Object Certification*

Amflcar Sernadas’
Cristina Sernadast

June 29, 1994

Abstract

A brief overview is made of the use of temporal logic formalisms for
specifying and verifying concurrent systems in general and information
systems in particular. The requirements imposed by object-orientation on
such formalisms are examined. A logic is proposed fulfilling those require-
ments (except concerning non-monotonic features), allowing the uniform
treatment of both local and global properties of systems with concurrent,
interacting components organized in classes, and supporting specializa-
tion. A semantics and a calculus (following an axiomatic, Hilbert style)
are presented in detail. The calculus includes rules for the sound inheri-
tance and reflection of theorems between classes. Practical aspects of the
usage of such a logic for both specification and verification are considered.
To this end a set of metatheorems is provided for expediting the proof of
invariants. Finally, the need and availability of automatic theorem proving
for systems querying is briefly discussed.

1 Introduction

Object-oriented programming has become increasingly popular thanks to the
expected advantages in software development and maintenance productivity.
Such advantages are presented as corollaries of the intensive use of the data
encapsulation and reuse facilities made available by the object-oriented devel-
opment languages and systems. Object-orientation seems also to pay-off at the
level of software specification and design. Therefore, one should ask what kind
of object-oriented specification language should be adopted.

We defend a formal approach to specification since the price of lower flexibil-
ity at the early stages is well counterbalanced by the advantages of a rigourous
semantics and correctness verifiability. The latter imposes more than a formal
specification language: a deductive system is needed also, making it a specifi-
cation/verification logic. Indeed, object-orientation promises a lot at the level

*This work was partly supported by CEC under ESPRIT-III BRA WG 6071 IS-CORE
(Information Systems - COrrectness and REusability) and BRA WG 6112 COMPASS (COM-
Prehensive Algebraic approach to System Specification and development) and by ESDI under
research contract OBLOG (OBject LOGic).

tIST, Department of Mathematics, Lisbon, Portugal, E-mail:acs@inesc.pt

*IST, Department of Mathematics, Lisbon, Portugal, E-mail:css@inesc.pt

=5 Bs

of the deductive system: it should be possible to carry out “local” proofs and
later on assess if and how the resulting theorems carry over to the “whole”.

More specifically, we defend a temporal logic approach to object specifica-
tion, in the sequel of the intensive work triggered by [Pnu77] in the general
direction of using temporal logic for concurrent system specification. Sub-
stantial effort was dedicated to the compositionality of temporal specifications
[HO83, BKP84, BKP85, BKP86, NDOGS86]. It is also worhtwhile to look
at the effort towards the specification and verification of liveness properties
[Man82, MCS82, Jon87, MP91]. The recent text book [MP92] is a quite useful
general reference. The interested reader should also consult [Hai82]. For an
overview see [Eme90]. Closer to the application area of information systems,
some effort triggered by [Ser80] has been dedicated to establishing appropriate
temporal logic frameworks for the specification and verification of information
systems [FS88, CS88, CS91].

More recently several attempts have been made towards the development
of a suitable temporal logic around the concepts of object-orientation, mainly
within the scope of the Esprit BRA IS-CORE [SFSE89a, SSC92, FSMS92,
FM92, FM94]. Some interesting results have been obtained concerning compo-
sitionality [FCSM93, SS93] within an institutional setting. Indeed, it is clear
that one should try to find a suitable institution [GB84, GB92] in order to es-
tablish the envisaged degree of compositionality of specifications and theories.

Herein we present a revised and extended version of the logic of object classes
and object aspects presented in [SSC92]. The proposed logic is an extension
of a rather standard linear temporal, many-sorted, first-order predicate logic
with equality. The extensions where designed to be as simple as possible while
fulfilling the requirements imposed by object-orientation. The logic allows the
uniform treatment of both local and global properties of systems with concur-
rent, interacting components organized in classes, and supports specialization.
A semantics and a calculus (following an axiomatic, Hilbert style) are presented
in detail. The calculus includes rules for the inheritance and reflection of the-
orems between classes. Practical aspects of the usage of such a logic for both
specification and verification are considered. To this end a set of metatheorems
is provided for expediting the proof of invariants. Finally, the need and avail-
ability of automatic theorem proving for systems querying is briefly discussed.

We assume that the reader is conversant with the field of temporal logic
specification (for instance at the level of [MP92]). We also use a little bit of
category theory (the reader may find all relevant concepts in the introductory
chapters of any textbook on the matter, eg [AHS90]): the more exotic notion of
freely generated cartesian category is described in [SSC92]. We also assume that
the reader is familiar with the use of many-sorted formalisms for specification
purposes, as in the algebraic abstract data type setting (see [EM85]).

Before entering the presentation of the proposed logic of object classes,
Section 2 discusses the underlying object framework (following [ES91]) and
outlines the main requirements for an object-oriented logic. The logic itself is
established in Section 3: language, semantics and deductive system. Section
4 provides some additional techniques for practical use of the logic in object
system specification and verification with emphasis on invariants.

-56-

2 Requirements of object-orientation

At first sight, an object is an entity with an internal state (reflected in the
values of its slots) that may interact with other objects. While so interacting
an object displays some behaviour. That is, depending on its internal state,
it is not always ready to provide the same services to the others and/or to
ask the same services of others. The most basic unit of interaction is the
event: for instance, the event open-door may be shared by a person and a
car. Therefore, the behaviour of an object may be seen as corresponding to a
state-dependent menu of enabled actions (the set of actions that the object is
“ready” to execute).

At this naive level of analysis, already adopted in [SFSE89b, SE91, FSMS92],
the specification of an object should include the list of its slots (with the indi-
cation of their result sorts), the list of its actions (with the indication of their
parameter sorts if any) and the constraints on its behaviour. The life of an
object would correspond to a trajectory of the events that happened since its
birth. .

As an illustration consider books as objects. Among their slots we may
find: code (taking values in the set of natural numbers), registered-in (taking
values in the set of books), and available (taking boolean values). For instance,
available=true is supposed to mean that a book is available for borrowing.
Among the actions of books we may consider: is-taken (with a parameter taking
values in the set of users) and is-returned (with a similar parameter). For
instance, the occurrence of the event is-taken(John) is supposed to mean that
the book under consideration was at that point taken out by user John. Clearly,
that event may only happen in a state where the book is available.

Actually, the picture is a little bit more complex: what we have been talking
about so far is just an object aspect [ES91]. Indeed, if we consider an object
like “Abstract and Concrete Categories” in some library, it may have several
aspects: it is a book (having all properties of books in that library), but it may
also be a reserved-book (having the added properties of the so called reserved
books that may not be taken away from the library). The other objects may
interact with it as a book, disregarding the additional services of a reserved
book if any, unknowing that its behaviour may be constrained because it is
also a reserved book. Of course, they may also interact with it as a reserved
book. In short, “Abstract and Concrete Categories” may play the role of a
book although it is a reserved book. Indeed, it might even play other roles like
thing. This mechanism (polymorphism by inclusion) is essential to reuse, one
of the key features of object-orientation.

