
MASTER’S THESIS

Microarchitectural-level simulator for parallel tile
rendering on mobile GPUs

Aurora Tomás Berjaga

Advisors:

Diya Joseph
Juan Luis Aragón
Antonio González

In partial fulfillment of the requirements for the master’s degree in:

Master in Innovation and Research in Informatics (MIRI)
High Performance Computing

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech
Facultat d’Informàtica de Barcelona (FIB)

July 1, 2022

Para vosotros: papa, mama y hermana

Abstract

Mobile devices have led the boom in the technological segment in the recent years. They have
witnessed a tremendous improvement in screen resolution and high-quality graphics because of
the growing demand for playing games and other animated graphics applications. However, the
demand for rendering more realistic scenes brings with it a significant increase in computation
and memory bandwidth. This inevitably translates to an increase in energy consumption. Since
GPUs are battery operated, energy-efficiency is an important design factor as it dictates their
autonomy.

In this work, we present a novel technique which we term Parallel Tile Rendering (PTR),
which aims to exploit new sources of parallelism in a GPU. Under PTR, we rasterize multiple
tiles in parallel using two different rasterization lanes, called Raster Units, in architectures for
mobile GPUs. In this way, we dramatically reduce the required cycles for rasterization, which
has been seen to be the most time-demanding process when rendering images. Experimental
results show that PTR can achieve an average speedup of 83% for a wide range of different
benchmarks, each of them with different characteristics. In fact, it is much more effective than
having the same amount of computing resources but in a single Raster Unit, with an increase in
performance of 8.3% on average. Moreover, PTR provides significant energy savings with an
average decrease of 9.86%.

Keywords – Mobile GPU, Graphics Pipeline, Tile-Based Rendering, Energy efficiency.

5

6

Acknowledgments

End of June 2022, another step in my life is over. Unfortunately, in recent times I have
learned that life is so capricious that it has not allowed all the people I wanted to see this work.
Despite this, I want to thank all those people who have accompanied me.

First of all, I want to thank Prof. Antonio González for having trusted me and giving me
the opportunity to be part of the ARCO research group, in addition to his advice. Thank Diya
Joseph and Prof. Juan Luis Aragón for their guidance and dedication throughout the project.
To Prof. Joan Manuel Parcerisa for his valuable contributions. To David Corbalán for clarifying
concepts.

On the other hand, I want to thank my family for always supporting and accompanying
me. To my friends with whom I have lived moments that I will always remember and we have
supported each other. Last but not least, to the professors for contributing their knowledge,
despite the difficulties caused by the pandemic.

7

8

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Objectives . 15

1.3 Thesis organization . 15

2 Background 17

2.1 Graphics Pipeline . 17

2.2 Tile-Based Rendering . 18

2.2.1 Geometry stage . 19

2.2.2 Raster stage . 20

3 Experimental framework 21

3.1 Simulation infrastructure . 21

3.2 Benchmarks . 23

4 Baseline improvement 27

4.1 Throughput increase . 27

4.1.1 Raster Unit . 27

4.1.2 Tiling Engine . 30

4.2 DRAM memory model upgrade . 33

4.3 GPU configuration . 34

9

CONTENTS

5 Parallel Tile Rendering 37

5.1 Baseline architecture . 37

5.2 Better than just doubling resources . 40

5.3 Opportunities for texture sharing . 43

6 Inter-tile texture sharing 45

6.1 Motivation . 45

6.2 Baseline architecture . 46

6.3 Quad mapping distributions . 47

6.4 Experimental results . 49

7 Related work 53

8 Conclusions and future work 55

10

List of Figures

1.1 Smartphone users worldwide (in millions) [33]. 14
1.2 Gaming market revenue worldwide in 2021, by segment (in billion U.S. dollars) [34]. 15

2.1 Overview of the Graphics Pipeline stages. [5] . 18
2.2 Overview of a Tile-Based Rendering (TBR) architecture. 19

3.1 Overview of the TEAPOT simulation infrastructure. 22

4.1 Average attributes per primitive. 28
4.2 Average primitives per tile. 29
4.3 Baseline scheme. 29
4.4 Structure of the Parameter Buffer. 30
4.5 New hardware design for the Tile Fetcher. 31
4.6 Impact on energy consumption by the Primitive Table. 33

5.1 Distribution of time in the GPU. 37
5.2 Raster Pipeline architecture employed for Parallel Tile Rendering. Each Raster

Unit has its own private resources. 38
5.3 Speedup comparison in rasterization when applying different tile scheduling policies. 39
5.4 Active cycles in Fragment Stage with a static tile scheduling. Both Raster Units

are quite well workload balanced. 39
5.5 Comparison of the overall energy consumption between the baseline and PTR,

presenting the energy reduction obtained with PTR. 40
5.6 Speedup when rasterizing with the double of resources in a single Raster Unit. . 41
5.7 Benefits of PTR over just doubling resources. 41
5.8 Breakdown of the execution time between compute and memory tasks for PTR. . 42
5.9 Misses per 1000 instructions (MPKI) for the L1 texture caches and L2 cache due

to texture accesses for PTR. 42
5.10 Average fragments per tile. 43
5.11 Memory bandwidth usage. 43
5.12 Fraction of shared texture blocks among tiles in a frame. On average, 50% of

them are reused inside a frame. 44

6.1 Different assignments of quads to fragment processors within a tile. 45
6.2 Raster Pipeline architecture employed for PTR’s extension. Each processor shares

the texture cache with a processor from another Raster Unit. 46
6.3 Evaluated quad mapping distributions. 48
6.4 Average speedup for all the games for each configuration with respect to the

baseline PTR, which owns 8 private texture caches. 49

11

LIST OF FIGURES

6.5 Example of processor workload balance using different combinations in a given
frame. 50

6.6 Average energy savings for all the games for each configuration respect to the
baseline PTR, which owns 8 private texture caches. 50

6.7 Speedup when employing 11-blocking combination with respect to the baseline
PTR, which owns 8 private caches. 51

6.8 Misses per 1000 instructions (MPKI) for the L1 texture caches when employing
PTR with private caches compared to shared caches with the 11-blocking combination. 51

12

1
Introduction

This chapter introduces the motivation in the computer architecture community for which
there is a great deal of interest behind research in mobile GPUs. Then, the main objectives of
this work are presented and, finally, it is shown how the rest of the thesis is structured.

1.1 Motivation

It is indisputable that mobile technology has evolved in recent years and has spread worldwide
practically at the speed of light. This boom in the technological segment is led by the emergence
of the well-known smartphones, which nowadays are essential in our daily life. Thanks to
important advances in hardware and software, these mobile devices are no longer just used for
phone calls and text messages but also allow a wide variety of functionalities such as connectivity,
gaming and multimedia, among others.

The app stores are digital distribution platforms for applications (e.g., Google Play [18] and
App Store [6] for Android and Apple devices, respectively) and play a crucial role in this mobile
device revolution. These platforms allow users to have a wide range of new features within their
reach. The accumulation of improvements in both the technological and software sides has made
mobile devices widely accepted by the population. Figure 1.1 shows the evolution of the number
of smartphone users worldwide, where it is revealed that the current number of smartphone users
in the world today is about 6.5 billion. Therefore, as the current world population is 7.9 billion as
of May 2022 [40], it means that 82% of the world’s population owns a smartphone. Note also the
rapid increase, as in only 6 years, the percentage of the world’s population owning a smartphone
has almost doubled (in 2016 only 48% of the world’s population owned a smartphone).

The video game industry has been one of the markets most benefited by the adoption of
mobile devices in our lives. The main reason for this is the convenience of being able to play
mobile games anywhere, in contrast to console and PC games, which has caused a boom in the
number of people that play games frequently (known as mobile gamers). In fact, recent studies
[32, 35] show that gaming apps are the most popular app category in Google Play, accounting

13

CHAPTER 1. INTRODUCTION

Figure 1.1: Smartphone users worldwide (in millions) [33]. * Projected data.

for 13.63% of available apps worldwide, and 21% of the apps downloaded are games. In addition,
62% of smartphone owners install a game within a week of owning their phone, and today’s
number of active mobile gamers worldwide is over 2.2 billion, which represents more than a
third of the world’s population. But this is not all; 43% of smartphone use is invested in playing
games.

In summary, mobile games have a strong presence in our daily lives, which makes it an
important sector for the economy. As can be seen in Figure 1.2, games on mobile devices
dominate the market, accounting for 52% of global revenues, followed by console games (28%)
and PC games (20%).

This growing interest in mobile games has led to better screens with a higher resolution and
increased refresh rates, bringing important visual improvements to enhance the user experience.
In addition, the increase in performance of smartphones has also allowed the processing of more
data, thus, reaching more detailed object models. In order to provide high-quality graphics
in mobile devices, a Graphical Processing Unit (GPU), a dedicated hardware accelerator for
real-time graphics rendering, is required to satisfy the high computing demands required by
games.

However, it is not all plain sailing. This demand for more realistic and detailed models
requires a significant growth in computational power and memory bandwidth, which translates
to an increased energy consumption. For example, a very common screen resolution nowadays in
smartphones is Full HD, composed by 1920 pixels horizontally and 1080 pixels vertically, which
implies more than 2 million pixels being rendered per frame. Note however, that in order to
provide a satisfactory user experience, several frames have to be displayed per second (typically
60), known as frames per second (FPS), to create the illusion of movement.

As a result, energy-efficient GPU designs for mobile devices are a critical design aspect for
computer architects since these devices are battery-operated and this determines their autonomy,
making it challenging. In fact, recent reports claim that battery life is the most important feature

14

1.2. OBJECTIVES

Figure 1.2: Gaming market revenue worldwide in 2021, by segment (in billion U.S. dollars) [34].

when purchasing a smartphone over other characteristics such as camera quality [42]. However,
in addition to battery life, smartphones and tablets are designed to be carried everywhere, so
they are very lightweight. This feature makes them have a tight thermal limit and, as they
are extremely thin to be portable, it adds more complexity as they cannot be equipped with
sophisticated cooling systems to maintain the temperature of the internal components below a
thermal threshold, as done in desktop devices.

1.2 Objectives

The objective of this thesis is to improve the performance of mobile GPUs by processing data
in parallel through independent stages while providing full throughput, which in turn, will lead
to an improvement in its energy efficiency. In summary, this work has a twofold objective:

• Develop a cycle-accurate simulator.

• Investigate the potential of a new GPU architecture based on rendering in parallel multiple
regions (called tiles) of the frames.

1.3 Thesis organization

The remainder of this thesis is structured as follows:

• Chapter 2 provides a basic background on the graphics pipeline and an overview of the
mobile GPU architecture.

• Chapter 3 describes the evaluation methodology used to perform all the experimentation.

• Chapter 4 presents the main improvements performed to construct a robust and more
up-to-date baseline.

15

CHAPTER 1. INTRODUCTION

• Chapter 5 presents and evaluates our approach to rendering multiple tiles in parallel.

• Chapter 6 extends the approach presented in the previous chapter by taking advantage
of the texture sharing potential between tiles, leading to an opportunity to save memory
bandwidth.

• Chapter 7 reviews some related work.

• Chapter 8 summarizes the main conclusions of this work.

16

2
Background

This chapter introduces important concepts and terminology required to later describe the
technical aspects of this thesis. Therefore, it first provides an overview on the graphics pipeline
to understand how data is processed along its different stages and then, it presents a GPU
architecture for mobile devices that targets a low-power design, known as Tile-Based Rendering
(TBR), which will be used as the baseline in the experiments that will be carried out in this
thesis.

2.1 Graphics Pipeline

The graphics pipeline, also known as the rendering pipeline, is a process that consists in
rendering two-dimensional images, called frames, from the geometrical description of the scene,
including three-dimensional objects, light sources, and camera position and orientation [1]. This
rendering process is abstracted into three main stages: Application, Geometry, and Raster, as
illustrated in Figure 2.1.

