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cCentre Internacional de Mètodes Numèrics en Enginyeria CIMNE, 08034 Barcelona, Spain
dPolytechnic University of Catalonia, Physics Department, ESEIAAT, Colom 11, 08222 Terrassa, Spain
Received 10 June 2020; revised 16 August 2020; accepted 7 October 2020
Available online 3 November 2020
KEYWORDS

Spaceflight mechanics;

Interplanetary trajectory

design;

Gravity assist;

Tisserand graph
Abstract The Tisserand graph (TG) is a graphical tool commonly employed in the preliminary

design of gravity-assisted trajectories. The TG is a two-dimensional map showing essential orbital

information regarding the Keplerian orbits resulting from the close passage by one or more massive

bodies, given the magnitude of the hyperbolic excess speed (v1) and the minimum allowed pericen-

ter height for each passage. Contours of constant v1 populate the TG. Intersections between con-

tours allow to link consecutive flybys and build sequences of encounters en route to a selected

destination. When the number of perturbing bodies is large and many v1 levels are considered,

the identification of all the possible sequences of encounters through visual inspection of the TG

becomes a laborious task. Besides, if the sequences are used as input for a numerical code for tra-

jectory design and optimization, an automated examination of the TG is desirable. This contribu-

tion describes an automatic technique to explore the TG and find all the encounter paths. The

technique is based on a tree search method, and the intersections between contours are computed

using the regula-falsi scheme. The method is validated through comparisons with solutions avail-

able in the open literature. Examples are given of application to interplanetary mission scenarios,

including the coupling with a trajectory optimizer.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The Tisserand graph (TG) is a graphical tool used in the pre-

liminary design of gravity-assisted trajectories. By displaying
essential orbital information about the Keplerian orbits result-
ing from close passages to a set of massive bodies, the TG
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helps construct a sequence of encounters between a starting
and a destination orbit.

The TG is named after 19th century astronomer François

Félix Tisserand, who developed a method -the Tisserand’s cri-
terion [1]- to identify an object (a comet or an asteroid) after a
passage by a planet. The orbital elements of the object may

change after the close approach, but the Tisserand parameter,
a function of semi-major axis, eccentricity and inclination of
the orbit, stays approximately constant and can be used to

identify the object after the event. The outcomes of flybys with
a planet are shown in the TG as curves, the v1 contours, cor-
responding to all hyperbolic passages with a given excess speed
v1. This velocity is closely related to the Tisserand parameter.

Each point along the contour corresponds to a different angle
between the hyperbolic excess velocity of the spacecraft and
the velocity of the planet. The intersections between contours

link encounters with different planets. Hence, they can be used
to build paths to a selected destination.

Fig. 1 illustrates a TG for an Earth-to-Jupiter trajectory in

which Earth and Venus flybys are the options considered [2].
The map shows the orbital periods and the perihelia of the
heliocentric orbits that a spacecraft (S/C) can follow as a result

of gravity assists with Earth (with v1 of 3 and 9 km/s) and
Venus (v1 of 6 km/s) before approaching Jupiter at a relative
speed of 6 km/s. The intersections between contours yield the
following sequence of encounters: Earth (launch), Venus,

Earth, Earth, Jupiter (arrival). Two consecutive Earth flybys
are required to respect the restriction of the maximum deflec-
tion angle during each passage (this is further ellaborated in

Section 3.A).
The basic assumption of the TG is that all the planets are

on circular coplanar orbits. The planet positions are not con-

sidered, i.e., flybys are assumed to occur whenever the orbit
of the S/C intersects that of a planet. For this reason, this tool
is used during the preliminary mission design stage, which
must be followed by an analysis considering the phasing

constraints.
The TG has been employed in interplanetary trajectory

design for many years. Strange & Longuski [2] discussed Tis-

serand’s theory in great depth, applied the TG to a wide num-
ber of transfers and highlighted the importance of an
automatic exploration of the graph for complex scenarios.

Their work was paralleled by Labunsky, Papkov & Sukhanov
[3]. Miller & Weeks [4] reviewed the theoretical background of
Tisserand’s criterion and illustrated its application to the pre-

liminary design of Cassini’s interplanetary trajectory. Heaton
et al. [5] used the TG in the design of tours in the Jovian system
for the Europa Orbiter mission. They found sequences of lunar
encounters (Europa, Ganymede, Callisto) which were then

input to the Satellite Tour Design Program [6] designed for
the Galileo S/C by JPL. That work emphasized the importance
of an automatic method to search for transfers within the TG.

