz Institute, which was very helpful in order to
speed up the computations and simulations. In fact, the simulationswere very time-consuming,
ranging from 1 hour (for the simplest ones using only 2 qubits) to 10 hours (for the ones using 6
qubits). So, the only significant costs thatwill be considered are the ones associatedwith energy
consumption: 0.05kWh of the researcher’s personal working station (8h/day), 8kWh for daily
general energy consumption (8h/day) and 0.4kWh the usage of the computer for accessing the
cluster at the stages of the project involving simulations (16h/day). For the sake of simplicity,
energy usage will be charged a rate of 0.30AC/kWh. Hence, the cost of this project is depicted in
table 8.

Concept €/week Duration [weeks] Cost [€]
Personal workstation 0.6 30 18

Office energy consumption 96 30 2880
Cluster usage 9.6 4 38.4
Total cost 2936.4

Table 8: Economic cost of the project
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7 Further work
This section describes some ideas that can be performed in a different way as further work.

7.1 Improvements
If one were to extend this research project, here are some ideas that can be derived from the
work done in this thesis.

• Change the encoding map to achieve better expressivity: the feature map that encodes
the input variables of the DQC can be changed from aChebyshev basis to a Fourier feature
map or other universal basis function sets. It would be interesting to analyse and compare
the final output using a Fourier encoding map.

• Include a regularization term in the loss function to achieve better expressivity: as de-
scribed in section 4.3, the regularization term helps the optimizer to avoid getting trapped
in local minima, hence providing the actual solution and increasing the expressivity of
the DQC.

• Compare the quantum with the classical approach: an important question to discuss
is the potential and advantage achieved by quantum machine learning when it comes to
solving differential equations with respect to classical methods. This project has shown
that the representation power of quantum circuits grows with the number of qubits, and
this leads to increased accuracy even for small networks. Hence, quantum circuits offer
an expressivity advantage. However, it would be interesting to build a classical approach
and compare the results obtained both with the DQC and the PINN architectures.

• Extend to other types of PDEs: This project has analysed a basic example of second order
linear PDE (the Heat equation). It would be interesting to extend this quantum approach
to other types of equations, such as nonlinear PDEs and systems of PDEs. For instance,
nonlinear systems of PDEs are one of the most challenging equations to solve. As an ex-
ample, themost known nonlinear PDE is Burger’s equation, which occurs in various areas
of gas dynamics, fluid mechanics and applied mathematics. Furthermore, it is evoked as
a prime example to benchmarkmodel discovery and coefficient inference algorithms [17],
as it contains a non-linear term as well as second order spatial derivative.

ut = νuxx − uux (9)

where ν is the viscosity of the fluid and u its velocity field.

• Work with multiple dimensions: this thesis has worked with 2 independent variables:
the temporal (t) and a spatial (x). A further work could be to extend to d spatial dimen-
sions. However, when increasing the number of variables, this implies dealing with the
curse of dimensionality.

• Infer more than one parameter: the Heat equation has a single coefficient w. However,
the parameter estimation can also be performed with more than one coefficient. In this
case, the parametersw are treated as a vector (analogous to the case of θ). Then, they can
no longer be optimized with a 1D optimizer. Instead, the L-BFGS-B optimizer can be used
to infer the vector of unknowns.
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• Extend to model discovery: a possible further work could be to extend DQCs to the dis-
covery of unknown differential equations from empirical measurements. Model discov-
ery (often referred to as equation discovery) tries to find a mathematical expression that
describes a given spatio-temporal data-set.

This approach, instead of solving a knownPDE, consists on finding an unknownPDE only
from measurements and a predetermined library of basis functions. The PDE underlying
a data-set u(t, x) is discovered by writing the model discovery task as a sparse regression
problem,

∂tu = Θξ (10)
where ∂tu is a column vector of size N (number of points of the data-set) containing the
time derivative of each sample. Θ is amatrix containing a library of polynomial and spatial
derivative functions (for instance: u, ux, uxx, uux...) and can be written as:

Θ =


1 u(t0, x0) ux(t0, x0) ... u2uxx(t0, x0)
1 u(t1, x1) ux(t1, x1) ... u2uxx(t1, x1)
... ... ... ... ...
1 u(tN , xN ) ux(tN , xN ) ... u2uxx(tN , xN )


Since Θ contains significantly more terms than required, most coefficients in ξ will be zero
and hence model discovery turns into finding a sparse representation of the coefficient
vector ξ.

The problem is trained by optimizing a loss function that includes:

– Ld accounts for the fitting of the empirical data-set, evaluated at the N points of the
grid.

Ld(θ) =
1

N

N∑
i=1

L(û(ti, xi, θ), ui).

– Lp an additional term accounting for the library of functions. Additionally, this term
acts as a regularizer on û, preventing overfitting of the noisy data-set.

Lp(θ) =
1

N

N∑
i=1

L(∂tû(ti, xi, θ),Θijξj).

Model discovery has already been solved from a classical perspective [17], but it can be
interesting to analyse how it performs in a quantum setup.

