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ABSTRACT

We propose a new method for generating consistency-preserving transaction programs for (view)
updates in deductive databases. The method augments the deductive database schema with a set of
transition and internal events rules, which explicitly define the database dynamic behaviour in front of
a database update. At transaction-design-time, a formal procedure can use these rules to automatically
generate parameterised transaction programs for base or view-update transaction requests. This is
done in such a way that those transactions will never take the database into an inconsistent state. In
this paper we extend a previous version of the method by incorporating existentially defined rules.
Within this context, synthesis outputs and processes are provided. The method, implemented in
Prolog using meta-programming techniques, draws from our previous work in deductive databases,
particularly in view updating and integrity constraints checking.
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1. INTRODUCTION AND PREVIOUS WORK

First relational DBMSs were only able to handle facts, stored in base relations. More recent systems
permit the definition and management of limited forms of derived information, the so called views,
and of integrity constraints. In a similar way that queries to the database are handled by a query
processing system, the DBMS includes a transaction processing system that provides the users with
a uniform interface, through which they can update at least base relations. However, in the presence
of views and integrity constraints, additional features of the transaction system should be the direct
processing of view updates and the checking of integrity constraints. Furthermore, besides just
checking, the system could try to enforce consistency by doing some proactive work in order to
prevent and/or cure a consistency violation.

Thus we come to the driving origins of this work: View updating, Integrity checking and Integrity
enforcement. We address these three strongly related problems in relational and deductive databases
through an integrative solution consisting in the automatic generation of Treks (Transactions for the
enforcement of knowledge). These are transactions programs synthesised from a database schema
and a proposed update transaction request (possibly view-update). Treks are built in such a way that
they incorporate the necessary integrity checks and all possible integrity repairs that can be drawn out
of the schema. Thus the database will never be taken into an inconsistent state, as long as run-time
updates are only effected through the instantiation of the previously obtained Treks.

Treks may be generated to be used in three related contexts. First, they may be embedded by the
application designer in his/her application programs as modules to update the database. Second, the
database administrator may make them available to application designers and/or end-users as the only
way to update the database. Finally, they might be eventually synthesised by a future DBMS on
request from an end-user, application designer or database administrator. In this last case, Treks can
be seen as 'update plans' to perform the request.

Before addressing the databases treated and the illustration of our method, let us briefly comment on
the three database problems mentioned above and on previous related work, including our own.

The problem of view updating in databases is concerned with determining how a request to update a
view can be appropriately translated into one or more updates of the underlying base relations. The
main objective of most of the methods worked out for view updating (see [TO92] and the references
therein) is that of providing effective ways for doing such a translation. This means that most
methods have left for subsequent research the efficiency objective, specially those methods of an
interpretative or run-time oriented nature. Regarding our group's work on the subject, in
[T092,Ten92] a new view updating method was proposed for deductive databases. Although being
more effective that previous methods for relational and deductive databases, the efficiency issue was
not yet considered.

Integrity checking is concerned with detecting when an update operation on the database will cause
this one to become inconsistent. Integrity constraints (ICs from now on) are a way to state such
inconsistent situations in a declarative and high-level way. A great amount of research has been
devoted to the field of ICs checking during the last fifteen years (see [BMMO90] for a state-of-the-art
survey). Methods developed so far differ in the kind of databases considered, in the kind of ICs they
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can check, in the type of transactions and updates allowed and, of course, in the particular approach
taken by each method. All approaches share the aim of evaluating efficiently the ICs. Our group's
previous work on ICs checking, also in the context of deductive databases, resulted in a powerful
run-time oriented method [O1i89,01i91], whose efficiency was proposed to be further improved in
[OP90] with some precompiled work, and in [UO92] in the context of change computation
optimisation. Unfortunately, that method shares with the previous ones a very limited form of
response in case of consistency violation, i.e the rejection of the update.

In front of a transaction containing one or more consistency violating updates, the classical treatment
simply amounts to rolling back the transgressing update or transaction. This simple rejection solution
alone is clearly unsatisfactory for most real databases. Instead, the request should optionally be
treated in a more co-operative or helpful way by the ICs maintenance module. For example, the
system could try to compensate the user's violating updates with further updates drawn from the ICs.
These extra updates could be prepared at compile-time and used to extend the user's transactions in a
preventive manner. Surprisingly, only a few methods have recently appeared with this objective in
mind (see section 6 for a brief description of some of them). We like to refer to this integrity
maintenance activity as to Integrity enforcement . -

View updating, Integrity checking and Integrity enforcement are strongly related for natural reasons.
For example, in generating base updates from view update requests, the former have to be checked
for consistency. Doing this results in procedures applying similar underlying ideas as the ones found
in the Integrity enforcement arena. On the other way around, the representational power of ICs
becomes much powerful when these are used in conjunction with views. In fact, both relational
[CW90] and deductive [ML91] integrity enforcement methods happen to run into the view update
problem. .

In [PO94,Pas94a] we proposed to treat all the three prbblems in an integrative transaction-design-time
oriented method, which we extend here to deal with a much more general case.

This paper is organised as follows. Next section defines the deductive database schemes currently
accepted by our method and introduces the example that will be used throughout the paper. Section 3
reviews the components of the augmented database schema, a key concept for the method. Section 4
presents our method for generating consistency-preserving transactions and illustrates it through
several detailed examples. In section 5 we comment on some additional features of the method not
exemplified before. In section 6 we relate our approach with previous comparable methods. Finally,
in section 7 we present our conclusions and comment on future work.
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2. DEDUCTIVE DATABASE SCHEMES CONSIDERED

We define here the kind of deductive database schemes treated in this paper. Since ours is a compile-
time method, most of the information we use comes precisely from the database schema. In the
sequel, we give the intuitive meaning as well as formal definitions and examples for the most
important concepts. We use F.O.L. as the main formalism.

A deductive database schema DBS consists of three finite sets: a set B of base predicates, a set D of
deductive rules, and a set I of ICs. Base predicates are the schemes of the facts explicitly stored in
the database, which form the so called extensional database. Derived predicates (or views) are
schemes representing information that, unless materialised, is not stored in the database but can be

derived using deductive rules. ICs are used to specify unwanted database states and forbidden
database transitions.

We assume that database predicates are either base or derived predicates. A base predicate appears
only in the extensional database, as a ground atom or fact, and .(eventually) in the body of deductive
rules and within ICs. A derived predicate appears as head of deductive rules, and (eventually) also in
the body of deductive rules and ICs. Deductive rules and ICs can be defined in terms of base,
derived and evaluable predicates.

Before providing more formal definitions for some of the previous concepts, let us introduce the base
predicates corresponding to the database example that we will be using throughout the paper. They
are shown in Fig. 2-1, together with their intended meaning. Our example, inspired upon those of
[KSS87,Qia93], is a database for an "Employment Office" that arranges labour interviews between
its registered job applicants and employer companies. For the people administered by the office, it
also keeps track of employees and, for legal reasons, of nationality status and of the existence of
criminal records.

Fig. 2-1
Base predicate Base predicate meaning
Emp(x) 'x' 1s an employee
App(x) ‘X' 1S a job applicant
Eco(y) 'y' 1S an employer company
Int(x,y) ‘X' has an interview with 'y'
Cit(x) 'X' 18 a citizen
Ra(x) 'x' 18 a registered alien
Cr(x) X' has some criminal record

2.1 Deductive rules

Formally, a deductive rule is a formula of the form:

A« Lian.AL, withn21
where A is an atom denoting the conclusion or derived predicate, and the L, ,..., L, are literals
representing the conditions, which can be base, derived or evaluable predicates, possibly negated.
Evaluable predicates are system predicates, such as the comparison or arithmetic predicates, that can
be evaluated without accessing the database. Any variables in A, L, ,..., L, are assumed to be
universally quantified over the whole formula. The terms in the conclusion must be distinct variables,
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and the terms in the conditions must be variables or constants. That is, we include rules with
existential variables (i.e. those variables not appearing in the conclusion, also called local variables).
As usual, we require that the database schema is allowed, that is any variable that occurs in a
deductive rule has an occurrence in at least one of its positive conditions.

Fig. 2-2 shows the two derived predicates of our example with their corresponding deductive rules.
The right of residence status of a person is defined using two deductive rules. One existential rule is
used for defining job candidates.

Fig. 2-2
Derived predicate + deductive rules | Derived predicate meaning
Pl C 'x" has right of residence if s/he is either
Rr(x) Ré(x) A= Crlx) a registered alien with no criminal record
Rr(x) « Cit(x) or a citizen
t(x, Ec 'x' is considered a job candidate when
Cand(x) < Int(x.y) » Eco(y) s/he has an interview with an employer

In this paper we extend our previous work to deal with the general case of allowed deductive database
schemes with existential rules. A first tentative approach including existential rules was proposed in
[Pas92] for the case relational databases with flat views and ICs (i.e. defined only in terms of base
predicates). [PO94] considered deductive database schemes without existential rules.