The Application stage is a software phase running in the CPU, and is responsible for
preparing the geometry models that describe the scene, by means of polygons, and all its
associated information that is needed for rendering the polygons in the subsequent stages. The
Application stage is also responsible for setting the state of the pipeline (by enabling or disabling
capabilities such as depth test, blending, etc.), and loading the scene objects which are then
transferred to the GPU for further processing.

The objects are comprised of vertices, which are points in a three-dimensional space with
additional information associated, referred to as attributes, which describe the characteristics of
the vertices (e.g., color, normal vectors, coordinates, texture, etc.). In addition, objects have
shader programs associated, which is the customizable part of the pipeline and where user-defined
code is executed. Also textures are attached to objects, which are typically 2D images that are
mapped onto polygon surfaces to add high-frequency detail.

17

CHAPTER 2. BACKGROUND

Figure 2.1: Overview of the Graphics Pipeline stages. [5]

Thus, in this stage is where the CPU-GPU interaction occurs. For it, the application sends
the information to the GPU through commands, where some of them are in charge of rendering a
batch of vertices, which are called draw calls (e.g., glDrawArrays, glDrawElements in OpenGL).
In summary, it can be said that this all-CPU stage manages the I/O data interaction between the
CPU and the GPU, and sends the commands to the GPU to tell it how to render the scene.

The next stage is the Geometry stage, which is triggered when a draw call is received and is
in charge of performing all the geometry-related operations, such as transforms, projections, and
all other types of geometry handling. Basically, this stage determines what, how and where an
object should be drawn. For it, it receives a stream of vertices as input, which are converted into
a set of transformed 2D primitives. Finally, these primitives are received in the Raster stage,
where the color for each pixel inside them is computed. Because both Geometry and Raster
stages are entirely processed in the GPU, they are discussed in more detail in the following
section, with an emphasis on the baseline architecture chosen for this work (Tile-Based Rendering
architecture) while reviewing particular architectural details. In case the reader is drawn to
further details on the graphics pipeline, there are interesting books available [1, 17].

2.2 Tile-Based Rendering

Mobile GPUs typically implement a Tile-Based Rendering (TBR) architecture in order to
reduce accesses to main memory. This rendering approach is also commonly classified in the
literature as sort-middle [1], and is very popular in low-power graphics and memory-bandwidth-
limited systems. TBR is characterized by dividing the screen space into a grid of smaller regions,
called tiles. Tiles are generally sized as 32x32 pixels, which is small enough to perform many
operations on small tile-sized on-chip buffers, which exploit locality and significantly reduce
power-hungry accesses to off-chip main memory, thus, saving memory bandwidth. There are a
plethora of commercial examples that employ TBR, such as ARM Mali [8], Qualcomm Adreno
[29], and Apple GPUs [7].

Figure 2.2 shows a block diagram of the graphics pipeline and the memory hierarchy organi-
zation of a TBR architecture. As it can be seen, the graphics pipeline is split into the Geometry
Unit and the Raster Unit, also commonly referred to as Geometry Pipeline and Raster Pipeline,
respectively. In addition, there is a new intermediate pipeline stage called Tiling Engine, which

18

2.2. TILE-BASED RENDERING

is characteristic of TBR architectures, and is where the tiling process is carried out. In fact, this
new stage acts as a serialization point between both pipelines, since tile-based processing requires
all the geometry to be previously processed to determine which primitives belong to each tile to
later proceed with the raster process. The following subsections overview these stages.

Command
Processor

Vertex
Fetcher

Vertex
Cache

Primitive
Assembly

Clipping and
Culling

L2
Cache

RasterizerBlendingFlushing

Fragment processor

Instruction
Cache

Texture
Cache

Polygon List
Builder

Tile
Cache

Tile
Fetcher

Color
Buffer

Early Depth
Test

Z-Buffer

Memory
Controller

Tiling Engine

Raster Unit

Geometry Unit

Vertex
processor

Instruction
Cache

Programmable stage Fixed-function stage Memory

Figure 2.2: Overview of a Tile-Based Rendering (TBR) architecture.

2.2.1 Geometry stage

This initial stage performs all the geometry-related operations in the graphics pipeline in
which an input stream of vertices are converted into a set of transformed 2D primitives. First,
the Command Processor reads the commands issued by the CPU. When a draw call is received,
the Vertex Fetcher is triggered, which fetches the requested vertices by the draw call from
memory. Then, the Vertex Processors are responsible for transforming these vertices by executing
user-defined programs, known as vertex shaders. Once processed, these vertices are assembled to
generate polygons, called primitives, in the corresponding topology selected for describing the
geometry. The most typical mode employed for defining primitives is triangles, in which every
group of three vertices forms the polygon. Afterward, for each primitive, it must be determined
whether the primitive lies within the view frustum, which determines a 3D volume corresponding
to the visible region on the screen. Therefore, the Culling process discards the triangles that are
detected to be entirely outside of this viewing volume. However, in case a triangle is partially
visible, a Clipping operation is applied, in which the primitive is split into smaller triangles that
entirely fall inside this volume. Since this is a tile-based architecture, before proceeding to the
rasterization process, the Polygon List Builder is in charge of sorting the primitives into tiles,
i.e., to produce a list for each tile with all the primitives that totally (or partially) fall inside it.
Finally, the Polygon List Builder is responsible for storing these per-tile primitive lists in the

19

CHAPTER 2. BACKGROUND

Parameter Buffer, a particular region kept in main memory, which are the input data to the
Raster Unit. Subsection 4.1.2 provides further details regarding the Parameter Buffer.

2.2.2 Raster stage

Once all the geometry has been processed and binned, the Raster stage is executed and it is
determined the colors for each pixel inside a primitive. To do this, first, the Tile Fetcher fetches
the primitives and its attributes for a given tile in the frame in a tile-by-tile fashion, which are
served as inputs to the Raster Unit. Refer to subsection 4.1.2 for further details on the Tile
Fetcher.

Then, the Rasterizer converts primitives into a set of two-dimensional fragments, which
represents the pixels that can be drawn on the screen. In addition, for the pixels that are covered
by a primitive, the values of the primitive’s attributes are interpolated at the pixel’s position.
Fragments are assembled into groups of 2x2 adjacent fragments, known as quad fragments, that
are sent to the next pipeline stage, the Early Depth Test. This stage aims to eliminate the
fragments that are known to be occluded by a previously processed quad, thus allowing to save
time and energy from processing useless data that will not contribute to the final image. To that
end, a buffer called Z-Buffer is employed to store the depth values for each fragment. So, the
depth value from an incoming fragment is compared with the one stored in the same position in
the buffer. If the quad is closer to the camera than a previously visible quad, the depth value
will be overwritten by this new quad. As the depth value of a fragment is the interpolated z
component, this stage is also commonly known as the Early Z-Test. A fragment that passes the
depth test proceeds to be processed by the Fragment Processors in the next stage. Otherwise,
the fragment is invisible and, thus, is discarded.

Next, the presumably visible quad fragments proceed to the Fragment Stage, where the
Fragment Processors execute user-defined programs, called fragment shaders, to compute the
color for each fragment. Moreover, it is very common to access textures in this stage, as they
enrich the appearance of the models by providing a higher level of detail. Then, these colors
are later processed by the Blending Unit, where they are combined with the ones already in
their same position in a buffer called Color Buffer. In addition, this stage also allows to achieve
transparency effects. This is performed using the alpha channel, which is an additional value
besides the RGB color that describes a fragment’s opacity range.

Finally, right after all the primitives in a tile have been completely rendered, the contents
stored in the Color Buffer are flushed to the Frame Buffer, which is a region in main memory
used to hold the data that is going to be displayed in the screen. This way, the Color Buffer is
written into main memory once for each tile. After all the tiles of a frame have been processed,
the frame is ready to be displayed. Notice that both the Z-Buffer and Color Buffer are tile-sized,
which means that they can be stored in on-chip memory, thus, reducing accesses to DRAM and
saving bandwidth.

20

3
Experimental framework

This chapter presents the methodology employed for developing this thesis. First, it is
introduced the simulation infrastructure used for the performance and energy consumption
evaluation for a mobile GPU. Then, the benchmarks used for carrying out the experiments are
described.

3.1 Simulation infrastructure

For this thesis, we have employed the TEAPOT toolset [10], a simulation framework developed
in the ARCO research group at UPC, which evaluates the performance, energy consumption,
and image quality of a mobile graphics subsystem. This set of tools targets mobile graphical
applications, as it provides support for the OpenGL ES API [28] and models a cycle-accurate Tile-
Based Rendering architecture, popular in low-power designs, as shown in Figure 2.2. Figure 3.1
shows the flow and the different tools that comprise TEAPOT.

Nevertheless, other widely used GPU simulators can be found in the literature, but they do
not fit our needs. For instance, GPGPUSim [11] and Barra [12] are designed to model General-
Purpose GPU (GPGPU) architectures, providing support for OpenCL [27] and CUDA [14].
However, despite their acceptance in the GPU research community, they do not provide support
for graphics APIs such as OpenGL. Thus, they target scientific-like workloads instead of graphics
workloads. Along the same lines is MacSim [21], which also only supports CUDA. Besides that,
ATTILA [25] and Multi2Sim [37] provide support for OpenGL graphics applications but are not
capable of running graphics workloads on embedded systems as they do not support OpenGL ES
API, which is the variant needed for these devices. In addition, they model architectures that
are popular in desktop GPUs instead of architectures employed in the low-power segment.

21

CHAPTER 3. EXPERIMENTAL FRAMEWORK

Check

Mobile Applications

Android
GAPID

GPU Functional Simulator
Gallium3D softpipe driver

TEAPOT Trace
GPU Instructions and Memory addresses

GAPID Trace
(GLSL shaders, geometry, textures...)

Cycle-Accurate Timing
GPU Simulator

Image Quality
Assessment

GPU and System Memory
Power Models

McPat, CACTI, DRAMsim3

Energy statistics Timing statistics Image Quality statistics

Frames

Frames

Driver level

Hardware level

Application level

Frames

Cycle-Accurate Timing
System Memory Simulator

DRAMsim3

Tools unmodified

Trace files

Tools adapted

New tools

Check

Figure 3.1: Overview of the TEAPOT simulation infrastructure.

Application Level:

The first step is to inspect and record the OpenGL ES API calls made by an application
to the GPU. To that end, TEAPOT employs a modified version of GAPID [16], a Graphics
API Debugger developed by Google. This tool intercepts the graphics commands of animated
applications to a mobile device while running, which can be either a real smartphone or an
Android Virtual Device (AVD) [2]. These captured OpenGL commands issued by the applications
are stored in a trace file, which we refer to as a GAPID trace, containing all the necessary data to
be able to reproduce the original OpenGL ES command stream, such as GLSL shaders, textures,
geometry, and state information.

Driver Level:

In order to perform a cycle-accurate GPU simulation, TEAPOT employs a GPU functional
simulator that generates a trace with all the necessary information to carry it out. For it, the
GAPID trace generated in the previous level is executed with the GAPID replay (gapir) service
over Gallium3D [15], an infrastructure for developing GPU drivers, configured with OpenGL
ES as its frontend and an instrumented version of a software renderer called softpipe as its
backend. This modified software renderer executes each of the OpenGL commands stored in the
GAPID trace while gathering useful information in any of the rendering stages, such as vertices,
fragments, texels, and shader programs to generate the TEAPOT trace. Actually, Gallium3D
translates the vertex and fragment shader programs into TGSI instructions [36], an intermediate
assembly language, so this resulting trace contains all the executed instructions by the GPU and
referenced memory accesses.

22

3.2. BENCHMARKS

Hardware Level:

The TEAPOT trace generated in the previous level is fed to a cycle-accurate GPU simulator,
which gathers the activity factors from all the stages in the rendering process and outputs timing
and energy statistics. Several architectures are modeled by the cycle-accurate simulator, among
them, a Tile-Based GPU closely resembling any typical low-power GPU model available in the
market. In any case, the architecture is highly configurable and the details and the configuration
used for the experiments are explained in chapter 2 and chapter 4.