• Use a real quantum computer to perform the simulations: various strategies of errormit-
igation have been proposed that can further improve the performance of algorithmswhen
run on physical devices. Although many error mitigation strategies for NISQ hardware
exist, it should still be investigated how well these strategies work in more realistic set-
tings and importantly on real quantum hardware, and which quantum hardware is most
compatible or natural for this strategy.
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7.2 Applications
The work presented in this thesis may be useful when dealing with stochastic differential equa-
tions (SDE), which emerge when dealing with Brownian motion and quantum noise [40]. A
general system of stochastic differential equations can be written as

dXt = f(Xt, t)dt+ g(Xt, t)dWt

whereXt is a vector of stochastic variables parameterized by time t (or other parameters). De-
terministic functions f and g correspond to the drift and diffusion processes, respectively. Wt

corresponds to the stochasticWiener process (standard Brownianmotion). The stochastic com-
ponent makes SDEs distinct from other types of partial differential equations, adding a non-
differentiable contribution. This also makes SDEs generally difficult to treat.

SDEs arewidely used in financial calculus, since there is often not exact knowledge of themarket
dynamics but there is access to historical data. The parameter inference and model discovery
could infer the SDE from data and make better predictions compared to a purely data-only
approach. Real-world applications of SDEs in finance lie in predicting stock prices or currency
exchange rates.

The heat equation can be used to model some phenomena in financial mathematics, particu-
larly in the modeling of options. For instance, the Black–Scholes equation is a parabolic partial
differential equation that describes the price of the option over time and whose equation reads:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

where V is the price of the option as a function of stock price S and time t, r is the risk-free
interest rate andσ is the voatility of the stock. This option pricingmodel PDE can be transformed
into the heat equation allowing relatively easy solutions.

Furthermore, the heat equation is also connectedwith Fokker–Planck equation, which describes
the time evolution of the probability density function of the velocity of a particle under the
influence of drag forces and random walks, as in Brownian motion.

The majority of financial models governed by PDEs work with a large number of independent
variables, which makes them quite difficult to solve. This problem can be addressed by map-
ping the finance PDE to the heat equation generalized to more spatial dimensions.

A common and natural question that may arise is the following: Why is there a need to perform
parameter inference and model discovery using quantum algorithms if these problems are al-
ready solved in a classical setting? Which advantages do PQCs offer with respect to PINNs? In
fact, the implementation of a DQC for solving the problem stated in this project is justified by
the fact that PQC models are a better option than PINNs when it comes to studying quantum
mechanical systems and solving quantum problems. The PDE for excellence in the quantum
world is the Time-Dependent Schrödinger equation 2, a linear partial differential equation that
governs the wave function of a quantum-mechanical system.

Restricting to one dimension, the time-dependent Schrödinger equation is the governing equa-
tion for determining the wavefunction Ψ(x, t) of a single non-relativistic particle with mass m.
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Its most general form, including an arbitrary potential U(x, t) is

i~
∂Ψ(x, t)

∂t
= − ~2

2m

∂2Ψ(x, t)

∂x2
+ U(x, t)Ψ(x, t). (11)

For a free particle U = 0, equation 11 reduces to

i
∂Ψ(x, t)

∂t
= − ~

2m

∂2Ψ(x, t)

∂x2
.

Rearranging terms, the previous equation can be written as

∂Ψ(x, t)

∂t
=

i~
2m

∂2Ψ(x, t)

∂x2
.

This expression is formally similar to the particle diffusion equation 3, with u(x, t) = Ψ(x, t)
and w = i~

2m . There exists an analogy between Schrödinger’s equation for a free particle and the
Heat equation, because the Schrödinger equation of quantum mechanics can be regarded as a
heat equation in imaginary time. Hence, some quantummechanics problems are also governed
by a mathematical analog of the heat equation.

Nevertheless, this analogy between quantum mechanics and diffusion is purely a formal one.
Physically, the evolution of the wave function satisfying Schrödinger’s equation is not a dif-
fusive process. But from a mathematical point of view, inferring the parameters of the Heat
equation can be extended to the Schrödinger’s equation, and this analogy can be very useful
when modelling quantum systems.
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9 Annexes
9.1 Introduction to Partial Differential Equations
A partial differential equation is an equation that involves n independent variables denoted by
x = (x1, x2, x3, ..., xn ∈ Ω ⊆ Rn), a dependent function of these variables u = u(x1, ..., xn) ∈ R,
and the partial derivatives of the dependent function u with respect to the independent vari-
ables.

A solution (or a particular solution) to a partial differential equation is a function that solves
the equation or, in other words, turns it into an identity when substituted into the equation. A
solution is called general if it contains all particular solutions of the equation concerned.

Let’s assume throughout that the solution u will be smooth enough so that partial derivatives
commute. In this case, and for the sake of simplicity, the partial derivatives will be denoted as
the following expressions:

u1 =
∂u

∂x1
; u2 =

∂u

∂x2
; u11 =

∂2u

∂x1∂x1
=
∂2u

∂x2
1

; u12 =
∂2u

∂x1∂x2
.

Then a partial differential equation is any equation of the form

F (u, x1, ..., xn, ..., u1, ..., un, ..., u11, u12, u22...) = 0

involving a finite number of derivatives.

Partial differential equations are used to formulate problems involving functions of several vari-
ables; such as the propagation of sound or heat, electrostatics, electrodynamics, fluid flow, and
elasticity. In many physics problems, some of the independent variables typically correspond
to space (denoted as x, y, z) and another to time (t).