2.2 Integrity constraints

Integrity constraints (ICs) are conditions that the database is required to satisfy at all times. ICs are
either state (or static), when they must be satisfied in any state of the database, or dynamic , when
they involve the evolution between two or more database states. Dynamic ICs compelling only one
transition between two successive states are further called transition ICs. Our method works with
state and transition ICs.

Formally, an IC is a closed first-order formula that the database is required to satisfy. We deal with
constraints that have the form of a denial:

« Lian..AL, withn2 1
where the L, are literals (i.e. positive or negative base, derived or evaluable predicates) and variables
are assumed to be universally quantified over the whole formula. For the sake of uniformity, we
associate to each IC an inconsistency predicate Icn , with or without terms, thus taking the same form
as deductive rules. We call them integrity rules.

We will use in our example the three state ICs shown in Fig. 2-3. The set of employees is a subset of
that of right residents (Icl) and is disjoint with the set of applicants (Ic2), which is a superset of
candidates (Ic3). Although neither of the integrity rules has existential variables note that Ic3(x) is
defined in terms of the existentially-defined view Cand(x).

Fig. 2-3
Integrity rule Integrity constraint meaning
Ic1(x) « Emp(x) A =~ Rr(x) | Employees must be legal residents

Ic2(x) « Emp(x) A App(x) Employees cannot be applicants
Ic3(x) « Cand(x) A — App(x) | Candidates must be applicants
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3. THE AUGMENTED DATABASE SCHEMA

In this section we shortly present and define the concepts and terminology of internal events,
transition and internal events rules. These are key concepts in our method since we use them to
augment the original database schema in order to later on synthesise transactions from them.

Conceptually, internal events, transition rules and internal events rules are meta-level constructs
describing the dynamic behaviour of a deductive database when confronted with updates. For that
reason, they are explained in run-time terms, as if we had some specific ground updates running
against a particular database extension. However, the resulting rules depend only on the deductive
database schema. They are independent from the base facts stored in the database, and from any
particular update. Their implied dynamic update behaviour is not represented by the database schema
solely.

In section 4, we will discuss the use of transition and internal events rules at "transaction-design-
time" for transaction synthesis. The following presentation is an adaptation to our context of theory
explained elsewhere [for ex. Oli91], where the reader will find the full details on the formal derivation
of such transition and internal events rules.

3.1 Internal events

Let D be a database, U an update and D® the "new" updated database. We say that U induces a
transition from D (the current state) to D® (the new, updated state). We assume that U consists of an
unspecified set of base facts to be inserted and/or deleted.

Due to the deductive rules, U may induce other updates on some derived predicates. Let P be a
(derived) predicate in D, and let P2 denote the same predicate evaluated in D». Formally, we associate
to each base, derived or inconsistency predicate P an insertion internal events predicate 1P and a
deletion internal events predicate 8P, defined as:

(1) Vx(P(x) & Pr(x) A =P(x))

2) Vx(OP(x) & P(x) A =Pr(x))

where x is a vector of variables. From (1) and (2) we have:

(3) VxPo(x) & (P(x) A —=0P(x)) v 1P(x))

@) Vx(—P2(x) & (—P(x) A —tP(x)) v OP(x))

If P is a base predicate, then 1P facts and 8P facts respectively represent insertions and deletions of
base facts, i.e. base updates. They will represent derived or view-updates if P is a derived predicate.

If P (i.e. Ic) is an inconsistency predicate, then tlc facts that occur during the transition will
correspond to violations of its corresponding IC. Note that, for an inconsistency predicate Ic, 8Ic
facts cannot happen in any transition, since we assume that the database is consistent before the
update and, thus, Ic is always false. Two special-purpose system events are also used, tAbort and
tExit, but their meaning will be clear with the examples of section 4.
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3.2 Transition rules

Let us take a base, derived or inconsistency predicate P of the database. The definition of P consists
of the rules in the database schema having P in the conclusion. Assume, in general, that there are m

(m2 1) such rules. For our purposes, we require to rename the predicate symbol in the conclusions of
the m rules by P1 , ..., Pm and add the set of clauses:

P(x) « P;(x) i=1,..,m
Consider now one of the rules Pi(x) &> L; A ... A Lq. When the rule is to be evaluated in the
updated state its form is Poy(x) & L8, A ... A Ln,. Now if we replace each literal in the body by its

equivalent definition, given in (3) and (4), in terms of the current state (before update) and the internal
events, we get a new rule, called a transition rule, which defines predicate Pv, (new state) in terms of

current state predicates and of internal events.

It will be convenient to refer to the resulting rules by the formula:
x=q

(5) Py x) e A [OL) I TLY] forj=1,.,2¢9 -
r=1
where q is the number of literals in the P; rule, and where O(L;) and T(L;) are
Oy = (Q(x;) A = 8Qj(Xj)) if L= Qj(xj)
That is, O(Lj) defines the part of Lj not changing from the "Old" state, while T(L;) specifies the part
of L;j that changes during the "Transition".

In order to isolate when P remains true because it has not been changed during the transition, it will
be useful to assume that in the above set of rules (5) the rule corresponding to j =1 is:
Pr ) (x) € OLy) A ... A OLy)
and to refer to it through the rule:
P10; (x) ¢ P1;; (%)
Then, for the m rules defining P we may further have:
PrO (x) « PrO, (x) i=1,..,m

Similarly, it is also useful to group those rules (5) with j = 2,..., 29, since they indicate, for definition
P;, all possible ways for P to become true in the new state due to some internal events occurred
within the Transition. The grouping rule will be:

PrT, (x) Pry; (x) j=1,.,24
Again, considering all m rules defining P we get:
PoT (x) ¢ PrT; () i=1,..,m

Finally, we may now refer to both PO and PrT through:
Pn (x) « PO (x)
Po (x) « PrT (x)
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We also consider the above intermediate rules, i.e rules with conclusions P», PT and P10, transition
rules for predicate P. Observe that these rules ultimately serve to define predicate P2 (new state) in
terms of old state predicates and of internal events predicates.

The transition rules corresponding to the database example are shown in Fig. 3-1. Transition rules
for derived predicates (TR.1 to TR.20) and ICs (TR.21 to TR.32) are listed before those for base
predicate Emp (TR.33 to TR.36). Transition rules for base predicates App, Eco, Int, Cit, Ra and Cr
are similar to those of Emp, and thus have not been presented. Note that the rules take the form of
the above formulas, except for the omission of the intermediate predicates P?; ;, which are in fact

auxiliary and were only used for presentation purposes. Neither are necessary PrO; and PT, for
integrity and base predicates. Also, the meaning of SRri¢(x) in TR.24 will be clarified in section 3.4.
Fig. 3-1

Code | Transition rule

TR.1 Rri(x) « Rr*O(x)

TR.2 Rr?(x) < RriT(x)

TR3 | Re"T(x) « ROT;(x)

TR4 | RT(x) « R Ty (x) -

TR.S RrO(x) < R0, (x)

TR.6 | RMO(x) « RMO,(x)

TR.7 Rr“ol(x) « Ra(x) A = 8Ra(x) A = Cr(x) A = 1Cr(x)
TR.8 ReT,(x) < Ra(x) A — 8Ra(x) A 8Cr(x)

TR.9 RrT, (x) « 1Ra(x) A =Cr(x) A = 1Cr(x)

TR.10 | RrT)(x) « 1Ra(x) A 8Cr(x)

TR.11 [ RO, (x) « Cit(x) A - 8Cit(x)

TR.12 | RTy(x) « 1Cit(x)

TR.13 | Cand"(x) « Cand™O(x)

TR.14 | Cand™x) « Cand"T(x)

TR.15 | CandT(x) « Cand"T;(x)

TR.16 | Cand"O(x) « Cand"O;(x)

TR.17 | Cand"9,(x) < Int(x,y) A - 8Int(x,y) A Eco(y) A - S8Eco(y)
TR.18 | Cand"T(x) « Int(x,y) A — SInt(x,y) A tEco(y)

TR.19 | Cand"T;(x) « unt(x,y) A Eco(y) A — 8Eco(y)

TR.20 | Cand"T,(x) « unt(x,y) A tEco(y)

TR.21 | 1c17O(x) « Emp(x) A = SEmp(x) A =Rr(x) A — 1Rr(x)
TR.22 | Ic1"T(x) « Emp(x) A — SEmp(x) A SRr(x)

TR23 | Ic1°T(x) « {Emp(x) A = Rr(x) A = 1Rr(x)

TR.24 | Ic17T(x) < 1Emp(x) A SRA(x)

TR.25 | Ic28O(x) « Emp(x) A —~ SEmp(x) A App(x) A = SApp(x)
TR.26 | 1c20T(x) « Emp(x) A ~ SEmp(x) A 1App(X)

TR.27 1c27T(x) ¢ tEmp(x) A App(x) A - SApp(x)

TR.28 | Ic27T(x) « tEmp(x) A 1App(x)

TR.29 | Ic3"0(x) - Cand(x) A = 8Cand(x) A —App(X) A - 1App(x)
TR.30 | Ic37T(x) « Cand(x) A — 8Cand(x) A SApp(x)

TR.31 | Ic30T(x) « 1Cand(x) A = App(x) A = LApp(x)

TR.32 | Ic37T(x) « 1Cand(x) A SApp(x)

TR.33 | Emp"(x) <~ Emp"O(x)

TR.34 | Emp™(x) « Emp"T(x)

TR.35 Emp"O(x) « Emp(x) A - SEmp(x)

TR.36 | Emp"T(x) « 1Emp(x)

TR.... App"(x) « ...; Eco™(y) « ...; Int"(x,y) « ...

