
How to Fit a Tree in a Box

Hugo A. Akitaya1, Maarten Löffler2, and Irene Parada3

1 Tufts University, Massachusetts, USA
hugo.alves akitaya@tufts.edu

2 Utrecht University, Utrecht, The Netherlands
m.loffler@uu.nl

3 Graz University of Technology, Graz, Austria
iparada@ist.tugraz.at

Abstract. We study compact straight-line embeddings of trees. We
show that perfect binary trees can be embedded optimally: a tree with
n nodes can be drawn on a

√
n by

√
n grid. We also show that test-

ing whether a given binary tree has an upward embedding with a given
combinatorial embedding in a given grid is NP-hard.

1 Introduction

Let T = (V,E) be combinatorial tree; that is, a connected graph without cycles.
A straight-line embedding of T onto a grid is an injective map f : V → Z2.
An embedding is planar if for every pair of edges (v1, v2), (w1, w2) ∈ E the
line segments f(v1)f(v2) and f(w1)f(w2) do not intersect except at common
endpoints. The size or dimensions of an embedding (or, with slight abuse of
terminology, the size of the grid) is the width and height of the portion of Z2

used by f ; that is,

dimf (T ) =

(
max
v∈V

xf(v) −min
v∈V

xf(v) + 1,max
v∈V

yf(v) −min
v∈V

yf(v) + 1

)
.

We are interested in finding embeddings with as small a size as possible.
A rooted tree is a tree T with a special vertex r ∈ V marked as root. Because

a tree has no cycles, a rooted tree has an induced partial order on its vertices:
for two vertices v, w ∈ V , we say v ≺ w if and only if v lies on the path from
r to w. An embedding is upward if, for all v, w ∈ V with v ≺ w, we have
yf(v) > yf(w). An embedding is weakly upward if, for all v, w ∈ V with v ≺ w,
we have yf(v) ≥ yf(w).

Related Work. Drawing graphs with small area has a long and rich history [6].
By now, we are starting to have some understanding of when graphs admit
drawings with linear area (a graph with n nodes can be embedded on a w × h
grid with wh ∈ O(n)), and when superlinear area is required. Chan [4] shows

that every tree admits a drawing with n2O(
√
log logn log log logn) area, improving

the long-standing O(n log n) bound one obtains by a simple divide-and-conquer
layout algorithm.

ar
X

iv
:1

80
8.

10
57

2v
1 

 [
cs

.C
G

] 
 3

1 
A

ug
 2

01
8



2 Hugo A. Akitaya, Maarten Löffler, and Irene Parada

However, not much is known about the exact minimum area requirements
for graphs that do admit linear-area drawings. It is clear that not every tree
admits a perfect drawing on a grid with exactly n points: for instance, when
the graph is a star, some grid points are “blocked” and cannot be used. The
star graph can be drawn on a linear-area grid: Euler already showed that the
fraction of points visible from the center of a square grid tends to 6

π2 more than
300 years ago [7]. For graphs of bounded degree, there is hope that we can do
better. Clearly, every path admits a perfect drawing. Garg and Rusu [8,9] show
that trees of degree d = O(nδ) with δ < 1/2, and in particular of degree 3, have
linear-area drawings onto a square grid, and even onto grids of different aspect
ratio; their main concern is studying the relation between the aspect ratio and
the area, but they do not give concrete bounds on the constant factor.

We conjecture that every degree 3 tree admits a perfect drawing onto a square
grid, and we prove here that this is the case for perfect binary trees.

When drawing rooted trees, a natural restriction is to require drawings to
be upward. In this case, clearly, perfect drawings are impossible unless the tree
is a path, but we may still investigate almost-perfect drawings that leave only
few grid points unused. Chan [4] shows that for strictly upward drawings, we
cannot do better than Θ(n log n) area. He does give an improved bound for
weakly upward drawings.

Biedl and Mondal [3] proved NP-hardness for strictly upward unordered
straight-line high-degree trees. Later, Biedl [2] gave an algorithm to find for
every ternary tree T a strictly upward order-preserving straight-line grid draw-
ing of optimum width.

Contribution. We have the following results.

– It is NP-hard to test whether binary trees with fixed combinatorial embed-
ding admit upward drawings on a given grid.

– Perfect binary trees with n vertices admit drawings on a
√
n×
√
n grid.