9.1.1 Order of PDEs
The order of a partial differential equation is given by the order of the highest derivative in-
volved. Some examples of PDEs are the following:

• First-order PDE: ut + u3
x + u4 = 0

• Second-order PDE: uxx + uyy + uxy = 0

• Third-order PDE: ut − uuxxx − sinx = 0

9.1.2 Linearity of PDEs
PDEs can be categorised into two: Quasi-linear and Non-Quasilinear. Quasi-linear PDEs are
further categorised into two: Semi-linear, Non-semilinear. Semi-linear PDEs are further cate-
gorised into two: Linear and Nonlinear. One has the following picture:

Linear PDE $ Semi-linear PDE $ Quasi-linear PDE $ PDE

A PDE is linear if it is of first degree in all of its variables and partial derivatives and all multi-
plicative factors are either constants or functions of the independent variables. A second-order
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linear PDE with two independent variables has the form

A(x, y)uxx +B(x, y)uxy + C(x, y)uyy +D(x, y)ux + E(x, y)uy + F (x, y)u = G.

For example: uxx + uyy = x.

A second-order Semi-linear PDE with two independent variables has the form:

A(x, y)uxx +B(x, y)uxy + C(x, y)uyy = F (x, y, u, ux, uy).

A second-order Quasi-linear PDE with two independent variables has the form:

A(x, y, u)uxx +B(x, y, u)uxy + C(x, y, u)uyy = F (x, y, u, ux, uy).

Any other form of PDE is said to be Nonlinear. The general form of a second-order nonlinear
PDE with two independent variables is:

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0.

For instance: ux + u2
y = 0.

The linearity classification helps identifying or guessing the properties of solutions of PDEs
in that class. For instance, nonlinear differential equations model several phenomena but are
notoriously difficult to solve. When it comes to quantum computing, there has been extensive
previous work on efficient quantum algorithms for linear PDEs. However, since quantum me-
chanics is described by linear dynamics, the analogous progress for the nonlinear case is quite
limited [47]. Hence, in the field of quantum algorithms, it is important to linearize nonlinear
PDEs when possible.

9.1.3 Homogeneity of PDEs
Every linear PDE can be written in the form:

L(u) = f

where u 7→ L(u) is a linear map and f is a function of independent variables only. The linear
PDE is homogeneous if f = 0. If f 6= 0, the PDE is nonhomogeneous. For example:

• Homogeneous: ux + uy + uz + ut = 0

• Non-homogeneous: ux + uy + uz + ut = x+ y

9.1.4 Classification of second order linear PDEs
Second order linear PDEs are widely studied because they model the vast majority of physical
processes, and they can be classified into elliptic, parabolic or hyperbolic [48]. Generally, these
PDEs are studied in two dimensions, with the most general case given by

A(x, y)uxx +B(x, y)uxy + C(x, y)uyy +D(x, y)ux + E(x, y)uy + F (x, y)u = G.

The coefficients A,B,C are assumed not to vanish simultaneously, because in that case the
second-order PDE degenerates to one of first order. Furthermore, as described in section 9.1.3,
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if G = 0 the equation is homogeneous; otherwise, it is non-homogeneous. The function u(x, y)
and the coefficients are assumed to be twice continuously differentiable in some domain Ω.

The classification of second-order PDE depends on the form of the leading part of the equation
consisting of the second order terms. So, for simplicity of notation, the lower order terms can
be combined and the above equation is rewritten in the following form:

A(x, y)uxx +B(x, y)uxy + C(x, y)uyy = Φ(x, y, u, ux, uy).

Mathematically, the type of second-order PDE at a point (x0, y0) depends on the sign of the
discriminant defined as:

∆(x0, y0) = B(x0, y0)2 − 4A(x0, y0)C(x0, y0).

Then, the classification of the PDE is given by the following criteria:

1. Elliptic: ∆(x0, y0) < 0

2. Parabolic: ∆(x0, y0) = 0

3. Hyperbolic: ∆(x0, y0) > 0

A given PDEmay be of one type at a specific point and of another type at some other point. For
example, the Tricomi equation uxx + xuyy = 0 has a discriminant equal to ∆ = −4x. Hence, it
is hyperbolic in the left half-plane x < 0, parabolic for x = 0 and elliptic in the right half-plane
x > 0.

A PDE is hyperbolic/parabolic/elliptic in a region Ω if the PDE is hyperbolic/parabolic/elliptic
at each point of the domain Ω.

The terminology chosen to classify PDEs reflects the analogy between the form of the discrim-
inant for PDEs and the form of the discriminant which classifies conic sections given by

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0.

The type of the curve represented by the above conic section depends on the sign of the dis-
criminant, ∆ = B2 − 4AC. If ∆ > 0, the curve is a hyperbola, if ∆ = 0 the curve is a parabola,
and if ∆ < 0 the equation is an ellipse.

This classification can be generalized to n independent variables x1, ...xn by taking into account
the sign of the eigenvalues of the coefficient matrix. Then, the following classification holds:

1. Elliptic: all the eigenvalues have the same sign

2. Parabolic: one of the eigenvalues is zero

3. Hyperbolic: only one eigenvalue has a different sign from the rest

As an example, for an arbitrary 3-dimensional second-order linear PDE:
Auxx +Buyy + Cuzz +Duxy + Euxz + Fuyz = 0.
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its coefficient matrix is given by  A D/2 E/2
D/2 B F/2
E/2 F/2 C


Themajority of physical phenomena are described by second order linear PDEs, with each type
of equation modelling a different situation.

1. Elliptic: they are associated with a special state of a system, since they typically char-
acterize steady-state systems (with no time derivative) and they represent equilibrium
processes related to temperature, pressure, electrical potential, torsion andmembrane dis-
placement.

The most known elliptic PDE is Poisson’s equation
∆u = f.

In 3-dimensional Cartesian coordinates, it takes the form:
uxx + uyy + uzz = f(x, y, z).