Cit"(x) « ...; Ra™x) « ...; Cr'Y(x) « ...
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Each of the above rules has a clear intuitive meaning. Thus, for example, TR.7 states that 'x' has the
right of residence in the new state (Rr20,(x)), if s/he was a registered alien in the old state (Ra(x)),
and this fact has not been deleted in the transition (—ORa(x)), and 'x' did not have a criminal record in
the old state (—Cr(x)), and a criminal record for 'x' has not been inserted during the transition
(—1Cr(x)). Similarly, TR.18 states that 'x' is a candidate in the new state (Cand"©,(x)), if s/he had a
programmed interview with 'y’ in the old state (Int(x,y)) that has not been cancelled in the transition
(—0Int(x,y)), and 'y’ has been inserted as employer company during the transition (\Eco(y)).

3.3 Insertion internal events rules

Let P be a derived or inconsistency predicate. Once P? has been formally stated, from formula (1)
we get:

(6) 1P(x) « Pn(x) A =P(x)

which is called the insertion internal events rule of predicate P, and allows us to deduce which 1P

facts (induced insertions) happen in a transition. However, this rule can be simplified in the
following ways. -

It is easy to prove that no 1P facts can be produced through PrO, since in this case P"O(x) — P(x).
We can then simplify (6) to:

1P(x) « PrT(x) A —P(x)
If P is an inconsistency predicate we can further remove the literal —P(x) since we assume that P(x)
is false, for all x, in the old state. For this case we further define general database inconsistency with
the standard auxiliary rules

Uc & Uck k =1.r
where r is the number of ICs in the database and each tIck has its corresponding arguments.

Fig. 3-2 shows the insertion internal events rules for the example, respectively corresponding to
derived predicates Rr and Cand, to inconsistency predicates Icl, Ic2 and Ic3, and to database
inconsistency.
Fig. 3-2
Code |[Internal events rule
IR.1 1Rr(x) « Rr*T(x) A —Rr(x)
IR.2 1Cand(x) « Cand"T(x) A ~Cand(x)
IR.3 cl(x) & Ic1'T(x)
IR.4 Uc2(x) « 1271 (%)
IR.5 Uc3(x) « Ic3nT(x)
IR.6 c «1lcl(x)

IR.7 e « Uc2(x)
IR.8 c « Uc3(x)

3.4 Deletion internal events rules

Let P be a derived predicate. We can use definition (2) for a deletion internal event to generate its
corresponding deletion internal events rules. In fact, we find convenient to draw various versions of
such rules, versions with similar meanings, but different uses. From (2) we get:

OP(x) ¢« P(x) A =P(x)
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This is the deletion internal events rule of predicate P. This rule is used as such, without further
transformations, in our process of transaction synthesis, particularly in the translation of views or
derived predicates. However, we also need to use a more specialised version, although in this case
for drawing compile-time repairs from ICs for transgressing base updates. We will now show the
general pattern and intuitive meaning of such version, as well as its application to our example
schema. We qualify this version of deletion rules with super-index ¢ according to their use.

There is a specialised deletion internal event rule for each definition Pj of P and for each literal Lj in
such definition. Its general pattern is:
OPIe(x) ¢~ Ly A ... ALjy A [8Q;(x)) 1Qj(x)] A Ljuq Ao A Liaa
where the first option is taken if Lj = Qj(xj) is positive and the second if negative.
Its tail o is defined as follows:
o =[ PO, (x) A —=PrT (x) A ... A P20, ;(x) A =POT, [ (x) A
AP0, (x) A =PPT (X)) A Lo A 2PPO (x) A —PPT (x)
| =P(x) ]
where the first option is taken when Pj does not have any existential variable and
the second otherwise (i.e. for existential rule Pj ).

In summary, the deletion internal events rules for our example database schema are the ones shown in
Fig. 3-3.

Fig. 3-3
Code | Deletion internal events rule
DR.1 ORr(x) < Rr(x) A =Rr"(x)
DR.2 [ 8Rrl°(x) « 8Ra(x) A —Cr(x) A =Rr"Oy(x) A =RrT,(x)
DR.3 [ 8Rrl°(x) « Ra(x) A1Cr(x) A =RMOy(x) A —=Rr"T,(x)
DR.4 | 8Rr%(x) « 8Cit (x) A =Rr"O;(x) A =R T (x)
DR.5 dCand(x) « Cand(x) A -Cand®(x)

DR.6 8Cand!€(x) « 8Int(x,y) A Eco(y) A —~Cand™(x)
DR.7 8CandI®(x) « Int(x,y) A SEcoly) A —Cand™(x)

Note again the intuitive meaning of rules in Fig. 3-3. For example, DR.2 defines that the right of
residence of 'x' is deleted during a transition (8Rr(x)) if 'x' is deleted as a registered alien (8Ra(x)),
and 'x' did not have a criminal record in the old state (—Cr(x)), and 'x' does not have that right in the
new state according to Rr?; (given by "—Rr"0,(x)A—RrdT,(x)"). Similarly, DR.7 states that 'x' is
deleted as a job candidate if s/he had an interview with company 'y' in the old state (Int(x,y)), and 'y’
is deleted as employer company during the transition (8Eco(y)), and in no other way 'x' remains as
candidate in the new state (—Cand®(x)).

3.5 The augmented database schema

Let DBS be a database schema. We call augmented database schema, or A(DBS), the database
schema consisting of DBS, its transition rules and its internal events rules. In the next section we will
discuss the important role of A(DBS) in our method for update transaction synthesis. The augmented
database schema for our example would be the union of the contents of the above Figs. 2-1, 2-2, 2-3,
3-1, 3-2 and 3-3. It is easy to show that, because DBS is allowed, then A(DBS) is also allowed.
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4. SYNTHESIS OF TRANSACTIONS

We envision a transaction-design-support-system that builds minimal and meaningful database update
transactions, from the corresponding design-time parameterised transaction requests (Tr). A Tr
represents the designer's intents about the effects of the transaction, i.e. the transaction post-
conditions.

After formally defining transaction requests, we will address our approach to the synthesis of
consistency-preserving database update transactions. For space considerations, we can provide in
the paper the description of the method together with the detailed explanation of several representative
examples. We adress the reader to [Pas94b] for the full formalisation of the method in the case of
existential rules.

4.1 Transaction requests

Formally, a parameterised update transaction request Tr consists basically of either [P*(p)] or [not
Pn(p)], where P can be a base or a derived predicate, and p is a vector of terms. Usually, terms will
mostly be parameters (i.e. 'Per', 'Age") but some could also be constants (i.e. ‘john’, '32").
However, it should be clear that these constants are initially provided by the designer at "transaction-
design-time" because they are meaningful for his particular transaction request. At "transaction-
processing-time", actual values for parameters will be given by the end-user when using the
transaction.

As examples, two of the transaction requests that we will later elaborate on are [Emp?(Per)] and
[Cand®(Per)]. With the first one the designer wants a consistency-preserving transaction such that
after executed for a concrete person, to be provided in 'Per’, we can guaranty that s/he is an
employee; in other words, that inserts the person as employee, if necessary. In the case of
[Candn(Per)], our method will synthesise a transaction for assigning the job candidate status to a
particular person if s/he did not hold it, so that after its execution the person will be in the Cand
view. Of course, this view updating must also preserve the consistency of the database.

Transaction requests may vary from the above pattern for special purposes. For example, in order to
preserve database consistency [—tlc] is used as a special "consistency-requirement” request. Also, a
transaction request could include further negative base or derived events, such as in
[Rr(Per),—1Cit(Per)], where their role is that of "selective-requirements”; in the given case the
designer wants a transaction to include someone as right resident but not through the granting of

citizenship.

4.2 Our approach

We now focus on the problem of the automatic generation at design-time of consistency-preserving
transactions from transaction requests in the context of the deductive databases described in section 2.

Stated more precisely, the problem is: Given an initial transaction request, which reflects the

transaction designer's updating intents, and considering the database schema, obtain a minimal and
meaningful transaction able to perform, at run-time, those updating intents without violating database
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consistency. In order to realise this purpose, we have designed and implemented a method that can
be briefly described and exemplified as follows.

The transaction request posed by the designer together with the A(DBS) implicitly configure a generic
search space that we explore through two types of compile-time derivations: Translate and Repair
derivations. From the interleaving of those derivations we draw an interim tree, the Trek_tree. This
tree sometimes needs to be optimised in various ways; redundant nodes and unuseful or unsuccessful
branches must be pruned away. Using the resulting enhanced tree, the designer may further choose,
out of all the valid updating alternatives considered in it, those options most interesting for his/her
application. However, s/he can also rely on the run-time transaction processing system or the end-
user to take some or all of these decisions.

