
 Technical Debt Analysis and
 Project Architecturization of a

 Jenkins Platform based on Groovy

 by Sergio Preciado Orozco
 with the collaboration of:

 Bachelor Thesis
 Specialization in Software Engineering

 Thesis supervisor: Jonattan Nieto Sánchez
 Thesis examiner: Xavier Burgués Illa

 GEP Tutor: Paola Lorenza Pinto
 23rd June 2022

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Abstract

 Currently, Technical Debt (TD) is a latent problem in the vast majority of software projects. Due to the
 rapid growth of the market, its business vision is focusing on reducing the time-to-market of the product,
 leaving aside the internal quality of its code. As a result, the global annual cost of maintaining such poor
 quality code comes to approximately $85 billion.

 The thesis focuses on deeply analyzing a corporate platform with a heavy TD and defining a new
 architecture for it based on its requirements, prioritizing the quality of the product while reducing its
 technical debt. To achieve this, I will use refactoring techniques, implementation of new functionalities
 and the definition of internal protocols for the team.

 In the thesis, the steps to follow to analyze and re-architect a project with similar characteristics are
 documented. In addition, strong awareness is raised regarding the technical debt and its problems, an
 issue that directly affects the code and indirectly impacts the mental health of its developers.

 Resumen

 Actualmente, la Deuda Técnica (DT) es un problema latente en la gran mayoría de proyectos software.
 Debido al rápido crecimiento del mercado, su visión empresarial está cada vez más enfocada a reducir el
 time-to-market del producto, dejando de lado la calidad interna de su código. Por ello, el coste global
 anual de mantener dicho código de mala calidad, asciende aproximadamente a 81.000 € millones.

 La tesis se centra en analizar profundamente una plataforma corporativa con mucha DT y definir una
 nueva arquitectura para ella, teniendo en cuenta sus requerimientos y priorizando la calidad del producto
 mientras se reduce su deuda técnica. Para ellos se emplearán técnicas de refactorización,
 implementación de nuevas funcionalidades y definición de protocolos internos para el equipo.

 En la tesis quedan documentados los pasos a seguir para analizar y rearquitecturizar un proyecto con
 unas características similares. Además, se crea una fuerte conciencia sobre la deuda técnica y sus
 problemas, una cuestión que afecta directamente al código e indirectamente a la salud mental de sus
 desarrolladores.

 Resum

 Actualment, el Deute Tècnic (DT) és un problema latent a la gran majoria de projectes software. A causa
 del ràpid creixement del mercat, la visió empresarial està cada cop més enfocada a reduir el
 time-to-market del producte, deixant de banda la qualitat interna del seu codi. Per això, el cost global
 anual de mantenir aquest codi de mala qualitat, puja aproximadament a 81.000 € milions.

 La tesi se centra a analitzar profundament una plataforma corporativa amb molt DT i definir-ne una nova
 arquitectura, tenint en compte els seus requeriments i prioritzant la qualitat del producte mentre es
 redueix el seu deute tècnic. Per aconseguir això, es faran servir tècniques de refactorització,
 implementació de noves funcionalitats i la definició de protocols interns per a l'equip.

 A la tesi queden documentats els passos a seguir per analitzar i rearquitecturitzar un projecte amb unes
 característiques similars. A més, es crea una forta consciència sobre el deute tècnic i els seus
 problemes, una qüestió que afecta directament el codi i indirectament la salut mental dels seus
 desenvolupadors.

 Barcelona School of Informatics (FIB) UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Acknowledgement

 I would like to express my deepest gratitude to Jonattan Nieto Sánchez , for
 his teachings, professionalism, and guidance. This thesis would not have been
 possible without Xavier Burgués Illa , for his good criteria, advice and
 corrections; and Paola Lorenza Pinto , for her excellent suggestions in the GEP
 phase. Additionally, I would like to extend my sincere thanks to the thesis
 defense committee , for their time, expertise and interest.

 Many thanks to Opentrends and especially to the very professional members
 of the MALM team for allowing me to work with them on this exciting project.

 Special thanks to my parents , for trusting and believing in me from the first day
 of college. Finally, I’d like to thank Karolina Levanaite , for being by my side
 during these four hard months of thesis, for your encouragement and your
 kindness.

 Thank you.

 Barcelona School of Informatics (FIB) UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Table of Contents

 List of Tables 4

 List of Code Blocks 6

 List of Figures 8

 1 Context and Scope 10
 1.1 Introduction 10

 1.1.1 Project contextualization 11

 1.1.2 Concepts and definitions 11

 1.1.3 Problem to be solved 13

 1.1.4 Stakeholders 14

 1.2 Justification 15
 1.2.1 Previous studies 15

 1.2.2 Justification of the approach 15

 1.3 Scope of the thesis 16
 1.3.1 Objective and sub-objectives 16

 1.3.2 Requirements 18

 1.3.3 Potential obstacles and risks 19

 1.4 Methodology and rigor 20
 1.4.1 Work methodology 20

 1.4.2 Monitoring tools and validation 21

 1.5 State of the Art 22

 2 Temporal Planning 23

 2.1 Description of tasks 23
 2.1.1 Task definition and Estimation 24

 2.1.2 Resources 28

 2.1.3 Summary table 28

 2.2 Gantt diagram 30

 2.3 Risk management 32
 2.3.1 Alternative plans and obstacles 32

 3 Budget 33
 3.1 Identification of costs 33

 3.1.1 Staff cost 33

 3.1.2 Material cost 33

 3.1.3 Generic costs 35

 3.1.4 Other costs 36

 3.2 Cost estimates 36

 3.3 Management control 38

 Barcelona School of Informatics (FIB) 1 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 4 Sustainability 39
 4.1 Sustainability report 39

 4.1.1 Self-assessment 39

 4.1.2 Economic dimension 40

 4.1.3 Environmental dimension 40

 4.1.4 Social dimension 41

 5 Current Architecture Analysis 43
 5.1 Analysis of the Tech Stack 44

 5.1.1 Workspace 44

 5.1.2 Tech Stack 45

 5.2 Analysis of the Architecture 46
 5.2.1 Software Architecture Patterns 47

 5.2.2 Software Design Patterns 49

 5.2.3 Project File Hierarchy 52

 5.3 Analysis of the Pipelines 59
 5.3.1 Shared Libraries 59

 5.3.2 Pipelines 60

 5.4 Analysis of the Code 66
 5.4.1 Groovy Style Guide 67

 5.4.2 Jenkins Pipeline Best Practices 68

 5.4.3 Code Quality 69

 5.4.4 Code Documentation 70

 6 New Architecture Definition 71
 6.1 Definition of the new Tech Stack 72

 6.1.1 Workspace 72

 6.1.2 Tech Stack 73

 6.2 Definition of the new Project 74
 6.2.1 Gradle 74

 6.2.2 Versioning 76

 6.3 Definition of the new Architecture 77
 6.3.1 Software Architecture Patterns 77

 6.3.2 Software Design Patterns 78

 6.3.3 Project File Hierarchy 79

 6.4 Definition of the new Pipelines 83
 6.4.1 Shared Libraries Unification 83

 6.4.2 New Pipelines Steps 84

 6.5 Definition of the new Code 88
 6.5.1 Best Practices 88

 6.5.2 Code Quality 89

 6.5.3 Documentation 90

 6.6 Definition of Unit Testing 92
 6.6.1 Unit Testing 92

 Barcelona School of Informatics (FIB) 2 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 7 Roadmap Definition 94

 8 Conclusions 96
 8.1 Limitations 98

 8.2 Technical skills 99

 8.2 Further work 99

 9 Annex 101
 9.1 Design Patterns 101

 9.2 Workspace Setup Guide 106
 IDE setup: 106

 Plugins setup: 106

 Custom Settings file Import 107

 9.3 Gradle 7.1 Setup Guide 108
 Download Groovy SDK 108

 Setting up the Groovy SDK 108

 Setting up the Java JDK 108

 Configuring the Gradle modules 108

 9.4 New Pipeline Steps list 111
 android_aar_pipeline 111

 ios_app_pipeline 112

 ios_pod_pipeline 114

 References 117

 Barcelona School of Informatics (FIB) 3 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 List of Tables

 Table 1 – Summary Table and Estimation of the thesis tasks..…………………..…………... 29
 Source: Own creation, Sergio Preciado Orozco, 8 March 2022

 Table 2 – Annual salary and Hourly wage table…..……………………………………………. 33
 Source: Annual salary data retrieved from the Glassdoor website. [1][2]

 [1] https://www.glassdoor.es/Sueldos/barcelona-software-architect-su
 eldo-SRCH_IL.0,9_IM1015_KO10,28.htm?clickSource=searchBtn
 [2] https://www.glassdoor.es/Sueldos/software-engineering-manager-
 sueldo-SRCH_KO0,28.htm?clickSource=searchBtn

 Table 3 – Equipment Amortization table.…..………………………………………………….... 34
 Source: Own creation, Sergio Preciado Orozco, 9 March 2022

 Table 4 – Software Amortization table…..………………………………………………………. 34
 Source: Software price data retrieved from: [1][2][3]

 [1] https://www.microsoft.com/es-es/microsoft-365/project/project-pl
 an-3?activetab=pivot%3aoverviewtab
 [2] https://www.gitkraken.com/git-client/pricing
 [3] https://www.jetbrains.com/idea/buy/#personal

 Table 5 – Electricity cost table.…..………………………………………………………………. 35
 Source: Own creation, Sergio Preciado Orozco, 10 March 2022

 Table 6 – Internet cost table.…..…………………………………………………………………. 35
 Source: Own creation, Sergio Preciado Orozco, 10 March 2022

 Table 7 – Incidental cost table.…..………………………………………………………………. 36
 Source: Own creation, Sergio Preciado Orozco, 11 March 2022

 Table 8 – Budget Summary Table of the thesis.…..…………………………………………… 37
 Source: Own creation, Sergio Preciado Orozco, 14 March 2022

 Table 9 – Technology Analysis Summary……………………………………………………….. 45
 Source: Own creation, Sergio Preciado Orozco, 18 March 2022

 Table 10 – android_app_pipeline Stage description Summary.………………..…………….. 62
 Source: Own creation, Sergio Preciado Orozco, 18 March 2022

 Table 11 – android_aar_pipeline Stage description Summary.………………………….…… 63
 Source: Own creation, Sergio Preciado Orozco, 18 March 2022

 Table 12 – ios_app_pipeline Stage description Summary…..…………………..……………. 64
 Source: Own creation, Sergio Preciado Orozco, 18 March 2022

 Barcelona School of Informatics (FIB) 4 UPC

https://www.glassdoor.es/Sueldos/barcelona-software-architect-sueldo-SRCH_IL.0,9_IM1015_KO10,28.htm?clickSource=searchBtn
https://www.glassdoor.es/Sueldos/barcelona-software-architect-sueldo-SRCH_IL.0,9_IM1015_KO10,28.htm?clickSource=searchBtn
https://www.glassdoor.es/Sueldos/software-engineering-manager-sueldo-SRCH_KO0,28.htm?clickSource=searchBtn
https://www.glassdoor.es/Sueldos/software-engineering-manager-sueldo-SRCH_KO0,28.htm?clickSource=searchBtn
https://www.microsoft.com/es-es/microsoft-365/project/project-plan-3?activetab=pivot%3aoverviewtab
https://www.microsoft.com/es-es/microsoft-365/project/project-plan-3?activetab=pivot%3aoverviewtab
https://www.gitkraken.com/git-client/pricing
https://www.jetbrains.com/idea/buy/#personal

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Table 13 – ios_pod_pipeline Stage description Summary.…………………………….….….. 65
 Source: Own creation, Sergio Preciado Orozco, 18 March 2022

 Table 14 – Technology Analysis Update Summary…….……………………………….……... 73
 Source: Own creation, Sergio Preciado Orozco, 25 March 2022

 Table 15 – Comparison Gradle vs Maven…………………………………………………..…... 74
 Source: https://www.geeksforgeeks.org/difference-between-gradle-and-maven/ ,
 25 March 2022

 Table 16 – Java Naming Convention.………………………………………………………..….. 79
 Source: https://www.javatpoint.com/java-naming-conventions , 26 March 2022

 Table 17 – New Steps summary for the android_app_pipeline.………………………….….. 87
 Source: Own creation, Sergio Preciado Orozco, 18 March 2022

 Table 18 – Roadmap tasks estimation table…………………………………………….….….. 94
 Source: Own creation, Sergio Preciado Orozco, 4 June 2022

 Table 19 – Plugins to configure on IntelliJ.……………………………………………………. 106
 Source: Own creation, Sergio Preciado Orozco, 28 March 2022

 Table 20 – New Steps summary for the android_aar_pipeline……………………………… 112
 Source: Own creation, Sergio Preciado Orozco, 4 June 2022

 Table 21 – New Steps summary for the ios_app_pipeline…….…………………………….. 114
 Source: Own creation, Sergio Preciado Orozco, 4 June 2022

 Table 22 – New Steps summary for the ios_pod_pipeline…….…………………………….. 116
 Source: Own creation, Sergio Preciado Orozco, 4 June 2022

 Barcelona School of Informatics (FIB) 5 UPC

https://www.geeksforgeeks.org/difference-between-gradle-and-maven/
https://www.javatpoint.com/java-naming-conventions

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 List of Code Blocks

 Code 1 – Script to retrieve Groovy version from Jenkins Script Console…………………... 45
 Source: https://stackoverflow.com/questions/18876440/how-do-i-find-out-groovy-
 runtime-version-from-a-running-app , 16 March 2022.

 Code 2 – High level view of Jenkins application.…………………..………………………….. 47
 Source: https://www.jenkins.io/doc/developer/architecture/model/#high-level-view-
 of-jenkins-application , 17 March 2022.

 Code 3 – Structure of the Singleton Pattern in the GsaServices class……………………… 50
 Source: Own creation, Sergio Preciado Orozco, 18 March 2022

 Code 4 – Use of the GsaServices Singleton Pattern on the gsa.groovy file……..…………. 51
 Source: Own creation, Sergio Preciado Orozco, 18 March 2022

 Code 5 – Jenkins Shared Library File Hierarchy……………………………………………….. 52
 Source: https://www.jenkins.io/doc/book/pipeline/shared-libraries/#directory-structure ,
 18 March 2022

 Code 6 – MALM’s project File Hierarchy………………………………………………………... 55
 Source: Own creation, Sergio Preciado Orozco, 19 March 2022

 Code 7 – Pipeline-Utils project File Hierarchy………………………………………………….. 57
 Source: Own creation, Sergio Preciado Orozco, 19 March 2022

 Code 8 – Shared Library inclusion………………………………………………………………. 59
 Source: https://www.jenkins.io/doc/book/pipeline/shared-libraries/#using-libraries ,
 19 March 2022

 Code 9 – Pipeline Definition Script (Declarative Syntax).. 59
 Source: Own creation, Sergio Preciado Orozco, 19 March 2022

 Code 10 – Scripted Pipeline structure…………………………………………………………... 60
 Source: https://www.jenkins.io/doc/book/pipeline/syntax/ , 20 March 2022

 Code 11 – Set of basic static-typing variable definition………………………………………. 67
 Source: Own creation, Sergio Preciado Orozco, 22 March 2022

 Code 12 – Set of basic dynamic-typing variable definition……………………………...….... 67
 Source: Own creation, Sergio Preciado Orozco, 22 March 2022

 Code 13 – Base structure for the gradle.build file……………………………………………... 75
 Source: Own creation, Sergio Preciado Orozco, 25 March 2022

 Barcelona School of Informatics (FIB) 6 UPC

https://stackoverflow.com/questions/18876440/how-do-i-find-out-groovy-runtime-version-from-a-running-app
https://stackoverflow.com/questions/18876440/how-do-i-find-out-groovy-runtime-version-from-a-running-app
https://www.jenkins.io/doc/developer/architecture/model/#high-level-view-of-jenkins-application
https://www.jenkins.io/doc/developer/architecture/model/#high-level-view-of-jenkins-application
https://www.jenkins.io/doc/book/pipeline/shared-libraries/#directory-structure
https://www.jenkins.io/doc/book/pipeline/shared-libraries/#using-libraries
https://www.jenkins.io/doc/book/pipeline/syntax/

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Code 14 – Git tag creation task………………………………………………………………….. 76
 Source: Own creation, Sergio Preciado Orozco, 25 March 2022

 Code 15 – MALM’s project new File Hierarchy………………………………………………… 82
 Source: Own creation, Sergio Preciado Orozco, 26 March 2022

 Code 16 – Initialization of Utils variables with the Pipeline-Utils library………………...…... 83
 Source: Own creation, Sergio Preciado Orozco, 29 March 2022

 Code 17 – Initialization of Utils variables with unified Malm-Shared………………………… 84
 Source: Own creation, Sergio Preciado Orozco, 30 March 2022

 Code 18 – Example of shell script equivalent to JsonSlurper………………………………... 89
 Source: Own creation, Sergio Preciado Orozco, 2 June 2022

 Code 19 – Example of shell script equivalent to HttpRequest……………….………………. 89
 Source: Own creation, Sergio Preciado Orozco, 2 June 2022

 Code 20 – Javadoc comment block on a setter function…………………………………….. 90
 Source: https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html ,
 2 June 2022

 Code 21 – Javadoc comment block on a custom getter function…………………………… 90
 Source: https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html ,
 2 June 2022

 Code 22 – Groovydoc additions to the build.gradle file for the Malm-Shared project…….. 91
 Source: Own creation, Sergio Preciado Orozco, 3 June 2022

 Code 23 – Unit Testing additions to the build.gradle file for the Malm-Shared project…… 92
 Source: Own creation, Sergio Preciado Orozco, 3 June 2022

 Code 24 – Example of a Unit test Structure for the Malm-Shared project…………………. 93
 Source: Own creation, Sergio Preciado Orozco, 4 June 2022

 Code 25 – Use of the new @TEDE tag………………………………………………………… 100
 Source: Own creation, Sergio Preciado Orozco, 18 March 2022

 Barcelona School of Informatics (FIB) 7 UPC

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 List of Figures

 Figure 1 – Software cumulative functionality over time…………………………………….... 10
 Source: Fowler, M. (2019, May 29). Is High Quality Software Worth the Cost? Martin Fowler.
 Retrieved March 1, 2022, from https://martinfowler.com/articles/is-quality-worth-cost.html

 Figure 2 – Simplified Component Diagram of the current MALM project…………………. 13
 Source: Own creation, Sergio Preciado Orozco, 19 March 2022

 Figure 3 – Framework Usage by No. of Organizations by Size of Project…… ………...….. 20
 Source: J. Reifer, D., & Hastie, S. Quantitative Analysis of Agile Methods Study (2017): Twelve
 Major Findings . https://www.infoq.com/articles/reifer-agile-study-2017/

 Notes on the image
 - Small Project (567): Agile project that delivers a product can be developed by a single

 agile team.
 - Medium Projects (581): Agile project that uses 2 to 5 teams at same locations to

 develop products.
 - Large Projects (352): Agile large project that uses 5 or more teams, often at different

 locations, to develop products.

 Legend

 AUP – Agile Unified Process

 XP – Extreme Programming

 FDD – Feature-Driven Development

 Scrum – Scrum and derivatives

 A - Scale – Agile at scale methods

 Hybrid – Mix of methods

 Figure 4 – Gantt Table used to generate the Gantt diagram…………………………………. 30
 Source : Own creation, Sergio Preciado Orozco, 8 March 2022

 Figure 5 – Gantt diagram of the thesis………………………………………………………….. 31
 Source: Own creation, Sergio Preciado Orozco, 8 March 2022

 Figure 6 – Open layers and request flow on a Layered Pattern model……………………... 48
 Source: Software Architecture Patterns by Mark Richards https://www.oreilly.com/library/view/
 software-architecture-patterns/9781491971437/ch01.html , 8 March 2022

 Figure 7 – Progress status bar for the android_app_pipeline execution.………...…………. 62
 Source: Own creation, Sergio Preciado Orozco, 20 March 2022

 Figure 8 – Progress status bar for the android_aar_pipeline execution.……………………. 63
 Source: Own creation, Sergio Preciado Orozco, 20 March 2022

 Figure 9 – Progress status bar for the ios_app_pipeline execution…………………………. 64
 Source: Own creation, Sergio Preciado Orozco, 20 March 2022

 Barcelona School of Informatics (FIB) 8 UPC

https://martinfowler.com/articles/is-quality-worth-cost.html
https://www.infoq.com/articles/reifer-agile-study-2017/
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Figure 10 – Progress status bar for the ios_pod_pipeline execution...……………………… 65
 Source: Own creation, Sergio Preciado Orozco, 20 March 2022

 Figure 11 – New progress status bar for the android_app_pipeline execution…………….. 85
 Source: Own creation, Sergio Preciado Orozco, 30 March 2022

 Figure 12 – Roadmap diagram of the MALM’s re-architecturization.……………………….. 95
 Source: Own creation, Sergio Preciado Orozco, 4 June 2022

 Figure 13 – malm-shared base project module configuration…...…………………………. 109
 Source: Own creation, Sergio Preciado Orozco, 27 March 2022

 Figure 14 – main resources module configuration…...……………………...………………. 109
 Source: Own creation, Sergio Preciado Orozco, 27 March 2022

 Figure 15 – main src module configuration…...………………………………………………. 109
 Source: Own creation, Sergio Preciado Orozco, 27 March 2022

 Figure 16 – main vars module configuration…...…………………………………….………. 110
 Source: Own creation, Sergio Preciado Orozco, 27 March 2022

 Figure 17 – test module configuration.…………………….………………………….………. 110
 Source: Own creation, Sergio Preciado Orozco, 27 March 2022

 Barcelona School of Informatics (FIB) 9 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 1 Context and Scope

 1.1 Introduction
 Every hour wasted on code maintenance is an hour in which a developer could have done
 wonderful things.

 All software developers will, at some point, come across bad code . Sometimes driven by tight
 deadlines or unawareness about code quality and best coding practices, programmers are
 somewhat forced to code without thinking about its future repercussions . This situation can
 happen on the same project several times, until it becomes a real problem .

 As Isaac Lyman says in its article, Code quality: a concern for businesses, bottom lines, and
 empathetic programmers (2021) : “Tech companies with a poor understanding of code quality
 can launch quickly and see success in the short term. But in doing so, they incur an invisible
 debt that grows every time the code is altered. Once the product exceeds a very low threshold
 of complexity, the debt comes due, gradually consuming the productivity of their development
 team and the usability of their software.”, as shown on Figure 1.

 These types of dangers are called Technical Debt.

 Figure 1 – Software cumulative functionality over time (Fowler, 2019).

 This thesis is aimed at understanding the impact that the current state of a project has on
 the final product and on the productivity of its development team . I start from the premise
 that the project has not scaled as it should over time. Thus, it is necessary to analyze the
 current situation in order to take actions that have an immediate impact on its overall
 productivity and performance.

 Barcelona School of Informatics (FIB) 10 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 The purpose of this study is not to be judgmental about the current state of the project; on the
 contrary, it is intended to perform a diagnosis in an effort to achieve immediate improvements
 that may have an impact on the service offered. I am very grateful for the help of the teams that
 collaborated with me through this project, and of those who provided me with relevant
 information of any kind.

 1.1.1 Project contextualization

 This project, Technical Debt Analysis and Project Architecturization of a Jenkins Platform based
 on Groovy , is a bachelor thesis of the Informatics Engineering degree, for the Software
 Engineering specialization, done in the Barcelona School of Informatics (FIB) of the Polytechnic
 University of Catalonia (UPC). It is done with the collaboration of Opentrends 1 , a pioneer
 consulting and engineering company based at Barcelona, with more than 400 employees and
 with offices in Madrid (Spain), Silicon Valley (California, USA) and Kerala (India).

 The thesis is directed and supervised by Jonattan Nieto Sánchez , Senior Software
 Engineering Manager at Opentrends, and examined by the speaker and professor Xavier
 Burgés Illa , of the UPC’s ESSI department.

 Furthermore, Opentrends is attached to the United Nations Global Compact, and it is a firm
 committed to the environment and sustainability that has recently obtained ISO 1400-1
 (Opentrends, 2021). With that in mind, this thesis has been developed following the same
 guidelines.

 1.1.2 Concepts and definitions

 It is important to know the definition of some basic concepts that will be present throughout the
 thesis, in order to enhance the reading and comprehension for the reader.

 a) CI/CD
 The “CI” refers to Continuous Integration , which is an automation process for
 developers. Successful CI means new code changes to an app are regularly built,
 tested, and merged to a shared repository. It’s a solution to the problem of having too
 many branches of an app in development at once that might conflict with each other.
 (Red Hat, 2018)

 The “CD” refers to Continuous Delivery and/or Continuous Deployment , which are
 related concepts that sometimes get used interchangeably. Continuous Delivery usually
 means a developer’s changes to an application are automatically bug tested and
 uploaded to a repository, where they can then be deployed to a live production
 environment by the operations team. The purpose of continuous delivery is to ensure
 that it takes minimal effort to deploy new code. Continuous Deployment can refer to
 automatically releasing a developer’s changes from the repository to production, where
 it is usable by customers (Red Hat, 2018).

 1 Opentrends – https://www.opentrends.net/en

 Barcelona School of Informatics (FIB) 11 UPC

https://www.opentrends.net/en

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 b) Jenkins
 It is the leading, self-contained, open source automation server which can be used to
 automate all sorts of tasks related to building, testing, and delivering or deploying
 software . (Jenkins, 2020) Jenkins is written in Java and provides hundreds of plugins to
 improve and extend its functionalities, making it one of the best tools for Continuous
 Integration and Continuous Delivery at the present time.

 c) Pipeline
 A Pipeline is a user-defined model of a CD pipeline. A Pipeline’s code defines your
 entire build process , which typically includes stages for building an application, testing
 it and then delivering it. (Jenkins, 2020)

 d) Node
 A node is a machine which is part of the Jenkins environment and is capable of
 executing a Pipeline. (Jenkins, 2020)

 e) Stage
 A stage block defines a conceptually distinct subset of tasks (or steps) performed
 through the entire Pipeline (e.g., "Build", "Test" and "Deploy" stages), which is used by
 many plugins to visualize or present Jenkins Pipeline status/progress. (Jenkins, 2020)

 f) Step
 A single task . Fundamentally, a step tells Jenkins what to do at a particular point in time
 (or "step" in the process). For example, to execute the shell command make use the sh
 step: sh 'make' . (Jenkins, 2020)

 g) ALM
 Application Lifecycle Management (ALM) is the people, tools, and processes that
 manage the life cycle of an application from conception to end of life. ALM supports
 agile and DevOps development approaches by integrating together a list of disciplines:
 project management, requirements management, software development, testing and
 quality assurance, deployment, and maintenance; and enabling teams to collaborate
 more effectively in the organization. (Red Hat, 2018)

 h) MALM (Mobile ALM)
 Opentrends’ MALM team provides the implementation of an ALM to support the
 lifecycle of mobility applications of its customers through its principal product: Mobile
 ALM.

 Just to give a first idea of the size of the MALM project, it has only four Jenkins CI
 pipelines, but with a total of more than 40,000 lines of code. These pipelines are
 currently being used by more than a 1,000 users and with approximately 100
 concurrent daily users, according to Opentrends internal statistics.