TEAPOT relies on DRAMsim3 [24] to model timing but also energy consumption of the
system memory. DRAMsim3 is a popular cycle-accurate simulator that models a wide range of
memory models, among them LPDDR4, which is very common in the mobile segment, including
a DRAM memory controller, DRAM banks, and the required interfaces to interact with the GPU.
Previously to this work, an older version was used, but as explained in section 4.2 it has been
updated to the most recent version to be more accurate and representative of current memory
technologies.

Regarding the GPU power statistics, the well-known McPAT [23] power framework is used
for estimating the GPU’s energy consumption. This tool estimates the static power for each of
the hardware structures in the GPU, such as queues, caches, processors, etc., and the dynamic
power derived from their activities. When the simulation ends, the activity factors gathered
by all of these components are combined with their individual activation costs to obtain the
overall dynamic GPU power. Finally, the energy consumption is obtained by multiplying the
total power statistics by the execution time.

Last but not least, TEAPOT also includes some statistics related to image quality in order to
quantify the quality of the frames generated, such as VSSIM [38], which evaluates a sequence of
frames based on the human visual perception system. These metrics are useful when evaluating
energy-saving techniques that trade off image quality for energy. However, since it is not the
case for this work, they have not been used.

3.2 Benchmarks

The benchmark suite used to evaluate this work consists of a wide number of commercial
Android applications, which are listed in Table 3.1, along with the alias names used to identify
them along the experimental results. The selection criteria for these games lies in choosing the
ones that are representative of the diversity that can be found in the app stores, considering
variety as the main criteria, which is determined by the genre and type of the graphics, but also
by its own graphical characteristics. Nevertheless, popularity has also been another important
factor when choosing the games to evaluate, which is defined by the number of downloads. In fact,
some of the selected games, such as Subway Surfers and Candy Crush Saga, are leaders in the
download ranking chart by the time of this writing and have reached a billion downloads.

Next, we present a brief analysis of relevant aspects so we can provide a general view of
the graphical characteristics for our set of applications for both Geometry and Raster pipelines.
Table 3.2 shows information regarding the geometry complexity of each benchmark. The second
column accounts for the average number of draw calls per frame, which is an interesting statistic
that shows the impact on the number of objects. The third column shows the average number of
instructions executed by the Vertex Shaders per vertex, which gives some hints on the activity in
those shaders. The fourth column reports the average number of primitives per draw call, which

23

CHAPTER 3. EXPERIMENTAL FRAMEWORK

Benchmark Alias Genre Type Installs
(millions)

Beach Buggy Racing 2 BBR Racing 3D 10
Candy Crush Saga CCS Casual 2D 1000
Captain America: Sentinel of Liberty CAm Action 2.5D 5
City Racing 3D CRa Racing 3D 50
Clash of Clans CoC Strategy 2.5D 500
Counter Strike CoS Action 3D 50
Crazy Snowboard CrS Sports 3D 15
Derby Destruction Simulator DDS Racing 3D 10
Forest 2 Fo2 Adventure 3D 1
Golf Battle GoB Sports 3D 50
Gravity: Don’t Let Go Gra Arcade 3D 1
Hot Wheels: Race Off HoW Racing 2.5D 50
3D Maze Maz Adventure 3D 10
Miami Crime Simulator MCS Action 3D 10
Real Steel World Robot Boxing RSt Action 3D 50
Rise of Kingdoms: Lost Crusade RoK Strategy 2.5D 50
Sniper 3D: Gun Shooting Games S3D Action 3D 500
Sonic Dash SoD Arcade 3D 100
Subway Surfers SuS Arcade 3D 1000

Table 3.1: Benchmark set.

reflects an application to be CPU limited when is too low, as it means that the CPU is unable to
feed the GPU fast enough, so the GPU is mostly idle. This is because the GPU can transform
and render triangles much faster than the CPU is able to submit them [39]. The last column
shows the average number of assembled primitives binned per tile, which allows us to measure
how much they stress the Tile Cache.

It can be seen that the benchmark set covers a rich variety of geometric complexity, from
games such as CCS sending 16 draw calls per frame on average, to games as Fo2 that generate
257 draw calls per frame. There is also a great diversity in the complexity in the Vertex Shader,
where we can identify that CoC has few instructions on average per vertex, about 6, to games
such as RSt close to 80, which is one order of magnitude larger. Finally, the footprint differences
in the tiling overhead among them can be observed. For instance, Fo2 requires storage and
fetching for 75 primitives per tile on average, whereas other games such as RoK have a slight
impact, requiring storage for an average of 3 primitives per tile. Thus, it can be seen that our
set of benchmarks stresses the geometry pipeline in multiple ways.

Once the geometry stage has finished, the next step is to perform the rasterization process,
where the primitives are discretized into fragments containing interpolated values of the per-vertex
attributes and then compute the color of each fragment in the Fragment Shaders. Table 3.3
shows the information obtained regarding the complexity of the fragment stage. The second
column shows the average number of fragments per primitive, which gives an idea of the size of
the primitives. The third column reports the average number of attributes per primitive, which
measures the work for the interpolation of the attributes of the vertices of a triangle. The fourth
column shows the average number of instructions executed by the fragment shaders per fragment
to evaluate the shaders’ activity. The fifth column shows the average number of ALU instructions

24

3.2. BENCHMARKS

per texture instruction. Considering that the texture instructions are the only ones that allow
the programmer to access memory within the fragment shaders, thus, the higher the ratio the
less memory-intensive is the workload. The sixth column shows the average number of texels
(texture elements) fetched per fragment, which depends on the texture filtering type employed
by the game. There are multiple filtering methods, e.g., nearest-neighbor, bilinear, and trilinear
that fetch 1, 4, and 8 texels respectively for one texture. The last column reports the overdraw
factor, computed as the average number of fragments rendered per pixel position.

Benchmark Draw calls VS insns Primitives Primitives
per frame per vertex per draw call per tile

BBR 245.13 43.99 95.23 25.37
CCS 16.07 12.77 316.81 5.58
CAm 22.37 15.35 273.14 6.70
CRa 64.58 12.91 227.20 15.95
CoC 87.38 6.40 116.50 11.16
CoS 21.31 8.59 494.31 11.55
CrS 20.07 13.45 212.62 4.68
DDS 77.83 55.30 246.53 20.85
Fo2 257.24 45.26 266.87 75.27
GoB 146.93 25.33 196.80 31.43
Gra 48.05 49.26 302.84 15.96
HoW 53.25 65.57 1003.37 58.08
Maz 63.35 41.23 654.92 45.09
MCS 152.06 39.86 78.71 11.97
RSt 31.00 77.56 414.00 14.07
RoK 61.73 33.18 53.49 3.59
S3D 62.53 40.38 345.03 23.45
SoD 64.58 64.52 250.68 12.65
SuS 65.60 33.21 782.95 25.18

Table 3.2: Geometry workload characterization.

This reported information shows the diversity covered by the workload at the fragment level
too. Notice that the number of fragments is about two orders of magnitude greater than the
number of primitives. In addition, the heterogeneity between the primitive sizes can be seen,
where HoW has little primitives whereas others as CrS has big primitives, with on average of 91
and 491 fragments per primitive, respectively. It can also be observed the variation in the number
of attributes per primitive that the Rasterizer must interpolate, ranging from SuS with less than
2 to BBR with slightly more than 4. However, we can see that there is not much variation among
them, being the average around 3. We can also see the workload diversity regarding the fragment
shaders. For instance, CoC uses fragment shaders with 3.45 instructions per fragment, whereas
BBR is significantly more complex with 26.04 instructions per fragment on average. Likewise, the
ratio between ALU per texture instructions is substantially different, from CoC providing a ratio
of 2.33, whereas SoD provides a ratio of 18.73. Finally, our benchmarks exhibit different levels
of overdraw, ranging from modest degrees such as 1.21 for SoD to significant ones as 4.50 for
Fo2. This is an important metric, as it exposes that an important amount of energy, time, and
memory bandwidth is wasted on processing occluded fragments for a given screen position.

25

CHAPTER 3. EXPERIMENTAL FRAMEWORK

Fragments Attributes FS insns ALU insns Texels
Benchmark per per per per per Overdraw

primitive primitive fragment TEX insns fragment
BBR 133.39 4.38 26.04 16.31 16.57 1.96
CCS 407.37 2.99 4.00 4.25 3.97 2.26
CAm 326.21 2.70 5.60 4.64 5.88 1.96
CRa 223.46 2.75 10.94 7.67 8.43 2.13
CoC 350.26 2.69 3.45 2.33 4.00 3.88
CoS 314.19 2.41 7.42 5.76 7.47 2.24
CrS 491.68 2.71 6.31 8.10 4.00 1.22
DDS 202.70 3.44 19.49 15.94 6.16 2.09
Fo2 178.85 3.05 17.36 7.53 14.14 4.50
GoB 244.30 3.27 14.14 17.99 5.79 3.44
Gra 105.91 3.98 17.43 9.04 10.17 1.35
HoW 91.06 3.60 25.62 11.78 17.53 2.55
Maz 117.94 2.65 17.65 12.44 7.59 2.91
MCS 457.17 3.00 10.68 13.49 4.67 3.75
RSt 346.96 3.21 8.65 11.26 4.94 2.75
RoK 387.33 2.65 14.91 18.49 4.46 1.37
S3D 243.43 3.87 18.46 11.11 10.30 2.96
SoD 215.96 3.37 17.55 18.73 6.85 1.21
SuS 229.50 1.92 9.65 11.03 4.07 2.68

Table 3.3: Fragment workload characterization.

26

4
Baseline improvement

This chapter presents the main improvements performed to the TEAPOT simulator in order
to achieve a more realistic architecture model, more closely resembling the graphics pipeline of a
modern GPU as those currently available in the market. It is important to note that it is crucial
to work with a robust and trustworthy baseline model since it is the starting point from which
new ideas arise and determine whether or not they make sense.

4.1 Throughput increase

The initial baseline model in TEAPOT had a relatively low throughput in the Raster Pipeline,
about 1 quad per cycle, which was sufficient for previous works with less flexible configurations.
However, for the proposal that will be presented in chapter 5, a more flexible baseline model
design is needed to remove some of its limitations and to avoid any potential bottleneck that
may limit the benefits of our proposal.

For this reason, on the one hand, the Raster Unit has been modified in all the stages except
for the Fragment stage, which is meant to be the bottleneck in the GPU pipeline. On the other
hand, regarding the Tiling Engine, the Tile Fetcher has been completely re-designed.

4.1.1 Raster Unit

As fragment shader programs typically include complex operations, such as texture fetching,
the Fragment stage is usually known to be the congesting zone in the pipeline. For this reason,
the throughput for most of the stages in the Raster Unit has been increased, so they do not
become a bottleneck. Thus, the throughput for the Rasterizer, Early Depth stage and Blending
stage has been increased so they can process up to 4 quads per cycle.

Recall that the Rasterizer interpolates the value of the primitive’s attributes at the pixel’s
position and then generates groups of 2x2 adjacent fragments (a quad fragment) that are sent
together to the next stage of the pipeline. In Figure 4.1, it is shown the average number of

27

CHAPTER 4. BASELINE IMPROVEMENT

attributes per primitive, where it can be seen that the average is around 3.1. Therefore, setting
it to process up to 4 attributes per quad prevents that it can become a bottleneck.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0

1

2

3

4

Av
er

ag
e

at
tr

ib
ut

es
 p

er
 p

ri
m

it
iv

e

4.38

2.70
2.99

2.69
2.41

2.75 2.71

3.44
3.05

3.27

3.98
3.60

2.65
3.00

2.65

3.21

3.87

3.37

1.92

3.09

Figure 4.1: Average attributes per primitive.