Therefore, an object is, in general, a collection of aspects consistent with
each other. From a specification point of view, it is clear that we should specify
only object aspects! That is, objects are specified through their aspects. There-
fore, we need an object aspect specification logic for “local” reasoning about a
given aspect disregarding the other aspects.

But the interplay between the different aspects of the same object is to
be carried out at the “global” level where we recognize relationships between
different aspects: for instance, the specialization relationship we have been

-57-

illustrating. Furthermore, at the global level we can also impose the interactions
that may exist between different aspects: for instance, when a book is-taken
we know that a user takes it. Thus, interaction constraints are expressed by
formulae relating events in different aspects.

To this end, it is important to consider aggregation aspects, such as the
composite of a book and an user where the interactions between that book
and that user are to be specified. Then, the same specification and verification
techniques can be used for specifying local and global (interaction) behaviour.

Note also that similar aspects constitute aspect types or classes. Clearly,
it makes more sense to specify classes instead of aspects per se. Moreover, we
may need attributes that take values in such classes (besides data types). For
illustration consider the class book composed of all books, including “Abstract
and Concrete Categories”. It is important to stress that we are dealing here
with aspect types (classes) and not object types. Indeed, each object may
have several related aspects (recall the example of “Abstract and Concrete
Categories” with two aspects: a book aspect and a reserved-book aspect). Each
of its aspects is an instance of a class.

Specialization appears at the class level as follows: for instance we say that
reserved-book is a subclass of book, or book is a superclass of reserved-book.
Aggregation is reflected at the class level also. We need aggregation classes,
such as book ® user whose instances are the pairs of books and users.

Therefore, the envisaged specification logic must provide the means for re-
ferring to individuals of different types (eg integer, book, user, book ® user,
reserved-book), hence the many-sorted first-order approach. Furthermore, the
logic should provide an ordering of classes so that specialization can be made
explicit. The specification logic must also provide the means for describing the
behaviour of each individual, hence the temporal approach. The signature of
each class should include attributes and actions.

With respect to the interplay between the local and global levels of rea-
soning, we should expect some form of inheritance mechanisms, eg for special-
ization (allowing the inclusion of theorems about a superclass into the set of
theorems about a subclass). Moreover, we should also include reflection mech-
anisms allowing the theorems to be obtained in a class by taking into account
its embedding in the community, (eg if we know that every user returns the
books that he/she takes away, we can conclude that every book is returned).
Therefore, the theories and semantics of the different classes are closely related
in a rich structure. The presentation and exploitation of this structure is much
simplified by the use of a modicum of techniques from category theory.

3 Object specification logic

We now proceed with the development of the envisaged object specification
logic (OSL), starting with signatures (alphabets), followed by the syntax (of
terms and formulae), interpretation structures and satisfaction. We conclude
with specifications and theories plus the deductive system.

-58-

3.1 Signatures

We assume as given once and for all the underlying data signature Tpr =
(Spr, OP). We also assume that bool € Spr and OP, yoor = { false, true}.

Definition 3.1 An inheritance net is a finite partial order N = (PC, <).

In the sequel we assume a given inheritance net N = (PC, <). We denote
by Cn the cartesian category freely generated by N. Each element of PC is
called a prime class. Each element of |Cy| is called a class. Non prime classes
are said to be composite. For each pair ¢,¢’ € PC such that ¢’ < ¢ we denote
by ¢ : ¢ — c the corresponding morphism and call it a class inclusion. The
terminal class is denoted by 1. We refer to a product of classes by ¢; ® ... ® ¢,
with class projectionsm; 1 ¢; ® ... ¢, = ¢; fori=1,...,m.

Definition 3.2 The set of sorts induced by N is the-set Sy = Sy U S% where
Sy = Spru |CN| and S};, = {Tc Cc € PC}

The elements of Sy are called proper sorts. The elements of S}, are called
action sorts.

Definition 3.3 A class signature over N is a triple (¢, ACT, ATT) such that:
e c€|Cn|;

e ACT is an Sy ® S}-indexed family of finite sets such that whenever
c€ PC: :

- 1le ACT, . ;
— ACT,,,, = 0 provided that ¢ £ ¢;
- ACT, ., C ACT, ,, provided that ¢ < ¢;

e ATT is an Sy ® Sy-indexed family of finite sets such that whenever

c € PC:
- ATTTC,boal = {O}a
— ATT, . = {v};

e all these sets are pairwise disjoint.

Given a class signature (¢, ACT, ATT), c is said to be the underlying class,
each element z € ACT,, , is said to be an action symbol with parameter sorts w
and result sort s, and each element a € ATT,, , is said to be an attribute symbol
with parameter sorts w and result sort s. An attribute symbol in ATT, ; for
s € Sy is said to be a slot symbol.

Definition 3.4 A class signature morphism over N
o :{¢, ACT,ATT) — (', ACT', ATT")

is a triple (04, 0 acT, T ATT) Where:

-59-

® 0,4 : ¢ — cis a morphism in Chy;

e oacr is a Sy ® Sf-indexed family of maps cacr, , : ACTy,s — ACT,, ;

w,s)

® ourr IS A §*N ® S y-indexed family of maps oarr,, : ATT,, — ATT,, .

Class signatures and their morphisms over IV constitute the category ASigy.
A class signature morphism o is said to be an inclusion iff 0,4 is a class inclusion
and the maps gacr, ., Oarr,., are inclusions. And o is said to be an injection
iff 044 is a class projection and the maps cacr, ,, Carr, . are injections.

Definition 3.5 An object community signature is a pair X = (N, Sg) where:
e N = (PC, <) is an inheritance net;

e Sg:CY¥ — ASign is a functor preserving op-inclusions and finite coprod-
ucts and such that: T

— Sg(ch =¢
— Sg(0)i = 0.

From now on we concentrate on a given object community signature ¥ =
(N, Sg) and write X°¢ = (¢, ACT®, ATT*®) for Sg(c). Clearly:

o Sg(1) = (1,0,0);

e Sg(c1 ® ... ® ¢n) endowed with the injections Sg(7; : ¢; = 1 ® ... @ ¢)
for i = 1,...,m is a coproduct of Sg(c;), ..., Sg(cm);

e Sg(i:c — c) is an inclusion.

3.2 Terms and formulae

We assume as given once and for all an Sy-indexed family X of infinite, pairwise
disjoint sets of variables endowed with a choice map &, : p(X,) — X, such that
8,(Y) € Y for each s € Sy.

Definition 3.6 Let ¢ be a class. Then, T¢ is an Sy-indexed family of sets of
terms inductively defined as follows:

e y € T¢, provided that y € X,;

f(t1, ..., ty) € T¢, provided that f € OP,, ,,, and t; € Ty, for every
i=1,..,n

z(t1, .. tn) € T¢, provided that z € ACT;, , , and t; € T, for every

1=1,...,n;
o a(ty,...,tn) € T, provided that a € ATT; , , and t; € T, for every
i=1,..,n;

u(t) € TS, provided that p: s — &' is a class morphism in Cy and t € Ty

-60-

Each element of TY is called a term of sort s on class ¢. A term without
action symbols and without attribute symbols is called a data term.