 Barcelona School of Informatics (FIB) 12 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Figure 2 shows a simplified diagram of the components of the current MALM project.

 Figure 2 – Simplified Component Diagram of the current MALM project.

 1.1.3 Problem to be solved

 At the current time, MALM project is fully functional, has been granting its service since 2017
 and its changing and evolving teams have continued to expand its functionalities until now. Of
 course, some people may think, “Why fix something that is not broken?”, but that point comes
 into question when the cost of maintaining the project’s code is rather high. In that case,
 rethinking the project architecture and its design is something that should be taken into
 consideration.

 Although, in this case, it is not just “bad code” that is causing the increase in maintenance cost.
 After a superficial analysis of the project's code, we can identify some of the main problems
 that will be addressed in this thesis.

 First , it is a project that appears very early in time, with no community support to develop this
 type of complex automation products. It is focused on iOS and Android app generations in
 parallel, but with different requirements. In addition, it has been evolving over time, lacking a
 well-defined architecture that needs to be focused on easing the programmer's work and
 allowing an efficient growth of the platform and its services. The software does not respect the

 Barcelona School of Informatics (FIB) 13 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 classical design patterns (SOLID: Single responsibility, Open-closed, Liskov substitution,
 Interface segregation and Dependency inversion). Second , the source code of the project lacks
 a suitable versioning, which complicates its distribution. Also, the source code is divided into
 two or more code repositories, which separates the Utils module (auxiliary functions) from the
 rest of the program's source code, clearly complicating the development of new functionalities,
 product management and bug identification.

 Third , Unit Testing is not implemented, nor are basic regression tests correctly defined. Fourth ,
 the pipeline code is unorganized and may need a complete redesign of its Stages and Steps,
 making it modular, reusable and divided into semantically similar Stages. Fifth and last, there
 are some less significant concerns, such as code refactoring and cleanup of deprecated code,
 there is no Groovydoc-style code documentation, and some recommended best practices for
 Groovy and Jenkins are not being followed.

 1.1.4 Stakeholders

 We can identify two main groups of stakeholders, divided according to their interest. The first
 one, the stakeholders directly involved with the thesis and its development; The second one,
 stakeholders who are not involved with the project itself, but in its benefits.

 Directly involved Stakeholders are the thesis supervisor and Senior Software Engineering
 Manager at Opentrends, Jonattan Nieto Sánchez, the thesis examiner, Xavier Burgués Illa and
 myself as the researcher, Sergio Preciado Orozco.

 On the other hand, the stakeholders who will benefit from the project's resulting product are:
 The MALM team , as the main beneficiary of the project due to the fact that the thesis focuses
 on enhancing their product source code, greatly decreasing maintenance and testing costs and
 facilitating future functionality developments; Opentrends , as the company that owns the final
 product and is, of course, interested in that its employees invest more time on I&D, rather than
 maintaining “bad code” and launching time-consuming tests; Users of MALM , as the users of
 a potentially much more robust platform where they can deploy their APPs for their customers
 to use; Potential clients of the MALM service, as the possible new clients of a platform that will
 be ready for the long-term growth, they will be interested in having the best service they can
 find.

 In a larger scope, we can also consider the Users of the Apps deployed by MALM , as the
 millions of users that will be using the APPs deployed by the service, they will want to use an
 application that is correctly tested and keeps updating with new features on a regular basis.

 Barcelona School of Informatics (FIB) 14 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 1.2 Justification

 1.2.1 Previous studies

 In the last decade, studies on technical debt and the relevance of quality code have been
 decisive in bringing value and visibility to best practices and to the importance of a
 well-designed architecture.

 The Developer Coefficient study (Stripe and Harris Poll, 2018) found out that the average
 developer spends 17.3 hours of their 41 weekly working hours (42%) dealing with technical
 debt and maintenance issues, of which 3.8 hours are spent just on debugging “bad code”, or
 poor quality code that’s difficult to maintain. The opportunity cost of bad code comes to $85
 billion annually, resources that could otherwise be used to build better software. (Avery, 2018)

 The impact caused by the consequences of poorly designed architecture are even more
 significant and detrimental, which makes it necessary to coin a new term to differentiate this TD
 from the rest: the Architectural Technical Debt (ATD).

 Another study on the Impact of Architectural Technical Debt on Daily Software Development
 Work (Besker et al., 2017), in which data from 258 participants from different projects were
 gathered, states that the negative consequences of Technical Debt is an area of increasing
 interest, and more specifically the Architectural aspects of it. Besides the negative effects of
 Architectural Technical Debt on the overall software product quality in terms of hindering
 evolution and causing high maintenance costs, Architectural Technical Debt also has a
 significant negative impact on software developers' daily work.

 In addition to all the studies and articles referenced in the other sections of this thesis, this
 article describes some of the needs and concerns that we will address, Code quality: a concern
 for businesses, bottom lines, and empathetic programmers 2 from the StackOverflow Blog team.

 1.2.2 Justification of the approach

 Based on these previous studies, I decided to design a completely new architecture for the
 project, keeping the current paradigm of its Jenkins approach: a CI/CD platform based on
 jenkins pipeline scripts. It provides an essential service for day-to-day application
 development and any change must be carefully reviewed, mitigating risks as much as possible.
 It is important not to change its core functionalities with the redesign, because it is an already
 deployed product in production , with more than 1000 users per day and a high resilience to
 change (any modification will have a significant impact on its code). Therefore, I will define the
 roadmap in order to achieve the objectives listed in the following section.

 2 Link to the article here .

 Barcelona School of Informatics (FIB) 15 UPC

https://stackoverflow.blog/2021/10/18/code-quality-a-concern-for-businesses-bottom-lines-and-empathetic-programmers/

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 1.3 Scope of the thesis

 1.3.1 Objective and sub-objectives
 The main objective of this thesis is to analyze in great depth the MALM project and then
 propose an architecture for its outdated software (with high technical debt) that allows: easy
 maintenance; scalability (functionally extendable); reliability (end to end automatic testing,
 reliability of changes without the need for manual testing, etc.). Then, the MALM team will follow
 the roadmap to implement the necessary improvements to increase the overall quality of the
 final product. By doing so, it is expected to considerably reduce the cost of code maintenance
 and provide the project with a more flexible architecture for its scalability .

 The resulting study of this thesis is based on the evidence and improvements of this specific
 product, but is extrapolable to any software project with similar characteristics.

 As stated at section 1.1.3 Problem to be solved , with the first project analysis we identified a list
 of needs that should be addressed, some of them crucial to the thesis development and the
 accomplishment of the main objective. Of course, there are many improvements that can be
 applied to a project of this magnitude, that is why it is essential to narrow down the main
 objective into more specific sub-objectives. Then, prioritize those that can provide the most
 benefits in the long-term.

 Required

 ⇒ Architecturization of the software
 It can be divided into more specific sub-objective such as: Define a proper file
 hierarchy for the project; Pattern the code based on its multiple use cases,
 taking into account the limitations of Jenkins; Define a Best Practices
 guidelines; Unify the Workspace, IDE and its extension between all team
 members. The definition of a good workspace and its tools can increase
 productivity. Also synchronizing the team's development environment, making it
 easy to exchange knowledge and various tips and tricks.

 ⇒ Use Gradle to create a new repository for the project.
 Convert the existing project repository into a real Groovy Project . At the current
 time, the MALM code is just groovy scripts and does not allow test execution,
 class indexing nor dependency injection. With this Groovy style project, we can
 implement an intuitive versioning and release strategy for the project’s code.

 ⇒ Unify the scripts repositories.
 The Utils functions module of the project is hosted on a corporate git repository
 called pipeline-utils . The rest of the source code is hosted on another repository
 called malm-shared . This first repository, pipeline-utils, has to be unified into
 malm-shared to simplify the architecture.

 Barcelona School of Informatics (FIB) 16 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ⇒ Redesign the pipelines and its Stages and Steps.
 We need to define more specific and modular Stages based on their purpose,
 divide its computational work into atomic Steps, and correctly manage
 exceptions and warnings of such steps.

 ⇒ Implement Unit Testing.
 Design and implement tests for the pipelines Stages and Steps . Testing the
 pipelines and its code before its deployment with the use of sample data (mock
 values) will greatly increase the productivity of the team, as stated earlier at
 section 1.2.1 Previous studies .

 Significant

 ⇒ Redesign the Jenkins global variables.
 Analyze and identify the environment variables file and move into the code the
 ones that are not acting as a global variable, or need to be changed on the fly.

 ⇒ Document the code using Groovydoc.
 For every Class, function, or method of the Jenkins Controller project, document
 it and generate a Groovydoc file.

 ⇒ Upgrade the technological stack of the code and the software platform.
 Analyze the project to validate if an update of the software, plugins, and libraries
 can be possible on the existing corporate platform.

 Nice-to-have

 ⇒ Cleanup of deprecated code.
 Delete old comments, deprecated functions and unused files and classes.

 ⇒ Refactor the name of code variables to provide them with useful semantic information.
 Identify those variables that have no useful semantic information and rename
 them.

 ⇒ Modify the code so that it complies with Groovy and Jenkins best practices.

 Next steps

 ⇒ Convert repository code into a real Shared Library.
 Analyze the project to validate if its conversion to a Shared Library is beneficial
 for the product and, in that case, implements the required changes and
 conversion.

 ⇒ Redesign the Jenkins pipeline parameters. UX improvement.
 Modify the parameters of the Jenkins pipelines to improve user experience and
 easily determine what is exactly executing.

 Barcelona School of Informatics (FIB) 17 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 In the course of this thesis, I will be addressing the Required and Significant objectives.
 Nice-to-have objectives will be indirectly dealt by the MALM team after an analysis commented
 on the thesis. Next steps objectives will be proposed as improvements in the future.

 1.3.2 Requirements

 As stated in earlier sections, this thesis is not focused on developing new functionalities of a
 product, but rather on redesigning and architecturizing its project, maintaining all of its previous
 features.

 The definition of functional and non-functional requirements of the thesis may be unclear due to
 its theoretical nature, but we can state some of the requirements that the product now meets
 and should continue to meet after the implementation of the new architecture:

 Functional requirements

 ⇒ The software tests the APP’s unit tests.
 ⇒ The software builds and deploys the APP on iOS and Android architectures.
 ⇒ The software generates versioned libraries/modules developed for an application.
 ⇒ The software notifies the users after a valid or an invalid execution.
 ⇒ Pipeline parameters are configurable from the frontend.

 As for the thesis itself:

 ⇒ The software meets the same requirements as before its redesign.

 Non-functional requirements

 ⇒ Response time between failure does not exceed 24 hours.
 ⇒ Users can use the service throughout the week at any time during the day.
 ⇒ All users can see all the public pipeline executions and logs.
 ⇒ Only the users with the role “admin” can manage and configure the pipelines.
 ⇒ The service interface has to be user-friendly and easy to use.

 As for the thesis itself:

 ⇒ The software is easily scalable, assuring less than 4 hours to implement a new basic
 feature.

 ⇒ Use of best practices and a good readability on the project's code.

 Barcelona School of Informatics (FIB) 18 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 1.3.3 Potential obstacles and risks

 Throughout the course of the thesis, there are some potential obstacles and risks that we
 should pay attention to in order to prevent them from affecting the project.

 > Unclear documentation

 Due to the current multiple paradigms of Jenkins, its documentation can be ambiguous,
 freely interpreted and without a consensus of the community. This can complicate the
 correct development of the thesis, so it is important to invest a good percentage of the
 project time in research.

 > Complex Project in Production

 It is a very complex product already deployed in production, with many active users
 using its service. It is normal that we may encounter strong resistance to change. In
 order to mitigate the risk, we can invest a percentage of the thesis’ development time in
 the analysis of the actual project.

 > Tight deadlines

 Considering the short time frame in which the thesis must be developed (four months),
 it is important that we do not lose sight of this risk. Sometimes developers have tight
 deadlines and, in some cases, the team is unable to meet these expectations. We can
 mitigate this risk by creating a thorough project plan that allow us to set realistic
 deadlines

 > Hardware and Infrastructure problems

 In projects where the infrastructure is managed by another team, or depends directly on
 third parties, it is usual that from time to time the infrastructure may be unavailable or
 have occasional errors. Hiring a solid infrastructure with a good technical service is
 essential to mitigate this risk.

 > External risks

 There are also some rare, unpredictable risks that can be encountered during the
 development. They can include natural disasters, changes in laws and economic shifts.
 At first glance it may seem extreme, but in 2018 this same project suffered a crash of its
 MacStadium 3 machines due to Hurricane Michael as it passed through Atlanta Data
 Centers (National Weather Service, US Dept of Commerce, 2018). It can be challenging
 to avoid external risks, but there are actions we can take to mitigate them, like
 maintaining backups or segregating the infrastructure servers.

 3 MacStadium – https://www.macstadium.com/

 Barcelona School of Informatics (FIB) 19 UPC

https://www.macstadium.com/

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 1.4 Methodology and rigor

 1.4.1 Work methodology

 Defining a suitable methodology for the thesis development is a key aspect to assure its
 profitable outcome. As for now, the MALM team has been using Agile methodologies for a long
 time, and currently they are working under the SCRUM framework guidelines.

 Agile methodologies are a perfect fit for this kind of project where rapidly changing
 requirements, incremental delivery of functionalities and a correct response to user feedback is
 needed. As stated at the CHAOS Manifesto, “Software applications developed through the
 agile process have three times the success rate of the traditional waterfall method and a
 much lower percentage of time and cost overruns” (Standish Group International, Incorporated,
 2010). Having that in mind, the question now is: “why choose Scrum over other agile
 methodologies like Kanban?”.

 A study on Quantitative Analysis of Agile Methods Study (J. Reifer & Hastie, 2017) found out
 that Scrum is the most popular agile framework by a great amount over small and medium
 projects, being the best approach for those small projects (one agile team) in which the agile
 methodology is suitable.

 Figure 3 – Framework Usage by No. of Organizations by Size of Project 4 .

 It is not a secret that Scrum, as an Agile framework, does not adapt to any type of software
 development project. In fact, it is a common mistake for companies to risk implementing a
 Scrum on a large project with aggressive challenges and tight deadlines. However, after
 analyzing the scope of the project, we can state that the SCRUM framework fits the needs of
 the project . Therefore, it is the right decision to continue using it as the team has been doing so
 far, thus choosing it as the framework for the development of the thesis.

 4 Notes and Legend of Figure 3 on the List of Figures section.

 Barcelona School of Informatics (FIB) 20 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 1.4.2 Monitoring tools and validation

 Following the Scrum framework guidelines, our team is composed by: a Proxy Product Owner 5 ,
 as the middleman between the Product Owner (in our case, an external corporate owner) and
 the people developing the product. This same person also takes the role of a scrum master, as
 the person who guides and instructs the team to comply with the rules and processes of the
 framework; the rest of the development team, as the professionals with the necessary technical
 knowledge who develop the project.

 The Proxy PO, in consensus with the developers (me included), prioritizes and sets the tasks to
 be completed in the first Sprint (the basic unit of work for a Scrum team) at a meeting called
 the Sprint Planning . During the sprint we will be conducting a Daily Scrum (sometimes known
 as Daily, in order to abbreviate) which redundantly consist of a brief daily meeting where each
 member of the team has to answer to three simple questions: “What did I do yesterday?”,
 “What am I going to do today?” and “What help do I need?”. (Digité, Incorporated, 2021)

 After every sprint, but before the release of its features, the team will meet for a Sprint Review
 where each member of the team will review and explain their changes to the rest of the team.
 Additionally, when a complete iteration of the Sprint is done, the team will meet again for a
 Sprint Retrospective in order to identify those tasks that went somewhat wrong, and could be
 improved or avoided on future sprints.

 This will help the team to organize their tasks and create a plan for the next 24 hours, also
 allowing them to detect any blockers or scheduling changes in the development.

 All these tasks and information will be registered on a monitoring tool called Rally Software 6 . It is
 a card-based, enterprise-class platform specifically created to increase agile development
 practices where you can plan tasks, organize them and monitor them. The MALM team has
 been using it for the past year so, after checking that the tool fulfills all the needs, I decided to
 use the same tool in order to unify the monitoring technologies that the team will use.

 6 Rally Software – https://aptasolutions.com/rally-software-ca-agile-central/

 5 Proxy Product Owner – https://www.scrum.org/resources/blog/what-proxy-product-owner-why-it-found-so-often

 Barcelona School of Informatics (FIB) 21 UPC

https://aptasolutions.com/rally-software-ca-agile-central/
https://www.scrum.org/resources/blog/what-proxy-product-owner-why-it-found-so-often

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 1.5 State of the Art

 Although the thesis focuses on the re-architecture and refactoring of many of the components
 of a Jenkins platform, I think that it is interesting to mention the current state-of-the-art of
 Jenkins and find out how it is used by the community nowadays.

 Currently, in the field of CI/CD, specifically in Jenkins, there are 3 components that are essential
 to simplify and optimize the process of Continuous Integration. These components are:

 ⇒ Jenkins.
 » It is an open-source automation platform widely used by the community, written

 in Java and with a large catalog of plugins to adapt CI to the user's needs. It is
 used to build and test the software in a continuous way, facilitating the
 integration of code changes for developers.

 » There are two different syntaxes for developing Jenkins pipelines, Scripted and
 Declarative. Currently, the community is divided as each has its benefits and
 weaknesses, although there is a growing trend towards Declarative Syntax.

 ⇒ GitHub. (or GitLab)
 » GitHub is a collaborative Source Control Management tool that allows to host

 and version the source code of any software project. It has many possible
 integrations with other tools in addition to its functionalities, which makes it an
 essential tool for programmers.

 ⇒ Docker.
 » It is an Operating System virtualization tool in the form of Containers. It is used

 to simplify the process of build, execution and distribution of software products.

 The idea is to unite these three components in order to be able to launch CI builds with Jenkins
 directly from a MR (Merge Request) of any branch of the GitLab repository; To be able to see
 the results of that CI from the MR comments, before executing the Merge; To use Docker to
 separate the CI build from the Jenkins environment, and thus optimize time and resources.

 In this way, it is achieved:

 ⇒ Having centralized Jenkins configuration, in addition to being able to define one for each
 Job.

 ⇒ Being able to launch CI/CD Jobs from specific branches of the GitHub repositories.
 ⇒ To have the CI result available in the comment of the MR of GitHub.
 ⇒ Prevent the branches from breaking the Build before the merge.
 ⇒ Relieve Jenkins server load by running jobs that require more resources on Docker.
 ⇒ Reduce overall CI execution times.
 ⇒ Make it easier for the user to use (UX).

 Barcelona School of Informatics (FIB) 22 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 2 Temporal Planning
 The development of the thesis is planned to start on February 21, 2022 , and to be completed
 on June 27, 2022 , this last date being the same as the defense date of the thesis. It has a total
 workload of 18 academic credits, at 30 hours per credit, that is ~540 hours of expected work.

 Between February 21 and June 27 there is a total of 4 months and 6 days (126 days). Of those
 126 days, 90 are working days, which means that for a smooth and correct development of the
 project, 6 hours a day of work are required.

 2.1 Description of tasks
 The project’s tasks, whose information will be used to generate the Gantt diagram in section
 2.2 Gantt diagram , are listed below. I will be using a format I like to call Task Table Format,
 where the information of every task is defined following this table:

 ID : EX1 Name : Example task for the thesis Type : Documentation

 Description : In the example, the fields of the task and their possible values must be defined.

 Resources : Personal workspace. Dependency : D1 Estimation : 1 h

 Where:

 ˃ ID : It is the task identifier. It must be unique among all the tasks, in uppercase
 and no longer than 3 alphanumeric characters. (e.g. EX1, PM3, T1)

 ˃ Name : The name of the task. It should be descriptive enough to easily
 recognize the task and no longer than 8 words.

 ˃ Type : It is the typology of the task. It is a purely informational value to provide
 more context to the person in charge of executing the tasks. It can be:
 Documentation, Analysis, Research, Development, or Management.

 ˃ Description : A brief description of the task in order to give the developer a
 more precise vision of the task’s objective. No longer than 120 words.

 ˃ Resources : A list of the specific resources needed for the task. It can include
 anything from human resources to hardware and software. In order to simplify
 the definition of resources, the speaker has been included in the role of the
 Director. List and identification of used resources defined in section 2.1.2
 Resources .

 ˃ Dependency : A list of task IDs that must be completed before starting this
 same task. It must not contain loops between tasks.

 ˃ Estimation : The number of hours needed to complete the task. It must be a
 natural number (no decimals) and it is strongly recommended not to exceed 50
 hours.

 Barcelona School of Informatics (FIB) 23 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 2.1.1 Task definition and Estimation

 Given the high number of tasks, I have decided to organize some of them in four major blocks
 according to their objective and temporal order within the thesis (do not confuse with the
 typology of the task). These blocks are: Project Documentation, Project Management, Current
 Architecture Analysis, New Architecture Definition and Roadmap Definition and Conclusions.

 As a justification for the hours , I would like to point out that all the tasks have been estimated
 taking into account the estimations of other projects I have developed, with very similar
 characteristics.

 Project Documentation

 ID : D1 Name: Documentation after the First Sprint Type : Documentation

 Description : Revision and unification of the first sprint documentation.

 Resources : R, DC, L, GD Dependency : PM9 Estimation : 10 h

 ID : D2 Name : Documentation after the Second Sprint Type : Documentation

 Description : Revision and unification of the second sprint documentation.

 Resources : R, DC, L, GD Dependency : AA5 Estimation : 10 h

 ID : D3 Name : Documentation after the Third Sprint Type : Documentation

 Description : Revision and unification of the third sprint documentation.

 Resources : R, DC, L, GD Dependency : AD3 Estimation : 10 h

 ID : D4 Name : Documentation after the Fourth Sprint Type : Documentation

 Description: Revision and unification of the fourth sprint documentation.

 Resources : R, DC, L, GD Dependency : AD6 Estimation : 10 h

 ID : D5 Name : Documentation after the Fifth Sprint Type : Documentation

 Description : Revision and unification of the fifth sprint documentation.

 Resources : R, DC, L, GD Dependency : RD2 Estimation : 10 h

 ID : D6 Name : Final thesis documentation Type : Documentation

 Description : Revision and unification of the entire thesis documentation.

 Resources : R, DC, L, GD Dependency : D5 Estimation : 20 h

 Barcelona School of Informatics (FIB) 24 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Project Management

 ID: PM0 Name: Meetings Type: Management

 Description : Meetings with the director and supervisor of the thesis.

 Resources: R, D, L Dependency: – Estimation: 30 h

 ID: PM1 Name: Context definition Type: Documentation

 Description: Documentation of the context for the thesis. Explanation of the main concepts,
 definition of the problems to be solved and the stakeholders of the project.

 Resources: R, DC, L Dependency: – Estimation: 10 h

 ID: PM2 Name: Justification of the approach Type: Documentation

 Description: Documentation of the thesis justification. Statement of the previous studies on
 the matter and justification of the chosen approach.

 Resources: R, DC, L Dependency: PM1 Estimation: 10 h

 ID: PM3 Name: Scope definition Type: Documentation

 Description: Documentation of the scope for the thesis. Definition of the objectives and sub
 objectives, the list of requirements and the potential obstacles and risks of the project.

 Resources : R, DC, L Dependency : PM2 Estimation: 15 h

 ID: PM4 Name: Methodology Type: Documentation

 Description: Documentation of the methodology for the thesis. Definition of the work
 methodology and the monitoring tools for the project.

 Resources: R, DC, L Dependency: PM3 Estimation: 5 h

 ID: PM5 Name: Description of tasks Type: Documentation

 Description: Documentation and estimation of the thesis tasks.

 Resources : R, DC, L Dependency: PM4 Estimation: 15 h

 ID: PM6 Name: Gantt diagram Type: Documentation

 Description: Creation of the Gantt diagram for the tasks.

 Resources: R, DC, L, MSP Dependency: PM5 Estimation: 5 h

 Barcelona School of Informatics (FIB) 25 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ID: PM7 Name: Risk management Type: Documentation

 Description: Documentation of the risks mitigation and alternative plans for these obstacles.

 Resources: R, DC, L Dependency: PM6 Estimation: 5 h

 ID: PM8 Name: Budget Type: Documentation

 Description: Documentation of the budget for the project execution.

 Resources: R, DC, L Dependency: PM7 Estimation: 20 h

 ID: PM9 Name: Sustainability Type: Documentation

 Description: Documentation of the sustainability impact of the project.

 Resources: R, DC, L Dependency: PM8 Estimation: 5 h

 Current Architecture Analysis

 ID: AA1 Name: Analysis of the Tech Stack Type: Analysis

 Description: Analysis of the current project’s technology, software and Workspace, etc.

 Resources: R, DC, L, GK, INT Dependency: D1 Estimation: 10 h

 ID: AA2 Name: Analysis of the Architecture Type: Analysis

 Description: Analysis of the current architecture, repository, file hierarchy, patterns,
 dependencies, etc.

 Resources: R, DC, L, GK, INT Dependency: AA1 Estimation: 40 h

 ID: AA3 Name : Analysis of the Pipelines Type: Analysis

 Description: Analysis of the project’s pipelines, its stages and its steps.

 Resources: R, DC, L, GK, INT Dependency: AA2 Estimation : 30 h

 ID: AA4 Name: Analysis of the Code Type: Analysis

 Description: Analysis of the project’s code, code quality, smells, deprecated code,
 exceptions throw, etc.

 Resources: R, DC, L, GK, INT Dependency: AA3 Estimation: 20 h

 Barcelona School of Informatics (FIB) 26 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ID: AA5 Name: Analysis of the Jenkins Environment Type: Analysis

 Description: Analysis of the Jenkins global variables, parameters, and its environment.

 Resources: R, DC, L, GK, INT Dependency: AA4 Estimation : 10 h

 New Architecture Definition

 ID: AD1 Name: Definition of the Workspace Type: Research

 Description: Definition of the IDE, plugins and some other tools to facilitate the developer’s
 work.

 Resources: R, DC, L, GK, INT Dependency: D2 Estimation: 20 h

 ID: AD2 Name: Definition of the new Project Type : Research

 Description: Definition of the new project’s repository with Gradle and definition of the new
 versioning methodology for the code.

 Resources: R, DC, L, GK, INT Dependency: AD1 Estimation: 30 h

 ID: AD3 Name: Definition of the new Code Architecture Type: Research

 Description : Definition of patterns, organization of the code in new classes, dependency
 inclusion, and definition of best practices.

 Resources: R, DC, L, GK, INT Dependency: AD2 Estimation: 30 h

 ID: AD4 Name: Definition of the new Pipelines Type: Research

 Description: Definition of the new pipeline’s Stages, Steps and its exceptions.

 Resources: R, DC, L, GK, INT Dependency: D3 Estimation: 40 h

 ID: AD5 Name: Definition of the new Jenkins configuration Type: Research

 Description: Definition of the new Jenkins pipeline parameters and its global variables.

 Resources: R, DC, L, GK, INT Dependency: AD4 Estimation: 15 h

 ID: AD6 Name: Definition of Unit Testing Type: Research

 Description: Definition of the entire Unit Testing module, tests definitions and testing
 protocol.