Regarding the Early Depth stage, it is not bottlenecking the system as it has no resource
limitation since it only needs to compare a pixel depth value with the one previously read from
the Z-Buffer (an on-chip buffer) in the same tile position and, depending on the result, make an
update of the pixel depth value. These on-chip buffers are fixed-latency memories, in our case 1
cycle, where no misses occur. In addition, there are separate ports for reading and writing, so
there is no conflict. Thus, there is no reason for this stage to be the bottleneck. In any case, the
throughput has been increased to 4 quads/cycle in order to allow for a continuous flow of quads
to be tested and not become a congestion point in the graphics pipeline.

As for the Blending stage, the behavior is similar to the Early Depth stage, where there is a
read/write operation over an on-chip buffer, known as the Color Buffer. Therefore, for the same
reason, the throughput for this stage has been increased to 4 quads/cycle in order not to become
an obstacle.

The remaining stage in the Raster Unit is the Fragment stage. However, as it is meant to
be the bottleneck since it is the one with the highest hardware requirements, it has not been
improved. Nevertheless, the input for this stage has. In the original baseline, there was a single
input queue for the Fragment stage, but that is a bad design choice as having one single input
queue in the Fragment stage can become a significant source of delays. The reason for this is that
each quad fragment is statically assigned to a particular Fragment Processor according to its tile
coordinates, so in case the quad sitting at the head of the queue is assigned to a busy Fragment
Processor, it blocks the queue and prevents other processors that may be idle from doing useful
work (note the input queue works in a FIFO fashion). Therefore, one first architectural change
has been to increase the number of input queues so that each shader core has its own one, in
order to minimize starvation issues.

Other important structures that need to be considered are the inter-stage queues, which
have also been re-sized, so they do not become a bottleneck. In the first place, the Tile Queue
has been sized to 32, so it can store up to 32 primitives. The reason for this particular value
is because, as seen in Figure 4.2, the average number of primitives per tile is 22.03. Thus,
for most of the games, it will be able to hold a whole tile and also leave some extra margin.
Regarding the Post-Rasterization Queue, it has been re-sized to hold up to 512 quads. Since our
tile size is 32x32 pixels, it means that each tile has 16x16 = 256 quads. However, it has been

28

4.1. THROUGHPUT INCREASE

provisioned to hold 2x that number of quads since overdraw is a very common effect in most of
the games. Thus, the chosen size will allow, in general, a continuous flow in the pipeline. As
for the Pre-Fragment Processing Queues, the reasoning is the same as for the latter, but the
overall size has been distributed among the four different queues. Thus, each of them holds up
to 128 quads. Finally, the Color Queue has been set to hold up to 64 quads, which is enough as
the processing throughput drops at the Fragment processors, right before reaching the Blending
stage.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0

10

20

30

40

50

60

70

Av
er

ag
e

pr
im

it
iv

es
 p

er
 t

ile

25.37

6.70 5.58
11.16 11.55

15.95

4.68

20.85

75.27

31.43

15.96

58.08

45.09

11.97

3.59

14.07

23.45

12.65

25.18
22.03

Figure 4.2: Average primitives per tile.

Figure 4.3 depicts the Raster Pipeline’s diagram for the baseline design. Note that in
section 4.3, we will report all the configuration parameters used for the GPU simulation.

Rasterizer

Tile Fetcher

Early Z
stage

Blending

ProcessorsFragment
Processors

4

4

4

Color Queue

4

Tile Queue

Post-Rasterization
Queue

Pre-fragment
Processing
Queues

4

Tile Cache

Z buffer

Color
buffer

Instruction
Caches

Texture
Caches

4

4

Figure 4.3: Baseline scheme.

29

CHAPTER 4. BASELINE IMPROVEMENT

4.1.2 Tiling Engine

The Tile Fetcher is a key component, as its performance is crucial for exploring and evaluating
the benefits of our proposal. Remember that this unit retrieves the tile’s primitives that the
Polygon List Builder previously stored in the main memory region referred to as Parameter
Buffer. Therefore, as our approach improves the Raster Pipeline performance, the Tile Fetcher
has to be able to provide an acceptable throughput to multiple Raster Units, so its performance
is not limited because of the Tiling Engine.

The Tile Fetcher works as follows. First, it is determined which is the next tile to be scheduled.
The order in which tiles are processed is specified by the Tiling Engine, which in the baseline
setup is the scanline order. The next step is to compute the address of the pointer to the next
primitive to fetch (which is derived from the IDs for both the primitive and the tile) and is sent
as a request to the Tile Cache. Once this primitive pointer has been received, it is calculated
the address of the pointer to the primitive’s first attribute (which is derived from the primitive
pointer previously received) and is sent as a request to the Tile Cache. Recall that attributes
describe the characteristics of the vertices of a primitive, such as color, texture, normal vectors,
etc. After receiving an attribute, it is checked if the primitive has more attributes. If so, the same
steps will be followed: calculate the address for the new attribute, send the request to the Tile
Cache, and wait until receiving it. This procedure is repeated until all the attributes belonging
to that primitive have been received. When so, the primitive will be pushed into a FIFO queue
so it can be consumed by the Raster Unit. To better clarify the explanation, Figure 4.4 shows
the structure of the Parameter Buffer graphically.

System
Memory

......

Block size
(64 bytes)

Block size
(64 bytes)

Primitive
Pointers

Pa
ra

m
e
te

r
B

u
ff

e
r

...

...

...

...

Primitive
Attributes

Primitive
Pointers

Primitive
Attributes

4 bytes 16 bytes

A0

A0

A0

A1

A1

A2

A0

A1

A2

A3

......... ...

T
il
e
 0

T
il
e
 1

T
il
e
 t

-1

Figure 4.4: Structure of the Parameter Buffer.

Nevertheless, in this baseline design, we have detected two deficiencies that have been fixed
as they were producing unnecessary stalls in the pipeline. On the one hand, it was observed

30

4.1. THROUGHPUT INCREASE

that the Tile Fetcher remains stalled during many cycles due to the memory latency of cache
misses that may occur both in the Tile Cache and in the L2 Cache. On the other hand, the
baseline design has another issue: it does not start processing the next tile until the current one
has totally finished its rendering process. Thus, a new design for the Tile Fetcher had to be
done.

Tile
Cache

Arbiter

Primitive Table

PrimID TileIDV Attribute
Data

Num. attrib.
pending

Tile Queue
0
1
1
1
1

0

0
1
1
2

0
0
1
0

xxx
xxx
xxx

0
3
2
3 xxx

Attribute reply

Pointer reply

...

...
...
...

...

...
...
...

...

...

Calculate @ next
primitive pointer

Calculate @
attributes

30 2 xxx

0 0 0 xxx

Ready
1

1 2

3

4

Primitive Pointer Attribute Pointer

Metadata Data

Figure 4.5: New hardware design for the Tile Fetcher.

The first objective is to hide memory latency. To do that, the Tile Fetcher has been
pipelined among four stages, as illustrated in Figure 4.5. The new Tile Fetcher works as follows.
For a given tile, the first stage (1) computes the address for the next primitive pointer within
that tile. Notice that the memory request for that address is pushed into a register, referred
to in the drawing as a Primitive Pointer, in which the request for the next primitive pointer is
stored. In addition, this stage also reserves an entry in a new hardware structure, which we refer
to as the Primitive Table.

As several primitives have to be fetched in parallel, a structure to organize the status of each
of them is needed. Each entry in the Primitive Table contains a “valid” field to indicate if the
entry is in use or not; the IDs for both the primitive and tile (PrimID and TileID, respectively)
to identify the owner of the data on that entry; the number of pending attributes to be received
and the attribute data itself, which are needed for further processing in the next Raster Pipeline
stage. Therefore, in case the Primitive Table is not full, a new entry in this table is reserved
and marked as valid (V), while also updating the table with the IDs for the primitive and tile it
belongs to.

Once the pointer for a primitive has been received, it proceeds to the second stage (2). In
this stage, the address of the next attribute of a primitive is computed and pushed to a register
that we refer to as Attribute Pointer, which holds the memory address for the next primitive
attribute request. In addition, when a primitive is inserted in the Primitive Table, the field that

31

CHAPTER 4. BASELINE IMPROVEMENT

tracks the number of pending attributes is set to the total number of attributes.

When the Tile Cache serves an attribute, it is passed over to the third stage (3). In this
stage, it is updated the Primitive Table by storing the attribute data received and decreasing
the number of pending attributes. It also compares if that particular primitive has received all
of its attributes, or there are more to be requested. In case it has finished, the next cycle will
execute the last stage (4), which pushes the primitive and its attributes data to the output
FIFO queue referred to as Tile Queue, from which the Raster Pipeline is fed. Otherwise, it will
go back and compute the address for a new attribute for that primitive (2). However, note
that in order to maintain the primitive order, it will be pushed in case it is the oldest primitive
in the Primitive Table. Contrarily, it will wait until it becomes.

Notice that, before reaching the Tile Cache, there is an arbiter for both Primitive Pointer
and Attribute Pointer registers, which sends up to one memory request per cycle. This arbiter
has been added in order to orchestrate which memory request is sent before another, as the
Tile Cache has only one port (thus, the bottleneck in the Tile Fetcher is the Tile Cache). The
arbiter follows an attributes-first policy, giving priority to the attribute requests rather than
pointer requests. The reason for this is that the attribute requests in the Attribute Pointer
register belong to a previous primitive than the one being requested in the Primitive Pointer
register. This is an important factor to take into account, as we process the tiles in-order. Thus,
prioritizing attributes over primitives avoids stalling, as data is not pushed to the Tile Queue
unless all the attribute data belonging to a primitive has been received.

On the other hand, the other objective for improving the Tile Fetcher’s efficiency is to
pipeline the tiles. As mentioned before, we identified an issue with the Tile Fetcher which does
not start fetching the next tile until the current one has finished all the rendering process. This
is a significant source of inefficiency since tiles are totally independent of each other. Thus, this
characteristic of independence has a lot of potential, since the Tile Fetcher can proceed to process
the next tile right after finishing the previous one, avoiding unnecessary stall cycles that cause a
serious performance bottleneck in the pipeline. However, as tiles cannot be mixed between them,
some extra logic has been added between the Raster Pipeline stages to act as barriers. This way,
a stage will not start processing a new tile until it has completely finished the current one.

Another important aspect to consider is the impact of this new hardware structure on the
GPU energy consumption instead of just focusing on the performance benefits. The Primitive
Table has been sized to 16 entries, which is a small number that provides a good trade-off
between performance and table size. The size of each entry is a bit big, as it needs to store all the
attribute data, which occupy significant space. So, an entry of the Primitive Table is composed
of metadata (marked in purple in the Figure) and attribute data (marked in orange). As for the
metadata side, it is required 1 bit to mark an entry as in-use or not. Subsequently, given that
the maximum number of primitives within a tile has been set to be 1264 as some games were
requiring a close resource value, 11 bits are enough to identify these primitives in the primID
field. As for the tileID, given that the smartphone employed for the experiments is equipped with
a 1920x1080 display (which is a common display resolution nowadays) and that the tile size is set
to 32x32, the maximum tiles per frame that we can obtain is ⌈1080

32 ⌉ × ⌈1920
32 ⌉ = 34 × 60 = 2040.

As a result, 11 bits are sufficient to be able to identify all the tiles present on each frame. Finally,
4 bits are needed for accounting for the number of pending attributes to be received, as OpenGL
ES 3.0 guarantees support for up to 16 attributes per vertex [17]. We have not added more
bits for it as we have seen that none of our evaluated benchmarks has even come close to it.
Summarizing, for storing the metadata it is needed: 1 bit (V) + 11 bits (primID) + 11 bits

32

4.2. DRAM MEMORY MODEL UPGRADE

(tileID) + 4 bits (number of pending attributes) = 27 bits.