Definition 3.7 The set Q¢ of formula schemata on class c is inductively defined
as follows:

e ¢ € Q¢ provided that t € Ty, ;;

(t =1t') € Q° provided that t,t' € T¢;
* € QF
(—9),(Xq),(Gq),(Yq),(Hgq) € Q° provided that g € Q%

(g = ¢') € Q° provided that ¢,q' € Q%

e (Vy q) € Q° provided that g € Q° and y € X, for same sort s.

As usual we are free to introduce abbreviations. In the sequel we use: (¢Vv¢’)
for ((—q) = ¢'), (¢A¢) for (~((—q) V(=¢))), (g&¢') for ((¢=¢) A (¢’ =q)),
(Fy q) for (=(Vy (=), (Goq) for (¢ A (Gq)), and (Y'q) for (x v (Yq)).
In the sequel Var,(q) denotes the set of variables of sort s occurrying in ¢q. A
formula schema without action symbols, without attribute symbols and without
temporal operators is called a rigid data formula schema.

Definition 3.8 The set of formulae on class ¢ is as follows:
Le={z.qg:z € X, q € Q°Y}.

A slot constraint is a formula without temporal operators and without at-
tribute symbols besides the slot symbols. We denote by SC¢ the set of slot
constraints on class ¢. It is convenient to write x.q replacing in g each attribute
symbol a by z.a.

Example 3.9 Consider the following signature and assertions about flipflops,
assuming that flipflop € PC and z € Xjipfiop:

L ATTe,boal = {On}a

ATT. f1ipfiop = {another};

o ATT,,. .. bo0t = {0};

o ATT. 100 = {0}

o ACT. . . 1., = {L, flip, flop};

(-(z.another = x));

(z.on < z.o(flip));

((mz.0n) & z.0(flop));

-61-

o (((z.v=L)Aa)=(Xa)) for any o € SCH'irflor;
o (((z.v = flip) A efie) = (X)) for any o € SCflirflor,
o (((z.v = flop) A aZ2") = (X)) for any o € SCTlirflor;

o (Vy ((z.v=y)=z.0(y)))-

Example 3.10 Consider the following assertion about two flipflops assuming
that v € X sipsiop@flipsiop’

e ((v.another; = m2(v)) = ((v.vq1 = flip1) = (v.v2 = flips)))

where:

- V; = Sg(ﬂ.i)ATT‘lrflipflop (V) for i = 1, 2,

— flip; = Sg(m)ACTE',mpﬂop(flip) fori=1,2;
— anothery, = Sg(m1) aTT, j1ip 1., (@NOLRET).

3.3 Interpretation structures
We assume a given algebra dt over X4 = (Spr, OP) such that
dtbool = {falsedt, truedt}.

Definition 3.11 A functor Pop : Cy — Set over ¥ = (N, Sg) preserving
inclusions and finite products is said to be a class population functor.

In the sequel we assume a given populai:ion functor Pop. We write Pop,
for Pop(c) and extend the notation so that Pop, stands for dt; when s € Sg;.
Clearly, Pop, is a singleton, say {1}.

Definition 3.12 The set act(c) of actions on prime class c over X for Pop is
as follows:

U {z(uy, ..., un) : 2 € ACT, , ., ,u; € Pop,, fori=1,..,n}.

In the sequel we write Pop,, for act(c) for each c € PC.

Definition 3.13 An instance over & for Pop is a pair (c,u) where ¢ is a class
and u € Pop..

Definition 3.14 An instance morphism over ¥ for Pop
o:{c,u) — (c,u)
!

is a class morphism o : ¢ — ¢ such that Pop(c)(u) = v'.

Instances and their morphisms over ¥ for Pop constitute the category
I nstz_ Pop-

-62-

Theorem 3.15 The category Instyg p,p is cartesian.
Proof:
e the terminal object is (1, 1);
e the product of (c;,u1) and (c2,u2) is (c1 ® ¢o,u) endowed with the projections

1, T2, provided that Pop(m;(u)) = u; for i = 1,2. O

Definition 3.16 The set att(c), of attributes of sort s on c over & for Pop is
as follows:

U {a(u1, ..., un) 10 € ATTY, , ,,u; € Pop,, for i =1,...,n}.

(51..-80)ES Y
Definition 3.17 The set att(c) of attributes on c over T for Pop is as follows:
U att(c)s. -
sESN
For each attribute b € att(c),, we say that Pop, is the domain D, of b.

Definition 3.18 The cone of snapshots on class ¢ over £ for Pop is the product
in Set with vertex

snp(c) = @ Dy

beatt(c)
and projections py, : snp(c) — D, for b € att(c).
Clearly, snp(1) is a singleton, say {1}.

Definition 3.19 Given a class morphism o : ¢ — ¢ and a snapshot V' €
snp(c’) over T for Pop, the image o(V') of V' under o is the unique V € snp(c)
such that

Pa(urun)(V) = PSg(@)arm, ... (@) 1,un) (V)
for each a € ATT;,

.....

s and u; € Pop,, fori=1,...,n.

Definition 3.20 A run over ¥ for Pop is a pair (¢, A\) where c is a class and
A : IN — snp(c) such that whenever c € PC and k € IN:

® Po(1)(Ak) = trueq;
o if py(Ar) =L then py(Aey1) = po(Ax) for each b € att(c), b # v;
o if po () = 2(u1, ..., Un) then Pogyus,....un)) (Ak) = trueq.

A run (c, A) is said to be a run on class c. Clearly, there is only one run on
the terminal class 1. We denote it by (1, 1).

Definition 3.21 A run morphism over X for Pop
o:{c,A) = (c, X)

is a class morphism o : ¢ — ¢’ such that A}, = o()\;) for every k € IN.

Runs and their morphisms over X for Pop constitute the category Runs pop.

Theorem 3.22 The category Rung p,p is cartesian.

Proof:
e the terminal object is (1,1);

e the product of {c1, A1) and (c2, A2) is (¢; ® ¢2,\) endowed with the projections
71, T2 provided that:

pSg("i)ATT:,‘,,_s s(a)(ul ----- Un)()‘k) =pa(u1.---,un)()‘ik)

for every k € IN and i =1, 2. O

Definition 3.23 A community run over ¥ for Pop is a functor
A : Insts pop, — Rung pop =~ -
mapping each (c,u) into a run on class ¢ and preserving finite products.
Definition 3.24 An object community over X is a pair oc = (Pop, A) where
e Pop: Cy — Set is a population functor over X;
e A: Insts pop — Rung pop is a community run over X for Pop.

From now on we concentrate on an object community oc = (Pop, A) over
the object community signature X.

3.4 Satisfaction

Definition 3.25 An assignment § into oc is an Sy-indexed family of maps
8, : X, — Pop,.