 Resources: R, DC, L, GK, INT Dependency: AD5 Estimation: 40 h

 Barcelona School of Informatics (FIB) 27 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Roadmap Definition and Conclusions

 ID: RD1 Name: Definition of the roadmap Type: Development

 Description: Definition of the roadmap for the architecturization of the project. Formalize the
 steps that the developers have to follow for the correct execution of the roadmap.

 Resources: R, DC, L, GK, INT. Dependency: D4 Estimation: 50 h

 ID: RD2 Name: Conclusions Type:
 Documentation

 Description: Documentation of the conclusions of the thesis and its next steps.

 Resources: R, DC, L, GK, INT Dependency: RD1 Estimation: 40 h

 ID: TDP Name: Thesis Defense Preparation Type: Documentation

 Description : Preparation of the presentation for the defense of the thesis.

 Resources: R, DC, L, GK, INT. Dependency: D6 Estimation: 10 h

 The total estimate for the thesis is 575 hours , as shown in the total amount of work in the
 summary table of the next page.

 It is important to note, of course, that this planning is only a first approximation (carefully
 planned and close to the final one), which will be adapted according to the needs of the
 Scrum framework.

 2.1.2 Resources

 Due to the theoretical nature of the thesis, I am not going to use many resources nor very
 specific material other than my personal computer and my laptop, from which I will be doing all
 of my research. We can identify other types of resources that we will need, such as:

 ⇒ Human Resources , like the Researcher (R) and the thesis Director (D).
 ⇒ Material Resources , like the Desktop Computer (DC) and the Laptop (L), internet

 access and the software (including its licenses) used for the development of the thesis.
 MS Project PRO (MSP), Google Docs (GD), Gitkraken (GK) and IntelliJ (INT) for the
 moment.

 2.1.3 Summary table
 In the following page we can find a summary table of the tasks, organized by sprints of similar
 workload. It includes the total time estimation of the thesis and the time estimation of each
 section.

 Barcelona School of Informatics (FIB) 28 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ID Task Name Work Dependency Resources
 Thesis Planning 575 hrs

 PM0 Meetings 30 hrs R, D, L
 Sprint 1 - Project Management 100 hrs

 Context and Scope 40 hrs
 PM1 Context definition 10 hrs R, DC, L
 PM2 Justification of the approach 10 hrs PM1 R, DC, L
 PM3 Scope definition 15 hrs PM2 R, DC, L
 PM4 Methodology 5 hrs PM3 R, DC, L

 Temporal Planning 25 hrs
 PM5 Description of tasks 15 hrs PM4 R, DC, L
 PM6 Gantt diagram 5 hrs PM5 R, DC, L, MSP
 PM7 Risk management 5 hrs PM6 R, DC, L

 Budget 25 hrs
 PM8 Budget 20 hrs PM7 R, DC, L
 PM9 Sustainability 5 hrs PM8 R, DC, L

 Sprint Documentation 1 10 hrs
 D1 Documentation after the First Sprint 10 hrs PM9 R, DC, L, GD

 Sprint 2 - Current Architecture Analysis 120 hrs
 Current Architecture Analysis 110 hrs

 AA1 Analysis of the Tech Stack 10 hrs D1 R, DC, L, GK, INT
 AA2 Analysis of the Architecture 40 hrs AA1 R, DC, L, GK, INT
 AA3 Analysis of the Pipelines 30 hrs AA2 R, DC, L, GK, INT
 AA4 Analysis of the Code 20 hrs AA3 R, DC, L, GK, INT
 AA5 Analysis of the Jenkins Environment 10 hrs AA4 R, DC, L, GK, INT

 Sprint Documentation 2 10 hrs
 D2 Documentation after the Second Sprint 10 hrs AA5 R, DC, L, GD

 Sprint 3 - New Architecture Definition (Phase I) 90 hrs
 New Architecture Definition 80 hrs

 AD1 Definition of the Workspace 20 hrs D2 R, DC, L, GK, INT
 AD2 Definition of the new Project 30 hrs AD1 R, DC, L, GK, INT
 AD3 Definition of the new Code Architecture 30 hrs AD2 R, DC, L, GK, INT

 Sprint Documentation 3 10 hrs
 D3 Documentation after the Third Sprint 10 hrs AD3 R, DC, L, GD

 Sprint 4 - New Architecture Definition (Phase II) 105 hrs
 New Architecture Definition 95 hrs

 AD4 Definition of the new Pipelines 40 hrs D3 R, DC, L, GK, INT
 AD5 Definition of the new Jenkins configuration 15 hrs AD4 R, DC, L, GK, INT
 AD6 Definition of Unit Testing 40 hrs AD5 R, DC, L, GK, INT

 Sprint Documentation 4 10 hrs
 D4 Documentation after the Fourth Sprint 10 hrs AD6 R, DC, L, GD

 Sprint 5 - Roadmap Definition and Conclusions 100 hrs
 Roadmap Definition and Conclusions 90 hrs

 RD1 Definition of the roadmap 50 hrs D4 R, DC, L
 RD2 Conclusions 40 hrs RD1 R, DC, L

 Sprint Documentation 5 10 hrs
 D5 Documentation after the Fifth Sprint 10 hrs RD2 R, DC, L, GD
 D6 Final thesis documentation 20 hrs D5 R, DC, L, GD
 TDP Thesis Defense Preparation 10 hrs D6 R, DC, L

 Table 1 – Summary Table and Estimation of the thesis tasks.

 Barcelona School of Informatics (FIB) 29 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 2.2 Gantt diagram
 I have decided to implement the task schedule sequentially, since it is a theoretical thesis,
 performed by a single researcher. The Gantt diagram has been made using MS Project PRO 7 .
 In the Gantt summary table, only Staff resources are shown in order to simplify the information.
 On this same page, we can find the task table used to generate the diagram of the next page.
 To make it easier to read, it has been printed in A3 format and added in landscape layout into
 the document.

 Figure 4 – Gantt Table used to generate the Gantt diagram.

 7 MS Project PRO – https://www.microsoft.com/en-us/microsoft-365/project/project-management-software

 Barcelona School of Informatics (FIB) 30 UPC

https://www.microsoft.com/en-us/microsoft-365/project/project-management-software

 Technical Debt Analysis and Project Architecturization of a Jenkins Platform based on Groovy Bachelor Thesis

 Figure 5 – Gantt diagram of the thesis. Barcelona School of Informatics (FIB) 31 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 2.3 Risk management

 2.3.1 Alternative plans and obstacles

 In the previous section 1.3.3 Potential obstacles and risks we detected some possible threats
 that could affect the development of the project. Therefore, in this section we are going to
 present a mitigation plan for those that are more likely to be encountered. We will try to foresee
 how they can impact the task schedule so that, if necessary, we can reschedule the project.

 Unclear documentation
 If we encounter ambiguous and poorly defined documentation, this risk will directly
 impact the New Architecture Definition phase. In the event of such a risk, there can be 3
 incremental scenarios:

 ⇒ Low impact: (5-10 hours of deviation) The tasks have been estimated with a 10%
 overestimate in order to overcome delays with little impact of this kind.

 ⇒ Medium impact: (10-20 hours of deviation) Task AD5 must be discarded, and the 15
 hours of the task will be used to correct the deviation.

 ⇒ High impact: (20-40 hours of deviation) A meeting with the director must be scheduled
 within a maximum of 3 days from the detection of the risk. At this meeting, expert
 assistance will be requested, and it must be decided whether the project requires a
 change of scope in order to be re-planned.

 Complex Project in Production
 Due to the high complexity of the current project code, the Current Architecture Analysis
 phase may be affected. Again, there can be 3 incremental scenarios:

 ⇒ Low impact: (5-10 hours of deviation) The tasks have been estimated with a 10%
 overestimate in order to overcome delays with little impact of this kind.

 ⇒ Medium impact: (10-20 hours of deviation) Task AA5 and AD5 must be discarded, and
 the 25 hours of the tasks will be used to correct the deviation.

 ⇒ High impact: (20-40 hours of deviation) A meeting with the director must be scheduled
 within a maximum of 3 days from the detection of the risk. At this meeting, expert
 assistance will be requested, and it must be decided whether the project requires a
 change of scope in order to be re-planned.

 Tight deadlines
 Thanks to the work already completed of organizing the thesis into tasks and creating a
 Gantt diagram with them, we have been able to mitigate this risk to a great extent, so
 we can consider it covered.

 Barcelona School of Informatics (FIB) 32 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 3 Budget
 In the following section we will identify the agents that produce an economic expense in the
 development of the thesis, calculate the project budget and describe what we can do to control
 any possible deviations from the budget during its course. A proper budget estimation is
 essential to accurately anticipate the economic cost of the project and to ensure that our
 proposal does not generate large losses.

 3.1 Identification of costs
 In order to calculate the budget, I have separated the costs according to whether they are staff
 costs, material costs, generic costs, and any other costs that we should take into account. We
 will identify them, and then calculate its estimated cost in the next section 3.2 Cost estimates .

 3.1.1 Staff cost

 I opted to bring this budget as close as possible to the reality of the thesis. To do so, I have
 decided to calculate it taking into account only the figure of the Director (Jonattan, as Senior
 Software Project Manager) and the Researcher (me, as Software Architect) as the staff costs,
 without assuming any other role.

 To determine the hourly rate for the two roles, we will use the Glassdoor 8 website, which allows
 us to identify the average salary (including Social Security) of all employees with the same
 positions. In addition, to calculate the hourly salary, we will assume a working day of 8 and a
 half hours, approximately 180 hours per month, with 14 payments and no bonuses.

 ID Role Annual salary (€) Hourly wage (€)
 R Software Architect 48,618 19.30
 D Senior Software Project Manager 70,456 27.96

 Table 2 – Annual salary and Hourly wage table.

 3.1.2 Material cost

 Equipment Amortization cost

 I will only need my personal computer and the company's laptop, from where I will do my
 research. No other specific hardware components are required for this project. To calculate the
 amortization cost of the equipment, we will use the straight-line depreciation formula (Corporate
 Finance Institute, 2016):

 (1) 𝐴𝑛𝑛𝑢𝑎𝑙 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝐸𝑥𝑝𝑒𝑛𝑠𝑒 = (𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝐴𝑠𝑠𝑒𝑡 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑎𝑙𝑣𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒)
 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑈𝑠𝑒𝑓𝑢𝑙 𝐿𝑖𝑓𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐴𝑠𝑠𝑒𝑡 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠

 8 Glassdoor – https://www.glassdoor.com/

 Barcelona School of Informatics (FIB) 33 UPC

https://www.glassdoor.com/

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Given that the project has a duration of 4 months, we will multiply the annual amortization cost
 by 0.33 (4 months of use between the 12 months of a year).

 (2) 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝐸𝑥𝑝𝑒𝑛𝑠𝑒 = (𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝐴𝑠𝑠𝑒𝑡 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑎𝑙𝑣𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒)
 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑈𝑠𝑒𝑓𝑢𝑙 𝐿𝑖𝑓𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐴𝑠𝑠𝑒𝑡 × 4

 12

 This next table summarizes the amortization cost of the assets and equipment using the
 Equipment Deprecation Expense formula (2).

 ID Equipment
 Initial Cost of
 the Asset (€)

 Actual Salvage
 Value (€)

 Estimate Useful Life
 of the Asset (years)

 Amortization
 cost (€)

 DC Mountain Desktop Computer 1,974.99 980 8 41.46
 L Lenovo ThinkPad Laptop 1,240.89 500 5 49.40

 Table 3 – Equipment Amortization table.

 Software Amortization cost

 We must calculate as well those costs generated by the software licenses that will be used.
 Those that are open source and free of charge will not be included. To calculate the
 amortization cost of the software licenses, we will use the same straight-line depreciation
 formula from before but without the Salvage Value, as stated in Accounting for Computer
 Software Costs (Wehner, 2020).

 Again, given that the project has a duration of 4 months, we will multiply the annual
 amortization cost by 0.33 (4 months of use between the 12 months of a year).

 (3) 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝐸𝑥𝑝𝑒𝑛𝑠𝑒 = (𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝐿𝑖𝑐𝑒𝑛𝑠𝑒)
 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑈𝑠𝑒𝑓𝑢𝑙 𝐿𝑖𝑓𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐿𝑖𝑐𝑒𝑛𝑠𝑒 × 4

 12

 This next table summarizes the amortization cost of the software licenses using the Software
 Deprecation Expense formula (3).

 ID Software
 Monthly Cost

 (€)
 Total Cost

 (€)
 Estimate Useful Life
 of the License (years)

 Amortization
 cost (€)

 MSP MS Project 2019 29.77 119.08 1 39.69
 GK Gitkraken PRO 4.95 19.8 1 6.60
 INT IntelliJ 180.29 721.16 1 240.39

 Table 4 – Software Amortization table.

 Barcelona School of Informatics (FIB) 34 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 3.1.3 Generic costs

 Costs pertaining to electricity consumed and internet connection should also be taken into
 account. In our case, we will ignore the estimated office rent and travel expenses, due to
 Opentrends' current policy of permanent telework.

 Electricity cost

 We will take as a reference for the calculations the data of the last electricity bill of my house (in
 other words, my office). The average energy cost is 0.194326 € /kWh and the average power
 consumption of a desktop computer is 200Wh and 75Wh for a laptop (Energuide, 2020).

 Out of the 575 hours of the project, we will assume that 60% are spent on the laptop and the
 remaining 40% on the desktop computer. Thus, we can use the following equations:

 (4) 𝐷𝑒𝑠𝑘𝑡𝑜𝑝 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐶𝑜𝑠𝑡 = (𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 × 𝐻𝑜𝑢𝑟𝑠 𝑜𝑓 𝑢𝑠𝑒 × 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡) × 0 . 4

 (5) 𝐿𝑎𝑝𝑡𝑜𝑝 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐶𝑜𝑠𝑡 = (𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 × 𝐻𝑜𝑢𝑟𝑠 𝑜𝑓 𝑢𝑠𝑒 × 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡) × 0 . 6

 This next table summarizes the electricity cost using the previous formulas (4) (5).

 Equipment
 Consumption

 (kWh)
 Energy cost

 (€/kWh)
 Hours of use

 (h)
 Electricity cost

 (€)
 Mountain Desktop Computer 0.200 0.194326 230 8.94

 Lenovo ThinkPad Laptop 0.075 0.194326 345 3.02

 Table 5 – Electricity cost table.

 Internet cost

 We will take as a reference for the calculations the last internet bill of my house.

 (6) 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡 𝐶𝑜𝑠𝑡 = (𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑐𝑜𝑠𝑡 × 1 𝑚𝑜𝑛𝑡ℎ
 30 𝑑𝑎𝑦𝑠 × 1 𝑑𝑎𝑦

 24 ℎ𝑜𝑢𝑟𝑠) × 𝐻𝑜𝑢𝑟𝑠 𝑜𝑓 𝑢𝑠𝑒

 This next table summarizes the Internet cost using the Internet Cost formula (6).

 Internet monthly cost (€) Hours of use (h) Internet cost (€)
 29.95 575 23.92

 Table 6 – Internet cost table.

 Barcelona School of Informatics (FIB) 35 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 3.1.4 Other costs

 Contingency cost

 To be able to correct errors due to incomplete information or oversights, we must add an extra
 contingency cost to the budget, based on a contingency rate, which in this case is set at 15%
 of all expenses incurred so far. This includes staff costs, material costs and the generic costs.

 (7) 𝐶𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑦 𝐶𝑜𝑠𝑡 = (𝑆𝑡𝑎𝑓𝑓 𝑐𝑜𝑠𝑡 + 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑠𝑡𝑠 + 𝐺𝑒𝑛𝑒𝑟𝑖𝑐 𝑐𝑜𝑠𝑡𝑠) × 0 . 15

 The total contingency expense is calculated in section 3.2 Cost estimates , following the
 previous formula.

 Incidental cost

 In addition to the tasks in the Gantt chart, budgets often include actions that are part of
 alternative plans designed to manage incidental events. These incidentals are not calculated at
 100%, but according to a percentage that is equal to the estimated probability of the risk
 occurrence.

 We will assume that the initial risk of "Tight deadlines" has already been neglected thanks to
 Gantt's planning, so we will ignore its cost in the calculation.

 (8) 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑖𝑠𝑘 𝐶𝑜𝑠𝑡 = 𝑅𝑖𝑠𝑘 𝑀𝑎𝑥 ℎ𝑜𝑢𝑟𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 × 𝑆𝑡𝑎𝑓𝑓 ℎ𝑜𝑢𝑟𝑙𝑦 𝑤𝑎𝑔𝑒

 (9) 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑖𝑠𝑘 𝐶𝑜𝑠𝑡 × 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑜𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒
 100

 Risk
 Probability of

 occurrence (%)
 Estimated risk

 cost (€)
 Incidental cost

 (€)
 Unclear documentation 40 772 308.8

 Complex Project in Production 30 772 231.6

 Table 7 – Incidental cost table.

 3.2 Cost estimates
 In the following page we can find a summary table of the total budget for the thesis, including
 the staff costs, the material costs, the generic costs, the contingency costs and the incidental
 costs.

 Barcelona School of Informatics (FIB) 36 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Activity Cost (€) Resources Estimation (h)
 PM0 - Meetings 579.00 R, L 30
 PM0 - Meetings 838.80 D, L 30
 PM1 - Context definition 193.00 R, DC, L 10
 PM2 - Justification of the approach 193.00 R, DC, L 10
 PM3 - Scope definition 289.50 R, DC, L 15
 PM4 - Methodology 96.50 R, DC, L 5
 PM5 - Description of tasks 289.50 R, DC, L 15
 PM6 - Gantt diagram 96.50 R, DC, L, MSP 5
 PM7 - Risk management 96.50 R, DC, L 5
 PM8 - Budget 386.00 R, DC, L 20
 PM9 - Sustainability 96.50 R, DC, L 5
 D1 - Documentation after the First Sprint 193.00 R, DC, L 10
 AA1 - Analysis of the Tech Stack 193.00 R, DC, L, GK, INT 10
 AA2 - Analysis of the Architecture 772.00 R, DC, L, GK, INT 40
 AA3 - Analysis of the Pipelines 579.00 R, DC, L, GK, INT 30
 AA4 - Analysis of the Code 386.00 R, DC, L, GK, INT 20
 AA5 - Analysis of the Jenkins Environment 193.00 R, DC, L, GK, INT 10
 D2 - Documentation after the Second Sprint 193.00 R, DC, L 10
 AD1 - Definition of the Workspace 386.00 R, DC, L, GK, INT 20
 AD2 - Definition of the new Project 579.00 R, DC, L, GK, INT 30
 AD3 - Definition of the new Code Architecture 579.00 R, DC, L, GK, INT 30
 D3 - Documentation after the Third Sprint 193.00 R, DC, L 10
 AD4 - Definition of the new Pipelines 772.00 R, DC, L, GK, INT 40
 AD5 - Definition of the new Jenkins configuration 289.50 R, DC, L, GK, INT 15
 AD6 - Definition of Unit Testing 772.00 R, DC, L, GK, INT 40
 D4 - Documentation after the Fourth Sprint 193.00 R, DC, L 10
 RD1 - Definition of the roadmap 965.00 R, DC, L 50
 RD2 - Conclusions 772.00 R, DC, L 40
 D5 - Documentation after the Fifth Sprint 193.00 R, DC, L 10
 D6 - Final thesis documentation 386.00 R, DC, L 20
 TDP - Thesis Defense Preparation 193.00 R, DC, L 10

 Total DC (Direct Costs) 11,936.30 575
 DC - Mountain Desktop Computer 41.46
 L - Lenovo ThinkPad Laptop 49.40
 MSP - MS Project 2019 39.69
 GK - Gitkraken PRO 6.60
 INT - IntelliJ 240.39
 Electricity Mountain Desktop Computer 8.94
 Electricity Lenovo ThinkPad Laptop 3.02
 Internet cost 23.92

 Total IC (Indirect Costs) 413.42
 Total DC + IC Cost 12,349.72

 Contingency 1,852.46
 Total DC + IC + Contingency Cost 14,202.18

 Unclear documentation 308.80
 Complex Project in Production 231.60

 Total Incidental Cost 540.40

 TOTAL Budget: 14,742.58 €

 Table 8 – Budget Summary Table of the thesis.

 Barcelona School of Informatics (FIB) 37 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 3.3 Management control
 In this section, I will define the protocol that will be used to control the budget during the course
 of the thesis. I will also list the indicators that will help us identify any deviations in the budget, to
 ensure that we are not generating financial losses.

 To ensure proper budgetary control, we will use the Sprint Review meetings to calculate the
 possible deviations, both positive (benefits) and negative (losses) of each sprint. This will help us
 to detect deviations in time and thus be able to approach the following sprints differently, if
 needed.

 The protocol states that, after every Sprint Review:

 1) Calculate the exact hours spent for each Sprint task.
 2) Aggregate such hours and use them to calculate the staff cost deviation with the

 following formula:

 𝐻 𝑆𝑝𝑒𝑛𝑡 𝑆𝑝𝑟𝑖𝑛𝑡 =
 𝑖 = 0

 𝑛

∑ 𝐻𝑜𝑢𝑟𝑠 𝑠𝑝𝑒𝑛𝑡 𝑜𝑛 𝑡𝑎𝑠 𝑘
 𝑖

 𝑆𝑡𝑎𝑓𝑓 𝐶𝑜𝑠𝑡 𝐷𝑒𝑣 . = (𝐻 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑝𝑟𝑖𝑛𝑡 − 𝐻 𝑆𝑝𝑒𝑛𝑡 𝑆𝑝𝑟𝑖𝑛𝑡) × 𝑅𝑜𝑙𝑒 𝐻𝑜𝑢𝑟𝑙𝑦 𝑊𝑎𝑔𝑒

 a) If the Staff Cost Deviation value is positive, it means that there is no negative
 deviation, and, therefore, there are benefits.

 b) If the Staff Cost Deviation value is negative, it means that there have been losses
 of that same value in the project.

 3) In both cases, if the value of the deviation is considerably large, action should be taken
 to solve or detect the problem of the deviation, and modify the budget estimate to bring
 it closer towards a more realistic number.

 This same protocol can be extrapolated, with very few changes, for the rest of the project
 costs, although in the context of our thesis, these will not be as determinant as staff costs.

 Barcelona School of Informatics (FIB) 38 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 4 Sustainability

 Nowadays, conducting a sustainability analysis is crucial in any project, as it is something that
 must not be overlooked. I strongly believe that it is our duty as engineers to work towards
 sustainability.

 In this section we will make a brief introspection to discuss sustainability in the field of computer
 engineering and, to conclude, answer some questions related to economic, environmental and
 social dimensions of the subject.

 4.1 Sustainability report

 4.1.1 Self-assessment

 Sustainability is a concept that everyone is more or less familiar with and, although one may
 think that their actions on a personal and professional level are being sustainable, they are not
 really aware of everything it involves. This is, for instance, my case. After the EDINSOST2-ODS
 survey and a short introspection on the subject, I have been able not only to understand those
 values and indicators of sustainability that I did not know, but also to realize how insufficiently
 educated we are on the subject.

 I have always thought that the job of an engineer is to make people's lives easier, and to work
 for a better future. In this (often optimistic) approach to the professional environment of a
 Software Engineer, I have sometimes wondered what we can do in our day-to-day work to
 make our profession more sustainable.

 To my pleasant surprise: Many.

 Thanks to the writing and discussion of this section, I have been able to discover that it is in our
 hands the duty to critically evaluate if the economic viability of a project is compatible with the
 environmental and social aspects of sustainability. To be capable of suggesting sustainable
 projects or to bring new ideas and solutions to make the projects more sustainable, taking into
 account the environmental, economic and social aspects. And to exercise my profession in
 accordance with the ethical principles that support the values of sustainability, and to actively
 participate in responsible action in the entities where I work.

 We must not forget that we are in a situation of critical Climate Emergency and, going back to
 the thesis main purpose, we have to change as soon as possible our mindset and
 methodologies when it comes to developing. Minimizing technical debt is of vital importance for
 a sustainable future.

 Barcelona School of Informatics (FIB) 39 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 4.1.2 Economic dimension

 > Regarding PPP: Reflection on the cost you have estimated for the completion of the
 project.

 The reflection on the estimated cost of the project can be found in Section 3.1
 Identification of costs . We have also measured contingencies and incidental costs, and
 their impacts on the budget, in order to obtain a more accurate estimation and avoid an
 unnecessary use of resources. From my point of view, a good improvement for the
 project would have been to use open source software, but due to the requirements on
 the side of the company, I have not been able to use it in its totality.

 > Regarding Useful Life: How are currently solved economic issues (costs...) related to the
 problem that you want to address (state of the art)?

 Although it is currently a popular and studied topic, it is only put into practice in a
 minority of companies. Technical debt is an area closely linked to the economics of
 each organization. If this debt is not addressed early enough, the economic costs of
 maintaining an application or any code will skyrocket. Therefore, it is critical to resolve
 technical debt for a more sustainable economic future of the company.

 > How will your solution improve economic issues (costs ...) with respect to other existing
 solutions?

 In section 1.1 Introduction , I attached a graph that answers this question in a visual and
 explanatory way. The initial investment required by this solution turns out to be much
 smaller compared to the large amount of benefits obtained in the short term. Thanks to
 it, the project can evolve faster and with much higher quality, requiring smaller
 investments. If corrective measures are not implemented in time, there is a risk that the
 project will require new features at a cost of implementation that is too high due to its
 technical debt.

 4.1.3 Environmental dimension

 > Regarding PPP: Have you estimated the environmental impact of the project?

 It has not been possible to make a direct estimate of the impact of the project, but the
 thesis is related to the removal of the technical debt, which is directly related to several
 sustainability criteria. On the one hand, we highly reduce the time invested on
 maintainability, reducing electricity costs, resources involved in the project and
 consequently reducing its environmental impact. On the other hand, we can contribute
 to justifying and raising awareness of a problem that needs to be addressed on a social
 level, in order to improve the common welfare.

 Barcelona School of Informatics (FIB) 40 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 > Regarding PPP: Did you plan to minimize its impact, for example, by reusing resources?

 The project aims to reuse certain modules of the project’s code, but due to its
 theoretical completeness, it does not require reusing many resources. One of the main
 objectives of the thesis is to raise awareness of the existing issue, insisting that
 understanding the proposed methodology from the outset would help to reduce costs
 of a project that has reached its inflection point in terms of technical debt.

 > Regarding Useful Life: How is currently solved the problem that you want to address
 (state of the art)?

 The current concern is that we, as a society, are not prioritizing technical debt, which
 leads to other environmental, socio-ecological and economic debts. What is happening
 is that time after time, exponentially more technical debt continues to be generated so,
 in the long-term, the only solution that would be implemented in this project is to redo it
 or to consume a lot of resources in order to maintain it.

 > How will your solution improve the environment with respect to other existing solutions?

 My solution aims to greatly reduce all the development and maintenance cost of a
 software project, thereby reducing its environmental footprint. My approach is specific
 to this project, but can be extrapolated to others with similar characteristics. It seeks to
 establish guidelines that can be followed in an understandable way in order to
 materialize this new methodology efficiently. The goal is to extend the life cycle of an
 application or software platform much longer.