Then, a simple in-order search of the remaining tree is the base for the layout of the final transaction
text, or Trek_text, in whatever appropriate transaction language syntax we choose. For the moment
we have English and Catalan pseudo-code, as well as directly executable Prolog code, but other
languages can easily be added. The labels in the nodes of the tree are interpreted and treated
according to their implied semantics and the language chosen; this guides the inclusion of the
appropriate keywords in the text, as well as the correct composition of condition conjunctions and
disjunctions. For ease of comprehension, an indentation mechanism presents the Trek_text as will be
shown in the following examples.

From the above description, note that the starting step and core phase of our method is that
represented by Translate and Repair derivations. We give here only an intuitive idea of such
derivations. Their formal definitions are included in [Pas94b]. Translate and Repair derivations
traverse in single steps the generic search space implicitly defined by the Tr and the A(DBS). A
Translate derivation is used to obtain a "translation" from the original Tr, that is, a transaction that
will accomplish the designer's intents. However, for such translation to be consistency-preserving,
consistency needs to be enforced with regard to some conditions, such as the schema ICs and other
particular transaction requirements either initially given by the designer or drawn from the A(DBS)
while doing the Translate derivation.

Repair derivations are in charge of enforcing such external and internal consistency conditions. A
Repair derivation represents a subsidiary derivation spawning from a Translate derivation. Repair
derivations maintain, check and use the "Consistency conditions set" C, an internally maintained set
of conditions that we do not want any transaction to possibly imply at update-time, i.e that we want
any transaction to avoid. C is the source of all possible repairs or branch invalidations in our interim
tree. Repair derivations can further call other translate derivations in order to obtain the translations
for their found compensating actions.

With regard to our assumed run-time environment, we consider delayed-update semantics for
transaction-processing-time. That is, conditions within transaction programs always refer to the old
database state, while proposed base updates are to be collected and finally committed as a whole and
all at once to the database. Thus, there is no need to keep and/or to query any intermediate state.
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4.3 Consistency conditions for our example database schema

Let's see what consistency conditions should be initially included in the set C for our example
database schema. Those conditions are the ones emerging from the schema ICs, which will have to
be checked for any transaction update that we generate. This initialisation of C is attained in our
method through a Translate derivation from the single request [-uIc]. This derivation immediately
calls for a Repair derivation, which guaranties failure for any possibly successful derivation in the
search space implicitly defined by {<«1Ic) and the A(DBS). This will not generate any transaction
text, but will include into C any checking and enforcement conditions coming from the ICs.

The Repair derivation from {«ulc} keeps resolving its goals until they include at least one base

event. This will later on permit to select the conditions affected by a base update in order to extract
from them either repairs or branch invalidations.

To see how this realises in our example database schema, recall from Fig. 3-1 and Fig. 3-2 the
transition and internal events rules for the three ICs of our example: We may resolve these rules with
the ones of dRrl¢ (DR.2, DR.3 and DR.4) and of 1Cand (IR.2) in order to obtain the initial set Cg of
our particular example, which is shown in Fig. 4-2. C.1 to C.5 correspond to Ic1, C.6 to C.8 come
directly from-Ic2, and C.9 to C.13 correspond to Ic3. However, note that all conditions consider
literal "—tAbort". For example, the intuitive meaning of consistency condition C.4 is that the
database will eventually go into an inconsistent state if we insert as employee someone without right
of residence, pretend not to legalise such person, and if the overall action is not "aborted" by the
transaction processing system.
Fig. 4-2

Code | Consistency condition
C.1 | « Emp(x) A =~ SEmp(x) A dRa(x) A = Cr(x) A — Rr“oz(x) A= Rr“Tz(x) A = 1Abort
C.2 |« Emp(x) A - SEmp(x) A Ra(x) A 1Cr(x) A = Ri"Oy(x) A = R Ty (x) A - 1Abort
C.3 | « Emp(x)A—SEmp(x)A8Cit (x)A—Rr"O; (x)A—RrT (x)A—1Abort
C4 | «Emp(x) A = Rr(x) A = 1Rr(x) A =~ 1Abort
C.5 | < tEmp(x)ASRrC(x)A-1Abort
C.6 | « Emp(x) A ~ SEmp(x) A 1App(x) A —1Abort
« 1Emp(x) A App(x) A - SApp(x) A - 1Abort
«— 1Emp(x) A LADD(X) A —~ tAbort
« Cand(x) A — 8Cand(x) A SApp(x) A -~ 1Abort
« Int(x,y) A = 3Int(x,y) A 1Eco(y) A — Cand(x) A — App(x) A = LApp(X) A — tAbort
«uUnt(x,y) A Eco(y) A = 8Eco(y) A — Cand(x) A = App(x) A = 1App(x) A = 1Abort
— iUInt(x,y) A tEco(y) A - Cand(x) A =~ App(x) A = 1App(X) A — 1Abort
< 1Cand(x) A App(x) A - 1Abort

NOO0OAlnn
meo o ol

[ =

4.4 Transaction synthesis examples

The following pages include several synthesis examples illustrating the method. In order to facilitate
the comprehension of each example, we prefer to first show and comment on the resulting
synthesised transaction program, and then to present the detailed explanation of the reasoning process
behind such synthesis. We will show the synthesis (output and process) from transaction requests
[Empn(Per)] and [Cand"(Per)]. For incremental presentation purposes, we will make a selective use
of the various ICs of our database example.
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4.4.1 Example synthesis from [Emp®(Per)]

We could synthesise directly from [Emp?®(Per)] while considering all of our ICs, but prefer to show
the same result in a step-by-step fashion. In this way, [Emp?(Per) wrt. Ic1] will permit us to
concentrate on the synthesis output and process in the case of not having to deal with existential rules.
On the other side, the synthesis from [Emp®(Per) wrt. Ic2,Ic3] will show some of the problems and
proposed solutions that appear when dealing with such existential rules. Other existential issues will
appear when synthesising from [Cand®(Per)].

4.4.1.1 Synthesis output from [Emp?(Per) wrt. Icl]

Considering only Icl, if a designer requests a transaction for adding someone as employee in the
database, our method generates the corresponding Trek_text contained in Fig. 4-1. Note the slightly
different syntax used for the various predicate types, which comes directly from our implementation
of the method in Prolog. The only differences are that base and derived predicates must begin with a
lower-case letter, that the super-index " qualifying new predicates is implemented with prefix 'n_",
and that meta-level update operators 't' and '6' are also handled as prefixes 'i_' and 'd_',
respectively. Horizontal and vertical lines have been added for ease of reading. This implementation
syntax will be followed for all synthesised program text.

Fig. 4-1
trek_text([n_emp(Per)], % wrt. Ic1(x)

1 |- if emp(Per) then
2 [ S
3 |-d-else
P N [OR— - i_emp(Per) ,
N [P—— |----- if not rr(Per) then
QS — |----I- either
7 le-e=l=-l- { i_rr(Per) }
8 |-----)--l--- either
9 l---eel----l--- if ra(Per) then
10 fe=eeelaleeat---l--- d_cr(Per)
11 leemeecferl-—--1--- €lSE
12 e-eeselec)--d----1--- if nOt cr(Per) then
13 feeeeecdecteecleonel---1-- i_ra(Per)
14 freemeleclenmefoanal-—--- €lSE
15 feemmenfeelersnleeacleemat-— i_ra(Per) ,
16 | ---- Jemeeentelennclonettf--- d_cr(Per)
17 fosssssloceeecleaanlo-- €nd_if
18 Jenmnmefentoeslo-- €nd_if
19 (FOR ST o ¢
20 e mmeelel----—- 1_cit(Per)
21 fe-enel--l--- €nd_either
py ) FR— NS¢ ¢
23 |----—-t--I--- i_abort
24 | -—eeeeeclee-d- end_either
25 | ----eeeeel-— end_if
26 | -------—-end_if

). % end of trek text
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Within Fig. 4-1, line 1 controls if the person to be employed is already an employee, in which case
line 2 exits the transaction without any updating. In general, the special event "1Exit" is used to exit
its nesting compound instruction but keeping any update so far proposed; in this example, however,
no update has been proposed before such instruction. If the person under consideration is not an
employee, line 4 proposes to insert him/her as such. However, in this case, our integrity constraint
Icl is directly affected by such base update, and a checking/enforcement preventive repair is needed.
The repair notices that, if we want to insert someone as employee (line 4) without a right of residence
status (line 5), then there are only two alternatives not to violate database consistency: either to grant
right of residence to the person (lines 7 to 21) or to abort the whole transaction (line 23).