2 Optimal embeddings of perfect binary trees

We consider the following setting. Given a
√
n ×
√
n grid and a tree with n

vertices, can we draw it with straight non-crossing edges? Clearly this is not
always possible, for instance if the tree is a star.

Conjecture 1. If the tree has max degree 3, it is always possible.

In particular, if n = 2k+1, a perfect binary tree of odd height k with additional
parent of the root (to make the number of vertices exactly n) can be drawn on
the
√
n×
√
n grid. We use a recursive strategy to show it. Similar approaches re-

cursively embedding trees have been previously used to show asymptotic bounds
(but disregarding smaller order terms); in particular to prove that perfect binary
trees and Fibonacci trees can be upward drawn in linear area [5] and to bound
the area of complete ternary and 7-ary trees on the 8-grid [1].



How to Fit a Tree in a Box 3

F GG
FF

G

F F

G
G

G
FF

G

G

FF

G
G

FF

G
G

FF

G

FF
G

G
FF
G

G

FF
G

G
F F

G

G

(a) Tiles F and G, and their recursive definition.

Fk−4 Fk−4

Gk−4
Gk−4

Fk−4Fk−4

Gk−4

Gk−4

Fk−4 Fk−4

Gk−4
Gk−4Fk−4Fk−4

Gk−4

Gk−4

Gk−2
Gk−2

Fk−2Fk−2

(b) Right and center: recursive definition of Fk. Left: F5.

Fig. 1: Recursive embedding of perfect binary trees.

Theorem 1. The perfect binary tree on n = 2k+1 − 1 vertices with k odd can
be embedded in the

√
n×
√
n square grid.

Proof. We will recursively argue that perfect binary trees can be embedded in
square grids in two ways. Let Tk be the perfect binary tree on n = 2k+1 − 1
vertices. We will recursively define two straight-line crossing-free drawings, Fk
and Gk, of Tk. The vertices in these drawings are placed in the grid points
{(x, y) ∈ Z2 : 1 ≤ x ≤ 2(k+1)/2, 1 ≤ y ≤ 2(k+1)/2}.

We first list the required properties of Fk and Gk, also illustrated in Fig. 1a:

(i) both Fk and Gk map the root of Tk to the point (2(k−1)/2 + 1, 2(k−1)/2);

(ii) both Fk and Gk do not place any edges in the vertical strip between x =
2(k−1)/2 and x = 2(k−1)/2 + 1, except for the edges incident to the root of
Tk;

(iii) Fk leaves the point (2(k−1)/2, 1) unused; and

(iv) Gk leaves the point (1, 1) unused.

Observe that F1 = G1 is trivial to draw: both are drawings of a path of
length 2, drawn by connecting the point (1, 2) to the point (2, 1) to the point
(2, 2).

What remains is to argue that we can recursively draw Fk and Gk using
drawings of Fk−2 and Gk−2. The argument is illustrated in Fig. 1; the full proof
can be found in Appendix A. ut



4 Hugo A. Akitaya, Maarten Löffler, and Irene Parada

3 Upward embedding of trees in a given grid is NP-Hard

Recall that an embedding of a rooted tree is upward if the y-coordinate of a node
is strictly greater than the y-coordinate of its children. A combinatorial embed-
ding is given by a circular order of incident edges around each vertex. In this
section we show that deciding if a rooted binary tree with a fixed combinatorial
embedding can be drawn upward and without crossings in a given square grid
is NP-complete.

Theorem 2. Deciding whether an upward planar straight-line drawing of a fixed
combinatorial embedding of a rooted binary tree on a grid of given size (w × h)
exists is NP-complete.

Proof. The problem is in NP since a geometric drawing of a tree with k vertices
in the grid can be expressed in O(k) size by assigning vertices to grid points.
Checking whether the drawing is an embedding can trivially be done in O(k2)
time by checking pairwise edge crossings. Checking whether the drawing pre-
serves the given rotation system takes O(k2) time and checking whether it is
upward can be done in O(k) time.