 4.1.4 Social dimension

 > Regarding PPP: What do you think you will achieve -in terms of personal growth- from
 doing this project?

 On a professional scale, I have been given a great deal of responsibility within the team.
 This opportunity has allowed me to discover a new area of technology and the
 importance of a good architecture before diving into programming. Furthermore,
 Opentrends has asked me to hold a conference for the whole company when I finish
 the project to make all the employees aware of the risks of technical debt and what is
 the best approach to avoid it.

 A great lesson I am gaining is the methodological and conscientious organization of all
 the tasks and resources involved, which is exactly what I find essential to face for any
 project in the future.

 Barcelona School of Informatics (FIB) 41 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 > How will your solution improve the quality of life (social dimension) with respect to other
 existing solutions?

 My proposal would significantly reduce the work of project developers, facilitating the
 implementation of new features. It would also greatly reduce the time spent in testing.
 Beyond the economic and temporary gains, the welfare of the employees will increase,
 they could invest more time and resources in research and investigation than in
 maintenance or code test execution. All this would lead to a general improvement of the
 company's performance in the long term.

 > Regarding Useful Life: Is there a real need for the project?

 On a society level, I strongly believe that a developer who is dedicated to researching
 and creating new things is happier and more productive than a developer who is hardly
 maintaining code and running tests. If this methodological vision is extended to the
 company in the short term, both the company and its employees will gain motivation
 and a new useful mindset. The project’s product seeks to be an CI tool so, with an easy
 growth and without technical debt, future functionalities will be developed faster and
 deployed with a more consistent pace.

 Barcelona School of Informatics (FIB) 42 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 5 Current Architecture Analysis

 Analyzing the current state of the project will greatly help us to define the necessary steps to
 follow in order to improve those aspects that may generate technical debt. It is not enough just
 to detect these weaknesses, but also to understand how they have been reached and what
 methodologies or situations to avoid in future projects.

 To simplify this process, I have structured the analysis into four sections, each corresponding to
 the fundamental components of the project in question: The Technology used in the project, its
 Architecture (at a global scale), the definition of the Pipelines to be executed, and the quality of
 the Source Code .

 Currently, as of March 16th, 2022, the MALM product is replicated on two different platforms,
 one of them physical, called CPD and the other one Cloud, much more up to date, called ICP.
 The reason these two platforms exist is that the service is in the middle of a migration process
 to the new infrastructure (from CPD to ICP). Considering that the migration is expected to be
 completed by mid-June, and that the old infrastructure will be deprecated, I have decided to
 discard the analysis of the current infrastructure and base my analysis on the new one.

 Barcelona School of Informatics (FIB) 43 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 5.1 Analysis of the Tech Stack → Definition

 To provide more value to the analysis and to make further improvements, this first section
 includes a revision of the software used by the MALM service and a check of the developer
 team's Workspace (IDE, tools, etc).

 It is important to keep in mind that this platform has been published and under constant
 development since 2017. By then, the bases for the development of Scripted Pipelines had not
 yet been established by the community, so it would not be surprising that some core
 technologies may now be deprecated or at risk of deprecation.

 5.1.1 Workspace

 After reviewing the project documentation and after a series of meetings with the development
 team, I have noticed that there is no consensual development environment among the whole
 team. Each member uses a specific IDE and tools . Among these IDEs, the most common are
 Visual Studio Code, Sublime, Atom and IntelliJ Community. Finally, those who share IDEs do
 not share versions of the same IDE nor use the same plugins.

 When it comes to deciding whether or not to unify the work environment, the developer
 community is somewhat divided. To help me decide if unifying Workspaces is a good idea, I
 have gathered information from different forums and summarized it in the following lists:

 It is a good idea to unify the IDEs when:
 ⇒ If peer reviews/coding is done on a regular basis. Like pair programming.
 ⇒ It is an Agile team. The development team might benefit from a common tool set.
 ⇒ Simplification is pursued by standardizing the tools of the team.
 ⇒ Team members are rapidly changing.
 ⇒ New inexperienced developers are expected to join the team.
 ⇒ The team works with simple text editors, or less complex IDEs.
 ⇒ The code needs a specific or custom plugin, created specifically for that IDE.

 It is a bad idea to unify the IDEs when:
 ⇒ The team is composed of senior developers, each with expertise in using a specific IDE.
 ⇒ The project requires using different IDEs to improve performance. For example, using

 Eclipse for most of the work, but instead using NetBeans for its good GUI builder for the
 Swing components.

 ⇒ It can cause a decrease in the morale of the team.

 It is important to note that the above points are only recommendations to be followed. In any
 case, unless there is a compelling reason to strongly unify all IDEs, always allow for flexibility,
 and treat the unification standard as a recommendation for the team.

 Barcelona School of Informatics (FIB) 44 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 5.1.2 Tech Stack

 Three basic software components are required to develop and run Scripted Pipelines in
 Jenkins: A Jenkins client to run the pipelines, a Groovy SDK to develop and run the code, and
 a Java JDK to run the Groovy code inside Jenkins.

 The Jenkins version can be extracted from the current Jenkins client page. We can find the
 version number in the bottom right corner of every page.

 Jenkins version: 2.277.3 Release date: 2021-04-20

 We can use the Jenkins Script Console 9 to launch the following script that retrieves the version
 of Groovy that is currently being used by the Jenkins nodes.

 1
 2
 3
 4
 5
 6
 7
 8
 9

 public String getGroovyVersion() {
 try {

 return org.codehaus.groovy.runtime.InvokerHelper.version
 }
 catch (Throwable ignore) { }
 return GroovySystem.version

 }

 println getGroovyVersion()

 Code 1 – Script to retrieve Groovy version from Jenkins Script Console.

 Groovy version: 2.4.12 Release date: 2017-06-24

 To identify the JDK it uses, we can check the System Information 10 page of the Jenkins Client
 itself. In this page we can find information related to system properties, environment variables
 and the list of installed plugins.

 Java JDK version: 1.8.0_252 Release date: 2020-04-15

 The following table summarizes the versions of the core technologies currently used by the
 MALM service. Just for comparison, the latest released version is included.

 Technology Version Release Date Latest Version Latest Release Date

 Jenkins 2.277.3 2021-04-20 2.332.3 2022-05-04
 Groovy SDK 2.4.12 2017-06-24 4.0.2 2022-04-23

 Java JDK 1.8.0 2014-03-18 1.18.0.1.1 2022-03-22

 Table 9 – Technology Analysis Summary.

 10 Jenkins System Information – https://www.jenkins.io/doc/book/managing/system-info/

 9 Jenkins Script Console – https://www.jenkins.io/doc/book/managing/script-console/

 Barcelona School of Informatics (FIB) 45 UPC

https://www.jenkins.io/doc/book/managing/system-info/
https://www.jenkins.io/doc/book/managing/script-console/

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 5.2 Analysis of the Architecture → Definition

 In this section I will analyze the project architecture from a rather global point of view,
 addressing the use of software architecture patterns, the use of design patterns in the code
 and how the files are organized within the project.

 First, to remind ourselves of the great importance of architecture design, we will review the
 benefits of having a good architecture and why it is necessary to invest the necessary time in
 this preliminary step before starting to code.

 Apiumhub 11 , a Barcelona based Tech company, has a great article about the benefits of a good
 Software Architecture. It does not go into very technical details, but it is very easy to
 understand for profiles that do not have a technological background. That is why I find it
 interesting, because it is also aimed at a business vision and takes into account the Technical
 Debt. Many of the benefits listed below are very basic, and not very specific, but they make
 companies hear, and more important, listen.

 According to the article 15 benefits of software architecture you should know. (Novoseltseva,
 2021), having a good Architecture:

 ⇒ Creates a solid foundation for the software project.
 ⇒ Makes your platform scalable .
 ⇒ Increases performance of the platform.
 ⇒ Reduces costs , avoids code duplicity.
 ⇒ Implementing a vision . Looking at the architecture is an effective way to view the overall

 state of IT and to develop a vision of where the organization needs to or wants to go
 with its IT structure.

 ⇒ Identifies areas for potential cost savings .
 ⇒ Better code maintainability .
 ⇒ Enables quicker changes .
 ⇒ Increases the quality of the platform.
 ⇒ Helps manage complexity .
 ⇒ Higher adaptability on achieving new features.
 ⇒ Helps in risk management .
 ⇒ Reduces its time to market .
 ⇒ Prioritize conflicting Goals. It facilitates communication with stakeholders, contributing

 to a system that better fulfills their needs.
 ⇒ Reduces overall technical debt .

 After this brief introduction, let's start with the analysis.

 11 Apiumhub website – https://apiumhub.com/

 Barcelona School of Informatics (FIB) 46 UPC

https://apiumhub.com/

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 5.2.1 Software Architecture Patterns

 The MALM product is in essence a Jenkins Scripted Pipelines Controller , programmed in the
 form of a Jenkins Shared Library , so it is not an application in its whole, but a module within
 the service that provides the functionality to the system.

 At the Architecture level, the Jenkins service, in its entirety, follows the next model 12 :

 ┌──┐ ┌─────────────────────┐ ┌─────────────┐
 | Automation, machine to machine │ │ End users/Browsers │ │ Agents │
 │ command line prompt (curl, wget..) │ │ │ │ │
 └─────────▲──────────────────────▲─────────┘ └───────────▲─────────┘ └───────▲─────┘

 │ │ │ │
 ┌───────────▼────────────┬─────────▼───────────┬─────────────▼───────────┬─────────▼──────┐
 │ Command line CLI │ HTTP Endpoints │ Web user interface │ Remoting │
 ├───────┬────────────────│ │ │ │
 │ SSH │ websocket/HTTP │ │ (Jelly /Groovy views) │ │
 │ ├────────────────┴─────────────────────┴─────────────────────────┤ │
 │ │ Stapler: security, routing, requests processing │ │
 ├───────┴──┴────────────────┤
 │ Business layer: models, processing, scheduling │
 ├───┤
 │ Storage layer: XML files on JENKINS_HOME │
 └───┘

 Code 2 – High level view of Jenkins application.

 Our MALM product would be in charge of implementing the business layer and managing the
 storage layer. With this information, we could say that the general Jenkins service does use a
 Layered Pattern model with certain modifications. Therefore, we would have to review the
 code to see if some of these patterns are met within the product.

 For this first analysis of the Architecture, we will go through the components or "layers" on
 Figure 6 below, extracted from the Layered Pattern (Richards, 2015) and validate if the code
 complies with these principles.

 ⇒ Presentation Layer:

 » Is responsible for handling the user interface. It is provided by the Jenkins client
 service. Although it can be managed by the team, it is not developed by them.

 ⇒ Business Layer:

 » The first layer of the MALM Controller. It is responsible for receiving the Request from
 Jenkins and executing the Pipelie. This first layer could be translated to our service
 as the main Pipeline groovy file (Jenkinsfile) that is in charge of calling the Services to
 execute the Stages and Steps of the pipeline. The Business Layer is connected to
 the Services Layer and the Persistence Layer via calls.

 12 Jenkins Architecture Model – https://www.jenkins.io/doc/developer/architecture/model/

 Barcelona School of Informatics (FIB) 47 UPC

https://www.jenkins.io/doc/developer/architecture/model/

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ⇒ Services Layer (Added Layer) :

 » Serves as a link between the Business Layer and the Persistence Layer. In the MALM
 product, it is a set of classes that are responsible for forwarding the calls of these
 Steps to other groovy classes that contain the implementation and logic of the step.
 It does not seem to have a real utility within the project, considering that it does not
 really generate an isolation layer. It is one of the layers that we should review before
 the rest to confirm its removal or transformation.

 ⇒ Persistence Layer:

 » This layer should be the only one that has access to the Database information and
 returns that data to the Business Layer (or the Services Layer). Here, the Persistence
 Layer works as a group of additional Implementation classes, which has a fairly high
 amount of logic in it. Jenkins does not use a Database directly (like SQL or other
 relational Databases) although they can be used through Plugins. Jenkins stores the
 data in plain text files or in Java property files on the JENKINS_HOME directory. Both
 of these methods (SQL and FileSystem) are used in the MALM service. This layer
 seems to be combined with the Business and Services Layer, breaking completely
 with the rules of the Layered Pattern model and the single-responsibility principle.

 ⇒ Database/DataSource Layer:

 » It can be a Database, the File System or even an API. Gets the data, and returns this
 information to the upper layer. Although it can be managed by the team, it is not
 developed by them.

 Figure 6 – Open layers and request flow on a Layered Pattern model.

 Barcelona School of Informatics (FIB) 48 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 5.2.2 Software Design Patterns

 In order to analyze which design patterns are used on the project, it is important to know what
 these patterns look like and how to apply them correctly in our code. By doing so, we will be
 able to detect them within the code and determine if they make sense in the context of the
 project, if they are correctly applied or if, on the other hand, they need to be redesigned.

 To refresh such knowledge on Design Patterns and to simplify this section, a summary of the
 design patterns (brief explanation and list of scenarios where it is recommended to use them) is
 attached in the section 9.1 Design Patterns of this thesis. All the information has been extracted
 from the book Dive Into Design Patterns by Alexander Shvets (2018).

 To be able to draw useful conclusions, we must first take into account the context and nature of
 the service we are analyzing. The architecture and design of an application for selling clothes
 will not be the same as that of a service for managing patient information in a hospital. By the
 same logic, we must analyze the project according to its intended functionality:

 ⇒ Runs >4 different pipelines, for two different technologies : iOS_app, iOS_aar,
 and_app and and_aar; which may share (or not) components and classes from the
 MALM project.

 » The code has to be easily reusable to avoid code repetition, and isolated enough so
 that an error in the Android code impacts the iOS Jobs (for example).

 ⇒ It can run as many Jobs as the number of nodes it has configured, but each node only
 runs a single pipeline at a time .

 » There is no concurrency within a pipeline execution. A single thread of execution with
 a start, some defined steps, and an end, so it will rarely be necessary to create more
 than one instance of the classes. (This statement is only applicable in our case).

 ⇒ Within the Jenkins execution context, pipelines share environment and global
 variables .

 » During the execution, code can access environment variables and Jenkins
 parameters by calling the env.varName 13 variable from anywhere in the code, so it
 may be necessary to review this aspect carefully in order to improve it.

 ⇒ The MALM service must ensure that a Pipeline can recover 14 if the server crashes or
 experiences another kind of problem.

 » All Jenkins classes have to implement the Serializable interface in order to ensure
 that, after a system crash, the Job can be resumed without issues.

 14 More information on serializable data – https://www.jenkins.io/doc/book/pipeline/syntax/#differences-from-plain-groovy

 13 Use of env variable on Jenkins – https://www.jenkins.io/doc/book/pipeline/jenkinsfile/#using-environment-variables

 Barcelona School of Informatics (FIB) 49 UPC

https://www.jenkins.io/doc/book/pipeline/syntax/#differences-from-plain-groovy
https://www.jenkins.io/doc/book/pipeline/jenkinsfile/#using-environment-variables

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 I find it interesting to state that the MALM product, despite being highly complex in its
 implementation, content, and integrations with other services, does not appear to be a service
 that requires much complexity in terms of design patterns. It is often not necessary to
 implement exactly the Design patterns, but rather to adapt them to the context of the service
 and avoid making more complex a code that does not require an extra layer of abstraction.

 Back to the subject of the analysis, I can state that, it has been difficult to analyze the use of
 design patterns due, ironically, to the almost non-existent use of them. Sometimes, I have given
 a lot of thought to certain classes, thinking about how they had been implemented in terms of
 design. For example, what seemed to be a Decorator pattern, turned out to be simply a class
 that was extended with its respective subclasses.

 The only design pattern that is implemented in the code is the Singleton Pattern .

 The use of it can be seen reflected in several classes of the MALM project. However, the need
 for it seems questionable, since it does not appear to be of any real use in the context of the
 execution. First, let's look at some examples:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21

 package com.openrends.utils

 class GsaServices implements Serializable {

 def context
 static def gsaServices = null
 // Some more variable definitions

 private GsaServices(context) {
 this.context = context

 }

 public static getInstance(context){
 if (gsaServices == null) {

 gsaServices = new GsaServices(context)
 }
 return gsaServices

 }

 // Some more functions and methods
 }

 Code 3 – Structure of the Singleton Pattern in the GsaServices class.

 The same singleton pattern structure is used for other classes, such as
 MalmBuildStateHolder.groovy or GitServices.groovy .

 Barcelona School of Informatics (FIB) 50 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

 import com.opentrends.utils.CommonUtils
 import com.opentrends.utils.GsaServices
 import groovy.transform.Field

 @Field static def parametersMap = null

 @Field static GsaServices gsaService = null

 static def call(context, CommonUtils jkCommonUtils) {
 try {

 GsaServices gsaService
 gsaService = GsaServices.getInstance()
 parametersMap = gsaService.getParametersMap()
 context.println parametersMap
 // [...]

 }

 Code 4 – Use of the GsaServices Singleton Pattern on the gsa.groovy file.

 The structure of the pattern is correct at first glance, it does not implement a thread validation
 mechanism, but since the MALM project does not use multithreading, there would be no
 problem other than having to implement such validation in the future (if necessary).

 The instances of these classes are only used once during the execution of a Jenkins Job, and
 in the case of MalmBuildStateHolder.groovy , it is simply used as Holder for the def
 buildState variable. The latter could easily be refactored into a static global variable.

 Now, putting into question the rest of the classes, these only use the getInstance() method
 once. While this ensures that there is only one instance of the class, by not calling
 getInstance() a second time, it is like there were no use of the benefits offered by the
 pattern, such as the creation of a single Database model object, shared by the entire
 application.

 I have detected that the MALM project requires a class that encapsulates all the environment
 variables used by the pipeline and, even if it does not currently exist, it would still be debatable
 whether it is necessary to implement it with a singleton pattern or rather create a static data
 model object, which is shared within the execution of the job.

 The lack of design patterns made me think about whether a project like this, a Jenkins
 Controller in Shared Library format, really requires a high presence of design patterns. As I said
 before, sometimes it is better to adapt the code to the needs of such a project, without forcing
 patterns or adding layers of abstraction that do not provide value to the product.

 For now, to help us decide which solution is better and have further context of the system to
 study, let's continue with the analysis of the file hierarchy.

 Barcelona School of Informatics (FIB) 51 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 5.2.3 Project File Hierarchy

 File Hierarchy matters.

 As mentioned in the article, File Structure: Broad Institute of MIT and Harvard. MIT
 Communication Lab. (Chien, 2020), “Knowing where files are, when to use certain code for
 certain operations, and how to find associated results, data, and figures can not only streamline
 productivity, but also allow for consistency (even across multiple projects) and shareability.”

 There are many benefits of having the project's code well organized and structured, among
 them, we can highlight those that help other developers and promote healthy methodologies
 for the team:

 » Time saved in learning the project structure.
 » Employees are able to collaborate more easily.
 » Quickly learning how the analysis was performed.
 » Quickly reproduce the code, which adds confidence to the collaborators.

 Once we know its benefits, let's see the state of the file structure of our project. The MALM
 project is designed for its code to be used as a Jenkins Shared Library, so its file hierarchy
 should be organized in a similar way.

 Base File Structure for a Jenkins Shared Library 15

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

 . # root
 ├── src # Groovy source files
 │ └── org
 │ └── foo
 │ └── Bar.groovy # for org.foo.Bar class
 ├── vars
 │ ├── foo.groovy # for global 'foo' function file
 │ └── foo.txt # help/documentation for 'foo' file
 └── resources # resource files (external libraries only)

 └── org
 └── foo

 └── bar.json # static helper data for org.foo.Bar

 Code 5 – Jenkins Shared Library File Hierarchy.

 MALM uses another Shared Library, which is also developed and maintained by the team,
 called Pipeline-Utils . It contains some of the repository's “Utils” modules and other auxiliary
 functions. The need for this Shared Library will be discussed later in section 5.3 Analysis of the
 Pipelines , for now we will simply highlight and discuss its file structure.

 Let's now compare the usual base file hierarchy on Code 5 with the ones in our project:

 15 Shared Library Directory Structure – https://www.jenkins.io/doc/book/pipeline/shared-libraries/#directory-structure

 Barcelona School of Informatics (FIB) 52 UPC

https://www.jenkins.io/doc/book/pipeline/shared-libraries/#directory-structure

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 MALM’s current File Structure

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57

 . # (root) malm-shared
 ├── src # Groovy source files
 │ └── com.opentrends
 │ ├── malm
 │ │ ├── constants
 │ │ │ ├── MalmConstants.groovy
 │ │ │ └── AndroidMalmConstants.groovy
 │ │ ├── exceptions
 │ │ │ └── CustomBuildException.groovy
 │ │ ├── Malm.groovy
 │ │ ├── MalmBuildHolder.groovy
 │ │ ├── MalmGitRepo.groovy
 │ │ ├── MalmMergeRequest.groovy
 │ │ └── MalmStageSate.groovy
 │ ├── holders
 │ │ ├── MalmBuildContext.groovy
 │ │ ├── AndroidContext.groovy
 │ │ ├── AuthLogsHolder.groovy
 │ │ ├── BuildKeyParmeters.groovy
 │ │ ├── CocoapodsLogsHolder.groovy
 │ │ └── IOSLogsHolder.groovy
 │ ├── services
 │ │ ├── appcenter
 │ │ │ ├── AppcenterLogsHolder.groovy
 │ │ │ └── AppcenterServices.groovy
 │ │ ├── auth
 │ │ │ └── AuthServices.groovy
 │ │ ├── buildcode
 │ │ │ └── BuildCodeServices.groovy
 │ │ ├── checkmarx
 │ │ │ └── CheckmarxServices.groovy
 │ │ ├── clean
 │ │ │ └── IOSCleanServices.groovy
 │ │ ├── config
 │ │ │ └── MalmConfigServices.groovy
 │ │ ├── credentials
 │ │ │ └── CredServices.groovy
 │ │ ├── email
 │ │ │ └── EmailServices.groovy
 │ │ ├── gradle
 │ │ │ ├── GradleLogsHolder.groovy
 │ │ │ ├── GradleServices.groovy
 │ │ │ └── GradleUtils.groovy
 │ │ ├── images
 │ │ ├── node
 │ │ │ └── NodeServices.groovy
 │ │ ├── notification
 │ │ │ └── NotificationServices.groovy
 │ │ ├── prepare
 │ │ │ ├── IOSPrepareServices.groovy
 │ │ │ └── PrepareServices.groovy
 │ │ ├── proxy
 │ │ │ ├── GitLabProxyService.groovy
 │ │ │ ├── ProxyIOSService.groovy
 │ │ │ ├── ProxyServices.groovy
 │ │ │ └── ProxyServicesLogsHolder.groovy
 │ │ │

 Barcelona School of Informatics (FIB) 53 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99

 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115

 │ │ │
 │ │ ├── sonar
 │ │ │ ├── SonarAndroidServices.groovy
 │ │ │ ├── SonarIosServices.groovy
 │ │ │ └── SonarLogsHolder.groovy
 │ │ ├── test
 │ │ │ ├── IOSTestServices.groovy
 │ │ │ └── TestReportsServices.groovy
 │ │ └── xcode
 │ │ └── XcodeServices.groovy
 │ └── utils
 │ ├── AndroidUtils.groovy
 │ ├── AssembleFileServicesUtils.groovy
 │ ├── GitServicesUtils.groovy
 │ ├── GsaServicesUtils.groovy
 │ ├── ImagesDockerControllerUtils.groovy
 │ ├── IosPlistUtils.groovy
 │ ├── MalmUtils.groovy
 │ └── TimeUtils.groovy
 │
 ├── vars
 │ ├── MalmStage.groovy
 │ ├── MalmStageSummary.groovy
 │ ├── almConfig.groovy
 │ ├── and_aar_pipeline.groovy # main CPD pipeline file
 │ ├── and_app_pipeline.groovy # main CPD pipeline file
 │ ├── android_aar_pipeline.groovy # main ICP pipeline file
 │ ├── android_app_pipeline.groovy # main ICP pipeline file
 │ ├── appcenter.groovy
 │ ├── appName.groovy
 │ ├── appParent.groovy
 │ ├── auth.groovy
 │ ├── buildCodeVersion.groovy
 │ ├── checkmarx.groovy
 │ ├── checkValidBuildParameters.groovy
 │ ├── commonUtils.groovy
 │ ├── configureSignConfig.groovy
 │ ├── credentials.groovy
 │ ├── email.groovy
 │ ├── email_notification_pipeline.groovy
 │ ├── garName.groovy
 │ ├── gitlabEnv.groovy
 │ ├── gitUtils.groovy
 │ ├── gradleUnix.groovy
 │ ├── group.groovy
 │ ├── gsa.groovy
 │ ├── gsa_nightly_json_processing.groovy
 │ ├── imagesDockerController.groovy
 │ ├── InitMalmGitRepo.groovy
 │ ├── InitMalmMergeRequest.groovy
 │ ├── initBuildParameters.groovy
 │ ├── initIosBuildParameters.groovy
 │ ├── initProxy.groovy
 │ ├── ios_app_pipeline.groovy # main CPD pipeline file
 │ ├── ios_distribute_tesflight_pipeline.groovy
 │ ├── ios_pod_pipeline.groovy # main CPD pipeline file
 │ ├── ios_podRepoPush.groovy
 │ ├── isAarq.groovy

 Barcelona School of Informatics (FIB) 54 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166

 │ ├── isAndroid.groovy
 │ ├── isAppParent.groovy
 │ ├── isBlf.groovy
 │ ├── isCommons.groovy
 │ ├── isFwk.groovy
 │ ├── isIOS.groovy
 │ ├── isMCA.groovy
 │ ├── isPRO.groovy
 │ ├── isTST.groovy
 │ ├── loadBuildPaths.groovy
 │ ├── mergeRequestComment.groovy
 │ ├── mergeRequestId.groovy
 │ ├── mergeRequestSource.groovy
 │ ├── mergeRequestTarget.groovy
 │ ├── mobileapp_build_dispatcher.groovy
 │ ├── mobileapp_pipeline.groovy
 │ ├── notification.groovy
 │ ├── printChanges.groovy
 │ ├── repoPath.groovy
 │ ├── rubyRun.groovy
 │ ├── saucelabs_nighty_pipeline.groovy
 │ ├── saucelabs_test.groovy
 │ ├── sonar.groovy
 │ ├── soanrIOS.groovy
 │ ├── sonarProject.groovy
 │ ├── Stagex.groovy
 │ ├── testAnalyzeReports.groovy
 │ └── uploadBlf.groovy
 │
 ├── resources # resource files
 │ ├── credentials
 │ │ ├── pre.json
 │ │ └── pro.json
 │ ├── maven
 │ │ └── settings.xml
 │ ├── saucelabs
 │ │ └── generate_saucelabs_ipas.sh
 │ ├── sonar
 │ │ ├── configtest.gradle
 │ │ ├── jacoco-flavored.gradle
 │ │ ├── jacoco-flavored-gradle6.gradle
 │ │ └── sonar.gradle
 │ ├── xcode
 │ │ ├── delete_duplicate_simulators.rb
 │ │ ├── xcode_build_paths.sh
 │ │ └── xcode_derived_path.sh
 │ └── new_jobs.txt
 │
 ├── .gitignore
 ├── CHANGELOG.md
 └── README.md

 Code 6 – MALM’s project File Hierarchy.