For the alternative of granting right of residence, we initially draw the proposal that tRr(x) should be
pursued, which is shown in line 7 as a commented action preceding its further development. Later
on, our method translates such view-update request into the needed base update instructions for
granting right of residence (lines 8 to 21). The second alternative has been drawn from the special
base event "tAbort" (line 23) which, during the execution of the transaction, will backout whatever
updates have been proposed so far. Aborting the transaction, however conservative, might be a
useful option in some cases.

In fact, lines 5 to 21 would be the main body of the transaction synthesised from the [Rr*(Per)]
request. Observe that for this view-update transaction, there are also two alternatives, corresponding
to the two schema definitions for Rr(x). That is, we can give the right of residence to a person either
by making him a non-criminal registered alien (lines 9 to 18) or by granting citizenship to such
individual (line 20). For the first option, we proceed depending upon the old database state, which
can be precisely determined using the run-time user-provided value for parameter 'Per’, thus the
conditional if-then-else instruction proposed.

Besides entering values for parameters, some further intervention will usually be expected from the
user at run-time. For example, if the transaction in Fig. 4-1 were provided to him/her as it is (i.e.
without any prior pruning decisions made by a transaction designer), then s/he would hold all choice
responsibly when confronted with ‘either' control instructions. However, there could be other
alternative choice strategies, such as leaving some of these decisions for the transaction processing
system to take. It could use priority criteria either provided by the transaction designer from
application domain semantics or inferred from extensional database statistics, or a combination of
both. So far, this is an interesting open problem that we have not addressed yet.

4.4.1.2 Synthesis process from [Emp®(Per) wrt. Icl]

Figures 4-2.1, 4-2.2 and 4-2.3 below show a detailed step-by-step explanation of the implicit
reasoning behind the Translate and Repair derivations involved in this example. There you can see
the use of the A(DBS) and of the consistency set C to draw the needed (view-)update translations and
repairs. The "WHAT" column shows the goal under consideration, which comes either from the
designer (the original request) or from a rule or condition of the A(DBS) or the set C, referenced in
the "Where from" column. The treatment of a goal may lead to its further resolving through the rules
indicated in "Where next", that also signals when some new internal consistency condition must be
added to the set C (i.e. "—AC"). Finally, "Reasoning script" verbally explains the various steps
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leading to the text written in the "THOW" column, where only the bold-typed text corresponds to the
final transaction instructions.

Fig. 4-2.1 shows the reasoning needed to obtain the starting TRANSLATION_1 for our original
transaction request. However, since its proposed update affects consistency conditions in C, it calls
for a repair from those conditions. The reasoning leading to that REPAIR_1 is presented in Fig. 4-
2.2, where we can see that only one of the two relevant conditions needs in fact to be avoided. Thus,
we draw the repair from it, but find out that such repair calls for a further view-update
TRANSLATION_2, which is shown in Fig. 4-2.3. This final translation ends the synthesis process,
since none of its proposed base updates affects the so far maintained set C, i.e. they do not need to be
further repaired.

Fig. 4-2.1 (TRANSLATION_1)

Where WHAT Reasoning script Where HOW

from next

Designer | Give me a trek for | Just a moment! TR.33
employing a TR.34
person, i.e. TRANSLATION_1=
accomplish L,

Emp"(Per)
TR.33 Emp“O(Per) ‘Exit if already in the old | TR.35
state, i.e.

TR.35 - | Emp(PenA exit if Emp(Per) if emp(Per) then
—OEmp(Per) i_exit
—SEmp(Per) but remember not to —AC

delete Emp(Per)
TR.34 | Emp"T(Pen) otherwise, we'll doitin | TR.36 else
the transition, i.e.
TR.36 1Emp(Per) insert Emp(Per), but i_emp(Per) ,
C? see that it affects REPAIR 17
consistency, i.e. set C, (See Fig. 4-2.2,
and repair appropriately later Fig. 4-4.1)
end_if
Fig. 4-2.2 (REPAIR_1 wrt. Ic1)
Where WHAT Reasoning script Where HOW
from next

C? Avoid any Ic1- Let's see! C4
related consistency | Oh, yes; there are two C.5
oondition affected | such conditions REPAIR_1=
by tEmp(Per), i.c.

C4 repair from for the first one, check if
=Rr(Per)a -Rr(Per) and, if so,

—LRr(Per)A if not rr(Per) then
—1Abort
=1Rr(PenA alternatively accomplish either
—1Abort the insertion of Rr(Per) { i_rr(Per) }
TRANSLATION_2?
(See Fig. 4-2.3)
—tAbort or abort the whole or
transaction; i_abort
end_either
end_if

CS repair from the second condition is in
SRr(PenA fact no problem since we
—1Abort have not proposed to

delete Rr(per)
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Fig. 4-2.3 (TRANSLATION_2)

Where WHAT Reasoning script Where HOW
from next
Accomplish Of course! IR.1
1Rr(Per) TRANSLATION_2=
IR.1 RAT(Per)a We are already assuming
=Rr(Per) that —Rr(Per), so we
won't propose to check it
again;
R T (Per) in the transition you may | TR.3
insert Rr(Per) in two TR A4
possible ways: W1 or either
W2
TR.3 R Ty (Per) (W1) through its first TR.8
definition, that is TR.9
TR.10
TR.8 Ra(Pepa depending upon the old
—ORa(Per)A state, check if Ra(Per) if ra(Per) then
SCr(Per) and, since thus Cr(Per),
then
=ORa(Peria as long as you remember | -AC- |
SCr(Per) not to delete Ra(Per),
6Cr(Per) -you can delete Cr(Per) d_cr(Per)
C? -it does not affect C- REPAIR_2=00
TR.9 1Ra(Per)A otherwise, if —~Cr(Per),
=Cr(Per) and thus —Ra(Per), then else
A—1Cr(Per) if not cr(Per) then
1Ra(Per)A remember not to insert —AC
—1Cr(Per) Cr(Per), and
1Ra(Per) you can insert Ra(Per) i_ra(Per)
C? -it neither affects C- REPAIR_3=0
TR.10 1Ra(Per)A otherwise, i.e. when
8Cr(Per) Ra(Per) and Cr(Per) else
1Ra(Pepa then insert Ra(Per)
3Cr(Per) i_ra(Per) ,
C? -not affecting C- REPAIR_4=0
OCr(Per) and then delete Cr(Per) d_cr(Per)
C? -not relevant to C, REPAIR_5=0
neither alone nor with the
previous update-
end_if
end_if
TR.4 R T5(Per) (W?2) but we can also TR.12
insert Rr(Per) through its or
second definition, that is
TR.12 1Cit(Per) since for sure —Cit(Per), i_cit(Per)
we may insert Cit(Per)
C? -which does not affect C- REPAIR_6=0
All right, we made it! end_either

The previous example already shows how we synthesise transaction text from a base update request,
which in turn requires a corresponding integrity checking/enforcement repair, which itself further
needs some view-update translation code. That is, it exemplifies how we address in an integrative
way the main problems presented in the introduction of this paper. However, it does not show
neither the intermediate trees used to do the synthesis nor the formal rules used to build and trim such

derivation trees. See [Pas94a,Pas94b] for more details.
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4.4.1.3 Synthesis output from [Emp®(Per) wrt. Ic2,Ic3]

If a designer issues the same [Emp®(Per)] request to our system, but this time considering only Ic2
and Ic3, the method will generate the Trek_text contained in Fig. 4-3. Lines 1 through 4 work as in
the previous example. This time the insertion of employee directly affects Ic2, so a
checking/enforcement preventive repair is needed. The repair notices that, if we want to insert as
employee (line 4) some applicant (line 5), then database consistency must be preserved either by
deleting such person as applicant (line 7) or by aborting the transaction (line 23). The deletion of
applicant would furtherly affect Ic3, thus reclaiming the corresponding repair. That is, in case that
such not-to-be-applicant were also a candidate (line 8) either it should be deleted as such (lines 10 to
17) or an abort should be proposed (line 19).
Fig. 4-3

trek__te)l(t([n_emp(Per)], % wrt. Ic2(x) and Ic3(x)

1 |- if emp(Per) then

2 | et i_exit

K JON [S—— ') {7 -
: N i--- i_emp(Per) ,

LR —— I---—- if app(Per) then

[ Y [— |------- either

7 f---—--I--I--- d_app(Per) ,

8 ewnesl--l-—---- if cand(Per) then

9 J-esecl----—-I-— €ither

10 I +-----{ d_cand(Per) }

11 (I |-------foreach [_Comp] in int(Per, _Comp) and eco(_Comp) do
12 B - LIty

13 Joemmecfcbemeeeecfeeeleecl-- 1--- d_int(Per, _Comp)
14 bl liridsatne |- OF

15 R emeslenecle—- |-- d_eco(_Comp)

16 Jemnnilod) |--—|----I--- end_either

17 leesemecbenenenl---l--—-€nd_foreach

18 (R T RS MY o ¢

19 I |----l--- 1_abort

20 leeemclrt-memal-—- €nd_either

21 [ B L

22 frenencl-l- OF

23 |--—-l--I--- i_abort

Y. N |- end_either

p L 3 [ - end_if

p 3 [— end_if

). % end of trek text

For the alternative of deleting the person as candidate, we initially draw the proposal that 3Cand(x)
should be pursued, shown in line 10 as a commented action preceding its unfolding. Later on, our
method translates such view-update request into the needed base update instructions (lines 11 to 17).