We prove NP-hardness by a reduction from 3SAT which is an NP-complete
problem [10]. An instance of 3SAT is given by a set {x1, . . . , xn} of n variables
and a set {c1, . . . , cm} of m clauses. Each variable can assume one of two values
in {true, false}. Each clause is defined by 3 literals, i.e., positive or negative
copies of a variable. A clause is satisfied if at least one of its literals is true. The
problem 3SAT asks for an assignment from the variables to {true, false} that
satisfies all clauses. We give an arbitrary order for the variables and say that
xi appears before xj if i < j. The first (resp., second, resp., third) literal of a
clause is the literal (among the 3 literal that define the clause) of the variable
that appears first (resp., second, resp., third) in the order assigned to variables.
Given an instance of 3SAT we build a rooted tree with O(m2 +mn) vertices and
set w = 4m+ 4 and h = dlg(4m+ 4)e+ 5n+ 4m+ 1.

Overview. Refer to Fig. 2. This paragraph gives a brief informal overview of
the reduction. The following paragraphs will give a full proof. The reduction is
divided into 3 parts. The top part (spanning the top dlg(4m+4)e rows in Fig. 2)
is a perfect binary tree with 2dlg(4m+4)e−1 leaves. The middle part (spanning the
next 5n rows in Fig. 3) is where the variables are assigned a boolean value. The
bottom part (spanning the last 4m+ 1 rows in Fig. 3) enforces that every clause
of the original instance of 3SAT is satisfied. Each variable is represented by a
red subtree with two long paths that have to span all but one row below the
least common ancestor. The left (resp., right) path represents a positive (resp.,
negative) literal of the variable. The construction forces one of the paths to be
drawn one unit above the other and that encodes the boolean assignment. If
the left path does not span the last row, then the variable is set to true. The
variable is set to false otherwise. In Fig. 2, x2 and x3 (resp., x1 and x4) are
set to true (resp., false). The blue subtrees encode the clauses by allowing the
rest of the construction to occupy specific extra grid positions. The incidence



How to Fit a Tree in a Box 5

Fig. 2: Reduction from 3-SAT.

of a variable in a clause is encoded by an extra leaf child in one of the paths
that represent the incident literal corresponding to the variable. If none of the
incident literals of a clause are set to true, the drawing would require the use
of an extra row or column. Otherwise, the extra leaves can be accommodated
exactly by the space provided by the blue subtrees.

Construction. There are exactly 4m+4 subtrees attached to the perfect binary
tree on the top of the construction. The fixed combinatorial embedding prescribes
a left-to-right order of such subtrees. For each variable xi, do the following. Set
the 4(i − 1) + 1-th subtree to be a path p of length 5n + 4m; attach another
path of length 5n+ 4m− 5(i− 1)− 4 to the right of the 5(i− 1) + 4-th vertex of
p. Attach a right child to the second to last vertex of p. Set the 4(i− 1) + 2-th
subtree to be a path of length 5(i− 1) + 1. Set the 4(i− 1) + 3-th subtree to be
a path of length 5(i− 1). At the end of the path, attach two paths pt and pf of
length 5(n− i+ 1) + 4m− 2 each as left and right subtrees respectively. Attach
a right (resp., left) child to the first vertex of pt (resp., pf ). We now describe
the position of the vertices that encode the incidence of a variable in a clause.
We call such vertices literal leaves. If xi (resp., xi) is the first or second literal
of cj , then add a right child `i,j to the 5(n − i + 1) + 4(m − 1)-th vertex of pt
(resp., pf ). If xi (resp., xi) is the third literal of cj , then add a left child `i,j to
the 5(n− i+ 1) + 4(m−1)-th vertex of pt (resp., pf ). The 4(i−1) + 3-th subtree
is shown in red in Fig. 2. Set the 4(i− 1) + 4-th subtree to be a path of length
5(i− 1). Finally, we describe the four last subtrees (shown in blue in Fig. 2). Set



6 Hugo A. Akitaya, Maarten Löffler, and Irene Parada

the 4m+ 1-th, 4m+ 2-th, and 4m+ 3-th subtrees to be paths of length 5n+ 4m
each. For every clause cj , attach a right leaf child to the 5n + 4j-th vertex of
the 4m + 3-th subtree. Set the last subtree to be a path of length 5n. For each
variable xi, attach a right leaf child to the 5i − 4-th vertex of the path. This
finalizes the construction.

Correctness. We argue that the construction is correct, by showing that every
satisfiable 3SAT instance can indeed be embedded in a w × h grid, and that
every drawing that fits in a w × h grid must correspond to a satisfiable 3SAT
instance. The full details can be found in Appendix B. ut

4 Conclusions

We studied tree drawings in small areas.
For arbitrary drawings, we gave a construction for embedding a perfect binary

tree on a square grid. The main remaining open question here is whether every
low-degree tree with wh vertices (or fewer) can be embedded on an w × h grid.
We conjecture that this is the case when w = h. Another intriguing question is
whether, for general trees, testing if they can be embedded on a given grid is
computationally tractable.