Poisson’s equation is a partial differential equation with broad utility in electrostatics, me-
chanical engineering and theoretical physics.

When f = 0 it is called Laplace equation. The Laplace equation is often encountered in
heat and mass transfer theory, fluid mechanics, elasticity, electrostatics, electrostatics, and
other areas of mechanics mechanics and physics.

∆u = 0.

Another common elliptic PDE is Helmholtz equation, which models many problems re-
lated to steady state oscillations (mechanical, acoustical, thermal, electromagnetic).

∆u+ λu = f.

For λ < 0, this equation describes mass transfer processes with volume chemical reactions
of first order.

2. Parabolic: they describe evolutionary phenomena that lead to a steady state described by
an elliptic equation. They represent time-dependent diffusion processes with variation in
both space and time (containing the first derivative in time). All changes are propagated
across space at decreasing amplitudes and forward in time (backward propagation in time
is not allowed).

The most known parabolic PDE is the Heat equation.
ut = α∆u.

In 3-dimensional Cartesian coordinates, it takes the form:
ut = α(uxx + uyy + uzz).

Other typical examples contain the Heat Conduction or Diffusion equation.
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3. Hyperbolic: they model the transport and propagation of some physical quantity such as
fluids or waves, with variation in both space and time (containing the second derivative
in time). All changes are propagated forward in time (backward propagation in time is
not allowed).

The most known parabolic PDE is theWave equation.

utt = c2∆u.

In 3-dimensional Cartesian coordinates, it takes the form:

utt = c2(uxx + uyy + uzz).

Another common hyperbolic PDE isHelmholtz equation, which models many problems
related to steady state oscillations (mechanical, acoustical, thermal, electromagnetic).

∆u+ λu = f.
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9.2 Derivation of the Parameter Shift Rule for gates with generators with two dis-
tinct eigenvalues

Consider a gate ÛG(x) = e−iaxĜ generated by a unitary and Hermitian operator Ĝ and with
constant a ∈ R. Then the generator G is also involutory (Ĝ2 = 1) and idempotent (Ĝ2 = Ĝ).

Its derivative is given by
∂xÛG = −iaĜe−iaxĜ. (12)

If Ĝ has just twodistinct eigenvalues (which can be repeated) one can, without loss of generality,
shift the eigenvalues to ±λ, as the global phase is unobservable. Any single qubit gate is of this
form.

Suppose that the Hermitian generator Ĝ of the unitary operator ÛG(x) = e−iaxĜ has at most
two unique eigenvalues ±λ and r = |λ|. With Euler’s identity, one can express the operator as

ÛG(x) = e−iaxĜ =
∞∑
k=0

(−iax)kĜk

k!

Separating into even and odd terms:

ÛG(x) =
∞∑
k=0

(−iax)2kĜ2k

(2k)!
+
∞∑
k=0

(−iax)2k+1Ĝ2k+1

(2k + 1)!
.

The fact that Ĝ has the spectrum ±λ implies Ĝ2 = λ21 = r21.

ÛG(x) = 1
∞∑
k=0

(−1)k(axr)2k

(2k)!
− ir−1Ĝ

∞∑
k=0

(−1)k(axr)2k+1

(2k + 1)!
.

Therefore, the sine and cosine parts of the Taylor series of ÛG take the form:

ÛG(x) = 1 cos(axr)− i

r
Ĝ sin(axr).

As special case, one has
ÛG

(
± π

4ar

)
=

1√
2

(
1∓ i

r
Ĝ

)
. (13)

Let’s take a general case of a quantum function

f(x) = 〈ψ| Û †G(x)ÂÛG(x) |ψ〉 .

Using the product rule, the partial derivative then looks

∂xf = ∂x 〈ψ| Û †GÂÛG |ψ〉 = 〈ψ| Û †GÂ(∂xÛG) |ψ〉+ 〈ψ| (∂xÛ †G)ÂÛG |ψ〉 .

Using equation 12, one gets:

∂xf = 〈ψ| Û †GÂ(−iaĜ)ÛG |ψ〉+ 〈ψ| (iaĜ)Û †GÂÛG |ψ〉 .
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Since [Â, f(Â)] = 0, one has [Ĝ, Û †G] = ĜÛ †G−Û
†
GĜ = 0 and so ĜÛ †G = Û †GĜ. Taking |φ〉 = ÛG |ψ〉

and rearranging terms:

∂xf = ar

[
〈φ| Â−i

r
Ĝ |φ〉+ 〈φ| i

r
ĜÂ |φ〉

]
.

For any two operators B̂ and Ĉ, the following relation holds [37]:

〈ψ| B̂†ÂĈ |ψ〉+ 〈ψ| Ĉ†ÂB̂ |ψ〉 =
1

2

[
〈ψ| (B̂ + Ĉ)†Â(B̂ + Ĉ) |ψ〉 − 〈ψ| (B̂ − Ĉ)†Â(B̂ − Ĉ) |ψ〉

]
.

(14)

Using equation 14 for B̂ = 1 and Ĉ = −ia
r Ĝ one can write

∂xf = a
r

2

[
〈φ| (1− i

r
Ĝ)†Â(1− i

r
Ĝ) |φ〉 − 〈φ| (1 +

i

r
Ĝ)†Â(1 +

i

r
Ĝ) |φ〉

]
.

One can recognize from 13 that these unitaries represent instances of the initial gate.