Line 8 together with lines 10 to 17 in fact correspond to the main body of the transaction that would
be synthesised from the [—Cand®(Per)] request. This is a view-update transaction request for
deleting the extension of an existentially defined view predicate. To accomplish such objective, we
should eliminate any existing way in which the contents of the database support our view extension,
for which we will now need to take into account the values taken by the existential variables in the
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definition(s) of the view predicate. In our example, this is obtained with the 'foreach-in-do’
instruction of lines 11 to 17. For this instruction we automatically synthesise the needed meaningful
Skolem variable names (i.e. '_Comp'), depending upon the existential variables under consideration.
Line 11 walks through the set of all employer companies with whom the person in 'Per' has an
arranged job interview, thus setting the cursor variable '_Comp' appropriately. For each such
company, lines 12 to 16 offer to either delete the pending interview or delete the employer status for
the company. In this way, 'Per’ will no longer remain a job candidate since s/he will not have any
more interviews with employer companies, although s/he could still keep some interviews with non-
employers.

Regarding run-time user interaction in this case, nothing new has appeared with respect to the
previous example. The user must enter values for parameters, and take any remaining either-choice
decision. He needs not provide or select any values for the Skolem variables of the 'foreach-in-do’
instruction, since such values are precisely obtained from the database contents.

Let us note before going on with the synthesis process for this example, that the complete output that
would have been synthesised from [Emp®(Per)], taking into account all ICs at once, can be obtained
by inserting lines 5 to 25 of Fig. 4-3 between lines 25 and 26 of Fig. 4-1.

4.4.1.4 Synthesis process from [Emp®(Per) wrt. Ic2,Ic3]

Note that this example shares with the previous one the first part of the synthesis process, i.e.
TRANSLATION_1 included in Fig. 4-2.1, to which we refer the reader. The new figures 4-4.1, 4-
4.2, 4-4.3 and 4-4.4 below explain the implicit reasoning behind the remaining Repair and Translate
derivations involved in the synthesis of this example.

(TRANSLATE_1 wrt. Ic2,Ic3)

Same AS JRANSLATE 1 wrt. Icl
(See Fig. 4-2.1)
Fig. 4-4.1 (REPAIR_1 wrt. Ic2,Ic3)
‘Where WHAT Reasoning script Where HOwW
from next
C? Avoid any Ic2or | Let's see now! C.7
Ic3-related Humm, yes; here we
consistency have one such condition,
condition affected | drawn from Ic2 REPAIR_1=
by 1\Emp(Per), i.e.
C.7 repair from check if App(Per) and, if
App(PenA s0,
—S0App(Per)A if app(Per) then
—1Abort
—OApp(Per)A alternatively accomplish either
—tAbort the deletion of App(Per), d_app(Per) ,
C? but see that it bothers REPAIR_2"?
consistency from C, so (See Fig. 4-4.2)
repair appropriately
—~tAbort or abort the whole or
transaction; i_abort
end_either
end _if
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Fig. 4-4.2 (REPAIR_2)

Where WHAT Reasoning script Where HOW
from next
C? Avoid any Ic2 or | Let's see again! C9
Ic3-related Right here: only one
consistency such condition, related to
condition affected | Ic3 REPAIR_2'=
by App(Per), i.e.
C9 repair from check if Cand(Per) and, if
Cand(Pena $0,
—0Cand(Per)a if cand(Per) then
—1Abort
—dCand(Per)A alternatively accomplish either
—tAbort the deletion of Cand(Per), { d_cand(Per) }
TRANSLATION_2"?
(See Fig. 4-4.3)
—tAbort or abort the whole or
transaction; i_abort
end_either
end if
Fig. 4-4.3 (TRANSLATION_2"
from next
Accomplish Right away! DR.5
SCand(Per) TRANSLATION_2'=
DR.5 Cand(PenA We are already assuming
—Cand™(Per) that Cand(Per), so won't
propose to check it again,
—Cand™(Per) and we must avoid
Cand™(Per) REPAIR_37?

(See Fig. 4-4.4)
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Fig. 4-4.4 (REPAIR_3")

Where WHAT Reasoning script Where HOowW
from next
Avoid Cand™(Per), | This is different! TR.14
ie. I will do it by avoiding TR.13
all ways supporting
Cand(per) in the new
state, which requires Al REPAIR_3'=
and A2
TR.14 first avoid (Al): TR.15
Cand"T(Per), not to insert Cand(Per) in
the transition, i.e.
... resolve a little bit...
TR.15 i.e. avoid ... and a bit more ... TR.18
Cand“Tl(Per), TR.19
... to find out that: TR.20
TR.18 i.e. repair from nobody has issued an
Int(Per,y)A 1Eco(y), so this
—oInt(Per,y)A condition is already
false, but we keep
the whole goal, just | -AC
in case someone tries )
later;
TR.19 and repair from neither Unt(Per,y)
wnt(Per.vIa has been issued, so
* Eco(y)a we remember the goal| —»AC
—3Eco(y) for future checks;
TR.20 and repair from It has been said !
unt(Per.v)A so we keep remem- —AC
1Eco(y) bering for later use
TR.13 and then avoid (A2): TR.16
Cand™O(Per), to delete all means by
which Cand(Per) holds in
the old state, i.e.
... resolve again ...
TR.16 i.e. avoid ... and once more ... TR.17
Cand"O, (Per), ... to see that
TR.17 i.e. repair from we need to find out the
Int(Per.via values of 'y’ -call it foreach [_Comp] in
Eco(ya "_Comp"- that make 'Per' int(Per,_Comp) and
—dInt(Per,y)A a candidate, and for each eco(_Comp)
—S8Eco(y) of them do
i.e. repair from avoid its support, i.e.
=OInt(Per, Comp) | either either
A =~8Eco(_Comp) delete the interview, d_int(Per,_Comp)
C? -which not affects C- REPAIR_4'=0
—3Eco(_Comp) or remove the found or
emplover as such; d_eco(_Comp)
-neither affects C- REPAIR_5'=0
Yes, ves! ... end_either
We finally got it tied!! end_foreach

The example has shown the synthesis of transaction text from a base update request, which in turn
requires a corresponding integrity checking/enforcement text. This repair text again needs another
consistency checking/enforcement repair, which finally requires some view-update translation code,

this time generated from a combination of two translation and repair processes.
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4.4.2 Example synthesis from [Cand®(Per)]

This example deals with a view-update request to make some person Per' candidate after the
execution of the resulting transaction. We will first show the synthesis output and process for
[Candn(Per)] without considering any of our ICs. That is, in [Cand?(Per) without ICs] we will
concentrate on some more issues when synthesising from existential rules. Finally, the complete
output for [Cand®(Per) with ICs] will be given and commented; for space considerations, no
synthesis process will be provided in this case.

4.4.2.1 Synthesis output from [Cand®(Per) without ICs]

Fig. 4-5 contains the Trek_text for this view-update request. When 'Per’ already has some interview
with some employer (line 1), i.e. s/he is already a job candidate, line 2 exits the transaction.
Otherwise, three alternatives exist: namely, to consider as employers some (at least one) of the
companies with whom 'Per’ has interviews, if any (lines 5 to 7); or to arrange an interview between
'Per' and some (one or more) of our already considered employer companies, if any (lines 9 to 11);
or to ask the user for some (one at least) yet unknown companies in order to make them employers
with interviews with 'Per’ (lines 13 to 18).

Fig. 4-5
trek_text([n_cand(Per)], % without ICs
[ [p— if int(Per, _Comp) and eco(_Comp) then
A S I 1_exit
Y [—— - else
V: N [——— |--- either
5 | —semerlemit-- forsome [_Comp] in int(Per, _Comp) do
6 ---t-—-- i_eco(_Comp)
y R [—— |---4--- end_forsome
L [—— |-—~-- OF
1 I [R— |--—--- forsome [_Comp] in eco(_Comp) do
10 -—-l--~-I- i_int(Per,_Comp)
[ [ [S— |---I--- end_forsome
) [y [— |---1- OT
13 | ----eeerd—I--- forsome new [_Comp] such that
14 l--—-l-——I—- not int(Per, _Comp) and not eco(_Comp)
15 Jeeeeleasel- O
16 l-eecfesl---- i_int(Per, _Comp) ,
17 feerl-merl-— i_eco(_Comp)
| . 3 [p— j----I--- end_forsome
j 2 [— l--- end_either
pJ{ J [P—— end_if

). % end of trek text

The synthesised condition within line 14 can be used to help the user look for the right companies, or
to help the system check for wrong user elections. Similarly, the conditions in lines 5 and 9 could be
used to present the respectively satisfying companies to the user for him/her to select some.