Heaton & Longuski [7] designed a tour of the Uranus system
using the TG to adjust the inclination of the target science
orbit around Ariel. Okutsu & Longuski [8] employed a TG

to design Mars free-return trajectories via gravity assists with
Venus. Khan et al. [9] conducted the mission analysis for a
two-S/C (relay and orbiter) low-cost mission to Europa, in
which the TG is used to identify tour options for both vehicles:

a tour in the inner Jovian system for the orbiter and a tour of
the outer, radiation-safe system for the relay. Campagnola &
Russell [10] and Strange et al. [11] derived a new formulation
for v1 leveraging maneuvers (VILMs) within the so-called Tis-
serand Leveraging Graph, used as a tool to design endgames.

The new method allows rapid calculations of the minimum
useful DV using VILMs to design resonant lunar tours at Jupi-
ter and Saturn. Campagnola et al. [12] worked out a linear

approximation to the solution space allowing fast sequence
searches, and used the methodology to design a trajectory
for an Enceladus orbiter. Then, Campagnola & Russell [13]

and Campagnola et al. [14] extended the formulation of the
TG to the circular restricted three-body problem (CR3BP).
They found a trajectory encountering Callisto that inserts the
S/C into a circular orbit around Europa, improving by 30%

the DV budget of the classical patched-conics method. Kloster
et al. [15] presented a design of a Jovian tour for an Europa
orbiter mission in which the TG is used in combination with

a simple radiation model to avoid hazardous exposures during
the flybys. Lantoine et al. [16] relied on the Tisserand-Poincaré
(T-P) graph, a variant of the TG for the CR3BP, to obtain ini-

tial guesses of inter-moon transfers in the Jovian system in a
patched three-body model. Hughes et al. [17] investigated a
broad collection of ballistic trajectories to Neptune using the

TG for the selection of the planetary encounters. The trajec-
tory was solved by patched conics with impulsive manoeuvres
either in the form of powered gravity-assists or with VILMs,
i.e., using deep-space manoeuvres to lower the launch DV.
The authors highlighted the effects of phasing and mission
constraints and estimated that only 21 out of 76 encounter
sequences were feasible. Strange et al. [18] applied a TG-

based method to the CR3BP to identify ways of capturing
small asteroids around the Earth redirecting them to lunar
gravity assists by means of a small (< 200 m/s) DV. Colasurdo
et al. [19] employed the TG to design an efficient tour of the
Galilean moons using resonant transfers that achieved maxi-
mum surface coverage with minimum fuel consumption. It

was the winning solution of the 6th edition of the Global Tra-

jectory Optimization Competition. Campagnola et al. [20]
investigated three Jovian tour mission configurations (flyby-
only, orbiter and lander) using the T-P graph. The solution

achieves low DV by means of high-altitude flybys and deep-
space manoeuvres. Maiwald [21] adapted the TG to a low-
thrust mission: the variation in the orbital energy over a thrust

arc corresponds to a jump between different v1 contours in the
TG. Yarnoz et al. [22] developed a systematic approach to gen-
erate multiple lunar flyby sequences for small interplanetary

probes in a CR3BP, using the third-body perturbation of the
Sun as a VILM equivalent. Jones et al. [23] employed the
TG to study the triple cycler family of orbits among Earth,
Mars and Venus. This type of trajectories periodically cycle

between flybys of Venus, Earth, and Mars and were conceived
for future manned mission to Mars. The solutions are charac-
terized by lower DV requirements than traditional Earth-Mars

cyclers.
When the number of planets and v1 levels increases (Fig. 2)

the identification of all the possible sequences of encounters by

visual inspection becomes impractical [2]. Besides, if the
sequence of encounters is used as input of a numerical code
for trajectory design and optimization, an automated examina-
tion of the TG is desirable. Automated strategies for analysis

of the TG are in widespread use, but, to the best of the
authors’ knowledge, they have not been documented in public



Fig. 1 TG for an Earth-to-Jupiter trajectory with intermediate Earth and Venus flybys [2].