Definition 3.26 Let y € X, and 6, ¢ be assignments into oc. We say that
6 and @' are y-equivalent iff for every s’ € Sy and ¥’ € Xy 0,(y') = 6..(y)
whenever y' # y.

Definition 3.27 The interpretation of terms on class ¢ for assignment 6 at
point k € IN of u € Pop, in oc is inductively defined as follows:

[90% .00 = 0s(¥);

[(15 eoes tn)]f e = Far([E11% w000 -5 [Enlh u00);

[2(t1s o ta)lf o = 2([Ea]R w000 oo [Enl u00)s

[a(ts, s ta)]R woe = Pa(inade , oovnltnd?, o) (AU(E))2k);
o [1(®]f u0c = Pop(p)([E]F u.00)-

We note that data terms are interpreted within dt. We denote by [t]9, the
value of such a term ¢ for 0 in dt.

-64

Definition 3.28 The satisfaction of formula schemata on class ¢ for assignment
@ at point k € IN of u € Pop, in oc is inductively defined as follows:

e 0,k,u,oclc tiff [t]], .. = trueq;

o 0,k,u,oclkc (t=1t)iff [t]], ,c =]2 v0ci
e 0. k,u,ocl.xiff t =0;

e 0,k,u,oclk. (—q) iff not 8,k,u,oclk. g;

e 0,k ,u,oclk, iff 0,k+1,u,0clF, g;
o 0,k ,u,oclk,

(Xq)

(Gg) iff 6,k',u,0c k. q for every k' > k;
e 0,k ,u,oclk.(Yq)

(

(

Gg
Yq) iff k >0and 6,k —1,u,0clk, gq;
e 0,k,u,oclr. (Hgq) iff 8,k',u,oclF. q for every k' < k;
e 0,k,u,oclr. (g=¢') iff not 6,k,u,ocl-. g or H,k,u:oc IFe q';
e 0,k,u,oclk. (Vy q) iff 8', k,u,oc Il q for every 6’ y-equivalent to 6.

We note that the satisfaction of rigid data formula schemata is established
within dt. We write 0, dt | ¢ for the satisfaction of such a rigid data formula
schema ¢q for 8 in dt.

Definition 3.29 The satisfaction of formulae on class ¢ for assignment 6§ at
point k € IN of u € Pop, in oc is defined as follows: 6,k,u,o0c I+, z.q iff if
6.(z) = u then 6,k,u,oclk. g.

Definition 3.30 We say that the object community oc satisfies the formula ¢
on class ¢, written oc Ik, o, iff 8, k,u,oc Ik, ¢ for every assignment 8, k € IV,
u € Pop..

Definition 3.31 Let ¥ C L° and ¢ € L°. We say that ¥ entails ¢ on class c,
written ¥ F, @, iff for every object community oc if oc I}, ¢ for every ¢ € ¥
then oc IF. .

Definition 3.32 Let ¥ C L. The closure by entailment of ¥ on class c is the
set UFe = {3 : U E, ¢}.

Definition 3.33 Let A = {A}.cicy| With A° C L°. We say that oc satisfies
A, written oc Ik A, iff oc IF, ¢ for each 1 € A°.

Definition 3.34 Let A = {A¢}.¢|cyj with A° C L¢. The closure by entailment
of A is the family A" = {A"°}.¢|cy| such that

= {¢ € L°: if oclF A then oc I, ¥}.

Note that one should not confuse AF¢ with A¢*-. The latter is included in
the former. In general, the inclusion is strict.

Definition 3.35 Let A = {A°}ccioy) and H = {H®}ceicy| With A, H® C L-.
The entailment of H on A is the family A#* = {A#F¢} ¢|cp| such that

AHFc — (AUH)':C

-65-

3.5 Community institution

Definition 3.36 Let o : ¢ — ¢ be a class morphism. The translation maps
induced by o are as follows:

e or:T° — T° inductively defined as follows:

- or(y) =y;

— or(f(t1, .y tn)) = flor(t1), ..., or(tn));

= or(z(ty, - tn)) = S9(0) acr,,(2)(or(t1), s or(tn));
— or(alts, ..., ta)) = S9(0) arm,, ... (a)(o7(t1), .., 07 (2n));

— or(u(t)) = ulor(t)).

— 0q(t) = or(t); -
- aq((t=1t)) = (or(t) = or(t'));

— og(*) =%

= 00((m9)) = (~(oq(9)));

— 00((Xq)) = (X(0¢(9)));

- 00((G q)) = (G(og(9)));

- 0o((Yq)) = (Y(oo(9)));

— ao((Hq)) = (H(oo(9)));

- aq((g=¢q)) = (0q(a) = 0o(d));

— 00((Vy 9)) = (Vy 0q(9))-

e op:L°— L¢ defined as follows:

— or(z.q) = 2'.0¢(q%)) where z' is 6o (Xo \ Vars(q)) and ¢, is
the formula schema obtained by replacing all free occurrences of z
by o(z') in q.

Lemma 3.37 Let 0 : ¢ — ¢ be a class morphism, 8 an assignment, k € IV,
u' € Popy,t € T¢ and q € Q°. Then:

. IIt]]z,Pop(a')(u’),oc = [[O-T(t)]]z,u’.oc;

e 0,k, Pop(a)(u'),oclr. qiff 8,k, v, oc Ik og(q).

Lemma 3.38 Let 0 : ¢/ — ¢ be a class morphism, k € IN, v’ € Pop., = € X_,
z' be §4(Xo \ Vary(q)) and g € Q°. Then, 8, k, Pop(c)(u'), oc I, x.q for every
assignment 6 iff 6, k,u’, oc - 2'.0g(g5,)) for every assignment 6.

Theorem 3.39 The signature X, the family X and the community oc induce
the institution Ix x,.c = (Cy, Sen, Int,lIF) such that:

e Sen(c) = L%

-66-

e Sen(c:c—c)=o0p:L¢— L,

Int(c) = Pop,;

Int(o : ¢ — ') = Pop(c) : Pop, — Pop,;

ullbe @ iff 0, k,u, oc -, ¢ for every assignment # and k € IN.
In the sequel we shall use the satisfaction condition that we just established:
u' ke o () iff Pop(o)(u') ik, @

provided that o : ¢ — cin Cy.

3.6 Specifications and theories

Definition 3.40 A class specification over ¥ is a pair ¢, ®) where ¢ € |Cy]|
and @ C L°. A class theory over ¥ is a class specification (c,®) such that
®F- = .

Definition 3.41 A class theory morphism over ¥
o:(c,®) — (c, D)
is a class morphism o : ¢ — c such that o (p) € ® whenever ¢ € ®.
Class theories and their. morphisms over ¥ constitute the category CThs.

Theorem 3.42 The category CThy is cocartesian.