As for the attribute data part (where the attributes of a primitive are stored), given that
it is guaranteed hardware support for at least 16 attributes per vertex, and each primitive has
three vertices, this means that we have up to 48 attributes per primitive. As each attribute is
16-byte long, the data field for each entry requires 48 attributes × 16 bytes per attribute = 768
bytes (or 6144 bits).

With all this, each entry of the Primitive Table is 27 bits + 6144 bits = 6171 bits. As a result,
even though some fields require a significant amount of space, the full table remains relatively
small, requiring about 12KB (16 entries × 6171 bits/entry = 98736 bits) of space in total.

Last but not least, Figure 4.6 shows the relative energy consumption of the Primitive Table
over the total energy consumed by the overall GPU and main memory, where it can be seen that
this table has a negligible effect.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Pr
im

it
iv

e
Ta

bl
e

en
er

gy
 c

on
su

m
pt

io
n

(%
)

0.71%
0.78%

0.67%

0.93%
1.07%

0.94%
0.85%

0.93%

1.30%

1.01%

0.72%

1.02%

1.31%

0.59%

0.32%

0.83%
0.75%

0.89%

1.72%

0.91%

Figure 4.6: Impact on energy consumption by the Primitive Table.

4.2 DRAM memory model upgrade

Previous to this work, TEAPOT used DRAMSim2 [31] to accurately model the timing of
main memory, and McPAT power models [23] to estimate its energy consumption. Given that
DRAM technology has evolved over the last few years, it became outdated as newer protocols
have been introduced into the market.

In order to update the main memory model incorporated in TEAPOT, we have relied on
DRAMsim3 [24], a successor to DRAMSim2. DRAMsim3 is a cycle-accurate system memory
simulator that models major DRAM technologies: in addition to DDR, it also includes GDDR,
LPDDR and stacked memories. In our case, we employ the LPDDR4 memory model as it is a
low-power memory that is widely used in embedded devices.

Furthermore, this tool also models the DRAM memory controller, DRAM banks, and provides
interfaces that permit interaction with the GPU. Another interesting point compared to other
similar works is that this timing simulator has been hardware validated to check its simulation
accuracy.

33

CHAPTER 4. BASELINE IMPROVEMENT

Last but not least, one of the new things it presents is that it provides a power model. Hence,
the power model employed for system memory has also been updated, so now we use the one
offered by DRAMsim3 instead of using McPAT. We believe this is a reasonable choice since
it is a much newer tool, and we expect it to be more realistic. The energy consumption is
computed on-the-fly where some activity factors are gathered during the simulation, which are
eventually combined with the corresponding energy increments. In addition, it also provides
power consumption statistics by dividing by the execution time.

4.3 GPU configuration

Table 4.1 provides the architectural parameters employed to perform the experimentation,
which have been configured so it resembles a typical low-power GPU model.

34

4.3. GPU CONFIGURATION

Baseline GPU Parameters
Tech Specs 800 MHz, 1V, 22nm
Screen Resolution 1920x1080 (Full HD)
Tile Size 32x32 pixels

System Memory
Tech Specs 1.2 GHz, 1.2V
Latency 50-100 cycles
Bandwidth 4 bytes/cycle (dual-channel LPDDR4)
Size 8 GB

Queues
Vertex (input and output) 16 entries
Primitive and Tile 32 entries
Post-Rasterization 512 entries
Pre-Fragment processing (x4) 128 entries
Color 64 entries

Caches
All of 64 bytes/line

Vertex Cache 4 KB, 2-way associative, 1 bank, 1 cycle
Tile Cache 32 KB, 4-way associative, 1 bank, 2 cycles
Texture Caches (x4) 8 KB, 2-way associative, 1 bank, 2 cycles
Instruction Caches (x2) 16 KB, 2-way associative, 2 banks, 2 cycles
L2 Cache 2 MB, 8-way associative, 8 banks, 18 cycles

On-chip memories
Depth Buffer 4 KB, 1 bank, 1 cycle
Color Buffer 4 KB, 1 bank, 1 cycle

Non-programmable stages
Primitive Assembly 1 triangle/cycle
Rasterizer 16 attributes/cycle
Early Z stage 20 in-flight quad fragments
Blending stage 20 in-flight quad fragments

Programmable stages
Vertex stage 4 vertex processors
Fragment stage 4 fragment processors

Tile Fetcher hardware
Primitive Table 16 entries

Table 4.1: GPU Simulation Parameters.

35

CHAPTER 4. BASELINE IMPROVEMENT

36

5
Parallel Tile Rendering

In this chapter, Parallel Tile Rendering (PTR), a novel approach to boost GPU performance,
is proposed. The motivation for this is that it is observed that most of the rendering time is
invested in the Raster Pipeline, as shown in Figure 5.1. Furthermore, as previous work [5] has
found this is the most energy-consuming task, we seek to reduce it.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

ut
io

n
of

 G
PU

 t
im

e
(%

)

Geometry cycles Raster cycles

Figure 5.1: Distribution of time in the GPU.

5.1 Baseline architecture

The idea behind Parallel Tile Rendering (PTR) is to rasterize multiple tiles in parallel,
maintaining the barrier of processing one tile per stage, with the purpose of reducing the cycles
required for rasterizing the whole frame. This makes sense since it is observed that the Tile
Fetcher now has enough throughput for feeding two Raster Units at once. Having two independent
Raster Units will allow us, ideally, to perform the rasterization process in half of the time.

The assumed GPU baseline implements a Tile-Based Rendering (TBR) architecture, as
explained in section 2.2. To rasterize multiple tiles in parallel, the Raster Pipeline now contains

37

CHAPTER 5. PARALLEL TILE RENDERING

two Raster Units, Raster Unit 0 and Raster Unit 1, each containing the same amount of resources
as in the baseline, as illustrated in Figure 5.2. Note, however, that one Tile Queue is required for
each Raster Unit as having a single FIFO queue would become a big source of delays because one
Raster Unit would not make progress until the other one completely consumes its data.

Tile Fetcher
Control Unit for
queue selectionRaster Pipeline

Memory
Controller

m_done = m_done0 and m_done1

A
rb

ite
r

Tile Queue 0

Tile Queue 1

m_done0

Raster Unit 0

RasterizerEarly Z
stage

Z
buffer

Fragment
Processors

Instruction
caches

Instruction
caches

Instruction
caches

Instruction
caches

Texture
caches

Texture
caches

Texture
caches

Texture
caches

Color
buffer

Blending
Unit

Flushing
Unit

m_done1

Raster Unit 1

RasterizerEarly Z
stage

Z
buffer

Fragment
Processors

Instruction
caches

Instruction
caches

Instruction
caches

Instruction
caches

Texture
caches

Texture
caches

Texture
caches

Texture
caches

Color
buffer

Blending
Unit

Flushing
Unit

Figure 5.2: Raster Pipeline architecture employed for Parallel Tile Rendering. Each Raster Unit
has its own private resources.

Since the Tile Fetcher has multiple output queues, a Control Unit is needed to select which
Raster Unit to send each primitive to. Note that the scheduling needs to be done at tile-level;
otherwise, the primitive order could be broken. In addition, it is required to schedule at tile-level
since all the on-chip buffers (Depth Buffer and Color Buffer) are tile-sized, separate for each
Raster Unit, and not backed in memory. So, all primitives belonging to the same tile will be
scheduled to the same Raster Unit. Otherwise, the Raster Pipeline will render incorrectly. In
this work we employ a static tile assignment in an interleaved manner. Thus, Tile 0 will be
assigned to the queue belonging to Raster Unit 0, Tile 1 will be assigned to the queue belonging
to Raster Unit 1, Tile 2 will be assigned again to the queue belonging to Raster Unit 0, and so
on. In other words, it works in a round-robin fashion. Nevertheless, other approaches have also
been explored.

Aside from static scheduling, dynamic approaches have been considered. We have studied a
couple of policies, which we believe are reasonable. On the one hand, it has been evaluated a
dynamic scheduling based on the fastest Raster Unit. Within this method, a tile is scheduled to
the Raster Unit with fewer elements to process in its Tile Queue, which means that the pipeline
is more fluid. On the other hand, it has been explored a mixed scheduling policy between the
other two: it employs a dynamic scheduling, also favoring the fastest, but in case of a tie, it
applies a round-robin policy by selecting the non-last-chosen queue.

Figure 5.3 compares the speedups of PTR over the baseline when applying each of these
tile scheduling policies. As it can be seen, all of them are equally effective. Achieving that

38

5.1. BASELINE ARCHITECTURE

both Raster Units are equally workload-balanced is an important goal, and is the main focus of
dynamic policies. However, we chose the static scheduling, which is the most straightforward
policy and, as shown in Figure 5.4, it already achieves a good workload balancing. In addition, it
is the cheapest in hardware even though the dynamic approaches would be simple to implement,
but they do not bring any significant benefit over the static.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

1.
84 1.

9

1.
71 1.

82 1.
92

1.
82 1.

9

1.
89

1.
84 1.

89

1.
83 1.

91

1.
86 1.
87

1.
54

1.
76

1.
94

1.
74

1.
88

1.
83

1.
83 1.

93

1.
72

1.
84 1.

93

1.
79

1.
94

1.
88

1.
82 1.

88

1.
78 1.

88

1.
82 1.
86

1.
55

1.
77

1.
94

1.
74

1.
89

1.
831.
84 1.

93

1.
72

1.
84 1.

94

1.
8

1.
94

1.
89

1.
82 1.

89

1.
79

1.
91

1.
83 1.
87

1.
55

1.
77

1.
94

1.
75

1.
9

1.
84

Static interleaved Dynamic Dynamic interleaved

Figure 5.3: Speedup comparison in rasterization when applying different tile scheduling policies.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS
Benchmarks

0

1

2

3

4

Ac
ti

ve
 c

yc
le

s
in

 F
ra

gm
en

t
St

ag
e

1e6
Raster Unit 0
Raster Unit 1

Figure 5.4: Active cycles in Fragment Stage with a static tile scheduling. Both Raster Units are
quite well workload balanced.

Last but not least, an arbiter is also required for orchestrating the order between Raster
Units when flushing to memory. This arbiter first determines which blending units among the
different Raster Units are ready to flush. Then, in case of more than one being ready, it selects
which one of them is going to be flushed. An older-first policy is applied in case of multiple
candidates, giving priority to the slowest Raster Unit.

Improving energy efficiency is an important design aspect when designing a system, but this
is even more critical in a mobile one, as we saw in the introduction of this work. Thus, to finish,
Figure 5.5 presents the energy consumption for the overall GPU and system memory, for both
the baseline and PTR. It can be observed that in most of the cases, important energy savings
are achieved when employing PTR, with an average decrease of 9.86%. Note that this is in
addition to an 83% performance speedup as shown in Figure 5.3. It must also be observed that
some benchmarks show a much higher benefit. For example, S3D achieves a 94% increase in
performance and a 13.09% decrease in energy. We have also checked the area overhead and we

39

CHAPTER 5. PARALLEL TILE RENDERING

have seen an increase of 40% in area, according to McPAT, and yet we end up with an almost
10% decrease in energy.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0.000

0.005

0.010

0.015

0.020

En
er

gy
 c

on
su

m
pt

io
n

(J
)

10
.6

7%

9.
52

%

7.
24

%

12
.2

3%

10
.2

6% 11
.3

9%

4.
64

%

10
.9

3%

10
.5

1%

12
.7

0%

8.
74

%

7.
65

%

9.
82

%

12
.3

7%

4.
97

%

10
.3

2%

13
.0

9%

9.
30

%

11
.0

7%

9.
86

%

Baseline PTR

Figure 5.5: Comparison of the overall energy consumption between the baseline and PTR,
presenting the energy reduction obtained with PTR.

5.2 Better than just doubling resources

To provide more insights as to Parallel Tile Rendering is a promising approach, it is a must
to compare it with the case of a single Raster Unit. To make a fair comparison with PRT, we
have doubled the resources in the single Raster Unit setting to have twice as much the resources
as the initial baseline. However, along this section we will see that PTR is capable of making a
better utilization of the resources and it better exploits parallelism, achieving a higher speedup
than simply doubling the computing resources. To this end, the experiments have been carried
out changing the following resource capabilities:

• Rasterizer can reach up to a maximum throughput of 8 quads/cycle. Therefore, processing
up to 32 attributes/cycle.