The above combination of either-or with forsome-in-do's is highly non-deterministic. With the

transaction as it is (i.e. without prior designer intervention), at run-time the user should also choose
one or more either alternatives out of the relevant ones. While the last alternative may always be
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relevant, the other two depend on the existence of values in the database satisfying their conditions.
Note that the (three) relevant alternatives could be freely combined within one transaction execution,
thus making ‘Per' a candidate through various non-conflicting ways. A run-time update solution
involving these multiple ways might not be minimal, but it could be meaningful, and thus useful.
The lack of conflicts is given by the delayed-update semantics; recall that it guaranties that forsome-
in-do and forsome-new-suchthat conditions are only affected by the old database state, and not by the
proposed base updates, applied as a whole at transaction-finish.

The flexibility implied by the above instructions, which by the way will require a sophisticated run-
time user-interaction-system, contrasts with the strict determinism imposed by the if-then-else
structure used in the synthesis of [Rro(Per)] (Fig. 4-1, lines 9 to 18). Such big difference is due to
the existential Skolem variables.

However, in the general case, such flexible user-interaction framework could sometimes prove too
demanding for some types of user, or even inadequate for some types of applications (i.e. user-less
applications, with update requests issued programmatically). For situations like these, our
transactions could be synthesised under the selective guidance of a transaction-designer. S/he could
use domain knowledge to purge alternatives and/or assign them priorities to be used by the
transaction-processing-system. Evaluation cost-estimates could be used at design-time, such as the
length or complexity of either-or alternatives, or types of forsome-in-do conditions (i.e. base vs.
derived, simple vs. compound); as well as at run-time, such as database population statistics. The
transaction-processing system, on its side, could also incorporate mechanisms to automatically select
or invent condition values. There is plenty of further work along this line.

4.4.2.2 Synthesis process from [Cand"(Per) without ICs]

Fig. 4-6 on next page explains the implicit reasoning to synthesise this example. Before going on
with the final example synthesis from [Cand®(Per) with ICs], let us make some comments on an
interesting use of the consistency set C that will show up there.

Observe that following the synthesis of each forsome-in-do we include into the consistency set C the
negation of the event predicate that would contradict its condition. This guaranties that any further
synthesised code within each forsome-in-do is also checked for this "internal" consistency condition.
Later on it will be shown how these two consistency conditions help specialise the respective repairs.

While the first one ({«<0Int(Per,_Comp)}) will restrict one repair alternative, the second one
({&06Eco(_Comp)}) will fully remove another repair alternative.

There is no such internal consistency problem affecting our third translate alternative, i.e. the
forsome-new-suchthat instruction. In fact, the semantics of such construct imply the inverse
objective. That is, right after the forsome-new-suchthat condition is layed out, we want to synthesise
precisely those updates that will contradict such condition, thus undoing the state of things described
by it.
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Fig. 4-6 (TRANSLATION_1)

‘Where WHAT Reasoning script Where HOW
from next
Designer | Accomplish Yes sir/maam! TR.13
Cand™(Per) TR.14 | TRANSLATION_1=
TR.13 Cand"O(Per) See when it already holds, | TR.16
TR.16 CananI(Per) which is TR.17
TR.17 i.e. repair from if there is some value of
In(Per.y)a 'y' -call it "_Comp"- that
Eco(na already makes Per' a if int(Per,_Comp) and
—SInt(Per,y)A candidate; eco(_Comp)
—0Eco(y) then
=dInt(Per, Comp) | and since none of these
A—=DEco( Comp) | base updates have been
issued, we may propose i_exit
to exit the transaction.
TR.14 | Cand"T(Per) Otherwise, we'll do it TR.15 else
during the transition.
TR.15 Cand"Ty(Per) Since we are dealing with | TR.18
an existential view- TR.19
definition, we can use TR.20
_three combinable ways: either
W1 or W2 or W3
TR.18 Int(Per.y)a (W1): for some of Per's' forsome [_Comp] in
© | —3Int(Per,y)A interviewing companies int(Per,_Comp)
1Eco(y) in 'y’ -call it "_Comp"-, do
—oInt(Per, Comp) | as long as we remember | -AC
AltEco(_Comp) not to delete it/them later,
1Eco(_Comp) make it/them employers i_eco(_Comp)
C? -C not affected- REPAIR_1=@ (R1)
end_forsome
TR.19 Unt(Per,y)A (W2): for some of our or
Eco(¥)A employers in 'y’ -call it forsome [_Comp] in
—SEco(y) "_Comp"-, eco(_Comp)
do
uUnt(Per,_Comp)A | as long as we remember | —-AC
=0Eco( Comp) | not to remove it/them,
Unt(Per,_Comp) | setan interview with i_int(Per,_Comp)
'Per’
C? -C not triggered- REPAIR_2=@ (R2)
end_forsome
TR.20 uUnt(Per,y)a (W1): for some newly- or
1Eco(y) provided companies in 'y’ forsome new [_Comp]
-call it "_Comp"- such such that
that all preconditions of not int(Per,_Comp)
the considered updates and not eco(_Comp)
hold do
1nt(Per, Comp)A | arrange an interview i_int(Per,_Comp) ,
1Eco(_Comp) between Per’ ...
C? -which does not affect C- REPAIR 3=
1Eco( Comp) ... and the newly inserted
... employer. i_eco(_Comp)
C? -C not bothered neither
by this last update alone, REPAIR_4=0 (R4)

nor by both the last two
ones. taken together-

0.K,, That's

all

folks!!!

end_forsome
end_either
end_if
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4.4.2.3 Synthesis output from [Cand"(Per) with ICs]

In the previous Fig. 4-6, the various repairs are empty because ICs were not considered. If we take
all the ICs into account, the complete synthesised output corresponds to that shown across Fig. 4-7.1

and Fig. 4-7.2, with the above repairs R1, R2 and R4 indicated.

Fig. 4-7.1 Fig. 4-7.2
trek_text([n_cand(Per)], % with ICs
! {-> continued from the left}
if int(Per, _Comp) and eco(_Comp) then or
i_exit forsome new [_Comp} such that
else not int(Per, _Comp) and not eco(_Comp)
either do
forsome [_Comp] in int(Per, _Comp) do i_int(Per, _Comp),
i_eco(_Comp), i_eco(_Comp),
L O
| foreach [_Person] in int(_Person, _Comp) and | foreach [ Person] in int(_Person, _Comp) and
| not app(_Person) do | not app(_Person) do
| either | either
| d_int(_Person, _Comp), | d_int(_Person, _Comp)
| if [_Person]=[Per] then | or
| i_abort | i_app(_Person),
| end_if | if emp(_Person) then
| or | either
| i_app(_Person), | d_emp(_Person)
| if emp(_Person) then | or
R1 either | i_abort
| d_emp(_Person) | end_either
| or | end_if
l i_abort | or
| end_either | i_abort
| end_if | end_either
| or | end_foreach ,
| i_abort R4
| end_either | if not app(Per) then
| end_foreach | either
Jommmeme e I i_app(Per),
end_forsome | if emp(Per) then
or | either
forsome [_Comp] in eco(_Comp) do | d_emp(Per)
i_int(Per, _Comp), | or
. | i_abort
| if not app(Per) then | end_either
| either | end_if
| i_app(Per), | or
| if emp(Per) then | i_abort
| either | end_either
| d_emp(Per) | end_if
R2 or I
| i_abort end_forsome
| end_either end_either
| end_if end_if
| or !
| i_abort ). % end of trek text
| end_either
| end_if
IR
end_forsome
or
{continues on the right ->}

The three consistency-preserving repairs, all drawn from the same ICs, namely Ic2 and Ic3 (Ic1 is not
affected by this request), have been automatically specialised for their respective situations.
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REPAIR_1 (R1) follows the case where we convert to employers some companies with whom Per’
had interviews. But for each one of these employers-to-be (in '_Comp'), there could very well be
other arranged interviews with people, including 'Per'. At this point, as a side-effect, we are making
these persons labour candidates all at once. This could affect Ic3 for those not previously being job
applicants. R1, thus, offers three alternative ways to avoid this conflicting situation for each
transgressing person ('_Person').

First, we may remove his/her interviews. Second, we can add him/her as applicant. And third, we
could abort the whole transaction. The first alternative must be further conditioned, since such
compensating action is valid for any one but precisely Per'. We are not interested in contradicting a
condition (the one in the forsome-in-do) that we are taking for granted in the search for our initial
view-update request. So if a user insists in removing our 'Per's' interview, we will abort instead,
since such action is forbidden by our consistency condition set C. The second alternative (i.e.
making applicants) also has to be extended with the appropriate repair drawn from Ic2, for the case of
those persons that were already employees. Note that this could very well be the case of our initial
'Per’, if s/he were not applicant; then, his/her name would also be a value for '_Person' and could be
removed as employee. For this case, the second alternative does not pose any restrictions, as did the
first, -

We find a less complex situation in the case of REPAIR_2 (R2). Since it has been drawn for a new
interview for 'Per' with an old employer, no side-effects appear. The only problematic candidate-to-
be would be 'Per’, if s/he was not applicant (and employee). However, it must be pointed out that
our synthesis method has eliminated from the alternatives of R2 the one consisting in removing the
companies generated by the previous forsome-in-do. Such alternatives would unconditionally
contradict our original view-update request goal, because it would contradict its nesting forsome-in-
do condition. Again, this is controlled through set C.