Proof:
e the initial object is (1, 0F*);

e the coproduct of {¢;, ®1) and (e;, B5) is

(Cl ® c2, ({WIL((P) Qe (I)l} U {7T2L((p) T € (I)z})':q@Cz)

endowed with the injections , . O

Definition 3.43 An object community specification is a pair spec = (T, Az)
where

e ¥ = (N, Sg) is an object community signature;
o Az = {Az°}.cicy| With Az® C L€ for each c.

An object community theoryis an object community specification spec = (I, Az)
such that Az* = Az.

Definition 3.44 Let spec = (X, Az) be an object community specification.
The closure by entailment of spec is spect = (X, AzF).

-67-

Theorem 3.45 An object community specification spec = (£, Az) induces the
functor Th : C}¥ — CThg such that:

o Th(c) = Az";
e Th(c) =o0p.

Remark 3.46 Only special “interaction” axioms may be included in the spec-
ification of a product sort ¢; ® ¢;, namely axioms of the form

(cond; = ((2.91 = 21(t1, ooy tn)) = (2.V2 = 22(1], .oy E1))))

where cond; is a condition not involving symbols from ¢s, 2; is an action symbol
from ¢;, and z, is an action symbol from c,.

In the sequel we concentrate on a given object community specification
spec = (X, Azx). -

3.7 Hilbert calculus

Definition 3.47 The closure by consequence of spec is the pair spec” = (X, Az")
where Az" = {Az"°}.¢cp| is inductively defined as follows:

1. p € AzFe
provided that ¢ € Az

2. T.q € Azhe .
provided that g is an axiom of a floating linear temporal, first-order with
equality calculus (for details see for instance [MP92, SSC92});

3. z.qg/ € Az
provided that z.q € Az"¢ and z.(¢ = ¢') € Az

4. z.(Xq),z.(Gq),z.(Y' q),z.(Hg),z.(Vy q) € Az"*
provided that z.q € Az"e;

5. z.(ptn(--(u1(y)..) = p(y)) € Az"
provided that u = p, o0... 0 uy;

6. z.g € Az+e
provided that ¢ is a rigid data formula schema such that 6,dt I+ ¢ for
every assignment 0;

7. .((2(Z1,y oy Tn) = 2(2, oy 25)) = (1 = T A oo A(T0 = 2},))) € AZ™°
provided that z € ACTY

1-..8n,8?

8. z.(~(2(z1y .y Tn) = 2'(2}, ..., Th))) € AT"C
provided that z € ACT;, , ., 2’ € ACT;

8

.oy (V (V@ (Gl =28)-) € Az

81..9n €8y 2€ACT, ., .
for each sort s € S};

S

LN
s and z # 2/;

-68-

10. z.o(1l) € Azre
provided that ¢ € PC;

11. z.((v =1) = ((a(z1, ..., zn) = ¥) = (X(a(z1, -, T) = ¥)))) € Az
provided that c € PC, a € ATTy , . and a# v;

S

12. z.((v = y) = o(y)) € Az"¢
provided that ¢ € PC;

13. o1(p) € Az
provided that ¢ : ¢ — c is a class morphism and ¢ € Az"¢;

14. p € Axte
for i = 1,...,m provided that m; (p) € Az"1®--®cm,

Rule (1) sates that every axiom is a theorem: AX. Rule (3) is modus ponens:
MP. Rule (4) establishes the necessitations: NEC. Rules (5) depicts a property
of population functors: POP. Rule (6) brings in all the valid formulae in the
underlying data algebra: DT. Rules (7-9) reflect that actions are not interpreted
and- are generated: ACT. Rules (10-12) depict properties of the runs: RUN.
Rule (13) corresponds to inheritance: INH. Rule (14) corresponds to reflection:

REF. Note that INH and REF lead to
i L(p) € Aghei®--®cm iff pE Az

Definition 3.48 Let H = {H}.c|cy| Where H® C L°. The consequence of
H on spec is the pair spec”t = (I, Az#") where Az®" = {AzH ¢} .0y is
inductively defined as follows:

e ¢ € Az¥"° provided that ¢ € Az"¢;
o p € AzH*e provided that ¢ € H;

e 7.’ € Az provided that z.q € Az¥"° and z.(¢ = ¢) € Az,

Theorem 3.49 (Soundness) Let H = {H®}.¢cy Where H® C L°¢ Then,
Ale—c g A:EH':C.

Hilbert calculi can be made more practical by using metatheorems. In-
deed, for proving special classes of theorems (eg invariant slot constraints) it
is useful to develop a special calculus with specific metatheorems. We also
find convenient to use the metatheorem of deduction. To this end we need
the following notation: (H U {¢}) denotes the family {(H U {¢})}cejcy| Where
(HU{p})® = HeU{p} and (HU{p})® = H® for ¢’ # c, assuming that H° C L¢
and ¢ € L€,

Theorem 3.50 (Deduction rule: DED) Let H = {H®}c¢|cy| Where H® C L€,
q,q € Q° and z € X.. Then:

o z.(qg=>¢q') € Az""¢ provided that z.q’ € Ax(HV{z-abre,

-69-

Theorem 3.51 (Absurdum: ABS) Let H = {H}.¢|cy| Where H® C L€, q,q' €
Q° and = € X,. Then:

e 7.(~q) € Azf"¢ provided that z.¢', z.(—q') € Ag(HBV{=-aDre,

In the sequel, when presenting derivations, we refrain from giving the details
of the reasoning in first order logic with equality as long as NEC (for quantifi-
cation) is not used: we indicate FOL as the justification. Clearly, we can still
apply the metatheorems above.

4 OSL at work

We now look at the practical impact of the proposed logic (OSL for Object
Specification Logic). Namely, we consider its applications, introduce a practical
invariant calculus and examine the need and availability of tools for automatic
theorem proving.

4.1 What for

Clearly, OSL can be used as a “minimal” stand-alone object specification lan-
guage. However, the lack of syntactic sugar does not make that type of applica-
tion very promising, as it is shown in the next Subsection. Instead, one should
adopt a “real” object specification language (such as OBLOG [SGS92, ESD93],
TROLL [JSHS91] and GNOME [SR94]) and provide its semantics in terms of
OSL (as it is done for instance for TROLL in [Jun93]).

The advantages of providing the semantics of the chosen object specification
language in terms of OSL are clear: such a “semantics” endows the language
with a verification calculus. The availability of a deductive system seems to be
the single most important argument in favour of using formal specifications. In-
deed, we can then check the consistency of specifications and the compliance of
subsequent implementations (assuming that the verification calculus deals with
reification mechanisms such as those considered for temporal logic in [FM94]).
Of course, these verification tasks can be huge for any practical application.
Therefore, automatic theorem proving tools are needed. They are discussed at
the end of this Section. But even with machine support, exhaustive verifica-
tion may not be feasible at all. Of more practical and immediate interest are
answers to “systems queries”. One may want to know if a given property of
the application holds and if not in which situations it may be violated and if
so how should the specification be modified. To this end abduction techniques
seem to provide important results {GS94].