 I opted to list the entire file hierarchy and not summarize any directory, in order to have a
 realistic and detailed view of the repository status. Due to a corporate policy, I had to change
 almost all the file names.

 Barcelona School of Informatics (FIB) 55 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Pipeline-Utils Shared Library File Structure

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57

 . # (root) pipeline-utils
 ├── auth
 │ ├── malm_pre.cer
 │ ├── malm_pre.cnf
 │ ├── malm_pre.csr
 │ ├── malm_pre.key
 │ ├── malm_pre.pem
 │ ├── malm_pro.cer
 │ ├── malm_pro.cnf
 │ ├── malm_pro.csr
 │ ├── malm_pro.key
 │ └── malm_pro.pem
 ├── dependencies
 │ ├── android.whitelist
 │ ├── dependencyCheck.groovy
 │ ├── ios.whitelist
 │ └── malm-dependency-check.sh
 ├── img
 │ └── logo_malm3.png
 ├── ios
 │ └── testFlight.groovy
 ├── ios-sonar
 │ ├── .gitkeep
 │ ├── ios-sonar.groovy
 │ └── run-sonar-swift.sh
 ├── nexus
 │ ├── maven.app.gradle
 │ └── maven.gradle
 ├── services
 │ ├── and
 │ │ ├── pre
 │ │ │ └── service.json
 │ │ ├── pro
 │ │ │ └── service.json
 │ │ ├── authorized_external_hosts_pre.json
 │ │ └── authorized_external_hosts_pro.json
 │ ├── internal
 │ │ ├── and
 │ │ │ ├── pre
 │ │ │ │ ├── .gitkeep
 │ │ │ │ └── service.json
 │ │ │ ├── pro
 │ │ │ │ ├── .gitkeep
 │ │ │ │ └── service.json
 │ │ │ └── .gitkeep
 │ │ └── .gitkeep
 │ └── ios
 │ ├── pre
 │ │ └── service.json
 │ ├── pro
 │ │ └── service.json
 │ ├── authorized_external_hosts_pre.json
 │ └── authorized_external_hosts_pro.json
 ├── xiflo
 │ ├── xiflo.plist
 │ └── xiflo.properties
 │

 Barcelona School of Informatics (FIB) 56 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84

 │
 ├── .gitignore
 ├── appcenter.groovy
 ├── buildcode.groovy
 ├── CHANGELOG.md
 ├── ci_parameters.groovy
 ├── coverage.groovy
 ├── dependecies_builder.groovy
 ├── email.groovy
 ├── gitlab_api.groovy
 ├── http.groovy
 ├── junit_analyzer.groovy
 ├── login.groovy
 ├── Playstore.groovy
 ├── project_analyzer.groovy
 ├── README.md
 ├── RunUtils.groovy
 ├── saucelabs.groovy
 ├── send_email.groovy
 ├── sh.groovy
 ├── sign-config-ios.groovy
 ├── metrics.groovy
 ├── sqlite.groovy
 ├── utils.groovy
 ├── utils_rules.groovy
 ├── xcode_bot.groovy
 └── xml.groovy

 Code 7 – Pipeline-Utils project File Hierarchy.

 In order to draw better conclusions, I needed to perform the 5.4 Analysis of the Code in parallel
 with the file structure analysis. The following lists expose the observations and aspects that are
 object of study when it comes to the definition of the new file hierarchy of both repositories:

 MALM’s project

 ⇒ The main base structure (src, resources, vars) is correct, but the files inside /src lack a
 proper organization. There seems to be an attempt at taxonomic organization, but it
 has not been followed correctly (e.g., "utils" and "holder" files within the "services"
 directory). Also, the taxonomy can be further improved.

 ⇒ There is no standard for file naming . Non-specific names are used and naming
 conventions like camelCase, PascalCase and snake_case are mixed in elements of the
 same type.

 ⇒ Android, iOS and cross files are not easily distinguishable . In some cases an
 abbreviation of the technology is included in the name, but these are few cases.

 ⇒ (After the Code Analysis) There are a lot of files that are currently deprecated , and they
 have not been removed or cleaned from the repository. It might be interesting to
 implement a cleaning protocol for future deprecations.

 ⇒ The README.md and CHANGELOG.md files exist, but are heavily outdated . An
 update protocol should be implemented to recover these files.

 Barcelona School of Informatics (FIB) 57 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Pretty much the same for the pipeline-utils repository.

 Pipeline-Utils

 ⇒ It does not comply with the basic structure of a Shared Library. It lacks a useful
 hierarchy.

 ⇒ There is no standard for file naming .
 ⇒ Android, iOS and cross files are not easily distinguishable .
 ⇒ (After the Code Analysis) There are a lot of files that are currently deprecated .
 ⇒ The README.md and CHANGELOG.md files exist, but are heavily outdated .

 Barcelona School of Informatics (FIB) 58 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 5.3 Analysis of the Pipelines → Definition

 5.3.1 Shared Libraries

 As we have already mentioned, Jenkins uses the code of the MALM project as a Shared
 Library. For this, Jenkins only has to configure its library inclusion 16 on the definition of the
 pipeline 17 script.

 1
 2
 3
 4
 5
 6

 /* Using just the library name */
 @Library ('my-shared-library') _
 /* Using a version specifier, such as branch, tag, etc */
 @Library ('my-shared-library@1.0') _
 /* Accessing multiple libraries with one statement */
 @Library (['my-shared-library' , 'otherlib@abc1234']) _

 Code 8 – Shared Library inclusion.

 Then, call the pipeline file to start the execution, like this:

 1
 2

 @Library ('malm-shared@master') _ # 'nameOfTheLibrary'@'branch'
 android_app_pipeline() # pipeline file call to be executed

 Code 9 – Pipeline Definition Script (Declarative Syntax).

 It is a good way to include a Scripted Pipeline code such as MALM. Thanks to the Shared
 Library nature of the project, we can select the branch of the GIT repository we want to run.
 Furthermore, this also allows us to set up Test Pipelines, so we can run tests on development
 branches.

 In addition to our own Shared Library, MALM uses two other Shared Libraries: Pipeline-Utils
 and Core-Utils-Shared-Library .

 Pipeline-Utils is developed and maintained by the same MALM team, which allows us to
 analyze it and apply the necessary modifications to it, if that implies an improvement to the
 overall system.

 On the other hand, the Core-Utils-Shared-Library library belongs to an internal OpenTrends
 team unrelated to the MALM team. It is therefore outside the scope of the code analysis, I will
 just analyze its usage inside the service. MALM uses this library to retrieve corporate
 information, such as the mailing list of the managers.

 17 Definition Script field – https://www.jenkins.io/doc/book/pipeline/getting-started/#through-the-classic-ui

 16 Library Inclusion – https://www.jenkins.io/doc/book/pipeline/shared-libraries/#using-libraries

 Barcelona School of Informatics (FIB) 59 UPC

https://www.jenkins.io/doc/book/pipeline/getting-started/#through-the-classic-ui
https://www.jenkins.io/doc/book/pipeline/shared-libraries/#using-libraries

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 After analyzing both libraries, we can determine that:

 Pipeline-Utils

 ⇒ Most of the files are deprecated .
 ⇒ The content of the library does not meet the requirements expected for a Shared

 Library. Its methods and functions are specific to the MALM project , so it could not be
 reusable by another project.

 ⇒ According to the development team, the maintenance of the Shared Library is very
 time-consuming , making the development and release of new functionalities difficult.

 Core-Utils-Shared-Library

 ⇒ This library is included directly from the file that uses it, with the same @Library call that
 we have seen before. This can be confusing, since it is not easy to detect which
 third-party libraries are being used by the service. It could cause problems when
 determining project dependencies.

 ⇒ The library include is configured pointing to the develop branch , this being one of the
 biggest concerns, since if the Core Utils team were to modify its development branch, it
 could cause errors in the execution of all client pipelines.

 5.3.2 Pipelines

 I will analyze the pipelines following the Best Practices of Jenkins Pipelines. Although there are
 four pipelines, their condition is very similar in all of them, so I will analyze them as a whole.
 Before doing so, I will mention a couple of aspects that are not covered in the Best Practices
 guide, concerning the structure of the pipeline code.

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

 node {
 stage ('Build') {

 # Perform steps related to "Build" stage
 step_prepareBuild()
 step_executeBuild()

 }
 stage ('Test') {

 # Perform steps related to "Test" stage
 step_launchTests()

 }
 stage ('Deploy') {

 # Perform steps related to "Deploy" stage
 step_deployToEndpoint1()
 step_deployToEndpoint2()

 }
 }

 Code 10 – Scripted Pipeline structure.

 Barcelona School of Informatics (FIB) 60 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 The MALM service uses a Pipeline structure based on Stages 18 and Steps 19 , as in most Jenkins
 projects. A Stage is an element that conceptually groups a set of Steps within the Pipeline
 execution. Such a block is used by many plugins to visually show the status or progress of the
 execution. In the same way, a Step is a call that performs a single task. This task has to be as
 atomic as possible. We can see an example in Code 7 above.

 After analyzing the pipelines structure and the content of its Stages, we can notice that:

 ⇒ There is no separation by Steps , there is only consistency in the structure of Stages.
 We need to refactor the code inside the stages to divide it correctly by Steps.

 ⇒ Some Stages have a permanent SKIP configured , since they were deprecated and
 were not eliminated from the code.

 ⇒ Some Stages lack a clear and explanatory name .
 ⇒ Stages can be regrouped conceptually by functionality, to simplify the information

 displayed to the user.

 Listed on the next pages are the progress bars of the base pipelines of the MALM service, the
 information is shown as the client sees it. The times shown for each Stage should not be taken
 as a reference, since many of the Stages have been skipped in order to speed up the analysis.

 To conclude the analysis of the pipelines, I have reviewed in collaboration with the MALM team
 all the stages of the pipelines. We have summarized in a table what each stage executes for
 each pipeline. This will help us enormously to refactor the code and transform all these
 requirements and functionalities into correctly defined Steps.

 19 Step – https://www.jenkins.io/doc/book/pipeline/#step

 18 Stage – https://www.jenkins.io/doc/book/pipeline/#stage

 Barcelona School of Informatics (FIB) 61 UPC

https://www.jenkins.io/doc/book/pipeline/#step
https://www.jenkins.io/doc/book/pipeline/#stage

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 android_app_pipeline

 Figure 7 – Progress status bar for the android_app_pipeline execution.

 Stage Description

 Checkout » Download the project repository and the Pipeline-Utils repository.
 » Initializes Pipeline GitLab status.

 Prepare » The variables of the project to be built are assigned in the gradle.properties file.
 » If it is a "store", the gradle.properties file is renamed to "gradle_store.properties".
 » Signature configuration is added.
 » If specified by the app, the configuration variables from AuthServer are assigned

 for the use of the Gateway API.
 » Services.json, gradle.properties and xiflo.properties files are replaced.
 » AppCenter Validation.

 ARQ Rules Deprecated.

 Test Execution of the application's Unit Tests.

 Sonar Sonar analysis execution.

 Check Tests
 & Coverage

 Check if the Tests and Sonar analysis are completed without errors.

 Build Assemble Gradle to generate the package.

 Nexus Package upload to Nexus.

 AppCenter APK upload to AppCenter. "Mappings.txt" file is included if it exists.

 SauceLabs » APK upload to Sauce Labs Integration.
 » Scheduling of the execution of functional tests.

 Tag If it is "release", create a Git tag with the current version.

 S.Security
 Analysis

 Asynchronous programming of security analysis. Integration with Checkmarx.

 Notify Sending email with final CI status and notification to GitLab's CI status.

 GSA Deprecated.

 Clean » Jenkins workspace cleanup.
 » Notifies GitLab repository of status end.

 Table 10 – android_app_pipeline Stage description Summary .

 Barcelona School of Informatics (FIB) 62 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 android_aar_pipeline

 Figure 8 – Progress status bar for the android_aar_pipeline execution.

 Stage Description

 Checkout » Download the project repository.
 » Download Pipeline-Utils repository.
 » Initializes Pipeline GitLab status.

 Prepare » Manages the Stages that will be skipped.
 » The variables of the project to be built are assigned in the gradle.properties file.
 » Notification mail preparation.

 ARQ Rules Deprecated.

 Test Execution of the application's Unit Tests.

 Sonar Sonar analysis execution.

 Check Tests
 & Coverage

 Check if the Tests and Sonar analysis are completed without errors. Seems to be
 deprecated on aar.

 Build Assemble Gradle to generate the package with aar format.

 Nexus aar Package upload to Nexus.

 Tag If it is "release", create a Git tag with the current version.

 Schedule
 Security
 Analysis

 Not used on aar.

 Notify Notifies GitLab repository of status change.

 GSA Deprecated.

 Clean » Jenkins workspace cleanup.
 » Notifies GitLab repository of status end.

 Table 11 – android_aar_pipeline Stage description Summary .

 Barcelona School of Informatics (FIB) 63 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ios_app_pipeline

 Figure 9 – Progress status bar for the ios_app_pipeline execution.

 Stage Description

 Clean Jenkins workspace previous cleanup.

 Checkout » Download the project repository.
 » Download Pipeline-Utils repository.
 » Initializes Pipeline GitLab status.

 Prepare » Parameters are adjusted in the Info.plist.
 » services.json and xiflo.plist files are replaced.
 » Call to the method for obtaining credentials assertions.
 » AppCenter Validation.
 » Run "pod update".

 MALM Rules Deprecated

 Test Generates the configuration and log files for Sonar.
 Execution of the application's Unit Tests.

 Sonar Sonar analysis execution.

 Check Tests
 & Coverage

 Check if the Tests and Sonar analysis are completed without errors. This Stage
 seems to be deprecated, the validation is done on the Test and Sonar Stage.

 Build Generate the IPA and dSym using Fastlane and the ExportOptions.plist
 (ExportOptions.store.plist for the Store version) of the project.

 Nexus Package upload to Nexus.

 AppCenter IPA upload to AppCenter. dSYM files are included if they exist.

 SauceLabs » IPA upload to Sauce Labs Integration.
 » Scheduling of the execution of functional tests.

 TestFlight If requested by comment in the Merge Request, schedule an upload to Testflight.

 Tag If it is "release", create a Git tag with the current version.

 S.S.A. Asynchronous programming of security analysis. Integration with Checkmarx.

 Notify Finalizes the Pipeline GitLab status and notifies the project partners via email

 GSA Sending catalog information to GSA

 Table 12 – ios_app_pipeline Stage description Summary .

 Barcelona School of Informatics (FIB) 64 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ios_pod_pipeline

 Figure 10 – Progress status bar for the ios_pod_pipeline execution.

 Stage Description

 Clean Jenkins workspace previous cleanup.

 Checkout » Download the project repository.
 » Download Pipeline-Utils repository.
 » Initializes Pipeline GitLab status.

 Prepare » Parameters are adjusted in the Info.plist.
 » Generate the project: pod update

 MALM
 Rules

 Deprecated

 Test Generates the configuration and log files for Sonar.
 Execution of the application's Unit Tests.

 Sonar Sonar analysis execution.

 Check Tests
 & Coverage

 Check if the Tests and Sonar analysis are completed without errors. This Stage
 seems to be deprecated, the validation is done on the Test and Sonar Stage.

 Tag If it is "release", create a Git tag with the current version.

 Publish
 Specs

 Publish the Pod in the Specs repository.

 Schedule
 Security
 Analysis

 Asynchronous programming of security analysis. Integration with Checkmarx.

 Currently, the stage is disabled.

 Notify Notifies GitLab repository of status change

 GSA Sending catalog information to GSA

 Table 13 – ios_pod_pipeline Stage description Summary .

 Barcelona School of Informatics (FIB) 65 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 5.4 Analysis of the Code → Definition

 Nowadays, the importance of code quality is no longer a surprise to anyone. We can find
 hundreds of articles and papers warning us about it, and there is an increasing number of tools
 available to measure code quality (SonarQube, Crucible, PVS-Studio, etc.).

 “ Any fool can write code that a computer can understand.
 Good programmers write code that humans can understand. ”

 States Martin Fowler on its book Refactoring: Improving the Design of Existing Code (1999)

 Back in 1999, code quality (not only focused on performance, but also on the developer’s
 welfare) was a topic of concern among the experts. Nowadays, it is something that is strongly
 accepted by the community and should be internalized in developers methodologies.
 Unfortunately, this decision does not always depend on the developer, an external factor (well
 known to all of us) prevents things from being done the right way.

 The problem now lies in bringing this concept, this need for quality code, to the
 business-corporate level.

 As stated in the recently published paper, Code Red: The Business Impact of Code Quality. A
 Quantitative Study of 39 Proprietary Production Codebases 20 (Tornhill & Borg, 2022) , “Code
 quality remains an abstract concept that fails to get traction at the business level.
 Consequently, software companies keep trading code quality for time-to-market and new
 features. The resulting technical debt is estimated to waste up to 42% of developers' time. [...]
 The business advantage of high quality code should be unmistakably clear.”

 From the same study, we can extract the following empirical data:

 ⇒ Low quality code contains 15 times more defects than high quality code.
 ⇒ Resolving issues in low quality code takes on average 124% more time in

 developmen t.
 ⇒ Issue resolutions in low quality code involve higher uncertainty , manifested as 9 times

 longer maximum cycle times .

 Based on these arguments, in this thesis I will not further elaborate on the importance of code
 quality, but rather rely on its principles to analyze and improve the current code.

 20 Recommended lecture of the paper – https://arxiv.org/pdf/2203.04374.pdf

 Barcelona School of Informatics (FIB) 66 UPC

https://arxiv.org/pdf/2203.04374.pdf

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 5.4.1 Groovy Style Guide

 MALM is developed with Groovy which, quoting from the language official website 21 : “Groovy is
 a powerful, optionally typed and dynamic language , with static-typing and static compilation
 capabilities. [...] It integrates smoothly with any Java program , and immediately delivers
 powerful features, including scripting capabilities , functional programming, [...]”

 As stated on the Jenkins website 22 , Groovy is the preferred language for developing Scripted
 Pipelines for Jenkins, but its recommendations on the official Style Guide 23 are somewhat
 debatable for our necessities.

 When a project grows in size and complexity, it is important that its code is indexed so that it
 can be more easily navigated. A complete indexing, with functions and variable information, is
 not possible without an IDE. More importantly, it also requires a strong variable typing (defining
 whether a variable is a String, Boolean, Integer […] on compile time).

 1
 2
 3
 4

 String name = "Jhon"
 Integer age = 25
 Boolean isMarried = true
 ArrayList<String> friends = ["Mark" , "Lucy" , "Karol"]

 Code 11 – Set of basic static-typing variable definition.

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 def name = "Sergio"
 def age = 25
 def isMarried = false
 def friends = ["Mark" , "Lucy" , "Karol"]

 age = "twenty-five"
 /* age is now a String */

 friends = " ${ name } loves ${ friends[2] } ."
 /* friends can be either a GString or a String */

 Code 12 – Set of basic dynamic-typing variable definition.

 From the very beginning, the project was developed using the optional (dynamic) typing that
 Groovy allows, so this indexing is not possible at the moment. This optional typing allows not to
 specify the type of the variable, using the reserved word def , in this way, the type of the
 variable is determined dynamically, at run time.

 The use of this typing offers certain benefits, usually in scenarios where rapid prototyping or
 dynamic adaptability is important, but this does not seem to be the case for the MALM service.

 23 Groovy Style Guide – https://groovy-lang.org/style-guide.html

 22 Scripted Pipelines Documentation – https://www.jenkins.io/doc/book/pipeline/syntax/#scripted-pipeline

 21 Apache Groovy Website – https://groovy-lang.org/

 Barcelona School of Informatics (FIB) 67 UPC

https://groovy-lang.org/style-guide.html
https://www.jenkins.io/doc/book/pipeline/syntax/#scripted-pipeline
https://groovy-lang.org/

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 5.4.2 Jenkins Pipeline Best Practices

 To ensure the quality of our code, we must also take into account the Jenkins Pipeline Best
 Practices. In order to carry out a solid analysis, I will list these practices, extracted from the
 official documentation 24 , and review one by one if they are complied with or if, on the contrary, it
 would be interesting to implement them.

 General Jenkins usage

 ⇒ Making sure to use Groovy code in Pipelines as glue .

 » It is recommended to reduce the amount of Groovy code running in the pipeline. It is
 preferable not to use Groovy or other external libraries for functionalities or processes
 that can be converted, for example, into a more complex sh script. In the case of
 MALM, this first practice is not fulfilled, since there are several Steps and
 functionalities that are implemented purely in Groovy.

 ⇒ Running shell scripts in Jenkins Pipeline.

 » The approach is similar to the one discussed above, but in this case it refers
 specifically to the use of Shell Scrits instead of logic programmed in Groovy
 (whenever possible).

 This is the case for a method that takes care of replacing values of .plist files. It uses
 a specific library for the replacement, but due to the reads and writes that Jenkins
 has to do, the process usually takes between 20 and 30 minutes (25% of the entire
 pipeline time). Turning this Groovy method into a shell script could dramatically
 reduce these execution times.

 ⇒ Avoiding complex Groovy code in Pipelines.
 There are a couple of native Groovy methods that they recommend not to use due to
 the high consumption of resources in the Controller. The main idea is the same as
 before, reduce the workload of the Controller and transform these methods into
 commands to send the work to the agent. The most common methods are:
 JsonSlurper and HttpRequest .

 Use of JsonSlurper ; 26 finds on the code.
 Use of HttpRequest ; 15 finds on the code.

 Both methods are used several times by MALM code, therefore they should be
 converted into commands to comply with these best practices.

 ⇒ Avoiding calls to Jenkins.getInstance .

 » It is important to avoid severe security and performance issues. In our case, this
 practice is being followed.

 24 Pipeline Best Practices – https://www.jenkins.io/doc/book/pipeline/pipeline-best-practices/

 Barcelona School of Informatics (FIB) 68 UPC

https://www.jenkins.io/doc/book/pipeline/pipeline-best-practices/

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ⇒ Cleaning up old Jenkins builds.

 » Keeping Jenkins Controller clean of old or unwanted jobs promotes an efficient
 environment with good resource management. Jenkins allows you to configure a
 job-specific policy for deleting old builds and logs, called logRotator.

 Currently this policy is configured with rather high parameters, allowing Logs to exist
 in the platform 3 months after being executed. Considering the large number of Jobs
 that are launched daily, and the size of the logs, the LogRotator configuration could
 be adjusted to be less permissive.

 Using Shared Libraries

 ⇒ Do not override built-in Pipeline steps.

 » Overwriting Jenkins' own steps like sh or timeout can have really bad results if they
 are not programmed correctly. It is preferable to create a custom step before
 overwriting an existing one. After analyzing the code, I have found no step that
 overwrites an existing one, so we can confirm that this practice is being followed.

 ⇒ Avoiding large global variable declaration files .

 » If it exists, a global variable file is loaded for each execution of a Job, whether it is
 used or not, so it can be an unnecessary waste of resources. Currently, no variable
 file is used, only the Jenkins global variables, so we could state that this practice is
 followed.

 ⇒ Avoiding very large shared libraries .

 » Like the variables file, all the files of a Shared Library are downloaded for each
 execution, so it is necessary for the Shared Library not to be extremely large. In the
 case of MALM, after several tests and checks, I do not see that it takes too long to
 download the entire library (~20 seconds), so we can assure that this practice is not
 currently a concern.

 5.4.3 Code Quality

 Besides the issues already discussed about the code, there are other more basic aspects that I
 have been noticing and that will require a review. These issues are:

 ⇒ There is no proper indentation of the code.

 ⇒ The variables do not have a defined standard nomenclature.

 » camleCase, snake_case and PascalCase are used for variables of the same kind.

 ⇒ Languages are mixed in the logs that will be seen by the user.

 » The final Job log shows logs in English, Spanish and Catalan.

 ⇒ There are many variables that are defined, but not used.

 Barcelona School of Informatics (FIB) 69 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ⇒ Library imports are not optimized.

 » Some of them are not used and others are used with their qualified reference in the
 middle of the code, repeatedly.

 ⇒ There are many unnecessary def , public , and semicolons.

 ⇒ Groovy deprecated methods such as encode(String) and .instance are used.

 ⇒ There are many try-catch functions that have an empty, unused catch block.

 ⇒ In addition to those mentioned above, there are many warnings in the code (4,529 of
 the 7,342 total) that require additional review.

 5.4.4 Code Documentation

 Code documentation is a very important practice to ensure that our code is easily maintainable
 and understandable for every developer. Besides giving quality to the product, it is also one of
 the most useful components for the development team.

 In A Study of the Documentation Essential to Software Maintenance (Cozzetti B. de Souza et
 al., 2005), the importance of documentation in software projects is represented in data, and
 they state that the source code and its documentation are the most relevant components to
 understand a system to be maintained.

 It also adds: “Although it has always been heralded as an important aid to software
 development and maintenance, it is notoriously absent or out-dated in many legacy software.
 Agile methods have shaken a bit the traditional view of software documentation, proposing a
 development model that rely more on informal communication than on documentation. We
 explained, however, that this model does not suit software maintenance, which still has great
 need for documentation.”

 Yes, as we have already seen, the MALM team works with an Agile methodology, but that does
 not mean that certain aspects of the project should not be documented. The Agile
 methodology does not prohibit documentation, but rather its goal is to find a middle ground
 between complete documentation and the transmission of information between team
 members.

 Considering this information, after analyzing the code and its documentation, we can state that:

 ⇒ There is no documentation of classes or functions within the source code. Most of the
 existing documentation is outdated.

 ⇒ There is , however, a very extensive and detailed functional documentation , deployed
 in a corporate tool. This is similar to a user manual, where customers can access to
 consult all product information, details of new releases and other useful data.

 Barcelona School of Informatics (FIB) 70 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 6 New Architecture Definition

 In this chapter, I describe the proposals and decisions that should define the future of the
 MALM project. It is important that these proposals are discussed, questioned and adapted to
 bring more benefit to the product and, above all, to the developers. Once these proposals are
 accepted, they should be implemented on the platform in no more than 6 months, to prevent
 the Technical Debt from further increasing.

 I have structured the definition of the new architecture in six different sections, four of them
 referring to the topics of the Analysis: Definition of the new Tech Stack , Definition of the new
 Architecture , Definition of the new Pipelines and Definition of the new Code .

 Additionally, I have added two other sections that have not been detected by the Analysis, but
 are necessary to meet the new requirements of the platform. These are: Definition of the new
 Project and Definition of Unit Tests.

 For this chapter, all decisions have been backed by proof-of-concept developments, reviewed
 and accepted by the MALM team.

 I would like to point out that the objective of this thesis is not to point out the flaws of the
 product, but to understand how such technical debt has been generated, and to solve it in
 order to bring the platform back to a good performance level in terms of cost-development. In
 my own experience, the need for a complete refactor or redesign is, unfortunately, quite
 common in the IT engineering sector, for a platform that is more than 5 years old.