• Early Z stage can reach up to a maximum throughput of 8 quads/cycle, with up to 8
concurrent reads and 8 concurrent writes to the Z-buffer. Therefore, having up to 40
in-flight quads.

• Fragment stage is composed of 8 Fragment processors, leading to 8 Instruction caches and
8 Texture caches.

• Blending stage can reach up to a maximum throughput of 8 quads/cycle, with up to 8
concurrent reads and 8 concurrent writes to the color buffer. Therefore, having up to 40
in-flight quads.

Figure 5.6 shows the speedup obtained when rendering with double the resources in a single
Raster Unit. For ease of comparison against using PTR, Figure 5.7 compares the speedup of
PTR and a single Raster Unit with double the resources, w.r.t. to the baseline single Raster
Unit.

40

5.2. BETTER THAN JUST DOUBLING RESOURCES

We can see from the results that PTR provides better performance than just doubling
resources for the case of a single Raster Unit. The reason for this is that PTR is more likely to
take advantage of the maximum throughput that the stages can provide while also offering more
flexibility in barriers.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Sp
ee

du
p

1.71 1.77

1.59
1.67

1.86

1.66
1.79 1.77 1.80 1.78

1.38

1.77 1.77 1.76

1.42

1.61

1.84

1.57

1.80
1.70

Figure 5.6: Speedup when rasterizing with the double of resources in a single Raster Unit.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sp
ee

du
p

7.
8% 7.

2%

7.
8% 9.

3%

3.
4%

9.
8%

6.
2%

7.
3% 2.
7%

6.
5%

32
.3

%

8.
0%

5.
4%

6.
1%

8.
7%

8.
8%

5.
8%

11
.1

%

4.
3%

8.
3%

PTR 1RU with double resources

Figure 5.7: Benefits of PTR over just doubling resources.

Nonetheless, it can be observed that when employing PTR we do not reach a 2X performance
for any of the benchmarks. The reason is because we have not doubled the bandwidth on upper
levels in the memory hierarchy (L2 cache and DRAM). Note that it can be observed two types of
games: the ones that are close to reach the 2X speedup, and the ones that are further. Figure 5.8
shows the breakdown of the execution time for each of the benchmarks, which gives us a hint on
whether a benchmark is compute- or memory-bound. The greater the part required for memory
accesses, the more memory-bound the benchmark is. Contrarily, a significant part required for
computation means that the benchmark is compute-bound. This is an important aspect to
consider given that we are increasing only the computing capabilities. This implies that the
benefits of this doubling will affect the compute-bound benchmarks more than the memory-bound
benchmarks, as their performance is still dominated by memory accesses. In other words, as also
pointed by Amdahl’s law, if only one part of the system is improved while there is another part
which is not but it is very influencing, the overall achieved benefit will be limited. In this case, if
an application is very memory intensive, less overall benefits will be obtained as the memory

41

CHAPTER 5. PARALLEL TILE RENDERING

subsystem remains the same. In fact, CCS and RoK are further from achieving the desired 2X
performance speedup, showing a speedup of 1.71 and 1.54, respectively. In addition, both are
memory-bound, as can be seen from Figure 5.8. Figure 5.9 more clearly shows this correlation
where these benchmarks that are further are the ones that have higher L1 and L2 misses per
1000 instructions. In this case, CCS has the highest L1 MPKI and RoK has the highest L2
MPKI.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0

20

40

60

80

100

Ex
ec

ut
io

n
ti

m
e

(%
)

Compute Memory

Figure 5.8: Breakdown of the execution time between compute and memory tasks for PTR.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0

5

10

15

20

25

30

35

40

M
is

se
s

pe
r

10
00

 in
st

ru
ct

io
ns

 (
M

PK
I)

L1 Texture caches L2 cache

Figure 5.9: Misses per 1000 instructions (MPKI) for the L1 texture caches and L2 cache due to
texture accesses for PTR.

Another observation here is that even though it is clear from Figure 5.7 that just doubling the
resources does not provide as much speedup as PTR, GRa and RoK speedups are significantly
lower than the other benchmarks. To understand this, Figure 5.10 shows the average number of
fragments per tile, which essentially represents the number of threads assigned to the Fragment
Processors per tile. By this information, we notice that four benchmarks (CrS, GRa, RoK, and
SoD) have a significantly low workload per tile. Moreover, the workload is even lesser when it is
divided among 8 Fragment Processors, which is the case when having one single Raster Unit with
double the resources. Recall that the Fragment Stage cannot start processing a new tile until
the previous one has finished. Also note that Fragment Processors, also known as GPU cores,
rely on multi-threading to produce a high throughput. When the occupancy of the Fragment
Processor is low, the throughput is also low. Long Latency operations like a memory miss renders

42

5.3. OPPORTUNITIES FOR TEXTURE SHARING

a thread “blocked” in the Fragment Processor. As a result, benchmarks with low workload and
high MPKI lead to low performance. Out of the four benchmarks mentioned above, all have
low workloads but only two of them have high MPKI: GRa has a high L1 MPKI, and RoK has
a high L2 MPKI. Thus, this explains why both these benchmarks show an exceptionally low
benefit from just doubling resources within one single Raster Unit.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0

1000

2000

3000

4000

Av
er

ag
e

fr
ag

m
en

ts
 p

er
 t

ile

1964.5 1978.1
2274.0

3909.9

2256.7 2137.4

1231.1

2096.9

4532.8

3444.4

1360.9

2553.9

2915.4

3839.4

1376.1

2768.0
2962.5

1239.1

2728.0
2503.6

Figure 5.10: Average fragments per tile.

5.3 Opportunities for texture sharing

Throughout this chapter we have verified that employing Parallel Tile Rendering is a good
approach for boosting GPU performance. Nevertheless, this does not end here. PTR has opened
doors to new explorations such as sharing Texture caches between Raster Units.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0

20

40

60

80

100

M
em

or
y

Tr
af

fic
 (

%
)

Textures
Colors

Parameter Buffer Writes
Parameter Buffer Reads

Input Geometry
Instructions

Figure 5.11: Memory bandwidth usage.

Fetching from memory is one of the major sources for energy inefficiency, where texture data
is typically one of the main causes of main memory accesses, as shown in Figure 5.11. Therefore,
we seek to improve texture locality by sharing texture caches between different Raster Units.
Figure 5.12 shows that, on average, almost 50% of the texture addresses are reused inside a
frame between different tiles. Moreover, most of these shared texture blocks are accessed in the
next tile, which suggests that this reuse likely occurs in the edges of the tiles. Therefore, sharing
texture caches could take advantage of the maximum reuse of textures between two Raster Units.
In addition, the plot also shows the reuse at a distance of two tiles, which gives us a hint on

43

CHAPTER 5. PARALLEL TILE RENDERING

the locality in a Raster Unit as it will process tiles at a distance of two. It might seem that this
reuse is low, but we have considered only as reuse in distance 1 in the case of being reused in
both distance 1 and 2. Hence, the energy efficiency could be improved, but also performance,
when enhancing texture locality thanks to inter-tile locality. We have explored this potential,
and chapter 6 is the study on the inter-tile texture sharing technique.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0

20

40

60

80

100

Te
xt

ur
e

bl
oc

k
re

us
e

(%
)

49.7%
54.8%

45.3%

68.5%
63.3%

38.0%

58.6%

39.2%

98.4%

48.3%

32.3%

57.8% 61.5%

38.8%

14.4%

31.0%

62.5%

34.5%

47.7% 49.7%

Distance = 1 Distance = 2 Distance > 2

Figure 5.12: Fraction of shared texture blocks among tiles in a frame. On average, 50% of them
are reused inside a frame.

44

6
Inter-tile texture sharing

This chapter extends the aforementioned Parallel Tile Rendering (PTR) approach by benefiting
from texture locality between tiles. First, it is introduced the main motivation behind and why
it is challenging. Then, the changes performed in the architecture are presented, including a set
of innovations that may enhance the synergy between processors and the texture caches, but
also the workload granularity. Finally, the experimental results are reported.

6.1 Motivation

During PTR’s evaluation, we realized that texture caches could be a common point between
both Raster Units by exploiting texture locality between tiles. Therefore, we seek to reuse texture
blocks, as we have seen there are some opportunities on that regard, but we also seek to maintain
a balanced workload among the fragment processors, which is crucial. This latter aspect about
workload balancing is not trivial as we will see below.

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(a) Quad-level
(fine-grained)

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

(b) Quadrant-level
(coarse-grained)

Figure 6.1: Different assignments of quads to fragment processors within a tile.

45

CHAPTER 6. INTER-TILE TEXTURE SHARING

Figure 6.1 illustrates an example where it is shown the trade-off between locality and
workload balancing. These diagrams show different alternatives of how quads can be assigned
to fragment processors within a tile. Each quad has a number assigned, ranging from 0 to 3, which
represents the processor in charge of processing it. Bear in mind that, in the fragment stage, only
a single tile is processed at a time. When quads are assigned following a quadrant distribution, as
depicted in right-hand scheme, locality is favored. In contrast, workload distribution is harmed,
causing performance degradation because at a given moment all the workload concentrates
on a few cores, or even on a single one, while the rest remain idle. On the other hand, these
workload distribution issues are solved by distributing at a more fine-grained granularity, as
represented in the left-hand scheme. However, locality within the texture caches is lost. Hence,
workload mapping is challenging, and we have analyzed different quad mapping distributions,
which are detailed in section 6.3, to find a balance between workload distribution and locality.
In addition, it is not just a problem of workload distribution among processors, but also how to
map processors to the shared caches in order to exploit the maximum possible locality.

6.2 Baseline architecture

The idea behind this PTR extension is to benefit from the locality that may arise in the tile
frontiers. As before, the baseline GPU implements a Tile-Based Rendering (TBR) architecture,
following the modified architecture presented in chapter 5 but with some little changes. In
particular, this new design shares one texture cache between two fragment processors, each from
a different Raster Unit. As a result, the number of textures caches is halved whereas we keep the
same cache size of 8KB for each texture cache. Note that this design allows to reduce the number
of power-hungry cache ports to a half. The rest of components remains the same. Figure 6.2
illustrates this new design.

Raster Pipeline

Raster Unit 0

Early Z
stage Rasterizer

Fragment Stage

Core Core Core Core

Texture
cache

Texture
cache

Texture
cache

Texture
cache

Blending
Unit

Flushing
Unit

Color
buffer

Z
buffer

Raster Unit 1

Early Z
stage Rasterizer

Fragment Stage

Core Core Core Core
Blending

Unit
Flushing

Unit

Color
buffer

Z
buffer

Figure 6.2: Raster Pipeline architecture employed for PTR’s extension. Each processor shares
the texture cache with a processor from another Raster Unit.

46

6.3. QUAD MAPPING DISTRIBUTIONS

Since there are no longer private texture caches on each processor, but they are rather
shared, special care must be taken when assigning quads to processors, but also on how to assign
these processors to these shared caches. Therefore, we have studied combinations of workload
assignment to processors, but also processors to caches. This analysis is described in the next
section.

6.3 Quad mapping distributions

We have seen that enhancing texture locality is not trivial as many factors are involved, such
as at which granularity distribute the quads, how quads are assigned to which processor, and
which processors are sharing caches. Also, it is important to try that all the caches have the
same opportunities for benefiting from the sharing in the borders. For it, in this section we
present some of these combinations explored, identified by a reference name to ease the results
explanation later. To better clarify the idea behind them, they are depicted in Figure 6.3, where
each color represents the texture cache where each quad is assigned to: red, green, blue, and
gray represent texture caches 0, 1, 2, and 3, respectively.