When checking if given properties hold it is convenient to distinguish be-
tween safety properties (such as invariants) and liveness properties (such as
reactiveness). The former are easier to establish and the techniques for do-
ing so are by now well understood. In Subsection 4.3 below we illustrate such
techniques for OSL. We refrain to consider in this short paper the problem of
verifying liveness properties. The insterested reader should start by consulting
[MP91].

-70-

It is important to stress at this stage that OSL is a “monotonic” logic.
Therefore, it is not trivial to explain in OSL the semantics of “non-monotonic”
constructs of the chosen object-oriented specification language, if possible at all
in a convenient way. For that purpose one should consider a “default” version
of OSL with the capability to express and deal with defaults (besides absolute
axioms). The interested reader should start by consulting [BL91, BLR93].

4.2 Specification example

Consider the following specification example that will also be used later on
for illustrating proofs of invariants. Though rather simple and abstract it is
sufficiently rich for our purposes, namely concerning the impact of interaction
on some interesting invariants.

e N= <{ClaC2;Cs},{(Ca,Cz),(Cl,Cl)a(02,02),(63,03)});

e X% is such that:

- ACTg, =A{Z};
¥ is such that:
- ACT, ={Z}
- ATch,?int = {A}’

¥¢s is such that:

~ ACT: ={2,2');
- ATT, = {A, A}
e Az is composed of:
- (= (z;.A=0));
— (((z1.v = Z) Aol 44,) = (X) provided that a € SC*;
e Az is composed of:
— (x= (z2.A =0));
— (((z2.v = Z) Aa24_1) = (X @)) provided that a € SC®;

Azx® is composed of:
— (x=(z3.4" = 0));
— (((z3.v = Z) A o) = (X)) provided that a € (SC* \ SC*);
— (((z3.v = Z') Aaf**") = (X a)) provided that a € (SC= \ §C);

Azx®1®° js composed of:

— ((z12.V1 = Z1) = (212.V2 = Z3));
— ((z12-V2 = Z3) = (212.V1 = Z1)).

-71-

4.3 Invariant calculus

The goal is to verify that (G, a) € Az"¢, assuming that « is a slot constraint.
To this end we need the following four metatheorems. The first one is the OSL
version of the well known “invariant rule”. The other metatheorems allow us
to combine local “axioms” stating the effects of actions on the slots values. For
the sake of readability we use a “vectorial” notation for the parameters and
slots that should be self-explanatory.

Theorem 4.1 (Invariant rule: INV) For each a € SC®®m;
e (Goa) € Az"1®-®m provided that:

— (»= a) € AzgFa1®-8cm,

— for each tuple zy, ..., z,, of action symbols,
m

((/\(Vz’ = Wi(zi)(:lfi)) A a) = (X a)) € Agrai®.Bem

i=1

That is, in order to verify that a slot constraint is invariant we have to check
that it is established initially and that it is preserved by any combination of
actions.

Theorem 4.2 (Combination rule 1: CMB1) For each § € SC1®®em;

I - 1 Aq; Tm A-;n 1®... -
o z.((A\(vi = milz) @) ABLL e) = (X B)) € Aghar®-ee

=1
provided that:

— foreachi=1,..,mand a € SCe,
z:. (v = z(g:)) A aé") = (X a)) € Aze.

Theorem 4.3 (Combination rule 2: CMB2) Let ¢’ < c. For each action sym-
bol z of c and B € SC*":
o z.(((v==2() A ﬁ?—t‘«,ﬁ) = (X B)) € Az" provided that:
— for each o € SC°, _
z.((v = 2(9)) A af) = (X)) € Az"™.

— for each o € (SC¢ \ §C°),

-

z((v = 2(P) A af) = (X)) € A+

Theorem 4.4 (No side effects rule: NSE) Let ¢/ < c. For each action symbol
z of ¢’ but not of c and a € SC*:

o z.(((v=2{) Aa) = (Xa)) € Az".
This last rule depicts one of the consequences of the “monotonic” nature of

OSL: though in a specialization we can add more slots and actions, the inherited
slots may not be affected by the additional actions.

-72-

4.4 Verification example

We proceed now to illustrate the use of OSL (with the metatheorems above)
for establishing an invariant property of the system specified in Subsection 4.2.

(Go(l'ls-A1 + z13.45 = :1:13,A’3)) € Aghbe®c?

Proof (fragment):

(A) (* = (51313-141 + z13.43 = mlS-Aé)) € Axtcai®cap

* € Axte1®cs

(* = (z1.4 = 0)) € Az"=

(* = (z13.4;1 = 0)) € Az"e1®cs
(z13.41 = 0) € Agher®cs

(* = (z2.A = 0)) € Az"e

(* = (z2.A = 0)) € Azhes

(x = (z13.43 = 0)) € Azher®ca
(z13.A3 = 0) € Aztc1®cs
(
(

ON OO

*=> (z3.A' = 0)) € Azhes

* = (113.45 = 0)) € Agher1®cs

10. *(z13.A4 = 0) € Azgtc1®¢es

11. (x13.A1 +z13.A3=0+4+0) € Axheci®cs

12. (0+0=0) € Az-e18c

13. (z13.A; + T13.A3 = z13.4}) € Azmr®es

14. (%= (z13.4) + T13.A3 = 213.4})) € Aza1®es

(B) (((z13.v1 = Z1) A (%13.V3 = Z3) A (z13.A1 + 13.43 = 113.45))=>

(X(z13.A1 + 13.A3 = 213.45))) € AzF18es?

0. ((z13.V1 = Z1) A (213.V3 = Z3)A
(z13.41 + 713.43 = x13_,4§)) € Aghei®cs

L ((mv=2)reil”,)= (X)) € A"
2 (@2v=2)Aa2A)= (Xa)) € Aa"e
3. (((z3.v=2)Aas)= (Xoag)) € Az
4. (((.’II3.V =Z)A a‘:::ﬁ-l) = (X a)) € Aghes
5. (((z3.Vv=2)Aa)= (Xa)) € Az"cs
6. ((-'1:13-V1 = Zl) A (.'1:13.V3 = ZS)/\
($13~A1 +1+4 1'13.A3 —-1= xlSAlg))=>
(X(z13.41 + T13.A3 = 213.45))) € Agmr1®cs
7. (z+2 =z+1+2 —1)€ Azha®e

8. ((z13.A1+ z13. 43 = 113.4%) =

(‘7:13 Ay + 1+ xz13.43 — 1 = 213. A")) € Aghei®cs
9. ((z13.V1 = Z1) A (z13.V3 = Z3) A (z13.4A1 + T13. 43 = 713.45))=>

((ZL‘13.V1 = Zl) A ($13.V3 = Z3)/\

($13 A +14+23.43-1= :1:13_Aé))) € Aghea®cs

10. ((z13.v1 = Z1) A(z13.V3 = Z3)

(.’L‘13 Al + 1 + I13. A3 —_ 1 = I13. Aa)) [Am"cl®cs

11. (X(z13.A1 + 713.43 = 113.43)) € Agheai®cs
12. ((($13.V1 = Zl) A ($13.V3 = Z3)/\
(z13.A1 + Z13.A3 = T13.4%))=>

(X($13 Ay +113.A3 = 113. 4}))) € Agre1®ca

-73-

Hyp

AX
INH:1
MP:0,2
AX
INH : 4
INH:5
MP:0,6
AX
INH:8
MP:0,9
FOL: 3,7
DT

FOL :11,12,10
DED : 0,13
Hyp

AX

AX

AX
CMB2:2,3
AX
CMB1:1,4,5
DT

DT
FOL:8
MP:0,9
MP:10,6
DED : 0,11

(C) (((z13.V1 = Z1) A (213.V3 = L3) A (713.41 + 713.43 = 713.45))=>
(X(:I:13.A1 + x13.A3 = $13Aé))) € Agha®cs?