Fig. 2 TG for an Earth-to-Jupiter trajectory in which flybys with Earth, Venus and Mars are considered [2].
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literature. This contribution describes the development, imple-
mentation, validation and application of an automatic tech-

nique to explore the TG and determine all the sequences of
flybys that it contains. The technique is based on a tree search
method and will be referred to as the Tisserand PathFinder

(TPF) algorithm.
This paper reviews the derivation of the Tisserand parame-

ter and the procedure for constructing a TG, including simple
guidelines for selecting the v1 levels. Next, the method to find

intersections between contours, build a tree, explore it and
construct sequences of encounters is described. Finally, a set
of validation tests and two application examples are presented.

2. Tisserand’s parameter

Tisserand’s parameter is defined in a system of three bodies,

two of which (P1 and P2, the primaries) are assumed in circular
orbits about each other, and the third body P3 has negligible
mass. This is the framework of the CR3BP. Given the scope

of our application, we shall consider only S/C trajectories con-
tained in the plane of the primaries (zero inclination). Conser-
vation of mechanical energy means there is a constant of
motion for the third body, Jacobi’s integral CJ [1]

CJ ¼ n2 x2 þ y2
� �þ 2

l1

r1
þ l2

r2

� �
� _x2 þ _y2
� �

; ð1Þ
in which n is the mean motion of the primaries, l1 and l2 are

their standard gravitational parameters and r1 and r2 are the
distances from the third body to the two primaries (Fig. 3).
The reference frame is synodic (rotating, with the primaries

fixed on the x-axis) and barycentric (with origin at the center
of mass B of the system). In a barycentric inertial reference
frame n; g – initially (t = 0) parallel to the synodic frame –

Eq. 1 transforms into

CJ ¼ 2n n _g� g _n
� �

þ 2
l1

r1
þ l2

r2

� �
� _n2 þ _g2
� �

: ð2Þ

Assuming that the first primary is the Sun and the second one

is a planet, l2=l1ð Þ2=5 � 1. Hence, the center of mass of the
system is very close to the Sun, and the radius of the sphere

of influence of the planet is much smaller than the distance
a2 between primaries ([24] Chapter 7). Therefore, when the
S/C approaches the planet, it is possible to approximate
r1 ’ a2 and l2=r2 ’ 0 before entering the sphere of influence.

Under these conditions, the heliocentric trajectory of the S/C
is approximately Keplerian, and CJ can be rewritten in terms
of the orbital elements. In particular, the last term of Eq. 2

can be approximated by the square of the Keplerian velocity
v of the S/C

_n2 þ _g2 ’ v2 ¼ l1

2

r1
� 1

a

� �
’ l1

2

a2
� 1

a

� �
; ð3Þ



Fig. 3 The CR3BP, the barycentric synodic reference frame and the barycentric inertial reference frame.

1 Switching the sign of the pump angle has no effect on the S/C

heliocentric trajectory. It simply changes the sign of the radial S/C

velocity while leaving the circumferential component unchanged.

Thus, the two signs correspond to a pair of symmetric points of the

same conic section.
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with a the S/C’s semi-major axis. The first term on the right-

hand side of Eq. 2 is proportional to the spacecraft’s specific
angular momentum h

n _g� g _n ¼ �h ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1a 1� e2ð Þ

p
; ð4Þ

where e is the orbital eccentricity. The plus sign corresponds to

prograde orbits, while the minus sign must be used for retro-
grade trajectories.

Changing to dimensionless variables, using l1 and a2 as ref-
erence magnitudes, the mean motion and heliocentric velocity

v2 of the planet take unitary values. The expression of the nor-

malized Jacobi’s integral CJ (hereinafter, dimensionless quan-
tities will be denoted by barred symbols) reads

CJ ’ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a 1� e2ð Þ

p
þ 1

�a
; ð5Þ

The right-hand side of Eq. (5) is called Tisserand’s parameter

CT [25]. As the S/C approaches the planet, the magnitude �v1
of the relative velocity �v1 can be obtained applying the law
of cosines to the triangle formed by the heliocentric velocity
of the S/C (�v) and planet (�v2) (Fig. 4):

�v21 ¼ �v2 þ 1� 2�v cos c; ð6Þ

where c is the S/C flight path angle and the � symbol indicates
that the negative sign must be taken for prograde orbits.