3 0

2 1

0 2

1 3

2 1

3 0

1 3

0 2

Tile 0 Tile 2Tile 1 Tile 3

1-quadrant

2-vertical-L

3-vertical-Q

Tile 0 Tile 1

Tile 0 Tile 1

4-mini-vertical

Tile 0 Tile 1

5-UD-Q 6-UD-Q-x2

Tile 0 Tile 1Tile 0 Tile 1

47

CHAPTER 6. INTER-TILE TEXTURE SHARING

8-UD-L-x2

Tile 0 Tile 1

7-UD-L

Tile 0 Tile 1

13-snake-fine12-snake

Tile 0 Tile 1 Tile 0 Tile 1

11-blocking

Tile 0 Tile 1

9-UD-L-x4

10-UD-L-x4-zorder

Tile 0 Tile 1

17-mini-UD-x2

14-Z-Q

16-mini-UD

Tile 0 Tile 1 Tile 0 Tile 1

Tile 0 Tile 1

15-Z-L

Tile 0 Tile 1

Figure 6.3: Evaluated quad mapping distributions.

48

6.4. EXPERIMENTAL RESULTS

We have a studied a plethora of combinations of work distribution but also cache mapping.
For each of the combinations is shown the mapping of two consecutive tiles, except for 1-quadrant
that are shown the first four because this mapping rotates. Furthermore, all the combinations
are processed in a scanline manner as in the baseline, except 10-UD-L-x4-zorder which follows a
Z-order pattern, and 12-snake and 13-snake-fine that follow a snake pattern. Notice that many
of the combinations are derivatives of others.

For 1-quadrant the workload within the tile is distributed, as the name says, in quadrants.
To better exploit locality, it performs rotations in a way so all the caches may benefit from
reuse. In addition, it is divided in quadrants which also allow to exploit locality within that tile.
Then, 2-vertical, 3-vertical-Q and 4-mini-vertical distribute the work vertically and differ in the
granularity. The subsequent 5-UD-Q, 6-UD-Q-x2, 7-UD-L, 8-UD-L-x2, 9-UD-L-x4, 10-UD-L-x4-
zorder schedule the workload in a round-robin fashion which enhances the inter-tile locality as
all the caches share tile edges at each tile. In fact, 10-UD-L-x4-zorder is the same scheduling as
9-UD-L-x4 but the tile scheduling is processed following a Z-order. 11-blocking distributes the
workload by blocking at a finer grain than by quadrants, maintaining locality within the tile
but allowing inter-tile locality alternating caches. 12-snake and 13-snake-fine divide the work
horizontally, in the sense that each cache has room for inter-tile sharing in each tile. 14-Z-Q and
15-Z-L distribute the work in the sense that each cache is assigned forming a Z shape, while at
each tile two caches may benefit from tile-edge locality. Finally, 16-mini-UD and 17-mini-UD-x2
also schedule the workload following a round-robin fashion.

6.4 Experimental results

This section presents the experimental results obtained when employing the different quad
mapping distributions. Given that we have evaluated a plethora of benchmarks and various
combinations, Figure 6.4 presents a plot that shows the average speedup obtained against the
baseline PTR for all the games for each of the different configurations introduced.

1-q
ua

dra
nt

2-v
ert

ica
l-L

3-v
ert

ica
l-Q

4-m
ini-

ve
rtic

al

5-U
D-Q

6-U
D-Q

-x2
7-U

D-L

8-U
D-L-

x2

9-U
D-L-

x4

10
-UD-L-

x4
-zo

rde
r

11
-bl

ock
ing

12
-sn

ake

13
-sn

ake
-fin

e
14

-Z-
Q

15
-Z-

L

16
-m

ini-
UD

17
-m

ini-
UD-x2

Combinations

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

0.91 0.93 0.96 0.95 0.96 0.96 0.96 0.97 0.97 0.96 0.97
0.91 0.94 0.95 0.95 0.96 0.97

Figure 6.4: Average speedup for all the games for each configuration with respect to the baseline
PTR, which owns 8 private texture caches.

As can be seen, for all of the combinations we are losing a bit of performance. Most of them
are very close to 1, which would mean that no performance is gained respect having private
caches. However, combinations 1-quadrant and 12-snake obtain the worst performance results.
This is expected because, as we introduced in the beginning of this chapter, workload balancing

49

CHAPTER 6. INTER-TILE TEXTURE SHARING

gets penalized when the workload distribution is performed at coarse grain. Thus, performance
drops, even though they are the best approaches for benefiting from locality.

0 200 400 600 800
Tile id

0.0

0.2

0.4

0.6

0.8

Co
ef

fic
ie

nt
 o

f v
ar

ia
ti

on

(a) BBR employing 1-quadrant

0 200 400 600 800
Tile id

0.00

0.05

0.10

0.15

0.20

0.25

Co
ef

fic
ie

nt
 o

f v
ar

ia
ti

on

(b) BBR employing 5-UD-Q

Figure 6.5: Example of processor workload balance using different combinations in a given frame.

For example, Figure 6.5 shows a comparison for the game BBR between the processor
workload employing 1-quadrant and 5-UD-Q, which schedule workload in a coarse- and fine-
grained manner respectively. This metric evaluates the standard deviation/mean, which has been
measured by computing the average and deviation for each processor’s number of cycles active.
Thus, we can obtain the correlation between the workload within a tile and the speedup. If the
coefficient is close to 0, it means that there is little variability in the data. On the other hand, if
they tend to 1, it is a very disperse data. As for the combination with coarser grain we reach
near 0.8, whereas with the fine-grained combination it reaches 0.2. Thus, there is imbalance in
the coarser grain combination.

In addition, we have evaluated the energy savings compared to the baseline PTR, as shown in
Figure 6.6. However, we can see that for most of the cases we obtain a bit less of energy savings.
The reason for this is because of the static power consumption, as our execution time lasts a bit
longer (as shown in the previous speedup plot). Even though, it also makes sense to have some
little savings as we consume less static power because we have reduced the number of caches,
while dynamic power remains unchanged as the number of accesses is the same.

1-q
ua

dra
nt

2-v
ert

ica
l-L

3-v
ert

ica
l-Q

4-m
ini-

ve
rtic

al

5-U
D-Q

6-U
D-Q

-x2
7-U

D-L

8-U
D-L-

x2

9-U
D-L-

x4

10
-UD-L-

x4
-zo

rde
r

11
-bl

ock
ing

12
-sn

ake

13
-sn

ake
-fin

e
14

-Z-
Q

15
-Z-

L

16
-m

ini-
UD

17
-m

ini-
UD-x2

Combinations

1.0
0.5
0.0
0.5
1.0
1.5
2.0

En
er

gy
 s

av
in

gs
 (

%
)

-1.32

-0.63
-0.27 -0.22 -0.18 -0.24

0.06 0.13 0.22

-0.36

2.23

-1.23

-0.33 -0.34 -0.49

0.02 -0.02

Figure 6.6: Average energy savings for all the games for each configuration respect to the baseline
PTR, which owns 8 private texture caches.

11-blocking is one of the combinations that offers better performance, but also is the one with
which we achieve better energy savings. Therefore, in Figure 6.7 we compare game by game this
best combination with respect to the baseline PTR.

50

6.4. EXPERIMENTAL RESULTS

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

0.96 0.95 0.99 0.98
0.93 0.95 0.97 0.98

0.92
0.97 0.93 0.93

1.09

0.97 0.98 0.97 0.95
1.03

0.95 0.97

Figure 6.7: Speedup when employing 11-blocking combination with respect to the baseline PTR,
which owns 8 private caches.

All of the games achieve a similar speedup. Even though many of the combinations achieve
a similar performance speedup, notice that the ones that provide the best are scheduled in an
intermediate granularity, not as coarse as by quadrants neither as fine as by quads. In addition,
11-blocking is reasonable that it provides one of the best results as it is a combination that
seeks to exploit locality within the tile, while also inter-tile with not such a coarse distribution
granularity.

We have seen that we have not obtained an improvement in performance as we were expecting,
by exploiting inter-tile locality. Even though we did not obtain much benefit, we have reduced
the aggregated size of the caches. According to McPAT, we have reduced a 4% of the area
without a decrease in performance or an increase in energy. Moreover, Figure 6.8 shows the
misses per 1000 instructions (MPKI) obtained when PTR employs private caches compared to
our selected better combination, 11-blocking. As it can be seen, we improve locality in caches,
which is another important metric to take into account. However, at this point we cannot see
the fully potential of sharing caches in performance terms. Thus, we leave for future research
the exploration for this reason, even though we have identified one potential bottleneck: having
one port, which we have not doubled for being more energy-efficient. Therefore, we see that we
currently have a trade-off between lower cost and performance.

BBR CAm CCS CoC CoS CRa CrS DDS Fo2 GoB Gra HoW Maz MCS RoK RSt S3D SoD SuS avg
Benchmarks

0

5

10

15

20

25

30

35

40

L1
 T

ex
tu

re
 c

ac
he

s
M

PK
I

Private Texture caches Shared caches

Figure 6.8: Misses per 1000 instructions (MPKI) for the L1 texture caches when employing PTR
with private caches compared to shared caches with the 11-blocking combination.

51

CHAPTER 6. INTER-TILE TEXTURE SHARING

52

7
Related work

Although there are plenty of techniques in the literature that seek to boost GPUs performance
in several ways, there are few focused on parallel graphics rendering methods. Arnau et al.
propose Parallel Frame Rendering (PFR) [9], which splits the GPU into two clusters where two
consecutive frames are rendered in parallel. They can do this since they realize that, because of
the high degree of similarity between consecutive frames, significant bandwidth can be saved
by processing multiple frames at the same time. In this way, they exploit the similarity of
the textures that overlap this execution of consecutive frames, which we have seen that has a
great impact on both DRAM accesses and the overall energy consumption. This is the most
similar proposal to our work as it also outlines the textures as a point of intersection to boost
performance. However, our approach pursues to accelerate the rendering process, by processing
frame by frame, while exploiting inter-tile locality rather than inter-frame.

GPUpd [22] and CHOPIN [30] are two proposals that aim to scale the graphics rendering
performance by distributing the workload among different GPUs. That is, they attempt to speed
up the rendering process in the sense that each device has assigned, and processes, a disjoint region
of a single frame. Despite speeding the rendering time, they target desktop-like architectures
instead of mobile GPUs where energy efficiency is more critical. In addition, it is true that our
proposal replicates some GPU components, but it is less aggressive than using multiple GPUs.
Apart from that, multi-GPUs add extra costs for inter-GPU communication.

NVIDIA proposes the AFR [26] technique by also distributing the workload among multiple
GPUs. Unlike the previous ones, this approach assigns different frames alternatively to multiple
independent GPUs in order to increase performance and frame rate. Nevertheless, it also requires
an additional cost for coordinating the devices.

On the other hand, Xie et al. [41] explored the use of processing-in-memory architectures
to reduce the DRAM traffic motivated by the texture accesses. Corbalan et al. [13] propose a
technique to maximize the local accesses within private texture caches by applying a NUCA
organization. Hasselgren et al. [19] propose a novel rasterization architecture to improve the
texture cache hit ratio targeting stereoscopic displays.

53

CHAPTER 7. RELATED WORK

Other recent works have explored memory bandwidth reduction in TBR architectures in
various methods. Early Visibility Resolution (EVR) [3] is an HSR technique that speculatively
predicts the visibility of objects in a scene before the Raster Pipeline to avoid computation and
texture accesses of fragments that will eventually be discarded. Rendering Elimination [4] is
a technique that detects tiles that produce the same color across adjacent frames to avoid the
computation of the tile in the next frame, thus, saving from redundant computation and texture
accesses. Another work, TCOR [20], explores memory bandwidth reduction by targeting another
major source of DRAM accesses in TBR architectures, which is the Parameter Buffer.