0. ((1,‘13.V1 = Zl) A ((L‘13.V3 = J_3)/\

(z13.41 + 213.43 = .'E13A‘{3)) € Agher®es Hyp
1. (1‘13.V3 = _L3) € Axhe1®cs FOL:0
2. (1‘13.V1 = Zl) € Aghe1®cs FOL:0
3. ((.’Z:m.Vl = Zl) = (.’E12.V2 = Zg)) € Azhea®c AX
4. (($13.V1 = Zl) = (IL‘13.V3 = Z3)) € Axhei®cs INH:3
5. (x13.V3 = Z3) € Azm1®cs MP:2.4
6. Ti3.(lg = Z3) € Ax"1®ce FOL:1,5
7. Tia.(—(Ls = Z5)) € Azher®es ACT
8. (ﬂ((mls.vl = Zl) A (.’II13.V3 = _L3)/\

(.'1313.A1 + z13.43 = .'1213Aé))) € Aghe1®es ABS : 0,6,7
9. (((.’L‘lg.Vl = Zl) A (IL‘13.V3 = L3)/‘\

(.’B13.A1 + ZL‘13.A3 = .’1313A'3))=>
(X($13.A1 +z13.43 = .’L‘13Aé))) € Azhei1®ca _ FOL:8

The rest of the proof'is left to the interested reader: namely, the other action
symbols pairs to be considered for the application of the invariant rule.

4.5 Automatic theorem proving

We conclude the Section by examining very briefly the problem of automatic
theorem proving. Roughly we can subdivide the problem into three almost in-
dependent domains: temporal predicate reasoning; equational reasoning; and
numerical reasoning. According to our experience it is worthwhile to adopt a
tableaux confutation approach to temporal predicate reasoning (see for instance
[GSGA93|). Then, when doing a confutation we are lead to a set of equalities
and inequalities. Their joint satisfiability can be checked using rewriting tech-
niques on the abstract data types at hand [DJ90] and simplex techniques on
the real numbers [NO79]. The cooperation between these techniques can be
achieved as proposed in [NO79).

One should stress that the state-of-the-art seems to be still far away from
an inference machine that can be used for the “complete” verification of a “real
system” specification. As we pointed out before, the most we can envisage in
practice at this stage is to provide automatic support to “systems querying” in
the small.

5 Concluding remarks

We described very briefly the requirements of object-orientation on the tempo-
ral approach to specification/verification of concurrent, reactive systems. We
outlined a logic fulfilling those requirements except concerning non-monotonic
features. The proposed logic allows the uniform treatment of both local and
global properties of systems with concurrent, interacting components organized
in classes and taking into account (monotonic) specialization. We provided both
a semantics and a calculus (following an axiomatic, Hilbert style). This calculus
includes rules for inheritance and reflection of theorems between classes.

-74-

We also examined the more practical aspects of the usage of such a logic both
for specification and verification. To this end we provided a set of metatheorems
for expediting the proof of invariants. A similar effort can and should be done
for expediting the proof of liveness properties. We concluded by considering
the need and availability of automatic theorem proving for systems querying.

At this stage we see five main research lines in the area of temporal, object-
oriented specification and verification of concurrent, interactive systems:

e reification: such a logic must be enriched towards supporting reification
(implementation) — see [ES90, SGG*92, FM94];

e defaults: it should also be enriched towards supporting defaults and de-
fault reasoning — see [BL91, BLR93];

e abduction: theorem proving is not enough — we also want to be able to
detect why some property does not hold and to suggest where to make
the necessary changes in the specification — see [GS94];

o modularization: the object seems to be too small for a modularization
. unit — parameterized modules are needed in temporal specifications of
objects — see [FM92, SRGS91];

e automation: formal specification will not come of age before automatic
theorem provers (and abducters) are usable in practical, real problems.

Acknowledgments-

The authors are grateful to their colleagues in the IS-CORE and OBLOG
projects for many rewarding discussions on temporal specification of objects.

References

[AHS90] J. Addmek, H. Herrlich, and G. Strecker. Abstract and concrete categories.
John-Wiley, 1990.

[BKP84] H. Barringer, R. Kuiper, and A. Pnueli. Now you may compose temporal
logic specifications. In Proceedings of the 16th ACM Symposium on Theory
of Computing, pages 51-63, 1984.

(BKP85] H. Barringer, R. Kuiper, and A. Pnueli. A compositional temporal ap-
proach to csp-like language. In E. Neuhold and G. Chroust, editors, Formal
Models of Programming, pages 207-227. North-Holland, 1985.

[BKP86] H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model
and its temporal logic. In Proceedings of the 18th ACM Symposium on
Principles of Programming Languages, pages 173-183, 1986.

[BL91) S. Brass and U. Lipeck. Semantics of inheritance in logical object specifi-

cations. In Proceedings of the 2nd International Conference on Deductive
and Object-oriented Databases, 1991.

-75-

[BLR93]

[CS8s]

[CS91]

[DI90]

(EMS8S5)

[Eme90]

[ES90]

[ES91]

[ESD93]

[FCSM93]

(FM92]

[FM94]

[FS88)]

[FSMS92)

[GB84]

S. Brass, U. Lipeck, and P. Resende. Specification of object behaviour with
defaults. In U. Lipeck and G. Koschorreck, editors, Proceedings of the Inter-
national Workshop on Information Systems — Correctness and Reusability,
pages 155-177. University of Hannover, 1993.

J. Carmo and A. Sernadas. A temporal logic framework for a layered ap-
proach to systems specification and verification. In C. Rolland, F. Bodart,
and M. Leonard, editors, Temporal Aspects in Information Systems, pages
31-46. North-Holland, 1988.

J. Carmo and A. Sernadas. Formal techniques for systems specification
and verification. Information Systems, 16:245-272, 1991.

N. Dershowitz and J. Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science B: Formal Models and
Semantics, pages 243-320. Elsevier, 1990.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I. Springer-
Verlag, 1985. oL

E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science B: Formal Models and Semantics,
pages 995-1072. Elsevier, 1990.

H.-D. Ehrich and A. Sernadas. Algebraic implementation of objects over
objects. In J. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Step-
wise Refinement of Distributed Systems: Models, Formalisms, Correctness,
pages 239-266. Springer-Verlag, 1990.