For upward drawings, we showed that even for bounded-degree trees, testing
whether a given tree can be embedded in a w× h rectangle is already NP-hard,
if the combinatorial embedding of the tree is fixed. It would be interesting to
know whether the same is true when one can freely choose the combinatorial
embedding. Another question is whether the problem is also NP-hard for weakly
upward drawings, where adjacent vertices may be embedded using the same
y-coordinate.

Acknowledgements

This research was initiated at the 33rd Bellairs Winter Workshop on Computa-
tional Geometry in 2018. We would like to thank all participants of the work-
shop for fruitful discussions on the topic. H.A.A. was supported by NSF awards
CCF-1422311 and CCF-1423615, and the Science Without Borders scholarship
program. M.L. was partially supported by the Netherlands Organisation for Sci-
entific Research (NWO) through grant number 614.001.504. I.P. was supported
by the Austrian Science Fund (FWF) grant W1230.

References

1. Bachmaier, C., Matzeder, M.: Drawing unordered trees on k-grids. In:
Rahman, M.S., Nakano, S.i. (eds.) WALCOM: Algorithms and Computa-
tion. pp. 198–210. Springer Berlin Heidelberg, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28076-4 20



How to Fit a Tree in a Box 7

2. Biedl, T.: Ideal drawings of rooted trees with approximately optimal width.
Journal of Graph Algorithms and Applications 21(4), 631–648 (2017).
https://doi.org/10.7155/jgaa.00432

3. Biedl, T., Mondal, D.: On upward drawings of trees on a given grid. In: 25th In-
ternational Symposium on Graph Drawing and Network Visualization (GD 2017).
pp. 318–325 (2017). https://doi.org/10.1007/978-3-319-73915-1 25

4. Chan, T.M.: Tree drawings revisited. In: Speckmann, B., Tóth, C.D. (eds.)
34th International Symposium on Computational Geometry (SoCG 2018). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 99, pp. 23:1–23:15.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018).
https://doi.org/10.4230/LIPIcs.SoCG.2018.23

5. Crescenzi, P., Battista, G.D., Piperno, A.: A note on optimal area algorithms for
upward drawings of binary trees. Computational Geometry 2(4), 187–200 (1992).
https://doi.org/10.1016/0925-7721(92)90021-J

6. Dı́az, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Computing
Surveys 34(3), 313–356 (2002). https://doi.org/10.1145/568522.568523

7. Dunham, W.: Euler: the master of us all. Dolciani Mathematical Expositions (Book
22), Mathematical Association of America (1999)

8. Garg, A., Rusu, A.: Straight-line drawings of general trees with linear area and
arbitrary aspect ratio. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P.
(eds.) Computational Science and Its Applications (ICCSA 2003). pp. 876–885.
Springer Berlin Heidelberg, Berlin, Heidelberg (2003). https://doi.org/10.1007/3-
540-44842-X 89

9. Garg, A., Rusu, A.: Straight-line drawings of binary trees with linear area and
arbitrary aspect ratio. Journal of Graph Algorithms and Applications 8(2), 135–
160 (2004). https://doi.org/10.7155/jgaa.00086

10. Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer
Computations: Proceedings of a symposium on the Complexity of Computer Com-
putations. pp. 85–103 (1972). https://doi.org/10.2307/2271828

A Full Proof of Theorem 1

We argue that the construction in the proof of Theorem 1 is correct, by showing
that we can recursively draw Fk and Gk using drawings of Fk−2 and Gk−2. The
argument below is illustrated in Fig. 1.