 Barcelona School of Informatics (FIB) 71 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 6.1 Definition of the new Tech Stack ← Analysis

 Based on the results of the 5.1 Analysis of the Tech Stack section, I have chosen to implement
 a workspace configuration protocol for the MALM team and to propose an upgrade of the
 technology stack to the latest possible version (making sure that is supported by the company).

 6.1.1 Workspace

 The context of the current MALM team's workspace is the following:

 ⇒ The MALM team is formed by:

 » One Technical Leader.

 » Three senior developers.

 » Four developers.

 » Two inexperienced developers.
 ⇒ Of these three senior profiles, two of them use IntelliJ as their IDE.
 ⇒ It is a team that works with Agile methodology.
 ⇒ They typically use pair-programming and similar practices.
 ⇒ Each week they do a Review of the developments sharing screen and code.
 ⇒ There is currently no standard IDE and the ones currently used are varied (Atom, Visual

 Studio Code, IntelliJ and Eclipse).

 Considering the above list and making use of the results of the analysis, I have chosen to
 implement a standardized workspace setup guide. The installation of the IDE and its custom
 configuration is totally optional, but strongly recommended for the whole team.

 IntelliJ Community 25 is the IDE of choice due to:

 ⇒ Being one of the pioneer IDEs in Java development.
 ⇒ Its multiple plugins and integrations with Jenkins.
 ⇒ Its potential and performance.
 ⇒ Its ease of use, adaptability and the great amount of documentation.
 ⇒ Being an open-source IDE, licensed under Apache 2.0.

 This decision has been consulted, discussed and agreed upon by all members of the team.

 The installation guide can be found in section 9.2 Workspace Setup Guide in the Annex.

 25 IntelliJ official website – https://www.jetbrains.com/idea/

 Barcelona School of Informatics (FIB) 72 UPC

https://www.jetbrains.com/idea/

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 In addition to the guide, I have also implemented a simple protocol to determine when it is most
 advisable to install the standardized Workspace for new or existing team members. The
 protocol criteria are as follows:

 Current Valid IDEs: IntelliJ, Eclipse, Visual Studio Code.
 IDEs should be researched and reviewed before being listed as valid.

 ⇒ If the member has an inexperienced developer or developer profile ;

 » If the member has no expertise in any IDE;
 Then use IntelliJ following the Installation guide.

 » If the member has expertise in any valid IDE ;
 Then use the valid IDE with which he/she has expertise.

 » If the member has expertise in an invalid IDE ;
 Then use IntelliJ following the Installation guide.

 ⇒ If the member has a senior profile;

 » If the member has expertise in any valid IDE ;
 Then use the valid IDE with which he/she has expertise.

 » If the member has expertise in an invalid IDE ;
 Then the IDE should be reviewed;

 » If it is defined as valid ;
 Then use the valid IDE with which he/she has expertise.

 » If it is defined as invalid ;
 Then use IntelliJ following the Installation guide.

 6.1.2 Tech Stack

 When defining the new Technology Stack, I had to ask for support from the IT team in charge of
 managing the corporate software we have available at Opentrends. This team is responsible for
 checking each version and validating that it can be installed on the corresponding machines.

 Due to a compatibility issue, the Groovy version cannot be updated yet, so it will be necessary
 to address this update in the future, when the problem is fixed.

 After several meetings with them, an update of the Technology Stack to the following versions
 has been requested and scheduled for the next month:

 Technology Current Version Release Date New Version Release Date

 Jenkins 2.277.3 2021-04-20 2.319.2 2022-01-12
 Groovy SDK 2.4.12 2017-06-24 - -

 Java JDK 1.8.0 2014-03-18 11.0.14 2022-01-18

 Table 14 – Technology Analysis Update Summary.

 Once updated, it is essential to review and fix any incompatibilities that may have appeared.

 Barcelona School of Informatics (FIB) 73 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 6.2 Definition of the new Project
 One of the main requirements/objectives of the thesis is to convert the MALM code repository
 into a Gradle project. This provides us with a starting point in which to properly manage
 dependencies, implement a versioning protocol and allows us to integrate tools that generate
 Groovydoc-style documentation and execution of Unit Tests.

 The need for the MALM project to have a "real project" look and structure is one of the most
 clear priorities that will serve as a basis for us to start developing further improvements to the
 system.

 6.2.1 Gradle

 Given that our code is programmed in Groovy, and it does not need to be compiled, it is quite
 easy to choose Gradle over Maven (which does require compiled code). Besides, Maven
 requires plugins to be compatible with Groovy, while Gradle already offers native compatibility
 with Groovy projects.

 Gradle Maven

 Focused on domain-specific language (DSL) projects. Focused on pure Java language-based software.

 It uses a Groovy-based DSL for creating the project build
 file.

 It uses Extensible Markup Language (XML) for creating
 project build file.

 Developing applications by adding new features to them. Developing applications in a given time limit.

 It performs better than maven as it is optimized for
 tracking only the current running task.

 It does not create local temporary files during software
 creation, and is hence – slower.

 It avoids compilation. It is necessary to compile.

 Gradle is a newer tool, which requires users to spend
 some time to get used to it.

 Maven is known to many users, and it is easily available.

 Highly customizable as it supports a variety of IDE’s. Not that customizable compared to Gradle.

 It supports software development in Java, C, C++, and
 Groovy.

 It supports software development in Java, Scala, C#,
 and

 Table 15 – Comparison Gradle vs Maven (Geeks for Geeks, 2022).

 Having compared both tools, following the official documentation 26 and several community
 comparisons 27 , I have selected Gradle 7.1 as the build tool for the project.

 Also, I have implemented a PoC (Proof of Concept) to validate that the use of Gradle is
 compatible with our project and its dependencies. Finally, after the validation of the PoC, I have
 created a configuration guide for the malm-shared project with Gradle 7.1 so that the
 development team can configure their environments.

 27 Gradle vs Maven community comparison – https://www.geeksforgeeks.org/difference-between-gradle-and-maven/

 26 Gradle vs Maven comparison – https://gradle.org/maven-vs-gradle/

 Barcelona School of Informatics (FIB) 74 UPC

https://www.geeksforgeeks.org/difference-between-gradle-and-maven/
https://gradle.org/maven-vs-gradle/

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Before the team members follow the steps in the setup guide, it is necessary to merge the
 feature/POC_gradle_project branch to the origin/develop branch of the project, so all
 the source code from the Gradle build tool can be integrated.

 The Gradle setup guide can be found in section 9.3 Gradle 7.1 Setup Guide in the Annex.

 Additionally, I have implemented the base schema of the project's build.gradle file, shown in the
 code below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44

 // plugins block that add 'tasks' to the build.gradle file
 plugins {

 id 'maven-publish'
 id 'groovy'

 }

 group 'com.opentrends.malm-shared'
 version '1.0-SNAPSHOT'
 description 'Gradle project for Jenkins Pipeline Controller'

 // Repositories block for resolving the dependencies
 repositories {

 mavenCentral()
 google()
 maven { url 'https://repo.jenkins-ci.org/public/' }
 maven { url 'https://repo.jenkins-ci.org/releases/' }
 maven { url 'https://repo.spring.io/plugins-release/' }
 maven { url 'https://plugins.gradle.org/m2/' }

 }

 // SourceSets to comply with the Jenkins Shared Library file structure
 sourceSets {

 main {
 groovy {

 srcDirs = ['src' , 'vars']
 }
 resources {

 srcDirs = ['resources']
 }

 }
 }

 // Dependencies block for the libraries and functions on the code
 dependencies {

 implementation 'org.codehaus.groovy:groovy-all:2.4.12'
 implementation 'org.jenkins-ci.main:jenkins-core:2.337'
 implementation 'com.cloudbees:groovy-cps:1.31'
 implementation 'com.cloudbees.jenkins.plugins:cloudbees-credentials:3.3'
 // [...]
 implementation 'org.connectbot.jbcrypt:jbcrypt:1.0.0'
 implementation 'io.provis:provisio-jenkins-runtime:0.1.40'
 implementation 'org.jenkins-ci.plugins:matrix-auth:1.7'
 implementation 'org.jenkins-ci.plugins.workflow:workflow-cps:2.41'

 }

 Code 13 – Base structure for the gradle.build file.

 Barcelona School of Informatics (FIB) 75 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 6.2.2 Versioning

 Another requirement that was raised at the beginning of the thesis is to provide the project with
 a version control management tool. Having the project already configured with Gradle, allows
 us to make use of several of its tools to implement such versioning.

 Although the MALM product is currently an internal corporate project used by a single team, it
 is expected to be eventually converted into a more general Shared Library, used by other teams
 within Opentrends. The versioning protocol will be more useful when this conversion is done,
 but for now, I think it will be interesting to implement it and to familiarize the team with it.

 We will use the Semver 28 versioning scheme for our versioning protocol. Extracted from the
 official documentation:

 X . Y . Z - pre-release + build
 e.g., 2.0.4- alpha +001

 Given a version number MAJOR . MINOR . PATCH-pre-release+build increment the:

 ⇒ ⬤ MAJOR version when you make incompatible API changes.
 ⇒ ⬤ MINOR version when you add functionality in backwards compatible manner.
 ⇒ ⬤ PATCH version when you make backwards compatible bug fixes.

 Additional labels for pre-release and build metadata are available as extensions to the
 MAJOR.MINOR.PATCH format.

 ⇒ ⬤ pre-release version indicates that the version is unstable and might not satisfy
 the intended compatibility requirements. (optional)

 ⇒ ⬤ build version indicates the build identifier generated on the build. It can be an
 iterator or a timestamp. (optional)

 Furthermore, I propose the implementation of a simple tagging system via Gradle for creating
 on-demand TAGs in the GIT repository.

 1
 2
 3
 4
 5
 6
 7
 8
 9

 group 'com.opentrends.malm-shared'
 version '1.0-SNAPSHOT'
 description 'Gradle project for Jenkins Pipeline Scripts'

 task createReleaseTag() {
 def tagName = "release/ ${version} "
 ("git tag $tagName").execute()
 ("git push --tags").execute()

 }

 Code 14 – Git tag creation task.

 28 Semver Official Website – https://semver.org/

 Barcelona School of Informatics (FIB) 76 UPC

https://semver.org/

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 6.3 Definition of the new Architecture ← Analysis

 6.3.1 Software Architecture Patterns

 After reviewing the results of the analysis, we can see that:

 ⇒ The use of a Layered pattern is suitable.
 ⇒ The layers of the pattern are unstructured and mixed.
 ⇒ Requires some adaptation to meet the product needs.
 ⇒ The aim is to simplify the code, not to make it unnecessarily complex.

 With these previous points in mind, I propose to continue using a Layered Pattern model, very
 appropriate for the needs of MALM. In our case, we can only manage those layers that our
 Jenkins Controller project can handle, so the Presentation Layer and the DataSource Layer are
 out of the scope.

 Of the 3 remaining layers, we have found that the Services Layer does not add value or benefit
 to the project, but rather adds an unnecessary layer of abstraction that can be easily removed.

 This leaves us with a project that is composed of two layers:

 ⇒ Business Layer.
 ⇒ Persistence Layer.

 The main idea is to adapt this pattern to the needs of MALM. Basically, the product receives an
 initial call to start one of the pipelines, then the pipeline is in charge of calling the Step files that
 are responsible for executing logic, launching scripts, modifying files, etc. These Steps use
 classes and methods specific to the project, located in the /src/com/opentrends/impl/
 directory. In the need to access DB or API requests (we will treat these two as components of
 the Database Layer), the Steps will have to call the “repository classes”, located at
 /src/com/opentrends/repository/ , that forms the Persistence Layer.

 This would imply:

 ⇒ A refactoring of the project code to ensure the Single Responsibility Principle of the
 Business Layer (pipeline files, steps, implementation, and utils) and the Persistence
 Layers (DB repository files and API requests).

 ⇒ A restructuring of the project file hierarchy to organize the files according to the needs of
 the new adapted pattern.

 ⇒ A change in the approach when developing new functionalities, which would have to be
 adapted to this way of organizing the code and the flow of an execution.

 Although the basis of the Architecture Pattern remains the same, the above changes bring
 great benefits to the project by reducing the complexity of MALM, allowing a clearer execution
 flow and, in general, making it easier to develop new functionalities.

 Barcelona School of Informatics (FIB) 77 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 6.3.2 Software Design Patterns

 As we have commented in the analysis, there is no use of design patterns in the project
 because it does not need them . The project in terms of Design Patterns is very simple, since
 its code executes Steps that are in charge of doing a single action already delimited and
 defined. There are no functions or classes that require a Strategy pattern or a Visitor pattern, for
 example.

 In fact, the current use of the Singleton pattern is not appropriate, since there is no benefit in
 using it. So it would be interesting to avoid it and turn this pattern into a simple instantiable
 class like the rest of the project.

 The classes are simple, there are no interfaces , implements or complex extends that may
 require the adaptation of patterns. The only implements that exist is the one that must be
 added to every class, the implements Serializabe , by own limitation and technical
 requirement of Jenkins. From my point of view, I believe that it should not be treated as a
 pattern.

 Considering the previous discussion and the results of the analysis, my main proposal for this
 issue is to make the team aware that the use of Design Patterns, whenever possible and
 beneficial, should be the priority when developing future functionalities.

 Barcelona School of Informatics (FIB) 78 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 6.3.3 Project File Hierarchy

 My proposed changes to improve the aspects identified by the analysis are to:

 ⇒ Define a naming standard for file names.
 ⇒ Detect and clean the project of deprecated files .
 ⇒ Define a new file hierarchy , based on the architecture changes shown in section 6.3.1

 Software Architecture Patterns .
 ⇒ Implement a protocol to update README.md & CHANGELOG.md after the releases.

 File naming standard

 I decided to use the Java naming Convention 29 , since Groovy is a language totally focused on
 Java platforms and, therefore, it seems logical to use the same naming standard. Besides, it is
 a choice strongly supported by the Groovy community.

 The naming convention for Java is as follows:

 Type Naming Rules Examples

 Class
 - It should start with the uppercase letter.
 - It should be a noun such as Color, Button, Thread, etc.
 - Use appropriate words, instead of acronyms.

 public class Employee {
 //code snippet
 }

 Method
 - It should start with a lowercase letter.
 - It should be a verb such as main() , print() , println() .
 - If the name contains multiple words, use camelCase.

 void draw() {
 //code snippet
 }

 Interface
 - It should start with the uppercase letter.
 - It should be an adjective such as Runnable, Remote.
 - If the name contains multiple words, use PascalCase.

 interface Printable {
 //code snippet
 }

 Variable

 - It should start with a lowercase letter, such as id, name.
 - It should not start with the special characters like &
 (ampersand), $ (dollar), _ (underscore).
 - If the name contains multiple words, use camelCase.
 - Avoid using one-character variables such as x, y, z.

 int id;

 String nameEmployee;

 Package
 - It should be a lowercase letter, such as java, lang.
 - If the name contains multiple words, it should be separated
 by dots (.) such as java.util, java.lang.

 package com.javatpoint;

 Constant
 - It should be in uppercase letters such as RED, YELLOW.
 - If the name contains multiple words, it should be separated
 by an underscore(_) such as MAX_PRIORITY.
 - It may contain digits, but not as the first letter.

 static final int MIN_AGE = 7;

 Table 16 – Java Naming Convention. (JavaTPoint, 2011-2021)

 29 Java Naming Conventions – https://www.javatpoint.com/java-naming-conventions

 Barcelona School of Informatics (FIB) 79 UPC

https://www.javatpoint.com/java-naming-conventions

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 However, I will add a small change in this convention to adapt it to the needs of the Jenkins
 project. This change is directly focused on the problem of having mixed Android, iOS and Cross
 files (these being indistinguishable at a glance), and the Jenkins design limitation of not being
 able to create directories inside the /vars folder.

 This limitation forces us to implement a visual separation by filename for the files inside /vars .

 All Steps files must follow this format:

 tecnology _STEP_ descriptiveNameOfTheStep .groovy

 ⇒ The technology field can be:

 » and - for Android

 » ios - for iOS

 » cross - for Android and iOS

 Also, the filename of the Pipelines must remain unchanged for the moment.

 By adding these exceptions to the Java Naming Convention, and adapting it a bit to comply
 with Groovy syntax (e.g., deleting the semicolons), we now have our MALM Naming
 Convention defined.

 Deprecated files

 It was necessary to deeply analyze the code to detect which files were deprecated and target
 them for removal.

 The results of the code deprecation analysis are that, of the 228 files that compose the
 malm-shared project, at least 84 of them are deprecated and could be deleted without
 impacting the service. This means that almost 37% of the files in the project were of no use to
 the development team and had a negative impact on the team's productivity.

 Before creating the final list of files to be deleted, it is important that the MALM team reviews
 the analysis and evaluates whether to delete the selected files or if more should be added to the
 list. Currently, the deprecated files are marked in the code with a comment tag @Deprecated
 at the start of the file.

 New File Hierarchy

 In the following page we can find the proposal for the new file hierarchy. In it, the files are
 divided by Layered Pattern responsibility layer, class logic taxonomy and technology while
 maintaining the base structure of a Jenkins Shared Library.

 In addition, the Unit Testing directories defined in section 6.6 Definition of Unit Testing are
 included.

 Barcelona School of Informatics (FIB) 80 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58

 . # (root) Malm-Shared
 ├── src # Groovy source files
 │ ├── com.opentrends
 │ │ ├── impl # Implementation files (Business Layer)
 │ │ │ ├── ios
 │ │ │ │ ├── sonar
 │ │ │ │ │ └── SonarIosImpl.groovy
 │ │ │ │ [...]
 │ │ │ │ └── proxy
 │ │ │ │ └── ProxyIosImpl.groovy
 │ │ │ ├── android
 │ │ │ │ ├── sonar
 │ │ │ │ │ └── SonarAndroidImpl.groovy
 │ │ │ │ [...]
 │ │ │ │ └── proxy
 │ │ │ │ └── ProxyAndroidImpl.groovy
 │ │ │ └── cross
 │ │ │ ├── notification
 │ │ │ │ └── NotificationImpl.groovy
 │ │ │ [...]
 │ │ │ └── saucelabs
 │ │ │ └── SaucelabsImpl.groovy
 │ │ │
 │ │ ├── repository # Repository files (Persistence Layer)
 │ │ │ ├── ios
 │ │ │ │ ├── sonar
 │ │ │ │ │ └── SonarIosRepository.groovy
 │ │ │ │ [...]
 │ │ │ │ └── proxy
 │ │ │ │ └── ProxyIosRepository.groovy
 │ │ │ ├── android
 │ │ │ │ ├── sonar
 │ │ │ │ │ └── SonarAndroidRepository.groovy
 │ │ │ │ [...]
 │ │ │ │ └── proxy
 │ │ │ │ └── ProxyAndroidRepository.groovy
 │ │ │ └── cross
 │ │ │ ├── notification
 │ │ │ │ └── NotificationRepository.groovy
 │ │ │ [...]
 │ │ [...] └── saucelabs
 │ │ │ └── SaucelabsRepository.groovy
 │ │ └── utils
 │ │ ├── AndroidUtils.groovy
 │ │ ├── AssembleFileUtils.groovy
 │ │ [...]
 │ │ ├── MalmUtils.groovy
 │ │ └── TimeUtils.groovy
 │ └── test # test directory files for Unit Testing
 │ ├── groovy
 │ │ ├── AppcenterLogsHolder.groovy
 │ │ [...]
 │ │ └── XcodeServices.groovy
 │ └── resources
 │ ├── AndroidUtils.groovy
 │ [...]
 │ └── TimeUtils.groovy
 │

 Barcelona School of Informatics (FIB) 81 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90

 │
 ├── vars # Jenkins steps and pipeline files
 │ ├── android_aar_pipeline.groovy # PIPELINES files
 │ ├── android_app_pipeline.groovy
 │ ├── ios_app_pipeline.groovy
 │ ├── ios_pod_pipeline.groovy
 │ │
 │ ├── and_STEP_CheckCoverage.groovy # STEPS files
 │ ├── and_STEP_ExecuteSaucelabAction.groovy
 │ [...]
 │ ├── ios_STEP_CheckCoverage.groovy
 │ ├── ios_STEP_ExecuteSaucelabAction.groovy
 │ [...]
 │ │
 │ └── ios_STEP_uploadPackageToNexus.groovy
 │
 ├── resources # resource files
 │ ├── exampledir
 │ │ ├── ruby_script.rb
 │ │ [...]
 │ │ └── shellscript.sh
 │ [...]
 │ └── textfile.txt
 │
 ├── .gitignore
 ├── build.gradle # Gradle files
 ├── gradle.properties
 ├── gradlew
 ├── gradlew.bat
 ├── settings.gradle
 ├── CHANGELOG.md
 └── README.md

 Code 15 – MALM’s project new File Hierarchy.

 Changelog.md and Readme.md updating protocol

 The proposal is to apply a small change in the internal methodology of the project. Currently,
 the team maintains a very good functional documentation and a changelog properly updated to
 date, so it will not require much effort to apply the new methodology.

 The idea is that, after each Release of the product, besides updating the documentation and
 the changelog in the external corporate tool, this information will also be added to the
 CHANGELOG.md files and in README.md.

 Barcelona School of Informatics (FIB) 82 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 6.4 Definition of the new Pipelines ← Analysis

 6.4.1 Shared Libraries Unification

 Considering the results of the analysis and knowing that:

 ⇒ Pipeline-Utils does not have a valid Shared Library structure and usage.
 ⇒ Pipeline-Utils complicates the development and maintenance of the code.
 ⇒ Part of Pipeline-Utils code is deprecated.
 ⇒ Pipeline-Utils is not reusable as a library for other projects.

 I suggest that the two libraries maintained by the MALM team, malm-shared and pipeline-utils,
 should be unified into the new malm-shared project .

 Such unification requires quite a lot of refactoring work. Currently, each groovy class in the
 /vars directory of Pipeline-Utils is used in malm-shared as a Utils class by downloading the
 code using GIT commands and loading the class into a variable.

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21

 // Load Utils config
 dir ("MALMUtils") {

 def repo_url = "https://git.ot.com/malm-alm/pipelines-utils"

 sh "git clone --depth 1 --branch master ${repo_url} ."
 sh "git --no-pager log --pretty=raw"

 // Load each file from the library
 CI_XCODE_BOT = load("xcode_bot.groovy")
 CI_API_GITLAB = load("gitlab_api.groovy")
 CI_APPCENTER = load("appcenter.groovy")

 // more pipeline-utils loads [...]

 CI_BUILDCODE = load("buildcode.groovy")
 CI_JUNIT = load("junit_analyser.groovy")
 CI_SQLITE = load("sqlite.groovy")
 malmBuildContext.CI_PARAMS = load("ci_parameters.groovy")
 malmBuildContext.CI_MAIL = load("email.groovy")
 malmBuildContext.CI_DEPENDENCIES = load("dependencies_builder.groovy")

 }

 Code 16 – Initialization of Utils variables with the Pipeline-Utils library.

 One of the first changes the team should apply in order to start the unification is to add the files
 from the /vars directory of Pipeline-Utils to the /src/com/opentrends/utils directory of the
 Malm-Shared project. Then, in combination with an initial refactor, start to class-format those
 files and replace the loads() with class instances, as in the following example:

 Barcelona School of Informatics (FIB) 83 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

 // Load Utils config
 private def loadUtils() {

 malmBuildContext.jkPipelineUtils = new PipelineUtils()
 malmBuildContext.jkGitlabApi = new GitlabApi()
 malmBuildContext.jkAppcenter = new Appcenter()

 // more class instances [...]

 malmBuildContext.jkBuildcode = new Buildcode()
 malmBuildContext.jkJunit = new Junit()
 malmBuildContext.jkSqlite = new Sqlite()
 malmBuildContext.jkParameters = new PipelineParameters()
 malmBuildContext.jkEmail = new Email()
 malmBuildContext.jkDependencies = new Dependencies()

 }

 Code 17 – Initialization of Utils variables with unified Malm-Shared.

 In a separate branch, I have implemented a unification PoC of the Pipeline-Utils
 /vars/utils.groovy file and successfully migrated and refactored it to Malm-Shared's
 /src/com/opentrends/utils/PipelineUtils.groovy class. So the rest of the unification
 should not cause too many unexpected issues besides the possible bugs that may appear.

 Once the unification is completed, all regression tests currently defined must be launched
 manually and reviewed one by one for possible bugs.

 6.4.2 New Pipelines Steps

 As seen in the Analysis, if we intend to reduce the costs of maintainability of the project and
 improve the development time of new features, one of the most important issues to address is
 the division by Steps of the existing Stages. For this, I propose a mid-long term refactoring (due
 to the high workload involved) that consists of converting all the Stages code to Steps inside
 groovy files in the /vars directory.

 In conjunction with the results of the analysis of the Pipelines, the help of the MALM team and
 the existing documentation of the current project, we have been able to define the list of actions
 or Steps that are executed for each Stage.

 Therefore, I will list, for each of the four pipelines, the Stages and Steps that form them. The
 purpose of this is to facilitate the developers' work when it comes to refactoring the project's
 code and atomizing the Stages.

 To simplify the section, I will only show the list of Steps of one of the pipelines.
 The rest of them can be found in section 9.4 New Pipeline Steps list of the Annex.

 Barcelona School of Informatics (FIB) 84 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 android_app_pipeline

 Figure 11 – New progress status bar for the android_app_pipeline execution.

 Stage Step Description

 Checkout

 1 Project checkout and download.

 2 Loading of libraries.

 3 Initialization of the loaded libraries.

 4 Clone of the parent repository.

 5 Configure Job parameters.

 6 Signature configuration.

 7 Loading and initialization of the project configuration.

 8 AppCenter initialization.

 9 Notification of the start of the job execution in the MALM Jenkins.

 Prepare

 1 Obtaining the configuration file from the gradle.properties file.

 2 Configuration and generation of the properties of the gradle.properties file.

 3 Obtaining the dependencies implemented in the project to include them in the
 notification mail.

 4 Configuring the AppParent signature.

 5 Obtaining the names of the PRO nodes of the Client servers.

 6 Manage and replace the services.json file for service consumption.

 7 Replacement of Actors values for API/Gateway.

 8 Validation of dependency layout with aarqMALM.

 9 Sonar configuration.

 10 Obtaining application ID.

 11 AppCenter validation.

 ARQ Rules STAGE TO DELETE ON THE FIRST REFACTOR

 Test

 1 Test execution and report generation.

 2 Validation of test reports.

 3 Inclusion of test results in the notification email.

 Barcelona School of Informatics (FIB) 85 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Sonar

 1 Access to the Sonar profile.

 2 Checking the build variant of the project.

 3 Configuring the properties of the gradle.properties file.

 4 Sonar execution.

 5 Inclusion of the Sonar URL of the project in the notification email.

 6 Obtaining and validating metrics from Sonar.

 7 Print metrics in log.

 8 Retrieval of the coverage value from Sonar.

 9 Checking the % coverage of the project in Sonar.

 10 Inclusion of the project's coverage data and test results in the notification email.

 C.T & Coverage STAGE TO DELETE ON THE FIRST REFACTOR

 Build

 1 Checking the type of assembly.

 2 Compilation of the project.

 3 Upload Bundle to PlayStore.

 4 Upload mapping file to Splunk.

 Nexus

 1 Verification of parameters.

 2 Access to Nexus corporate for project uploading.

 3 Modification of the Gradle file.

 4 Generation of the resources file.

 5 Generation of the pom file.

 6 Preparation of the package (apk/aab) and upload to Nexus.

 7 Inclusion of the Nexus URL in the notification email.

 AppCenter

 1 Getting data from the assemble.properties file.

 2 Checking the distribution group.

 3 Obtaining the remaining parameters.

 4 Checking the mapping file.

 5 Uploading the application.

 6 Distribute the application to the distribution groups.

 7 Checking the Store version.

 8 Inclusion of AppCenter URL.

 9 Sending additional information to the GitLab component about the successful
 completion of the process.

 Barcelona School of Informatics (FIB) 86 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 SauceLabs

 1 Checking the SauceLabs activation parameters

 2 Load SauceLabs configuration from the CI

 3 Initializing SauceLabs execution

 4 Upload and run SauceLabs

 5 Inclusion of SauceLabs run information in the notification email

 Tag

 1 Obtaining the version to tag.

 2 Checking project parameters.

 3 Access to GitLab.

 4 Creating the tag.

 S. Security
 Analysis

 1 Calculation of a random value for use as a delay.

 2 Initialization of Checkmarx service values.

 3 Execution of the Checkmarx analysis.

 Notify

 1 Obtaining the status of the build

 2 Obtaining the required parameters

 3 Adding missing information to the notification email

 4 Configure email recipients

 5 Attach files

 6 Send the notification email

 GSA STAGE TO DELETE ON THE FIRST REFACTOR

 Clean

 1 Deleting project data and project folders

 Table 17 – New Steps summary for the android_app_pipeline .