54

8
Conclusions and future work

The number of people playing mobile games has been increasing during the last years.
Therefore, GPUs have become essential to satisfy the high computing demands that games
require. However, mobile GPU design is challenging since this demands for more visually
compelling graphics require more energy consumption, which is critical as these devices are
battery-operated. Hence, power constraints are tight as it dictates their autonomy.

In this work we have introduced PTR, a novel mobile GPU architecture for rasterizing
multiple tiles in parallel in two different Raster Units. It aims to reduce the time required for
rasterization, which is the most time-consuming part of the graphics pipeline. In addition, it is
also the most energy-consuming part. Experimental results show that PTR is able to achieve an
average speedup of 83% for a wide range of different benchmarks, each of them with different
characteristics. Moreover, PTR provides significant energy savings with an average decrease of
9.86%. In fact, we have shown that our approach is much more effective than having the same
amount of computing resources within a single Raster Unit, leading to an increase in performance
of 8.3% on average.

Nevertheless, this proposal has been possible as previously it has been developed a mobile
GPU architecture baseline much more realistic and closely resembling modern GPUs, which
allowed to explore new techniques. In addition, it is important to have a robust baseline as a
starting point, as these new ideas may be conditioned by it. For it, we have improved the main
memory model, updated hardware configuration parameters and most of the stages throughput.
In addition, the Tile Fetcher has been re-designed together with a new structure that allows the
acceleration for tile fetching, which is crucial for PTR, with an insignificant cost.

After employing PTR, we observed that there are still a noteworthy memory accesses caused
by textures. As main memory accesses are known to be one of the highest contributors to energy
consumption, we seek to reduce them by sharing texture caches among processors from different
Raster Units. We found that texture caches can be a common point between the two Raster
Units, as we obtained that on average 50% of the texture blocks are reused. Actually, most of
this reuse is obtained in the next tile, thus, we proposed an extension to PTR to exploit inter-tile

55

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

texture locality. We have managed to reduce the cost of the hardware, the number of MSHRs,
the number of ports and the total amount of cache size, with very little loss in performance and
energy savings. However, as we still believe that more potential can be achieved, we will do
future investigations on this area by more deeply exploring these shared configurations, but also
the effects on the number of misses and the reduction of the number of ports.

56

Bibliography

[1] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-Time Rendering, Fourth Edition. A.
K. Peters, Ltd., USA, 4th edition, 2018.

[2] Android SDK. https://developer.android.com/studio.

[3] M. Anglada, E. de Lucas, J.-M. Parcerisa, J. L. Aragón, and A. González. Early Visibility
Resolution for Removing Ineffectual Computations in the Graphics Pipeline. In 2019 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pages
635–646, 2019.

[4] M. Anglada, E. de Lucas, J.-M. Parcerisa, J. L. Aragón, P. Marcuello, and A. González.
Rendering Elimination: Early Discard of Redundant Tiles in the Graphics Pipeline. In
2019 IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 623–634, 2019.

[5] M. Anglada Sánchez. Exploiting frame coherence in real-time rendering for energy-efficient
GPUs. PhD thesis, UPC, Departament d’Arquitectura de Computadors, Jun 2020.

[6] Apple App Store. https://www.apple.com/app-store/.

[7] Apple GPU. https://developer.apple.com/documentation/metal/tailor_your_
apps_for_apple_gpus_and_tile-based_deferred_rendering. Accessed: June 2022.

[8] ARM Mali. https://developer.arm.com/documentation/dui0555/b/introduction/
the-mali-gpu-hardware/tile-based-rendering?lang=en. Accessed: June 2022.

[9] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis. Parallel Frame Rendering: Trading
Responsiveness for Energy on a Mobile GPU. In Proceedings of the 22nd international
Conference on Parallel architectures and compilation techniques, pages 83–92. IEEE, 2013.

[10] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis. TEAPOT: A Toolset for Evaluating
Performance, Power and Image Quality on Mobile Graphics Systems. In Proceedings of the
27th International ACM Conference on International Conference on Supercomputing, ICS
’13, page 37–46. ACM, 2013.

[11] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt. Analyzing CUDA
workloads using a detailed GPU simulator. In 2009 IEEE International Symposium on
Performance Analysis of Systems and Software, pages 163–174. IEEE, 2009.

[12] C. Collange, M. Daumas, D. Defour, and D. Parello. Barra: A Parallel Functional Simulator
for GPGPU. In 2010 IEEE International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, pages 351–360. IEEE, 2010.

57

https://developer.android.com/studio
https://www.apple.com/app-store/
https://developer.apple.com/documentation/metal/tailor_your_apps_for_apple_gpus_and_tile-based_deferred_rendering
https://developer.apple.com/documentation/metal/tailor_your_apps_for_apple_gpus_and_tile-based_deferred_rendering
https://developer.arm.com/documentation/dui0555/b/introduction/the-mali-gpu-hardware/tile-based-rendering?lang=en
https://developer.arm.com/documentation/dui0555/b/introduction/the-mali-gpu-hardware/tile-based-rendering?lang=en

BIBLIOGRAPHY

[13] D. Corbalan-Navarro, J. L. Aragon, J.-M. Parcerisa, and A. Gonzalez. DTM-NUCA:
Dynamic Texture Mapping-NUCA for Energy-Efficient Graphics Rendering. In 2022 30th
Euromicro International Conference on Parallel, Distributed and Network-based Processing
(PDP), pages 144–151. IEEE, 2022.

[14] CUDA. https://developer.nvidia.com/cuda-zone.

[15] Gallium3D. https://www.freedesktop.org/wiki/Software/gallium.

[16] GAPID: Graphics API Debugger. https://gapid.dev/about/.

[17] D. Ginsburg, B. Purnomo, D. Shreiner, and A. Munshi. OpenGL ES 3.0 Programming
Guide. Addison-Wesley Professional, 2014.

[18] Google Play. https://play.google.com/store.

[19] J. Hasselgren and T. Akenine-Möller. An Efficient Multi-View Rasterization Architecture.
In Proceedings of the 17th Eurographics conference on Rendering Techniques, pages 61–72,
2006.

[20] D. Joseph, J. L. Aragón, J.-M. Parcerisa, and A. González. TCOR: A Tile Cache with
Optimal Replacement. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 662–675, 2022.

[21] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho. MacSim: A CPU-GPU
Heterogeneous Simulation Framework User Guide. Georgia Institute of Technology, 2012.

[22] Y. Kim, J.-E. Jo, H. Jang, M. Rhu, H. Kim, and J. Kim. GPUpd: A Fast and Scalable
Multi-GPU Architecture Using Cooperative Projection and Distribution. In Proceedings of
the 50th Annual IEEE/ACM International Symposium on Microarchitecture, pages 574–586,
2017.

[23] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. McPAT:
An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore
Architectures. In Proceedings of the 42nd annual IEEE/ACM International Symposium on
Microarchitecture, pages 469–480, 2009.

[24] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob. DRAMsim3: A Cycle-Accurate,
Thermal-Capable DRAM Simulator. IEEE Computer Architecture Letters, 19(2):106–109,
2020.

[25] V. Moya, C. Gonzalez, J. Roca, A. Fernandez, and R. Espasa. ATTILA: A Cycle-Level
Execution-Driven Simulator for Modern GPU Architectures. In 2006 IEEE International
Symposium on Performance Analysis of Systems and Software, pages 231–241. IEEE, 2006.

[26] NVIDIA. SLI Best Practices, 2011. https://developer.download.nvidia.com/
whitepapers/2011/SLI_Best_Practices_2011_Feb.pdf.

[27] OpenCL. https://www.khronos.org/opencl/.

[28] OpenGL ES. https://www.khronos.org/opengles/.

[29] Qualcomm Adreno. https://developer.qualcomm.com/sites/default/files/docs/
adreno-gpu/developer-guide/gpu/overview.html. Accessed: June 2022.

58

https://developer.nvidia.com/cuda-zone
https://www.freedesktop.org/wiki/Software/gallium
https://gapid.dev/about/
https://play.google.com/store
https://developer.download.nvidia.com/whitepapers/2011/SLI_Best_Practices_2011_Feb.pdf
https://developer.download.nvidia.com/whitepapers/2011/SLI_Best_Practices_2011_Feb.pdf
https://www.khronos.org/opencl/
https://www.khronos.org/opengles/
https://developer.qualcomm.com/sites/default/files/docs/adreno-gpu/developer-guide/gpu/overview.html
https://developer.qualcomm.com/sites/default/files/docs/adreno-gpu/developer-guide/gpu/overview.html

BIBLIOGRAPHY

[30] X. Ren and M. Lis. CHOPIN: Scalable Graphics Rendering in Multi-GPU Systems via
Parallel Image Composition. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 709–722. IEEE, 2021.

[31] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle Accurate Memory
System Simulator. IEEE Computer Architecture Letters, 10(1):16–19, 2011.

[32] Statista. Most popular Google Play app categories as of 1st quarter 2022,
by share of available apps. https://www.statista.com/statistics/279286/
google-play-android-app-categories/, 2022. Accessed: May 2022.

[33] Statista. Number of smartphone subscriptions worldwide from 2016 to 2027. https://www.
statista.com/statistics/330695/number-of-smartphone-users-worldwide/, 2022.
Accessed: May 2022.

[34] Statista. Video game market revenue worldwide in 2021, by segment. https://www.
statista.com/statistics/292751/mobile-gaming-revenue-worldwide-device/, 2022.
Accessed: May 2022.

[35] Techjury. 23+ Mobile Gaming Statistics for 2022 - Insights Into a $76B Games Market.
https://techjury.net/blog/mobile-gaming-statistics/, 2022. Accessed: May 2022.

[36] TGSI. https://docs.mesa3d.org/gallium/tgsi.html.

[37] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2Sim: A Simulation Framework
for CPU-GPU Computing. In 2012 21st International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 335–344. IEEE, 2012.

[38] Z. Wang, L. Lu, and A. C. Bovik. Video Quality Assessment Based on Structural Distortion
Measurement. Signal Processing: Image Communication, 19(2):121–132, 2004.

[39] M. Wloka. Batch, Batch, Batch: What Does It Really Mean? In Presentation at Game
Developers Conference, 2003.

[40] Worldometer. https://www.worldometers.info/world-population/. Accessed: May
2022.

[41] C. Xie, S. L. Song, J. Wang, W. Zhang, and X. Fu. Processing-In-Memory Enabled Graphics
Processors for 3D Rendering. In 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 637–648. IEEE, 2017.

[42] YouGov. The smartphone features that drive Brits’ purchase choices.
https://yougov.co.uk/topics/technology/articles-reports/2022/02/02/
smartphone-features-drive-brits-purchase-choices, 2022. Accessed: May 2022.

59

https://www.statista.com/statistics/279286/google-play-android-app-categories/
https://www.statista.com/statistics/279286/google-play-android-app-categories/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/292751/mobile-gaming-revenue-worldwide-device/
https://www.statista.com/statistics/292751/mobile-gaming-revenue-worldwide-device/
https://techjury.net/blog/mobile-gaming-statistics/
https://docs.mesa3d.org/gallium/tgsi.html
https://www.worldometers.info/world-population/
https://yougov.co.uk/topics/technology/articles-reports/2022/02/02/smartphone-features-drive-brits-purchase-choices
https://yougov.co.uk/topics/technology/articles-reports/2022/02/02/smartphone-features-drive-brits-purchase-choices

	Introduction
	Motivation
	Objectives
	Thesis organization

	Background
	Graphics Pipeline
	Tile-Based Rendering
	Geometry stage
	Raster stage

	Experimental framework
	Simulation infrastructure
	Benchmarks

	Baseline improvement
	Throughput increase
	Raster Unit
	Tiling Engine

	DRAM memory model upgrade
	GPU configuration

	Parallel Tile Rendering
	Baseline architecture
	Better than just doubling resources
	Opportunities for texture sharing

	Inter-tile texture sharing
	Motivation
	Baseline architecture
	Quad mapping distributions
	Experimental results

	Related work
	Conclusions and future work