To draw Fk we place two (possibly mirrored) copies of Fk−2 and two (possibly
mirrored) copies of Gk−2 in the four quadrants of the 2(k+1)/2 by 2(k+1)/2 grid:
one identical copy of Fk−2 in the top right quadrant, one horizontally mirrored
copy of Fk−2 in the top left quadrant, one vertically mirrored copy of Gk−2 in
the bottom right quadrant, and one horizontally mirrored copy of Gk−2 in the
bottom right quadrant. Because, except for edges incident to the respective roots,
each copy leaves a vertical strip empty, we can connect the roots of the top right
and bottom right subtrees to a new node at (2(k−1)/2 + 2(k−3)/2, 2(k−1)/2 + 1)
(which was left empty by definition of F ). Note that, since the new edges are also
incident to the roots of the subtrees, they don’t cross with the edges incident
to the respective roots that cross the strip. Moreover, the new top edge lies
completely above the edge crossing the strip in the bottom right quadrant and
the new bottom edge lies completely below the edge crossing the strip in the top



8 Hugo A. Akitaya, Maarten Löffler, and Irene Parada

right quadrant. Thus, the two new edges are drawn without crossings. Similarly,
we connect the roots of the top left and bottom left subtrees to a new node
at (2(k−3)/2 + 1, 2(k−1)/2 + 1). Finally, we connect both of these new nodes to
the new root of Tk, drawn at (2(k−1)/2 + 1, 2(k−1)/2) (which was left empty by
definition of G), as required. The point (2(k−1)/2, 1) remains unused, and the
central vertical strip is empty except for one edge connecting the root of Tk to
the left subtree.

To draw Gk we also place two copies of Fk−2 and two copies of Gk−2 in the
four quadrants of the 2(k+1)/2 by 2(k+1)/2 grid: one identical copy of Fk−2 in the
top right quadrant, another identical copy of Fk−2 in the top left quadrant, one
identical copy of Gk−2 in the bottom left quadrant, and one vertically mirrored
copy of Gk−2 in the bottom right quadrant. As in the case of F , we can connect
the roots of the top right and bottom right subtrees to a new node at (2(k−1)/2+
2(k−3)/2, 2(k−1)/2 +1), and the roots of the top left and bottom left subtrees to a
new node at (2(k−3)/2, 2(k−1)/2 + 1). We connect the two new nodes to the new
root of Gk at (2(k−1)/2 + 1, 2(k−1)/2). The point (1, 1) remains unused, and the
central vertical strip is again empty except for the edge connecting the root of
Gk to the left subtree.

B Full Proof of Theorem 2

We argue that the hardness construction in the proof of Theorem 2 is correct,
by showing that every satisfiable 3SAT instance can indeed be embedded in a
w× h grid, and that every drawing that fits in a w× h grid must correspond to
a satisfiable 3SAT instance.

Correctness (⇒). First assume that the 3SAT instance has a positive solution.
Then we can upward embed the constructed tree in a (w×h) grid as follows. Use
the first dlg(4m+4)e rows to embed the top part of the tree (perfect binary tree).
We describe the embedding by assigning grid points to vertices of the subtrees
from left to right. Let the bottom left grid point be (0, 0). Assign the root of the
s-th subtree to (s, 5n+ 4m). We describe the embedding from left to right with
s starting with 1 until 4m+ 4.

General rule. Apart from the roots of the paths pt and pf of the red subtrees,
and the literal leaves, recursively assign the left child to the leftmost free grid
point in the row immediately below its parent, then assign the right child to the
leftmost free grid point in the same row.

Encoding truth assignment. For the i-th red subtree (i.e., s = 4i − 1), let vi be
the least common ancestor of pt and pf . Denote by (vi.x, vi.y) the coordinate of
the grid point assigned to vi. If xi is assigned true (resp., false) in the solution
of the 3SAT instance, respectively assign the roots of pt and pf to (vi.x, vi.y−1)
and (vi.x+ 1, vi.y − 2) (resp., (vi.x− 1, vi.y − 2) and (vi.x, vi.y − 1)).