 Barcelona School of Informatics (FIB) 87 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 6.5 Definition of the new Code ← Analysis

 6.5.1 Best Practices

 We will follow the Jenkins Best Practices, but not all the Groovy ones. The MALM team is
 interested in using Groovy for its code, but I think it is important not to lose the benefits of static
 typing of variables and objects (additional information, indexing, early bug detection, etc.).

 This is not an uncommon case. As stated on the official Groovy Style Guide, on section
 21.Optional typing advice 30 : “… whenever the code you are writing is going to be used by
 others as a public API, you should always favor the use of strong typing, it avoids possible
 passed arguments type mistakes, gives better documentation, and also helps the IDE with
 code completion. Whenever the code is for your use only, like private methods, or when the IDE
 can easily infer the type, then you are more free to decide when to type or not.”

 Considering the above, I propose that typing all variables should be required .

 Regarding the Jenkins best practices, I will now define an action plan, for the MALM team to
 follow, for each practice that is not being complied with as detected in the analysis section.

 ⇒ Making sure to use Groovy code in Pipelines as glue .

 » It is necessary to perform a code review of the whole project, detect those functional
 blocks that can be optimized and refactor those blocks trying to reduce the logic
 programmed and executed in Groovy.

 ⇒ Running shell scripts in Jenkins Pipeline.

 » The approach is similar to the one discussed above. It is necessary to apply the
 same refactor, but for functional blocks that can be migrated to a shellscript. From
 my point of view, solving this should be the priority, as it could reduce the execution
 time by 20-25% of the total time.

 ⇒ Cleaning up old Jenkins builds.

 » Taking into account the amount of logs that are generated, I propose to configure the
 LogRotator so that the logs of each Job are deleted after 30 days of its execution, or
 if more than 300 jobs of the same pipeline have been executed (FIFO).

 This cleaning policy should be reviewed and adapted in the future to meet the growth
 of the platform and its needs.

 30 Groovy Style Guide – https://groovy-lang.org/style-guide.html

 Barcelona School of Informatics (FIB) 88 UPC

https://groovy-lang.org/style-guide.html

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ⇒ Avoiding complex Groovy code in Pipelines.

 » Both of the methods mentioned in the analysis can be covered in simple commands.
 Quoting from the official documentation:

 - JsonSlurper: Instead of using JsonSlurper, use a shell step and return the
 standard out. This shell script would look something like this:

 1
 2

 String JsonReturn = sh(label: '' , returnStdout: true ,
 script: 'echo "$LOCAL_FILE"| jq "$PARSING_QUERY"')

 Code 18 – Example of shell script equivalent to JsonSlurper.

 - HttpRequest: Use a shell step to perform the HTTP request from the agent,
 for example using a tool like curl or wget , as appropriate.

 1
 2

 String url = "http://localhost:8080/api/v3/path/json"
 String response = sh(script: "curl -u userName -s $url" ,

 returnStdout: true).trim()

 Code 19 – Example of shell script equivalent to HttpRequest.

 6.5.2 Code Quality

 The list of code quality improvements detected in the analysis has to be reviewed and
 corrected. These changes do not require a high technical profile, but they may take some time
 to complete.

 ⇒ No proper indentation of the code.
 ⇒ Variables and Methods do not have a defined standard nomenclature.
 ⇒ Mixed languages in the logs.
 ⇒ Many variables that are defined, but not used.
 ⇒ Library imports are not optimized.
 ⇒ Unnecessary def , public , and semicolons.
 ⇒ Groovy deprecated methods.
 ⇒ try-catch functions that have an empty catch block.
 ⇒ Many warnings in the code (4,529 of the 7,342 total) that require additional review.

 Once these refactors are completed, it will be necessary to raise awareness among MALM
 team members about the best practices and style guides. I also propose to implement a Code
 Analysis check before each Code Review in order to detect possible improvements in code
 quality.

 Barcelona School of Informatics (FIB) 89 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 6.5.3 Documentation

 In the analysis, we have seen that the MALM project has a very good and extensive functional
 documentation, but it lacks specific documentation for programmers within the code.
 Therefore, I propose to document all the classes and functions of the project. Additionally, I will
 implement a Gradle integration so that the project documentation can be generated as a
 Javadoc-style HTML page.

 Here are some examples how to document the methods using the Javadoc preferred syntax:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

 /**
 * Registers the global variables and Build Parameters
 * of the Job Execution
 *
 * @param context the execution context class that called the function
 * to have access to the LOG print functionality.
 * @param env the Jenkins Environment global access variable to
 * get all the information.
 */
 static void setEnvironmentVars(context, env) {

 CONTEXT = context
 REPO_NAME = env.repo_name
 BRANCH_RESOURCE = env.branch_resource
 EXTRA_PARAMS = env.extra_params
 // [...]

 }

 Code 20 – Javadoc comment block on a setter function.

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13

 /**
 * Get the proxy that should be used to reach GitLab.
 * It is the same proxy for any communication with the Client network.
 *
 * @param isProxyRequired indicates if the current Build needs a
 * proxy to communicate with the network or not
 * @return the proxy URL as a String
 */
 String gitlabProxyAsString(Boolean isProxyRequired) {

 def https_proxy = ""
 // [...]
 return https_proxy

 }

 Code 21 – Javadoc comment block on a custom getter function.

 All the information regarding the Javadoc tags and syntax guide can be found on the official
 Javadoc website 31 .

 31 Javadoc Official Documentation – https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html

 Barcelona School of Informatics (FIB) 90 UPC

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 In order to provide our project with a module that allows us to automatically generate HTML API
 documentation for the MALM project, I propose to use the Gradle Groovydoc task.

 We will add to the build.gradle file the groovydoc task to execute the generation of the
 documentation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22

 // Customize groovydoc task that is
 // added by the Groovy plugin.
 groovydoc {

 // Set document title.
 docTitle = "Malm-Shared GroovyDoc"

 // Set window title.
 windowTitle = "PoC for GroovyDoc"

 // The directory to generate the documentation into.
 destinationDir = "src/groovydoc"
 // Set custom header.
 header = '''\

 <h2>Malm-Shared</h2>
 ''' .stripIndent()

 // Set custom footer for generated documentation.
 footer = """\

 <div class="custom-footer">
 Generated on: ${ new Date().format('yyyy-MM-dd HH:mm:ss')}

 </div>""" .stripIndent()
 }

 Code 22 – Groovydoc additions to the build.gradle file for the Malm-Shared project.

 The documentation for the groovydoc execution task can be found on the official Gradle web
 site 32 .

 32 Groovydoc Gradle Documentation – https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

 Barcelona School of Informatics (FIB) 91 UPC

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 6.6 Definition of Unit Testing

 6.6.1 Unit Testing

 In order to provide our project with a module that allows us to launch unit tests, I propose to
 use the Gradle JUnit tool , in conjunction with the JenkinsPipelineUnit module that allows us to
 develop such tests.

 We will need to add to the build.gradle file the dependencies and test tasks for the test
 module, and also set up a new sourceSet for the test directory:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42

 plugins {
 id 'maven-publish'
 id 'groovy'
 id 'java' // adds 'test' task

 }

 sourceSets {
 main {

 groovy {
 srcDirs = ['src' , 'vars']

 }
 resources {

 srcDirs = ['resources']
 }

 }
 // add to the existing sourceSets the tests directory
 test {

 groovy {
 srcDirs = ['src/test/groovy']

 }
 }

 }

 // add the Gradle task to launch the tests from the test directory
 test {

 // test launch configuration options

 // Fail the 'test' task on the first test failure
 failFast = true

 // explicitly include or exclude tests
 include 'src/test/**'
 exclude 'src/test/groovy/excludedTests.groovy'

 }

 dependencies {
 implementation 'org.codehaus.groovy:groovy-all:2.4.12'
 // [...]
 // add the tests module dependencies
 implementation 'junit:junit:4.13.2'
 implementation 'com.lesfurets:jenkins-pipeline-unit:1.9'

 }

 Code 23 – Unit Testing additions to the build.gradle file for the Malm-Shared project.

 Barcelona School of Informatics (FIB) 92 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 The documentation for the test execution task can be found on the official Gradle web site 33 .

 My approach for such tests is to develop and launch only STEPS unit tests, as it facilitates the
 setup and creation of mockup variables. Launching a Test of the whole Pipeline would involve
 creating very large data models to be able to mockup all the variables and, in addition, this
 execution would be equivalent to running a job in pre-production environments, so we would
 not really get much benefit.

 Tests will be created as Groovy class files in the /src/test/groovy directory. The resources
 for the tests (files, images or data models) will be in the /src/test/resources directory. I
 have implemented (following the guidelines of JenkinsPipelineUnit 34 framework) a base
 schema for all the tests that will help the MALM team to develop the unit tests, shown below on
 Code X.

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 27

 import com.lesfurets.jenkins.unit.BasePipelineTest
 import org.junit.Before
 import org.junit.Test

 class TestExampleJob extends BasePipelineTest {

 @Before
 void setUp() throws Exception {

 super.setUp()
 // Here, all the mockup variables for the STEP (global
 // variables, parameters, etc) have to be initializaed.

 binding.setVariable('FIRST_PARAMETER_VARIABLE' , 'true')
 binding.setVariable('SECOND_PARAMETER_VARIABLE' , 42)
 // Defines the previous execution status
 binding.getVariable('currentBuild').previousBuild = ['UNSTABLE']

 }

 @Test
 void launchSpecificStepTest() throws Exception {

 // Load the STEP groovy file to execute
 def script = loadScript("./vars/and_STEP_stepExample.groovy")
 script.call()
 printCallStack()

 }
 }

 Code 24 – Example of a Unit test Structure for the Malm-Shared project.

 The result of the tests can be checked in the Run console of IntelliJ (or any of the valid IDE).

 To maintain a robust and aligned unit test module, it is necessary that for every existing Step
 and for every new Step development, a unit test must be implemented. Without correctly
 executed unit tests, the User Story of the development should not be accepted.

 34 JenkinsPipelineUnit Documentation – https://github.com/jenkinsci/JenkinsPipelineUnit

 33 JUnit Gradle Documentation – https://docs.gradle.org/current/dsl/org.gradle.api.tasks.testing.Test.html

 Barcelona School of Informatics (FIB) 93 UPC

https://github.com/jenkinsci/JenkinsPipelineUnit
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.testing.Test.html

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 7 Roadmap Definition

 In this chapter, I will present the proposed Roadmap for the implementation of the changes to
 help organize the work of the MALM team for the next 9 months.

 The timings of the roadmap tasks have been calculated taking into account that:

 ⇒ There are only going to be 2 programmers implementing the changes at the same time.
 ⇒ The effort of these programmers is 50%, since the other half must be dedicated to

 developing the petitions that the customers require.
 ⇒ Some unforeseen events may arise, so they have been valued with an extra 10%.
 ⇒ Between developments, there are a couple of days to do code reviews with the team.

 I have divided all the changes in releases of three months and scheduled them according to its
 technological dependence and, as a second factor, the criticity level.

 Group Task name Release Crit. Est.

 Team's Workspace setup 1. Follow the Workspace Setup Guide 1 Med 2w

 Setup of the new Project 2. Follow the Gradle Setup Guide 1 High 2w

 Repository Unification 3. Implementation of the Unification 1 High 6w 3d

 Repository Unification 4. Regression tests after the Unification 1 High 1w 4d

 Tech Stack Upgrade 5. Fix incompatibilities after the Upgrade 1 High 2w 2d

 Architectural Changes 6. Implementation of the Architecture code Refactor 2 High 3w

 Architectural Changes 7. Implementation of the new File Hierarchy 2 High 2w 2d

 Architectural Changes 8. Implementation of the Filename Changes 2 Med 1w 4d

 New Pipeline Steps 9. Refactor the code to the new Steps 2 High 5w 3d

 New Pipeline Steps 10. Regression tests after the Steps Refactor 2 High 2w

 New Code practices 11. Refactor for the Code Best Practices 3 Low 4w

 New Code practices 12. Code Cleaning and Warnings Review 3 Low 2w

 New Code practices 13. Configuration of the Groovydoc module 3 Low 2w

 Unit Testing 14. Configuration of the new Unit Testing module 3 Low 2w 2d

 Unit Testing 15. Creation of the Unit Tests of the Steps 3 Low 6w 4d

 Table 18 – Roadmap tasks estimation table .

 In Figure 12, on the next page, we can see the Roadmap diagram generated using the
 Craft.io 35 tool, with the task information in Table 18.

 35 Craft.io Official Website – https://craft.io/

 Barcelona School of Informatics (FIB) 94 UPC

https://craft.io/

 Technical Debt Analysis and Project Architecturization of a Jenkins Platform based on Groovy Bachelor Thesis

 1. Follow the Workspace Setup Guide. 6. Implementation of the Architecture code Refactor 11. Refactor for the Code Best Practices

 2. Follow the Gradle Setup Guide. 7. Implementation of the new File Hierarchy 12. Code Cleaning and Warnings Review

 3. Implementation of the Unification. 8. Implementation of the Filename Changes 13. Configuration of the Groovydoc module

 4. Regression tests after the Unification 9. Refactor the code to the new Steps 14. Configuration of the new Unit Testing module

 5. Fix incompatibilities after the Upgrade 10. Regression tests after the Steps Refactor 15. Creation of the Unit Tests of the Steps

 Figure 12 – Roadmap diagram of the MALM’s re-architecturization.

 Barcelona School of Informatics (FIB) 95 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 8 Conclusions

 In this thesis, we have witnessed first hand a real case of Technical Debt that has taken its toll
 on a platform that is very resilient to change. This same concept has gone from a theoretical
 framework to a physical framework in the form of a document, thanks to the execution of the
 Analysis and Definition of this project.

 With a cost of 14,742.58 € 36 (cost of the thesis), plus the cost of all the hours of the developers
 who will invest in implementing the refactoring of the code, we can ensure that the technical
 debt is a latent problem and, moreover, very expensive .

 Focusing on the results of the thesis, for each of the main objectives, I will justify to what extent
 they have been achieved:

 Required

 ⇒ Architecturization of the software. (100%)

 ✔ The architecture has been analyzed and re-architected according to its needs.
 ✔ A new file hierarchy has been defined.
 ✔ A naming convention has been specified.
 ✔ A Best Practices guidelines has been defined.
 ✔ A standardization protocol for the Work Environment has been implemented.

 All the sub-objectives have been met, although I find that the first point (the one
 regarding architecture patterns) could have been much more significant on other
 platforms with clearer patterns.

 ⇒ Use Gradle to create a new repository for the project. (100%)

 ✔ The malm-shared repository has been converted into a Gradle project.
 ✔ Proper indexation of the code has been implemented.
 ✔ Dependencies have been centralized on the build.gradle file.
 ✔ A versioning protocol has been implemented for the repository source code.

 All the sub-objectives have been met.

 ⇒ Unify the scripts repositories. (100%)

 ✔ The malm-shared and pipeline-utils repositories have been unified.

 All the sub-objectives have been met.

 36 Extracted from section 3.2 Cost estimates .

 Barcelona School of Informatics (FIB) 96 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ⇒ Redesign the pipelines and its Stages and Steps. (66%)

 ✔ New, atomic pipeline steps have been defined.
 ✔ The Stages have been redefined.
 ✘ The management of the Exceptions have not been defined.

 Almost all the sub-objectives have been met. The management of the
 Exceptions thrown by the Steps have not yet been defined, because I found it
 quite complex to define the exceptions of the steps without them being
 developed, at least, at a low level. I believe that it will be more useful to address
 this exception management in a phase 2 of the refactoring.

 ⇒ Implement Unit Testing. (50%)

 ✔ A Unit Testing module has been implemented.
 ✘ The specific tests have not been defined.

 Almost all the sub-objectives have been met. The tests have not been
 implemented due to the high workload of this development, but a PoC and a
 fully functional module have been provided for developing and executing them.

 Significant

 ⇒ Redesign the Jenkins global variables. (100%)

 ✔ The global variables have been refactored as part of the code cleaning section.

 All the sub-objectives have been met.

 ⇒ Document the code using Groovydoc. (50%)

 ✔ An automatic documentation module has been defined and implemented.
 ✘ The specific documentation has not been defined.

 Almost all the sub-objectives have been met. The documentation has not been
 implemented due to the high workload of this development, but a PoC and a
 fully functional module have been provided for its generation.

 ⇒ Upgrade the technological stack of the code and the software platform. (100%)

 ✔ The update of the Technology Stack has been defined and requested.

 All the sub-objectives have been met.

 Nice-to-have

 ⇒ Cleanup of deprecated code. (100%)

 ✔ The deprecated code has been analyzed and tagged for cleanup.

 All the sub-objectives have been met.

 Barcelona School of Informatics (FIB) 97 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ⇒ Refactor the variable names to provide them with useful semantic information. (100%)

 ✔ The variable names have been refactored as part of the code cleaning section.

 All the sub-objectives have been met.

 ⇒ Modify the code so that it complies with Groovy and Jenkins best practices. (100%)

 ✔ The code has been refactored as part of the code cleaning section.
 ✔ Project Best Practices have been defined.

 All the sub-objectives have been met.

 Next steps

 ⇒ Convert repository code into a real Shared Library. (0%)

 ✘ The specific analysis for the Shared Library conversion (the use of more global
 steps for all corporate projects) has not been done.

 Due to time limitations, the objective has been left for a phase 2 refactoring.

 ⇒ Redesign the Jenkins pipeline parameters. UX improvement. (0%)

 ✘ The Jenkins pipeline parameters have not been analyzed nor defined.

 Due to time limitations, the objective has been left for a phase 2 refactoring.

 I consider that the results have been quite positive. In addition to the benefits brought to the
 MALM team and Opentreds, I feel that this thesis has allowed me to grow professionally as a
 developer and, most importantly, as a future Software Architect.

 8.1 Limitations
 Of course, there have been some limitations that have hindered the development of the project.
 The first limitation has been not being able to show corporate or compromising information
 for the company or the main customer that the MALM product is focused on.

 It has been a challenge to approach the project with this requirement, since it implies masking
 data, changing file/tool names, undoing sections and eliminating diagrams for being too
 compromising. And more importantly, to achieve all of these aspects without the project losing
 content and value.

 Another limitation has been to remove the Analysis and Definition of Jenkins Parameters
 section from the scope . This elimination is due to the fact that, being such a large platform and
 with so many users, changing the parameters of the Jenkins Jobs (which are informed by the
 users) requires much more planning and attention.

 Barcelona School of Informatics (FIB) 98 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 In addition, changing the parameters is a very specific requirement for the MALM application,
 which cannot be extrapolated to other systems. Since this is a requirement that I initially
 categorized as Next-Steps, foreseeing that it could be left out of scope, the decision seems
 appropriate to me.

 8.2 Technical skills

 ⇒ CES1.1: Develop, maintain and evaluate complex and/or critical software systems
 and services. [In depth]

 » The technical skill has been successfully achieved. A new architecture for a complex
 project has been analyzed, refactored and defined. PoCs have been implemented.

 ⇒ CES1.2: Provide solutions to integration problems based on available strategies,
 standards, and technologies. [Fairly]

 » The technical skill has been successfully achieved. I have used several integrations
 with Gradle tools to add value and features to the Jenkins project.

 ⇒ CES1.3: Identify, evaluate and manage potential risks associated with building
 software that may arise. [Fairly]

 » The technical skill has been achieved. Since this is a technical debt related project, I
 was able to analyze a project that was already affected by the risks, evaluate them,
 and solve them by defining a new architecture.

 ⇒ CES1.7: Control quality and design tests in software production. [In depth]

 » The technical skill has been successfully achieved. I have implemented
 improvements and defined protocols focused on the quality of the project. I have
 also implemented a Unit Testing module.

 ⇒ CES2.1: Define and manage the requirements of a software system. [Fairly]

 » The technical skill has been achieved. I have evaluated the platform requirements
 and defined new ones, as well as implemented and documented them.

 8.2 Further work
 In the short term, the work to be done is to implement this re-architecturing and refactoring of
 the code by the MALM team. It would be ideal to collect metrics (execution times,
 development time, number of implemented features per release, etc.) of the entire current
 platform, in order to be able to compare it with the platform once the changes are
 implemented. In this way, we can show these benefits in numbers, and not only in the
 theoretical framework of the project, although they may seem ominous.

 Barcelona School of Informatics (FIB) 99 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Since Technical Debt is such a common aspect of the programmer's day-to-day life, it is
 difficult to expect that after the MALM refactor, such technical debt will cease to generate.
 Therefore, while gradually working on changing the corporate vision of fast time-to-market, I will
 allow myself to make one last proposal that I hope will help to detect TD in the future.

 My proposal is to set up a new TAG 37 , similar to the existing @TODO or @FIXME , to help
 record the TD. The idea is that, the developer himself will be able to detect when a
 development is forced to be done fast or see that it could be improved with more time, and add
 a tag @TEDE (TEchnical DEbt) right at the beginning of the method.

 1
 2
 3
 4

 @TEDE // New Technical Debt tag
 void methodToBeImpoved() {

 // rest of the code
 }

 Code 25 – Use of the new @TEDE tag.

 The work to be done in the long term is much more difficult, even utopian. The business vision
 of forcing workers to deliver functionalities in very short times, and meeting very tight
 deadlines, must change for the good of the community. Apart from the economic cost of TD
 and the waste of resources, it must be emphasized that the mental health and well-being of
 workers is at stake . Workers who spend hours and hours developing in environments that are
 difficult to maintain, difficult to scale and, in essence, environments that have been developed
 to meet a deadline, and not functional requirements.

 37 How to configure a @TODO tag, IntelliJ – https://www.jetbrains.com/help/idea/using-todo.html#add_pattern_filter_todo

 Barcelona School of Informatics (FIB) 100 UPC

https://www.jetbrains.com/help/idea/using-todo.html#add_pattern_filter_todo

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 9 Annex

 9.1 Design Patterns
 All the information has been extracted from the book Dive Into Design Patterns by Alexander
 Shvets (2018) . Patterns can be categorized by three main groups: Creational Patterns,
 Structural Patterns and Behavioral Patterns. For each category, we can list the designs it
 includes, and add a brief description and an explanation of when it makes sense to use them.

 Creational Patterns

 They offer object creation mechanisms that increase flexibility and reuse of existing code.

 ⇒ Factory Method: Provides an interface for creating objects in a superclass, but allows
 subclasses to alter the type of objects that will be created.

 » Use the Factory Method when you do not know beforehand the exact types and
 dependencies of the objects your code should work with.

 » Use the Factory Method when you want to provide users of your library or framework
 with a way to extend its internal components.

 » Use the Factory Method when you want to save system resources by reusing
 existing objects instead of rebuilding them each time.

 ⇒ Abstract Factory: Lets you produce families of related objects without specifying their
 concrete classes.

 » Use the Abstract Factory when your code needs to work with various families of
 related products, but you don’t want it to depend on the concrete classes of those
 products.

 ⇒ Builder: Lets you construct complex objects step by step. The pattern allows you to
 produce different types and representations of an object using the same construction
 code.

 » Use the Builder pattern to get rid of a very long constructor with a lot of optional
 parameters.

 » Use the Builder pattern when you want your code to be able to create different
 representations of some product.

 ⇒ Prototype: Lets you copy existing objects without making your code dependent on their
 classes.

 » Use the Prototype pattern when your code should not depend on the concrete
 classes of objects that you need to copy.

 » Use the pattern when you want to reduce the number of subclasses that only differ in
 the way they initialize their respective objects.

 Barcelona School of Informatics (FIB) 101 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ⇒ Singleton: Lets you ensure that a class has only one instance, while providing a global
 access point to this instance.

 » Use the Singleton pattern when a class in your program should have just a single
 instance available to all clients; for example, a single database object shared by
 different parts of the program.

 » Use the Singleton pattern when you need stricter control over global variables.

 Structural Patterns

 They explain how to organize objects and classes into larger structures, while keeping these
 structures flexible and efficient

 ⇒ Adapter: Allows objects with incompatible interfaces to collaborate.

 » Use the Adapter class when you want to use some existing class, but its interface is
 not compatible with the rest of your code.

 » Use the pattern when you want to reuse several existing subclasses that lack some
 common functionality that can not be added to the superclass.

 ⇒ Bridge: Lets you split a large class or a set of closely related classes into two separate
 hierarchies—abstraction and implementation—which can be developed independently
 of each other.

 » Use the Bridge pattern when you want to divide and organize a monolithic class that
 has many variants of some functionality (for example, if the class can work with
 various database servers).

 » Use the pattern when you need to extend a class in many orthogonal (independent)
 dimensions.

 » Use the Bridge if you need to be able to switch implementations at runtime.

 ⇒ Composite: Lets you compose objects into tree structures and then work with these
 structures as if they were individual objects.

 » Use the Composite pattern when you have to implement a tree-like object structure.

 » Use the pattern when you want the client code to treat both simple and complex
 elements uniformly.

 ⇒ Decorator: Lets you attach new behaviors to objects by placing these objects inside
 special wrapper objects that contain the behaviors.

 » Use the Decorator pattern when you need to be able to assign extra behaviors to
 objects at runtime without breaking the code that uses these objects.

 » Use the pattern when it’s awkward or not possible to extend an object’s behavior
 using inheritance.

 Barcelona School of Informatics (FIB) 102 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ⇒ Facade: Provides a simplified interface to a library, a framework, or any other complex
 set of classes.

 » Use the Facade pattern when you need to have a limited but straightforward
 interface to a complex subsystem.

 » Use the Facade when you want to structure a subsystem into layers.