∂xf = a
r

2

[
〈φ|
√

2ÛG

(
π

4ar

)†
Â
√

2ÛG

(
π

4ar

)
|φ〉 − 〈φ|

√
2ÛG

(
− π

4ar

)†
Â
√

2ÛG

(
− π

4ar

)
|φ〉

]
.

Undoing the change of state |φ〉 = ÛG |ψ〉, one gets:

∂xf = ar

[
〈ψ| Û †GÛG

(
π

4ar

)†
ÂÛG

(
π

4ar

)
ÛG |ψ〉 − 〈ψ| Û †GÛG

(
− π

4ar

)†
ÂÛG

(
− π

4ar

)
ÛG |ψ〉

]
.

Since for unitarily generated one-parameter gates Ĝ(a)Ĝ(b) = Ĝ(a + b), this is equivalent to
shifting the gate parameter a shift s = π

4ar .

∂xf = ar
[
〈ψ| Û †G(x+ s)ÂÛG(x+ s) |ψ〉 − 〈ψ| Û †G(x− s)ÂÛG(x− s) |ψ〉

]
.

Then, one gets the “parameter shift rule”

∂xf = ar
[
f(x+ s)− f(x− s)

]
.

The parameter shift rule applies to a number of special cases. The set of Paulimatrices 1, X̂, Ŷ , Ẑ
are generators with two distinct eigenvalues, namely ±λ = ±1. For instance, the 1-qubit Pauli
rotation gates are all parameter-shift differentiable with a = 1

2 .

R̂X(α) = e−i
1
2
αX ; X =

(
0 1
1 0

)

R̂Y (α) = e−i
1
2
αY ; Y =

(
0 −i
i 0

)



p. 84 Bachelor thesis

R̂Z(α) = e−i
1
2
αZ ; Z =

(
1 0
0 −1

)
The shift constant for all of them is s = π

2 . Hence, the parameter shift rule becomes

∂xf =
1

2

[
f(x+

π

2
)− f(x− π

2
)

]
.
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9.3 Matlab code
1
2 %% Generating data u(x,t) by solving a PDE
3
4 % Heat equation: Fw= w*uxx - ut = 0
5 x_points= 20;
6 t_points= 10;
7 x= linspace (0,0.9, x_points);
8 t= linspace (0,0.1, t_points);
9 m=0;

10
11 u= pdepe(m, @heatpde , @heatic , @heatbc , x, t);
12 save(’u_heat.mat’, ’u’)
13 save(’x_heat.mat’, ’x’)
14 save(’t_heat.mat’, ’t’)
15
16 function [c,f,s] = heatpde(x,t,u,dudx)
17 w=1;
18
19 c= 1;
20 f= w*dudx;
21 s= 0;
22 end
23
24 function u0 = heatic(x)
25 u0=sin(pi/0.9*x);
26 end
27
28 function [pl , ql, pr , qr] = heatbc(xl , ul, xr, ur , t)
29 pl= ul;
30 ql=0;
31 pr= ur;
32 qr=0;
33 end
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9.4 Python code
1 #Do the necessary imports
2
3 import numpy as np
4 import scipy.io
5 import sys
6 from scipy.optimize import minimize , minimize_scalar , Bounds
7 import pickle
8
9 import matplotlib.pyplot as plt

10 from time import time
11
12 from sklearn.metrics import mean_squared_error , mean_absolute_error
13
14
15 class PQC():
16 Z= np.matrix ([[1,0], [0,-1]])
17 CNOT= np.matrix ([[1,0,0,0], [0,1,0,0], [0,0,0,1], [0,0,1,0]])
18
19 def __init__(self , n_qubits , n_layers , error , weights , params=None , seed =42)

:
20 self.n_qubits= n_qubits
21 self.n_layers= n_layers
22 self.error= error
23 self.weights= weights
24 self.theta_params = self.n_qubits * 3 * self.n_layers
25
26 self.Hamiltonian_operator= np.kron(np.eye (2**( self.n_qubits -1), 2**( self

.n_qubits -1)), self.Z)
27
28 self.L_w=[]
29 self.ws=[]
30
31 np.random.seed(seed)
32 #Discover_w
33 #self.w0 = np.random.uniform (-10, 10, size =1) [0]
34
35 #PQC
36 self.w0=1
37
38 if params == None:
39 self.params = np.random.uniform(0, 2*np.pi, size=self.theta_params)
40 else:
41 self.params= params
42
43 self.set_params(self.params)
44
45 def load_grid (self , u_file= ’u_heat.mat’, x_file=’x_heat.mat’, t_file=’

t_heat.mat’):
46 self.u_file= u_file
47 self.x_file= x_file
48 self.t_file= t_file
49 _u = scipy.io.loadmat(self.u_file) # u loads as a dictionary
50 _x = scipy.io.loadmat(self.x_file) # u loads as a dictionary
51 _t = scipy.io.loadmat(self.t_file) # u loads as a dictionary
52 self.u_real= np.transpose(_u[’u’]) #x rows and t columns
53 self.x_real= np.transpose(_x[’x’])
54 self.t_real= _t[’t’]
55 self.x_points= self.x_real.size #Number of space data points
56 self.t_points= self.t_real.size #Number of time data points
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57
58 Xl= np.full((self.t_points ,2), self.x_real [0][0])
59 for i in range(self.t_points):
60 Xl[i][0] = self.t_real [0][i]
61
62 Xr= np.full((self.t_points ,2), self.x_real [ -1][0])
63 for i in range(self.t_points):
64 Xr[i][0] = self.t_real [0][i]
65
66 T0= np.full((self.x_points -2,2), self.t_real [0][0])
67 for i in range(self.x_points -2):
68 T0[i][1] = self.x_real[i+1][0]
69
70 self.BC_Points= np.concatenate ([Xl , Xr, T0])
71 Ul= self.u_real [0]
72 Ur= self.u_real [-1]
73 U0= np.transpose(self.u_real)[0][1: -1]
74 self.BC_Data= np.concatenate ([Ul , Ur , U0])
75
76 self.T=np.full((self.x_points ,self.t_points), self.t_real) # x_points x