REPAIR_3 from Fig. 4-6 is really empty, so no trace of it remains in Fig. 4-7. No compensating
action has been synthesised in this case because none of the conditions in C is relevant to the previous
base update solely, i.e. the insertion of an interview to a non-employer company. However, such
update does affect one such condition when issued together with the insertion of employer of such
company. Thus, we obtain the corresponding REPAIR _4.

REPAIR_4 (R4) is in fact composed of two consecutive sub-repairs, sort of a combination of simpler
versions of R1 and R2. Since the user/system is now providing completely new non-employer
companies with whom 'Per’' could not have had a pre-arranged interview, then 'Per' will not be
contained in the set of persons generated by the foreach-in-do, so its first alternative does not need to
be conditioned. For that same reason, however, its second alternative cannot take care of a
conflicting 'Per’, so such compensation must be done apart, as a different sub-repair. This last sub-
repair coincides in output with R2 but its synthesis process is simpler, since it must not deal with the
elimination of the request-contradicting alternative; at this point it would be nonsense to propose the
deletion of a company as employer when we know that it is not. In fact, both repairs have been
drawn from different instances of the consistency conditions set C: namely, R2 from C.11, and the
last sub-repair from C.12. This has been our last example in this paper (see [Pas94a] for other).
Obvious space considerations prevent us from presenting its synthesis process.
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5. ADDITIONAL FEATURES OF OUR METHOD

[Pas94a] also provides examples of additional features of our method that have not been shown in
this paper. These features include the representation of transition ICs and their use in transaction
synthesis. Specialising transaction synthesis to accommodate particular selective requirements is
possible, thus being able to implement some interesting update policies such as the prevention of
side-effects to selected base or derived predicates. Also considered is the implicit handling of the
modification operation through deletions and insertions. Evaluable predicates can also be used in our
database schemes. The method can also handle compound transaction requests relating post-
conditions affecting more than one base and/or derived predicate.

Our approach has proved useful not only in analysing and avoiding update inconsistencies but also in
rectifying previously inconsistent databases, as introduced in [ML91]. For doing so, we drop the
assumption on database consistency before an update and then request the deletion of database
inconsistency through 8Ic, which makes use of TR.21, TR.25 and TR.29 in Fig. 3-1. From them
we draw the appropriate consistency-repairing Treks. -

We believe that it will not be very difficult to extend the method to deal with initial set-oriented
qualified-update requests (for ex. remove as employee those citizens with criminal records, or convert
to employers all companies with whom our applicants have interviews). This will surely be eased by
the treatment of existential rules introduced in this paper.

6. RELATIONSHIP WITH PREVIOUS METHODS
In this section, we briefly compare our method with some previous transaction-design-time methods.

Stemple and Sheard [SS89] offer a set of tools based on a Boyer-Moore theorem prover to support a
transaction designer in coming up with non-violating transactions. A model of relational theory with
recursive functions and additional convenient lemmata provide the basis for the deduction process
within the prover. With this knowledge in hand, it tries to prove without accessing facts that a given
transaction will not violate consistency. When that is not possible, those parts of the transaction and
schema that caused the failure are identified and the system generates feedback to the transaction
designer by suggesting new run-time consistency checks, additional updates that would make the
transaction safe and post-conditions that reflect the designer's intent. As the reader may infer from
this description, our intentions and procedure are similar to those of Stemple et al. However, we aim
at the fully automatic synthesis of transactions in the more general case of deductive databases. In
our approach, the designer does not have to hand out a (possibly erroneous) transaction to the
system, but only give a request for it and, eventually, adapt the resulting transaction to his/her
particular application requirements. Our transaction-design-time approach is preventive instead of
corrective.

Ceri and Widom [CW90] present a semi-automatic approach with an SQL-based language for
defining ICs and a framework for translating them into consistency-maintaining ECA-like production
rules. Their method is semi-automatic because some parts of the translation require the designer
intervention. S/he must specify for each IC, i.e. for each consistency-maintaining rule, a set of repair
actions. Such actions may introduce cyclic, infinite rule execution and inefficiencies, which requires
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additional rule analysis and optimisation steps. They plan to extend their facility to allow multiple
rules enforcing one IC and the possibility of automatically or semi-automatically deriving
compensating actions. It is interesting to observe that this method happens to run into the view-
update problem when trying to translate ICs with "table expressions”, a restricted form of views, but
its solution is not explained in detail. Since general views are essential to deductive databases, we
address them from the beginning. Note also that, due to the nature of our internal events rules, we
get for free the multiple rules enforcing a single constraint and we can also automatically generate
compensating actions (our preventive repairs), both goals aimed at Ceri and Widom's future
extensions.

Some of these extensions have already been addressed in [CF+92, FPT92], but in restricted or
adapted cases. [CF+92] extends the previous method by including some views and automatically
generates repairs under some circumstances. For example, view predicates cannot appear in the body
of ICs, and its ECA rules are prepared to handle only base updates. In [FPT92] the authors depart
towards a more logical framework, showing how to automatically generate production rules from ICs
specified in a restricted Domain Relational Calculus. Apart from the replacement operation, that we
handle indirectly through deletion and insertion, our method deals so far with more general databases
and with more general kinds of updates, i.e. view-updates, base updates with possibly additional
transaction requirements, and compound updates. [CW90, CF+92, FPT92] share the common aim
of an Integrity Maintenance System within an Active DBMS architecture, with its rule triggering
system taking care of the application of their consistency-repairing ECA-rules or production rules.
We take a more general approach, since our resulting transactions could be used (once adapted) in a
varied set of DBMS architectures. With regard to execution semantics, they let violations occur and
then try to restore consistency while accomplishing the initial user update; this sometimes leads to the
undoing of some previous work, specially when aborting. Recall that our delayed-update semantics
save us from such complex run-time situations. Qur transaction-processing approach is also
preventive instead of curative.

Still within the relational context, the results of Qian [Qia90,Qia94] in the area of automatic
programming of database transactions are also of much interest, but only from the IC enforcement
side. They aim at the synthesis of database transactions from the designer's updating intent and the
ICs. For that purpose, the Manna-Waldinger deductive-tableau system is extended with additional
inference rules for the extraction of valid transactions from proofs. Observe that our approach tries to
do the same but handling also general views, not present in the work of Qian. For the common case,
we share some language constructs, such as if-then-else and foreach-in-do. Qian's method lays out
consistency-preserving code just before the possibly transgressing update, while we do the other way
around. Delayed-update semantics make both textual layouts equivalent from the processing point of
view.

[Wal91] investigates, in the context of deductive databases, the automatic compilation of ICs
checking into update procedures written in a procedural update language, whose semantics is defined
in detail. Through the application of partial evaluation and logical optimisation, a set of conditions are
imposed as preconditions on the corresponding update procedure. However, it does not deal with
view updates and/or ICs consistency-preserving actions.
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6. CONCLUSIONS AND FURTHER WORK

The methods developed so far for View updating and ICs checking and enforcement in relational and
deductive databases are a big step towards a practical solution to the overall problem of providing true
knowledge independence within databases. They have open plenty of room within this research area.

In this paper we have presented a new method for the generation of consistency-preserving
transaction programs from (view-)updates in the context of deductive databases with existential rules.
The method is based on the transition and internal events rules, which explicitly define the dynamic
behaviour of the database when updated. Using these rules, a formal method allows us to
automatically synthesise a legal transaction program from an initial (view-)update transaction request.
The integrative way in which the method already deals at compile-time with the problems of View
updating, IC checking and IC enforcement can be considered as its most important asset.

At its current stage, the method has been fully prototyped using meta-programming techniques in
Prolog. With regard to transaction-processing-time capabilities, we can generate Trek_text which is
directly a Prolog program used to simulate the updating of the database within the dynamic main-
memory Prolog database. The program is essentially the transaction unit, once appropriately declared
within the corresponding transaction boundaries. In the future, this will be the base for the update
processing of real disk-based databases either within a tight-coupling architecture, i.e. on top of a
deductive DBMS, for which case we do not expect big changes; or through a loose-coupling setting,
where further interaction instructions will be needed. In this last respect, we find that some of our
results may proof useful in the emerging contexts of extended relational databases, particularly in
SQL-3, and of active databases, whose advanced ECA rules mechanisms could also be the target of
our transaction synthesis. As it has been commented through the examples, the potential transaction-
processing-system capabilities are so varied that they open a whole new line of future work.

We plan to extend the method for the case of deductive database schemes with aggregate functions
within rules, where the appropriate formalisation and implementation will be needed. Also, the case
of dealing with recursive rules must be studied in more detail. Another interesting improvement
would be the treatment of initial qualified-update requests. We may also consider the explicit
treatment of the modification as a database operation of its own, along the line taken by
[U092,MT93] for similar run-time problems.
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