 ⇒ Flyweight: Lets you fit more objects into the available amount of RAM by sharing
 common parts of state between multiple objects instead of keeping all the data in each
 object.

 » Use the Flyweight pattern only when your program must support a huge number of
 objects which barely fit into available RAM.

 ⇒ Proxy: Lets you provide a substitute or placeholder for another object. A proxy controls
 access to the original object, allowing you to perform something either before or after
 the request gets through to the original object.

 » Lazy initialization (virtual proxy). This is when you have a heavyweight service object
 that wastes system resources by being always up, even though you only need it from
 time to time.

 » Access control (protection proxy). This is when you want only specific clients to be
 able to use the service object; for instance, when your objects are crucial parts of an
 operating system and clients are various launched applications (including malicious
 ones).

 » Local execution of a remote service (remote proxy). This is when the service object is
 located on a remote server.

 » Logging requests (logging proxy). This is when you want to keep a history of
 requests to the service object.

 » Caching request results (caching proxy). This is when you need to cache results of
 client requests and manage the life cycle of this cache, especially if results are quite
 large.

 » Smart reference. This is when you need to be able to dismiss a heavyweight object
 once there are no clients that use it.

 Behavioral Patterns

 Behavioral design patterns are concerned with algorithms and the assignment of responsibilities
 between objects

 ⇒ Chain of Responsibility: Lets you pass requests along a chain of handlers. Upon
 receiving a request, each handler decides either to process the request or to pass it to
 the next handler in the chain.

 » Use the Chain of Responsibility pattern when your program is expected to process
 different kinds of requests in various ways, but the exact types of requests and their
 sequences are unknown beforehand.

 Barcelona School of Informatics (FIB) 103 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 » Use the pattern when it’s essential to execute several handlers in a particular order.

 » Use the CoR pattern when the set of handlers and their order are supposed to
 change at runtime.

 ⇒ Command: Turns a request into a stand-alone object that contains all information about
 the request. This transformation lets you pass requests as a method argument, delay or
 queue a request’s execution, and support undoable operations.

 » Use the Command pattern when you want to parametrize objects with operations.

 » Use the Command pattern when you want to queue operations, schedule their
 execution, or execute them remotely.

 » Use the Command pattern when you want to implement reversible operations.

 ⇒ Iterator: Lets you traverse elements of a collection without exposing its underlying
 representation (list, stack, tree, etc.).

 » Use the Iterator pattern when your collection has a complex data structure under the
 hood, but you want to hide its complexity from clients (either for convenience or
 security reasons).

 » Use the pattern to reduce duplication of the traversal code across your app.

 » Use the Iterator when you want your code to be able to traverse different data
 structures or when types of these structures are unknown beforehand.

 ⇒ Mediator: Lets you reduce chaotic dependencies between objects. The pattern restricts
 direct communications between the objects and forces them to collaborate only via a
 mediator object.

 » Use the Mediator pattern when it’s hard to change some of the classes because they
 are tightly coupled to a bunch of other classes.

 » Use the pattern when you can’t reuse a component in a different program because
 it’s too dependent on other components.

 » Use the Mediator when you find yourself creating tons of component subclasses just
 to reuse some basic behavior in various contexts.

 ⇒ Memento: Lets you save and restore the previous state of an object without revealing
 the details of its implementation.

 » Use the Memento pattern when you want to produce snapshots of the object’s state
 to be able to restore a previous state of the object.

 » Use the pattern when direct access to the object’s fields/getters/setters violates its
 encapsulation.

 Barcelona School of Informatics (FIB) 104 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 ⇒ Observer: Lets you define a subscription mechanism to notify multiple objects about
 any events that happen to the object they’re observing.

 » Use the Observer pattern when changes to the state of one object may require
 changing other objects, and the actual set of objects is unknown beforehand or
 changes dynamically.

 » Use the pattern when some objects in your app must observe others, but only for a
 limited time or in specific cases.

 ⇒ State: Lets an object alter its behavior when its internal state changes. It appears as if
 the object changed its class.

 » Use the State pattern when you have an object that behaves differently depending
 on its current state, the number of states is enormous, and the state-specific code
 changes frequently.

 » Use the pattern when you have a class polluted with massive conditionals that alter
 how the class behaves according to the current values of the class’s fields.

 ⇒ Strategy: Lets you define a family of algorithms, put each of them into a separate class,
 and make their objects interchangeable.

 » Use the Strategy pattern when you want to use different variants of an algorithm
 within an object and be able to switch from one algorithm to another during runtime.

 » Use the Strategy when you have a lot of similar classes that only differ in the way
 they execute some behavior.

 » Use the pattern to isolate the business logic of a class from the implementation
 details of algorithms that may not be as important in the context of that logic.

 » Use the pattern when your class has a massive conditional operator that switches
 between different variants of the same algorithm.

 ⇒ Template Method: Defines the skeleton of an algorithm in the superclass, but lets
 subclasses override specific steps of the algorithm without changing its structure.

 » Use the Template Method pattern when you want to let clients extend only particular
 steps of an algorithm, but not the whole algorithm or its structure.

 » Use the pattern when you have several classes that contain almost identical
 algorithms with some minor differences. As a result, you might need to modify all
 classes when the algorithm changes.

 ⇒ Visitor: Lets you separate algorithms from the objects on which they operate.

 » Use the Visitor when you need to perform an operation on all elements of a complex
 object structure (for example, an object tree).

 » Use the Visitor to clean up the business logic of auxiliary behaviors.

 » Use the pattern when a behavior makes sense only in some classes of a class
 hierarchy, but not in others.

 Barcelona School of Informatics (FIB) 105 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 9.2 Workspace Setup Guide

 1. IDE setup:

 IntelliJ Community. → Website: https://www.jetbrains.com/idea/

 Download for Windows , Mac , Linux

 Currently, as of 05/24/2022, we now have the version:

 Version : 2021.3.3 Build : 213.7172.25 - 17 March 2022

 There should be no problem upgrading minor versions of the IDE.

 For major version upgrades, the team should meet and decide whether to upgrade the
 IDE to keep an aligned workspace among the members.

 If the major version is upgraded, it is required to update this documentation.

 2. Plugins setup:

 Next, on the IDE, we must access File > Settings > Plugins and then search and install
 the plugins from the following list:

 Name Version Necessity Comments

 CodeNarc 4.4.0 Required

 CodeNarc Updated 4.2.1 Required

 Gruvbox Theme 0.5.4 Recommended File > Settings > Appearance > Appearance ,
 then set the theme to Gruvbox Dark Hard

 Rainbow Brackets 6.22 Recommended File > Settings > Rainbow Brackets

 Statistic 4.1.10 Recommended

 TestMe 5.1.0 Required

 Table 19 – Plugins to configure on IntelliJ .

 The plugins with the "Recommended" requirement, although not mandatory, are
 strongly recommended.

 Barcelona School of Informatics (FIB) 106 UPC

https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/download/#section=windows
https://www.jetbrains.com/idea/download/#section=mac
https://www.jetbrains.com/idea/download/#section=linux
https://plugins.jetbrains.com/plugin/5925-codenarc
https://plugins.jetbrains.com/plugin/12106-codenarc-updated
https://plugins.jetbrains.com/plugin/12310-gruvbox-theme
https://plugins.jetbrains.com/plugin/10080-rainbow-brackets
https://plugins.jetbrains.com/plugin/4509-statistic
https://plugins.jetbrains.com/plugin/9471-testme

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 After installing the plugins, IntelliJ will require a restart to finish the configuration. New
 plugins can be installed at any time and can be shared with the team to improve the
 Workspace.

 If the list of plugins is updated, this documentation needs to be updated too.

 3. Custom Settings file Import

 a) Download the settings_INTELLIJ.zip file from the Team's shared File System.

 b) We navigate to File > Manage IDE Settings > Import Settings and select the file we
 just downloaded.

 Barcelona School of Informatics (FIB) 107 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 9.3 Gradle 7.1 Setup Guide

 1. Download Groovy SDK:

 Groovy SDK: 2.4.12
 - Download apache-groovy-sdk-2.4.12.zip from the distribution list .

 Currently, as of 05/27/2022, we have version 2.4.12 configured in the Jenkins
 Controller environments, so we will configure the same for the project.

 For version updates, the team should meet and update the SDK version together to
 maintain an aligned workspace.

 Once the version is updated, this documentation needs to be updated.

 2. Setting up the Groovy SDK:

 a) Access the project properties by Right-Clicking on the root directory of the Project,
 “malm-shared”, and navigate to Open Module Settings > Libraries.

 b) Click on the + icon to add a new Java library. Then select the library of the SDK that
 we have downloaded in step 1 and click “Accept”.

 c) Click on “Apply” and restart the IDE.

 3. Setting up the Java JDK:

 a) Access the project properties with Right-Click on the root directory of the Project,
 “malm-shared”, and navigate to Open Module Settings > Project.

 b) Add the following settings:

 Name: malm-shared
 Project SDK: 14AdoptOpenJDK (HotSpot) version 14.0.2
 Language level: SDK default (14 - Switch expressions)
 Compiler Output: leave empty

 c) Click on “Apply” and restart the IDE.

 4. Configuring the Gradle Project modules:

 a) Access to the project properties with Right-Click on the root directory of the Project,
 "malm-shared", and navigate to Open Module Settings > Modules

 Barcelona School of Informatics (FIB) 108 UPC

https://archive.apache.org/dist/groovy/2.4.12/distribution/apache-groovy-sdk-2.4.12.zip
https://archive.apache.org/dist/groovy/2.4.12/distribution/

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 b) Add the corresponding Content Root and configure the modules following the
 images below:

 malm-shared module

 Figure 13 - malm-shared base project module configuration.

 main module (Content Root /resources)

 Figure 14 - main resources module configuration.

 main module (Content Root /src)

 Figure 15 - main src module configuration.

 Barcelona School of Informatics (FIB) 109 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 main module (Content Root /vars)

 Figure 16 - main vars module configuration.

 test module

 Figure 17 - test module configuration.

 c) Click on “Apply” and restart the IDE.

 Barcelona School of Informatics (FIB) 110 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 9.4 New Pipeline Steps list

 android_aar_pipeline

 Stage Step Description

 Checkout

 1 Project checkout and download.

 2 Loading of libraries.

 3 Initialization of the loaded libraries.

 4 Notification of the start of the job execution in the MALM Jenkins.

 Prepare

 1 Specifying Nexus URLs

 2 Managing MALM parameters

 3 Obtaining data to build the notification mail

 4 Generating the properties file

 5 Sonar Configuration

 6 Obtaining the project dependencies

 ARQ Rules STAGE TO DELETE ON THE FIRST REFACTOR

 Test

 1 Test execution and report generation.

 2 Validation of test reports.

 3 Inclusion of test results in the notification email.

 Sonar

 1 Access to the Sonar profile.

 2 Configuring the properties of the gradle.properties file.

 3 Sonar execution.

 4 Inclusion of the Sonar URL of the project in the notification email.

 5 Obtaining and validating metrics from Sonar.

 6 Print metrics in log.

 7 Retrieval of the coverage value from Sonar.

 8 Checking the % coverage of the project in Sonar.

 9 Inclusion of the project's coverage data and test results in the notification email.

 C.T & Coverage STAGE TO DELETE ON THE FIRST REFACTOR

 Build

 1 Compilation of the project.

 Nexus

 1 Creation of the .zip file with the project resources

 2 Access to corporate Nexus to upload the project

 Barcelona School of Informatics (FIB) 111 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 3 Modification of the Gradle file

 4 Generation of the pom file.

 5 Preparation of the package .aar and upload to Nexus.

 6 Inclusion of the Nexus URL in the notification email.

 Tag

 1 Access to GitLab.

 2 Creating the tag.

 S. Security
 Analysis

 STAGE TO DELETE ON android_aar_pipeline ON THE FIRST REFACTOR

 Notify

 1 Obtaining the status of the build

 2 Adding missing information to the notification email

 3 Configure email recipients

 4 Attach files

 5 Send the notification email

 GSA STAGE TO DELETE ON THE FIRST REFACTOR

 Clean

 1 Deleting project data and project folders

 Table 20 – New Steps summary for the android_aar_pipeline .

 ios_app_pipeline

 Stage Step Description

 Clean

 1 Stopping running simulators.

 2 Deleting duplicate simulators.

 3 Execution of deleteDir() method.

 4 Deleting the contents of compilation folders.

 5 Resetting the simulators to their original state.

 Checkout

 1 Clone of the project.

 2 Selecting the gemset to use.

 3 Obtaining data to build the notification email.

 4 Selecting the target platform.

 5 Presentation of the environment variables.

 6 Notification of the start of MALM execution.

 Barcelona School of Informatics (FIB) 112 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Prepare

 1 Managing which Stages will be skipped.

 2 Viewing the compilation parameters.

 3 Obtaining the PRO nodes from Client servers.

 4 Managing the services.json file.

 5 Replacing Actors values for API/Gateway.

 6 Execute pod update.

 7 Generation of sources.zip file for Nexus.

 MALM Rules STAGE TO DELETE ON THE FIRST REFACTOR

 Test

 1 Creation of Sonar Properties.

 2 Creation of the Sonar Files.

 3 Execution of the project tests.

 4 Validation of test reports.

 5 Collection of coverage data for the notification email.

 Sonar

 1 Test coverage report generation with Slather

 2 Code quality review with SwiftLint

 3 Code complexity analysis and Xcode report generation with Lizard

 4 Coverage data scanning with SonarQube

 5 Obtaining and validating metrics from Sonar.

 6 Printing metrics to log.

 7 Recovery of the coverage value from Sonar.

 8 Checking the % coverage of the project in Sonar.

 9 Inclusion of the project's test results in the notification email.

 C.T & Coverage STAGE TO DELETE ON THE FIRST REFACTOR

 Build

 1 Copying files to destination path.

 2 Encryption of JSON files.

 3 Archive of the project via Fastlane.

 Nexus

 1 Determine the build type.

 2 Publishing the IPA in the corporate Nexus.

 AppCenter

 1 Checking the existence of the distribution group.

 2 Checking and limiting the number of Release Notes file characters.

 3 Uploading the application to the AppCenter platform.

 Barcelona School of Informatics (FIB) 113 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 4 Search for the release once uploaded.

 5 Redistribution of the app to the Distribution Groups.

 SauceLabs

 1 Check for the existence of the IPA to be tested.

 2 Obtain the execution environment in SauceLabs.

 3 Get the type of execution to be performed in SauceLabs.

 4 Run the IPA upload to SauceLabs.

 TestFlight

 1 Validation of the generated IPA in the Stage Build.

 2 Publication of the IPA in Testflight.

 Tag

 1 Apply the tag to the branch with the new version.

 2 Update origin with the new tag.

 S. Security
 Analysis

 1 Calculation of a random value to be used as delay.

 2 Executing an HTTP POST request with the application data.

 Notify

 1 Compile the mail from the data collected in other stages.

 2 Send the mail to the teams involved in the development of the project.

 3 Notify via GitLab in the Merge Request discussion of the job status.

 GSA

 1 Obtaining the instance.

 2 Obtaining the platform.

 3 Obtaining the project parameters.

 4 Process the files.

 5 Process the build information.

 6 Sending the information.

 Table 21 – New Steps summary for the ios_app_pipeline .

 ios_pod_pipeline

 Stage Step Description

 Clean

 1 Stopping running simulators.

 2 Deleting duplicate simulators.

 Barcelona School of Informatics (FIB) 114 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 3 Execution of deleteDir() method.

 4 Deleting the contents of compilation folders.

 5 Resetting the simulators to their original state.

 Checkout

 1 Clone of the project.

 2 Selecting the gemset to use.

 3 Obtaining data to build the notification email.

 4 Selecting the target platform.

 5 Presentation of the environment variables.

 6 Notification of the start of MALM execution.

 Prepare

 1 Managing which Stages will be skipped.

 2 Checking the existence of the TAG to be published.

 3 Execute pod update.

 MALM Rules STAGE TO DELETE ON THE FIRST REFACTOR

 Test

 1 Creation of Sonar Properties.

 2 Creation of the Sonar Files.

 3 Execution of the project tests.

 4 Validation of test reports.

 5 Collection of coverage data for the notification email.

 Sonar

 1 Test coverage report generation with Slather

 2 Code quality review with SwiftLint

 3 Code complexity analysis and Xcode report generation with Lizard

 4 Coverage data scanning with SonarQube

 5 Obtaining and validating metrics from Sonar.

 6 Printing metrics to log.

 7 Recovery of the coverage value from Sonar.

 8 Checking the % coverage of the project in Sonar.

 9 Inclusion of the project's test results in the notification email.

 C.T & Coverage STAGE TO DELETE ON THE FIRST REFACTOR

 Tag

 1 Get the current tag list.

 2 Apply the tag to the branch with the new version.

 3 Update origin with the new tag.

 Publish Specs

 1 Publication of the podspec.

 Barcelona School of Informatics (FIB) 115 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Notify

 1 Compile the mail from the data collected in other stages.

 2 Send the mail to the teams involved in the development of the project.

 3 Notify via GitLab in the Merge Request discussion of the job status.

 GSA

 1 Obtaining the instance.

 2 Obtaining the platform.

 3 Obtaining the project parameters.

 4 Process the files.

 5 Process the build information.

 6 Sending the information.

 Table 22 – New Steps summary for the ios_pod_pipeline .

 Barcelona School of Informatics (FIB) 116 UPC

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 References

 Avery, L. (2018, December 30). The $85 Billion Cost of Bad Code | PullRequest Blog.
 Code Review as a Service. Retrieved March 1, 2022, from
 https://www.pullrequest.com/blog/cost-of-bad-code/

 Besker, T., Martini, A., & Bosch, J. (2017, August 30). Impact of Architectural Technical
 Debt on Daily Software Development Work. Euromicro Conference on Software
 Engineering and Advanced Applications. Retrieved March 2, 2022, from
 https://ieeexplore.ieee.org/document/8051360

 Camargo, J., & Martín-Sosa, S. (2019, September 30). DE LUCHA CONTRA. Economía
 Solidaria. Retrieved March 15, 2022, from
 https://www.economiasolidaria.org/wp-content/uploads/2020/08/manual-de-lucha-con
 tra-el-cambio-climatico.pdf

 Chien, D. (2020, May 03). File Structure : Broad Institute of MIT and Harvard. MIT
 Communication Lab. Retrieved March 26, 2022, from
 https://mitcommlab.mit.edu/broad/commkit/file-structure/

 Corporate Finance Institute. (2016, Februrary 13). Straight Line Depreciation - Formula &
 Guide to Calculate Depreciation. Corporate Finance Institute. Retrieved March 12, 2022,
 from
 https://corporatefinanceinstitute.com/resources/knowledge/accounting/straight-line-de
 preciation/

 Cozzetti B. de Souza, S., Anquetil, N., & M. de Oliveira, K. (2005, January 23). A Study
 of the Documentation Essential to SoftwareMaintenance. Researchgate. Retrieved 05
 15, 2022, from
 https://www.researchgate.net/publication/200040518_A_Study_of_the_Documentation
 _Essential_to_Software_Maintenance

 Digité, Incorporated. (2021, December 21). What Is Scrum Methodology? & Scrum
 Project Management. Digite. Retrieved February 28, 2022, from
 https://www.digite.com/agile/scrum-methodology/

 Energuide. (2020, October 28). How much power does a computer use? And how
 much CO2 does that represent? Energuide. Retrieved March 12, 2022, from
 https://www.energuide.be/en/questions-answers/how-much-power-does-a-computer-
 use-and-how-much-co2-does-that-represent/54/

 Fowler, M. (2019, -). Refactoring: Improving the Design of Existing Code.
 Addison-Wesley. https://martinfowler.com/books/refactoring.html

 Barcelona School of Informatics (FIB) 117 UPC

https://www.pullrequest.com/blog/cost-of-bad-code/
https://ieeexplore.ieee.org/document/8051360
https://www.economiasolidaria.org/wp-content/uploads/2020/08/manual-de-lucha-contra-el-cambio-climatico.pdf
https://www.economiasolidaria.org/wp-content/uploads/2020/08/manual-de-lucha-contra-el-cambio-climatico.pdf
https://mitcommlab.mit.edu/broad/commkit/file-structure/
https://corporatefinanceinstitute.com/resources/knowledge/accounting/straight-line-depreciation/
https://corporatefinanceinstitute.com/resources/knowledge/accounting/straight-line-depreciation/
https://www.researchgate.net/publication/200040518_A_Study_of_the_Documentation_Essential_to_Software_Maintenance
https://www.researchgate.net/publication/200040518_A_Study_of_the_Documentation_Essential_to_Software_Maintenance
https://www.digite.com/agile/scrum-methodology/
https://www.energuide.be/en/questions-answers/how-much-power-does-a-computer-use-and-how-much-co2-does-that-represent/54/
https://www.energuide.be/en/questions-answers/how-much-power-does-a-computer-use-and-how-much-co2-does-that-represent/54/
https://martinfowler.com/books/refactoring.html

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Fowler, M. (2019, May 29). Is High Quality Software Worth the Cost? Martin Fowler.
 Retrieved March 1, 2022, from
 https://martinfowler.com/articles/is-quality-worth-cost.html

 Geeks for Geeks. (2022, February 23). Difference between Gradle and Maven.
 GeeksforGeeks. Retrieved June 12, 2022, from
 https://www.geeksforgeeks.org/difference-between-gradle-and-maven/

 Indeed Editorial Team. (2021, May 27). 12 Risks in Software Development. Indeed.
 Retrieved March 1, 2022, from
 https://www.indeed.com/career-advice/career-development/risks-in-software-develop
 ment

 JavaTpoint. (2011-2021, - -). Java Naming Conventions. Javatpoint. Retrieved June 15,
 2022, from https://www.javatpoint.com/java-naming-conventions

 Jenkins. (2020, April 21). Jenkins User Documentation. Jenkins. Retrieved February 26,
 2022, from https://www.jenkins.io/doc/

 J. Reifer, D., & Hastie, S. (2017, August 10). Quantitative Analysis of Agile Methods
 Study (2017): Twelve Major Findings. InfoQ. Retrieved February 28, 2022, from
 https://www.infoq.com/articles/reifer-agile-study-2017/

 Lyman, I., Donovan, R., & Pureur, P. (2021, October 18). Code quality: a concern for
 businesses, bottom lines, and empathetic programmers. Stack Overflow Blog.
 Retrieved March 1, 2022, from
 https://stackoverflow.blog/2021/10/18/code-quality-a-concern-for-businesses-bottom-l
 ines-and-empathetic-programmers/

 National Weather Service, US Dept of Commerce. (2018, 10 10). Hurricane Michael Hits
 Georgia. National Weather Service. Retrieved March 1, 2022, from
 https://www.weather.gov/ffc/2018_hurricane_michael

 Novoseltseva, E. (2021, January 2). 15 benefits of software architecture you should
 know. Apiumhub. Retrieved April 24, 2022, from
 https://apiumhub.com/tech-blog-barcelona/benefits-of-software-architecture/

 Opentrends. (2021, September 27). Opentrends demuestra su implicación con la
 sostenibilidad y el medio ambiente al obtener la ISO 1400-1. Opentrends. Retrieved
 February 25, 2022, from
 https://www.opentrends.net/es/opentrends-demuestra-su-implicacion-con-la-sostenibil
 idad-y-el-medio-ambiente-al-obtener-la-iso

 Red Hat. (2018, 9 17). Topics Understanding DevOps What is CI/CD? Red Hat.
 Retrieved February 26, 2022, from
 https://www.redhat.com/en/topics/devops/what-is-ci-cd

 Barcelona School of Informatics (FIB) 118 UPC

https://martinfowler.com/articles/is-quality-worth-cost.html
https://www.geeksforgeeks.org/difference-between-gradle-and-maven/
https://www.indeed.com/career-advice/career-development/risks-in-software-development
https://www.indeed.com/career-advice/career-development/risks-in-software-development
https://www.javatpoint.com/java-naming-conventions
https://www.jenkins.io/doc/
https://www.infoq.com/articles/reifer-agile-study-2017/
https://stackoverflow.blog/2021/10/18/code-quality-a-concern-for-businesses-bottom-lines-and-empathetic-programmers/
https://stackoverflow.blog/2021/10/18/code-quality-a-concern-for-businesses-bottom-lines-and-empathetic-programmers/
https://www.weather.gov/ffc/2018_hurricane_michael
https://apiumhub.com/tech-blog-barcelona/benefits-of-software-architecture/
https://www.opentrends.net/es/opentrends-demuestra-su-implicacion-con-la-sostenibilidad-y-el-medio-ambiente-al-obtener-la-iso
https://www.opentrends.net/es/opentrends-demuestra-su-implicacion-con-la-sostenibilidad-y-el-medio-ambiente-al-obtener-la-iso
https://www.redhat.com/en/topics/devops/what-is-ci-cd

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Richards, M. (2015, -). Software Architecture Patterns: Understanding Common
 Architecture Patterns and when to Use Them. O'Reilly Media.
 https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch
 01.html

 Shvets, A. (2018, -). Dive Into Design Patterns (1st ed.). Refactoring.Guru.
 https://www.goodreads.com/en/book/show/43125355-dive-into-design-patterns

 Standish Group International, Incorporated. (2010, -). CHAOS Manifesto: The Laws of
 CHAOS and the 100 Best PM Practices. Standish Group International, Incorporated.
 https://www.immagic.com/eLibrary/ARCHIVES/GENERAL/GENREF/S110415C.pdf

 Stripe and Harris Poll. (2018, September 21). The Developer Coefcient. Stripe.
 Retrieved March 2, 2022, from
 https://stripe.com/en-es/reports/developer-coefficient-2018

 Sultan, S. (2019, October 26). What is Bad Code? How to Write Clean Code? Sunny
 Sultan. Retrieved March 1, 2022, from
 https://sunnysultan1640.medium.com/what-is-bad-code-how-to-write-clean-code-a9b
 7b539ad8

 Tornhill, A., & Borg, M. (2022, March 8). [2203.04374] Code Red: The Business Impact
 of Code Quality -- A Quantitative Study of 39 Proprietary Production Codebases. arXiv.
 Retrieved April 24, 2022, from https://arxiv.org/abs/2203.04374

 Wehner, C. (2020, January 16). Accounting for Computer Software Costs. Gross
 Mendelsohn. Retrieved March 12, 2022, from
 https://www.gma-cpa.com/blog/accounting-for-computer-software-costs

 Barcelona School of Informatics (FIB) 119 UPC

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html
https://www.goodreads.com/en/book/show/43125355-dive-into-design-patterns
https://www.immagic.com/eLibrary/ARCHIVES/GENERAL/GENREF/S110415C.pdf
https://stripe.com/en-es/reports/developer-coefficient-2018
https://sunnysultan1640.medium.com/what-is-bad-code-how-to-write-clean-code-a9b7b539ad8
https://sunnysultan1640.medium.com/what-is-bad-code-how-to-write-clean-code-a9b7b539ad8
https://arxiv.org/abs/2203.04374
https://www.gma-cpa.com/blog/accounting-for-computer-software-costs

 Technical Debt Analysis and Project Architecturization Bachelor Thesis
 of a Jenkins Platform based on Groovy

 Barcelona School of Informatics (FIB) 120 UPC