t_points
77 self.X= np.full((self.x_points , self.t_points), self.x_real)
78
79 self.Points = np.transpose ((self.T.flatten (), self.X.flatten ())) #Cada

element: [t x]
80 Y = self.u_real.reshape ((self.u_real.size , 1))
81
82
83 #Add noise
84 noise_level = 0
85
86 #Gaussian noise
87 #std = noise_level * np.std(Y) # for %5 Gaussian noise
88 #mu=0
89 #noise = np.random.normal(mu, std , size = Y.shape)
90 #y_noisy = Y + noise
91
92 #Normal distribution
93 y_noisy = Y + noise_level * np.std(Y) * np.random.randn(Y[:,0].size , 1)
94
95 self.Y_noisy= np.transpose(y_noisy)
96
97 self.N= self.Y_noisy.size #Number of total data points
98 self.M= self.BC_Data.size #Number of total bc data points
99
100 self.initials = self.initialize_grid(self.Points)
101 self.BC_initials= self.initialize_grid(self.BC_Points)
102
103 def save_params(self , filename): #save params in a file
104 with open(filename , ’wb’) as outp: # Overwrites any existing file.
105 pickle.dump(self.params , outp)
106
107 def load_params(self , filename): #load params from a file
108 with open(filename , ’rb’) as inp:
109 #self.params= pickle.load(inp)
110 self.set_params(self , pickle.load(inp))
111
112
113 def set_params(self , params):
114 self.params = params
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115 self.set_U_theta ()
116
117 #Define the nonlinearity function
118 def phi(self , x_i , j): #Chebyshev
119 return 2*j*np.arccos(x_i)
120
121 def dphi1(self , x):
122 return -1/np.sqrt(1-x**2)
123
124 def dphi2(self , x):
125 return -x / ((1-x**2) **(3/2))
126
127 def Rx(self , alpha):
128 return np.matrix ([[np.cos(alpha /2), -1j*np.sin(alpha /2)], [-1j*np.sin(

alpha /2), np.cos(alpha /2) ]])
129
130 def Ry(self , alpha):
131 return np.matrix ([[np.cos(alpha /2), -np.sin(alpha /2)], [np.sin(alpha /2),

np.cos(alpha /2)]])
132
133 def Rz(self , alpha):
134 return np.matrix ([[np.exp(-1j*alpha /2), 0], [0, np.exp(1j*alpha /2)]])
135
136 #Variational ansatz --> Hardware efficient ansatz (HEA)
137 def set_U_theta(self): #variational_circuit
138 U_theta= np.eye (2** self.n_qubits)
139 for d in range(self.n_layers):
140 R1=1
141 R2=1
142 R3=1
143 for j in range(self.n_qubits):
144 R1= np.kron(R1 , self.Rz(self.params[j + 3*self.n_qubits*d]))
145 R2= np.kron(R2 , self.Rx(self.params[j+ self.n_qubits *(1+ 3*d)]))
146 R3= np.kron(R3 , self.Rz(self.params[j+ self.n_qubits *(2+ 3*d)]))
147
148 C1=1
149 C2= np.eye(2)
150 if self.n_qubits %2==0:
151 for j in range(int(self.n_qubits /2) -1):
152 C1= np.kron(C1 , self.CNOT)
153 C2= np.kron(C2 , self.CNOT)
154 C1= np.kron(C1 , self.CNOT)
155 C2= np.kron(C2 , np.eye (2))
156 else:
157 for j in range(int((self.n_qubits -1) /2)):
158 C1= np.kron(C1 , self.CNOT)
159 C2= np.kron(C2 , self.CNOT)
160 C1= np.kron(C1 , np.eye (2))
161
162 M= C2 @ C1 @ R3 @ R2 @ R1
163 U_theta= M @ U_theta
164
165 self.U_theta = U_theta
166
167 # Encoding layer that uses x_i as angles to encode data.
168 def single_encoding(self , qubits , x, J, sign): # J(vector[j1, j2]), sign(

vector with the signs of deltas)
169 aux=1
170 for i in range(qubits):
171 deltas =0
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172 for j in range(len(J)):
173 deltas += (i+1 == J[j])*sign[j]
174 shift= deltas %4
175 s= self.phi(x, i+1) + shift * np.pi/2
176 aux= np.kron(aux , self.Ry(s))
177 return aux
178
179 #Matrix U_phi
180 def U_phi(self , Xi , J, sign , dvar):
181 ti , xi = Xi
182 assert self.n_qubits % 2 == 0
183
184 if dvar ==0:
185 U1 = np.kron(self.single_encoding(self.n_qubits // 2, ti, [], []),

self.single_encoding(self.n_qubits // 2, xi, [], []))
186 elif dvar==’t’:
187 U1 = np.kron(self.single_encoding(self.n_qubits // 2, ti, J, sign),

self.single_encoding(self.n_qubits // 2, xi, [], []))
188 elif dvar==’x’:
189 U1 = np.kron(self.single_encoding(self.n_qubits // 2, ti, [], []),

self.single_encoding(self.n_qubits // 2, xi, J, sign))
190
191 #U1 = np.kron(self.single_encoding(self.n_qubits // len(Xi), Xi[0], [],