H.-D. Ehrich and A. Sernadas. Object concepts and constructions. In
G. Saake and A. Sernadas, editors, Proceedings of the IS-CORE Workshop
91, pages 1-24. Technical University of Braunschweig, 1991.

ESDI, Av. Alvares Cabral, 41, 7., 1200 Lisboa. OBLOG-CASE V1.0 User’s
Guide, 1993. Supplied with the OBLOG-CASE V1.0 product kit.

J. Fiadeiro, J. Costa, A. Sernadas, and T. Maibaum. Process semantics of
temporal logic specification. In M. Bidoit and C. Choppy, editors, Recent
Trends in Data Type Specification: 8th Workshop on Specification of Ab-
stract Data Types — Selected papers, pages 236-253. Springer-Verlag, 1993.

J. Fiadeiro and T. Maibaum. Temporal theories as modularization units for
concurrent system specification. Formal Aspects of Computing, 4:239-272,
1992.

J. Fiadeiro and T. Maibaum. Sometimes tomorrow is sometime: Action
refinement in a temporal logic of objects. In Proceedings of the Ist Inter-
national Conference on Temporal Logic. Springer-Verlag, 1994. In print.

J. Fiadeiro and A. Sernadas. Specification and verification of database
dynamics. Acte Informatica, 25:625-661, 1988.

J. Fiadeiro, C. Sernadas, T. Maibaum, and A. Sernadas. Describing and
structuring objects for conceptual schema development. In P. Loucopoulos
and R. Zicari, editors, Conceptual Modeling, Databases and CASE: An
Integrated View of Information Systems Development, pages 117-138. John
Wiley, 1992.

J. Goguen and R. Burstall. Introducing institutions. In E. Clarke and
D. Kozen, editors, Proceedings of the Logics of Programming Workshop,
pages 221-256. Springer-Verlag, 1984.

-76-

[GB92]
[GS94]
[GSGA93]

[Hai82)
[HO83)

[Jon87]
[JSHS91]

[Jun93]

[Man82]
[MCS82]

[MP91]
[MP92]

[NDOGS6]
[NOT9]

[Pnu77)

[SE91]

[Ser80]

J. Goguen and R. Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the ACM, 39(1):95-146, 1992,

P. Gouveia and C. Sernadas. Abduction in temporal object specification.
Research report, Section of Computer Science, Department of Mathemat-
ics, Instituto Superior Técnico, 1096 Lisboa, Portugal, 1994. To be pre-
sented at IS-CORE Workshop 94.

P. Gouveia, C. Sernadas, J. Gomes, and J. Apolinério. Tableaux for reason-
ing about objects. In Theorem Proving with Analytic Tableauzr and Related
Methods, pages 113-125, 1993. Max Plank Institut fur Informatik.

B. Hailpern. Verifying Concurrent Processes Using Temporal Logic.
Springer-Verlag, 1982.

B. Hailpern and S. Owicki. Modular verification of computer communica-
tion protocols. IEEE Transactions on Communications, 1:56-68, 1983.

B. Jonsson. Modular verification of asynchronous networks. In Proceedings
of the 6th ACM Symposium on Principles of Distributed Computing, pages
152-166, 1987.

R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. Object-oriented
spectfication of information systems: The TROLL language. Technical Uni-
versity of Braunschweig, 1991.

R. Jungclaus. Modeling of Dynamic Object Systems: A Logic-based Ap-
proach. Vieweg, 1993.

Z. Manna. Verification of sequential programs: Temporal axiomatization.
In M. Broy and G. Schmidt, editors, Theoretical Foundations of Program-
ming Methodology, pages 53-102. D. Reidel, 1982.

J. Misra, K. Chandy, and T. Smith. Proving safety and liveness of commu-
nicating processes with examples. In Proceedings of the ACM Symposium
on Principles of Distributed Computing, pages 157-164, 1982,

Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical
Computer Science, 83:97-130, 1991.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, 1992.

V. Nguyen, A. Demers, S. Owicki, and D. Gries. A modal and temporal
proof system for networks of processes. Distributed Computing, 1:7-25,
1986.

G. Nelson and D. Oppen. Simplification by cooperating decision proce-
dures. ACM Transactions on Programming Languages and Systems, 1:245—
257, 1979.

A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46-57, 1977.

A. Sernadas and H.-D. Ehrich. What is an object after all? In R. Meers-
man, W. Kent, and S. Khosla, editors, Object-oriented Databases: Analysis,
Design and Construction, pages 39-69. North-Holland, 1991.

A. Sernadas. Temporal aspects of logical procedure definition. Information
Systems, 5:167-187, 1980.

-77-

[SFSE892]

[SFSES9b)

[SGG+92]

[5GS92)

[SR94]

[SRGS91]

(593

[SSC92)

A. Sernadas, J. Fiadeiro, C. Sernadas, and H.-D. Ehrich. Abstract ob-
ject types: A temporal perspective. In B. Baniegbal, H. Barringer,
and A. Pnueli, editors, Temporal Logic in Specification, pages 324-350.
Springer-Verlag, 1989.

A. Sernadas, J. Fiadeiro, C. Sernadas, and H.-D. Ehrich. The basic build-
ing blocks of information systems. In E. Falkenberg and P. Lindgreen,
editors, Information Systems Concepts: An In-depth Analysis, pages 225~
246. North-Holland, 1989.

C. Sernadas, P. Gouveia, J. Gouveia, A. Sernadas, and P. Resende. The
reification dimension in object-oriented data base design. In D. Harper
and M. Norrie, editors, Specification of Data Base Systems, pages 275-299.
Springer-Verlag, 1992.

C. Sernadas, P. Gouveia, and A. Sernadas. Oblog: Object-oriented, logic-
based conceptual modeling. Research report, Section of Computer Science,
Department of Mathematics, Instituto Superior Técnico, 1096 Lisboa, Por-
tugal, 1992. -

A. Sernadas and J. Ramos. The GNOME language: Syntaz, semantics
and calculus. Instituto Superior Técnico, 1096 Lisboa, Portugal, 1994. In
Portuguese.

C. Sernadas, P. Resende, P. Gouveia, and A. Sernadas. In-the-large object-
oriented design of information systems. In F. van Assche, B. Moulin, and
C. Rolland, editors, The Object-oriented Approach in Information Systems,
pages 209-232. North-Holland, 1991.

A. Sernadas and C. Sernadas. Denotational semantics of object specifica-
tion within an arbitrary temporal logic institution. Research report, Sec-
tion of Computer Science, Department of Mathematics, Instituto Superior
Técnico, 1096 Lisboa, Portugal, 1993. Presented at IS-CORE Workshop
93 - Submitted for publication.

A. Sernadas, C. Sernadas, and J. Costa. Object specification logic. Re-
search report, Section of Computer Science, Department of Mathematics,
Instituto Superior Técnico, 1096 Lisboa, Portugal, 1992. Revised 1993 -
Submitted for publication.

-78-