How to Fit a Tree in a Box 9

Position of literal leaves `i,j. Let a be the parent of `i,j . If xi or xi is the first
literal of a clause cj , we place `i,j as follows. If it is the last (and therefore the
only) literal of cj with true value, assign it to (a.x+ 1, a.y − 1) (see Fig. 3(a)).
Else, if its value is true, assign it to (a.x + 1, a.y − 3) (see Fig. 3(b)). Else,
assign it to (a.x + 1, a.y − 2) (see Fig. 3(c)). If xi or xi is the second literal
of a clause cj , we proceed as follows. If it is the last true literal of cj , assign
`i,j to (a.x + 1, a.y − 1) (see Fig. 3(d)). Else, if its value is true, assign it to
(a.x + 1, a.y − 2) (see Fig. 3 (e)). If the first literal of cj was embedded as in
Fig. 3(a), then assign `i,j to (a.x, a.y − 1) (see Fig. 3(f)). Else, assign `i,j to
(a.x+ 1, a.y − 1) (see Fig. 3(g)). If xi or xi is the third literal of a clause cj , we
proceed as follows. If its value is true, assign `i,j to (a.x, a.y−1) (see Fig. 3(h)).
Else, if the second literal of cj was embedded as in Fig. 3(f) (which happens
when the first and second literals are true and false respectively), then assign
`i,j to (a.x− 1, a.y − 2) (see Fig. 3(i)). Else, assign `i,j to (a.x− 1, a.y − 1) (see
Fig. 3(j)). By construction, the blue subtrees will occupy one less grid points in
3 rows of y-coordinate 1 + 4(m− j), 2 + 4(m− j) and 3 + 4(m− j) for each cj .
Since the SAT instance has a positive solution, these will be exactly filled by the
literal leaves of the corresponding variable gadgets.

Correctness (⇐). Now, assume that the constructed tree can be upward em-
bedded in the (w × h) grid. We show that the 3SAT instance has a positive
solution.

Top part. Notice that the number of vertices in the subtrees of the descendants
of the top perfect binary tree is (5n + 4m + 1)(4m + 4). The uppermost y-
coordinate that each root of a subtree can occupy is 5n+ 4m because each has
exactly dlg(4m + 4)e ancestors. Then, the solution must place all 4m + 4 roots
of such subtrees on the row with y-coordinate 5n+ 4m and

(?) every point of the grid below this y-coordinate must be occupied.

Frame. The first subtree can only be embedded as shown in Fig. 3, i.e., each
node occupying the uppermost leftmost grid point possible, or else a grid point

Fig. 3: Possible embeddings for the literal leaves of a clause.



10 Hugo A. Akitaya, Maarten Löffler, and Irene Parada

would not be used contradicting (?). The same is valid for the blue subtrees
as well switching leftmost for rightmost, by (?). The second tree also has only
one possible embedding by (?): if a vertex is mapped to a point that is to the
right of its leftmost possible position, then a grid point would be unused; else
if it is mapped to a point lower than its uppermost possible position, then the
edge between the vertex and its parent would go through a grid point, making
it unusable by other vertices.

Variable assignment. Let T1 be the first red subtree. We show that the top
part of T1 has only two possible embeddings. First, note that due to a “bump”
created by a leaf of the last subtree, every grid point (b, 4m+ 5n− 1) for b ≥ 3
is occupied by a vertex of a tree to the right of T1, or else (?) would be violated.
Let vl and vr be the roots of pl and pr respectively (i.e., children of the root of
T1). Then, only one among vl and vr can be at (2, 4m + 5n − 1) and those are
the only vertices that can be assigned to that grid point. If we choose vl (resp.,
vr) to be at (2, 4m + 5n − 1), then vr (resp., vl) must be at (1, 4m + 5n − 2)
(resp., (3, 4m+ 5n− 2)). The remainder of the embedding of T1 is fixed by (?)
until row 4m. Using similar arguments, we can show that, if (?) is satisfied, once
we fix the embedding of the top part of T1, the embeddings of all subtrees are
fixed from their roots to row 4m+ 5n− 5. We can then apply induction to show
that there are only two possible embeddings for the top part of i-th red subtree
Ti and every non-red subtree has a fixed embedding until row 4m.

Clause satisfaction. Once the middle part of the construction is fixed, row 0 is
also fixed because the 4m+3 leftmost vertices at row 4m have 4m+4 descendant
leaves at distance 4m. That implies that every vertex on a path of length 4m
or 4m − 1 in the bottom part of the construction has their y-coordinate fixed.
Because of the fixed position of the leaves of the blue trees, the literal leaves of
a clause cj can only occupy the y-coordinates 4(m − j) + 1, 4(m − j) + 2, and
4(m−j)+3. Note that a literal leaf can only occupy a y-coordinate 4(m−j)+3 if
the corresponding red path was embedded above the other red path of the same
variable. Since every clause must have a literal leaf at y-coordinate 4(m− j) + 3,
assigning true (resp., false) to xi if the corresponding pl (resp., pr) is embedded
above pr (resp., pl) will result in a satisfying assignment.


	How to Fit a Tree in a Box