[]), self.single_encoding(self.n_qubits // len(Xi), Xi[1], [], []))
192 #for i in range(len(Xi) -2):
193 # U1 = np.kron(U1, self.single_encoding(self.n_qubits // len(Xi), Xi[

i+2], [], []))
194 return U1
195
196 #State |psi > after U_phi
197 def psi_phi(self , Xi , J, sign , dvar):
198 return self.U_phi(Xi, J, sign , dvar)[:,0]
199
200 def create_initials(self , Xi):
201 Psi0 = self.psi_phi(Xi, [], [], 0)
202
203 Psi1_1 = []
204 Psi1_2 = []
205 for j in range(self.n_qubits):
206 J= [j+1]
207 Psi1_1.append ([self.psi_phi(Xi, J, [1], ’t’), self.psi_phi(Xi, J,

[1], ’x’)])
208 Psi1_2.append ([self.psi_phi(Xi, J, [-1], ’t’), self.psi_phi(Xi, J,

[-1], ’x’)])
209
210
211 Psi2_1 = []
212 Psi2_2 = []
213 Psi2_3 = []
214 Psi2_4 = []
215 for j2 in range(self.n_qubits):
216 for j1 in range(self.n_qubits):
217 J= [j1+1, j2+1]
218 Psi2_1.append ([self.psi_phi(Xi, J, [1,1], ’t’),self.psi_phi(Xi,

J, [1,1], ’x’)])
219 Psi2_2.append ([self.psi_phi(Xi, J, [-1,1], ’t’),self.psi_phi(Xi,

J, [-1,1], ’x’)])
220 Psi2_3.append ([self.psi_phi(Xi, J, [1,-1], ’t’),self.psi_phi(Xi,

J, [1,-1], ’x’)])
221 Psi2_4.append ([self.psi_phi(Xi, J, [-1,-1], ’t’),self.psi_phi(Xi
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, J, [-1,-1], ’x’)])
222
223 return Psi0 , Psi1_1 , Psi1_2 , Psi2_1 , Psi2_2 , Psi2_3 , Psi2_4
224
225 def initialize_grid(self , grid):
226 initials = [[]] * len(grid)
227 for i, Xi in enumerate(grid):
228 initials[i] = list(self.create_initials(Xi))
229
230 return initials
231
232 #Calculate expectation value
233 def expectation(self , operator , state):
234 exp= state.T.conj() @ operator @ state
235 return exp.real
236 #|state > = U_theta * U_phi |0n>
237 # operator= C
238
239 #Measure
240 def output(self , in_state):
241 out_state= self.U_theta @ in_state
242 return self.expectation(self.Hamiltonian_operator , out_state)[0,0]
243
244 #Parameter shift rule
245 def ps1(self , elem , dvar):
246 count1 =0
247 if dvar == ’t’: dvar = 0
248 elif dvar == ’x’: dvar = 1
249
250 Psi0 , Psi1_1 , Psi1_2 , Psi2_1 , Psi2_2 , Psi2_3 , Psi2_4 = self.initials[

elem]
251 k=0
252 for j in range(self.n_qubits):
253 out1= self.output(Psi1_1[k][dvar])
254 out2= self.output(Psi1_2[k][dvar])
255 count1 += (j+1)*(out1 -out2)
256 k+=1
257 return count1
258
259 #Parameter shift rule applied twice
260 def ps2 (self , elem , dvar):
261 count2 =0
262 if dvar == ’t’: dvar = 0
263 elif dvar == ’x’: dvar = 1
264
265 Psi0 , Psi1_1 , Psi1_2 , Psi2_1 , Psi2_2 , Psi2_3 , Psi2_4 = self.initials[

elem]
266
267 k = 0
268 for j2 in range(self.n_qubits):
269 for j1 in range(self.n_qubits):
270 out1= self.output(Psi2_1[k][dvar])
271 out2= self.output(Psi2_2[k][dvar])
272 out3= self.output(Psi2_3[k][dvar])
273 out4= self.output(Psi2_4[k][dvar])
274 count2 += (j1+1)*(j2+1)*(out1 - out2 - out3 + out4)
275 k += 1
276 return count2
277
278 def ui(self , elem):
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279 Psi0 , Psi1_1 , Psi1_2 , Psi2_1 , Psi2_2 , Psi2_3 , Psi2_4 = self.initials[
elem]

280 return self.output(Psi0)
281
282 def uBC(self , elem):
283 BC_Psi0 , BC_Psi1_1 , BC_Psi1_2 , BC_Psi2_1 , BC_Psi2_2 , BC_Psi2_3 ,

BC_Psi2_4 = self.BC_initials[elem]
284 return self.output(BC_Psi0)
285
286 #First derivative
287 def u_i(self , elem , dvar):
288 if dvar== ’t’: return 1/2* self.ps1(elem , dvar)*self.dphi1(self.Points[

elem ][0])
289 elif dvar== ’x’: return 1/2* self.ps1(elem , dvar)*self.dphi1(self.Points[

elem ][1])
290
291 #Second derivative
292 def u_ii(self ,elem , dvar):
293 if dvar== ’t’: return self.ps2(elem ,dvar)*1/4*( self.dphi1(self.Points[

elem ][0]))**2 + 1/2* self.ps1(elem ,dvar)*self.dphi2(self.Points[elem ][0])
294 elif dvar== ’x’: return self.ps2(elem ,dvar)*1/4*( self.dphi1(self.Points[

elem ][1]))**2 + 1/2* self.ps1(elem ,dvar)*self.dphi2(self.Points[elem ][1])
295
296
297 def set_lambda(self , weights):
298 if weights ==0:
299 lambda_f = (1/ self.N)/(1/ self.N + 2/self.t_points + 1/(len(self.

BC_Data) -2*self.t_points))
300 lambda_bl= (1/ self.t_points)/(1/ self.N + 2/self.t_points + 1/( len(

self.BC_Data) -2*self.t_points))
301 lambda_br= (1/ self.t_points)/(1/ self.N + 2/self.t_points + 1/( len(

self.BC_Data) -2*self.t_points))
302 lambda_b0 = (1/( len(self.BC_Data) -2*self.t_points))/(1/ self.N + 2/

self.t_points + 1/( len(self.BC_Data) -2*self.t_points))
303 elif weights ==1:
304 lambda_f = self.N/(self.N + 2*self.t_points + (len(self.BC_Data) -2*

self.t_points))
305 lambda_bl= self.t_points /(self.N + 2*self.t_points + (len(self.

BC_Data) -2*self.t_points))
306 lambda_br= self.t_points /(self.N + 2*self.t_points + (len(self.

BC_Data) -2*self.t_points))
307 lambda_b0 = (len(self.BC_Data) -2*self.t_points)/(self.N + 2*self.

t_points + (len(self.BC_Data) -2*self.t_points))
308
309 return lambda_f , lambda_bl , lambda_br , lambda_b0
310
311 def norm_inf(self , x,y):
312 return np.max(np.abs(x-y))**2
313
314 def __call__(self ,i):
315 u = self.ui(i)
316 ut = self.u_i(i, ’t’)
317 ux = self.u_i(i, ’x’)
318 uxx = self.u_ii(i, ’x’)
319
320 return u, ut , ux, uxx
321
322 def predict(self):
323 u= np.zeros(self.N)
324 ut= np.zeros(self.N)
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325 ux= np.zeros(self.N)
326 uxx= np.zeros(self.N)
327 for i, Xi in enumerate(self.Points):
328 u[i], ut[i], ux[i], uxx[i] = self(i)
329 return u, ut , ux, uxx
330
331 def predict_BC(self):
332 u_bc=np.zeros(self.M)
333 for i, Xi in enumerate(self.BC_Points):
334 u_bc[i] = self.uBC(i)
335 return u_bc
336
337
338 def cost_theta (self , u, ut, ux , uxx , u_bc):
339
340 lambda_f , lambda_bl , lambda_br , lambda_b0 = self.set_lambda(self.weights

)
341
342 if self.error==’MSE’: #Mean Squared Error
343 norm = mean_squared_error
344 elif self.error==’MAE’: #Mean Absolute Error
345 norm = mean_absolute_error
346 elif self.error==’MAX’: #Max absolute
347 norm = self.norm_inf
348
349 #Discover_w
350 #Fw= self.w*uxx -ut
351 #Fw= w1*u + w2*ux + w3*uxx
352
353 #PQC
354 Fw= self.w0*uxx -ut
355
356 function_loss= norm(Fw , np.zeros_like(Fw))
357 L_diff= lambda_f*function_loss
358
359 L_Xl= lambda_bl*norm(u_bc [0: self.t_points], self.BC_Data [0: self.t_points

])
360 L_Xr= lambda_br*norm(u_bc[self.t_points :2* self.t_points], self.BC_Data[

self.t_points :2* self.t_points ])
361 L_T0= lambda_b0*norm(u_bc [2* self.t_points:len(u_bc)], self.BC_Data [2*

self.t_points:len(self.BC_Data)])
362
363 cost= L_diff + L_Xl + L_Xr + L_T0
364 self.L_cost= np.array ([cost , L_diff , L_Xl , L_Xr , L_T0])
365
366 return cost
367
368 def cost_w (self , u):
369 data_loss= mean_squared_error(u, self.Y_noisy [0])
370 return data_loss
371
372
373 def loss_theta(self , theta):
374 self.set_params(theta)
375 u, ut, ux , uxx = self.predict ()
376 u_bc = self.predict_BC ()
377
378 return self.cost_theta (u, ut , ux, uxx , u_bc)
379
380 def loss_w (self , w):
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381 self.w= w
382 optimal_theta = self.fit_theta(inplace=True)
383 self.set_params(optimal_theta)
384 u, ut, ux , uxx = self.predict ()
385 self.L_w.append(self.cost_w(u))
386 self.ws.append(self.w)
387
388 return self.cost_w(u)
389
390 def callback_theta(self , theta):
391 print(’Loss function:’, self.loss_theta(theta))
392
393
394 def fit_theta(self , inplace = True):
395 old_parameters = np.copy(self.params)
396 optimal_theta = minimize(self.loss_theta , self.params , method="L-BFGS -B"

, bounds= Bounds(lb=0, ub=2*np.pi), callback= self.callback_theta(self.
params))

397
398 if inplace:
399 self.params = np.copy(optimal_theta.x)
400 else:
401 self.params = np.copy(old_parameters)
402
403 return optimal_theta.x
404
405 def fit_w(self):
406 #optimal_w = minimize(self.loss_w , self.w0 , method ="L-BFGS -B")
407 optimal_w = minimize_scalar(self.loss_w)
408 return optimal_w.x
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