Furthermore,

�v cos c ¼ �h: ð7Þ

Combining Eqs. (3), (4), (6) and (7) yields

�v21 ¼ 3� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a 1� e2ð Þ

p
� 1

�a
: ð8Þ

According to Eq. 8, the semi-major axis and eccentricity deter-
mine the magnitude of the hyperbolic excess velocity, and the
same value of v1 can be obtained with different combinations
of these parameters.
3. The Tisserand graph

As shown by Eq. 5, in the planar approximation CT depends
only on two orbital elements, semi-major axis and eccentricity.

Fig. 4 shows the geometry of a flyby. The duration of the event
is assumed negligible compared to the orbital period of the pla-
net. Hence, the heliocentric position of the S/C through the
flyby is approximately constant. As a result of the close pas-

sage, the velocity of the S/C relative to the planet changes.
The net effect is a rotation of the inbound hyperbolic excess
velocity v1� by an angle d, yielding the outbound hyperbolic

excess velocity v1þ (Fig. 4). Hereinafter, the magnitude of
these two vectors will be indicated with v1. The heliocentric
velocity of the S/C changes from v� to vþ, and this change

affects both the direction and the magnitude of the vector.
The pump angle a� (respectively, aþ) is defined as the angle
between v2 and v1� (respectively, v2 and v1þ). We shall refer

to a� as the entry pump angle and to aþ as the exit pump
angle. Due to the symmetry of the problem, we shall limit
the discussion to pump angles in the range 0�; 180�½ �1. From
geometry,

aþ ¼ a� þ d; ð9Þ
and d 2 0�; 180�½ �.

The law of cosines allows to compute the magnitude of v�
(respectively, vþ) from v1� (respectively, v1þ) and a� (respec-

tively, aþ):

v2� ¼v22 þ v21 þ 2v1 cos a�; ð10Þ
v2þ ¼v22 þ v21 þ 2v1 cos aþ ¼ v22 þ v21 þ 2v1 cos a� þ dð Þ: ð11Þ
Given v1 and a (a� or aþ), the above formulas yield the mag-
nitude of the heliocentric velocity (v� or vþ). Then, Eq. 3 gives
the corresponding semimajor axis, and the orbital energy e fol-
lows from



Fig. 4 Geometry of a flyby (left) and the associated velocity vector diagram (right).
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e ¼ � l1

2a
: ð12Þ

Eq. 8 can then be solved for the eccentricity. In this way,
curves of constant v1 can be represented in a 2D map whose
axes portrait the semimajor axis and the eccentricity, or any

equivalent pair of orbital parameters (for example, the orbital
energy versus the periapsis radius, the orbital period versus the
periapsis radius or, only for elliptical orbits, the apoapsis
radius versus the periapsis radius, Fig. 5). This 2D map is

the TG and is employed to visualize the effect of planetary fly-
bys on the heliocentric Keplerian orbits of the S/C. Since v1�
and v1þ have the same magnitude, they correspond to the

same v1 contour. Note that in Fig. 5 the contours v1 = cons.
are always monotonic, irrespective of the choice of variables.
This is a consequence of assuming a prograde orbit, which

means taking only the minus sign in the � symbol of Eq. 8.
This gives a unique value of e for each (v1; a) pair. In that case,
the function e að Þ for fixed v1 is single-valued. Therefore, by

virtue of being continuous, it is also monotonic. However,
when both v1 and d are sufficiently large, retrograde heliocen-
tric orbits might appear and the plus sign has to be considered
too. If both prograde and retrograde orbits are taken into

account, Eq. 8 gives two eccentricities for each (v1; a) pair,
and monotonicity is lost (Fig. 6). This is undesirable, as it
makes finding contour intersections much more complex.

Monotonicity can be recovered by partitioning each contour
into a prograde and a retrograde branch.

3.1. Construction of the contours

The TG of Fig. 7 illustrates the steps taken in the construction
of a v1 contour. The case shown corresponds to a v1 of 3 km/s

relative to Earth. The circular orbit of the planet is the point (1
au, 1 au) (Fig. 7a)2. The upper point of the contour is obtained
by setting a = 0. Note that the contours represent both arrival
and deperture trajectories. Therefore, no distinction is made

between a� and aþ. The algorithm outlined above gives a peri-
apsis radius of 1 au (in this case, the S/C’s orbit is tangent to
Earth’s orbit) and an apoapsis radius of 1.54 au (Fig. 7b).

Varying a between 0 and 180 degrees yields the entire contour
(Fig. 7d).

When v1 contours of different planets are plotted in the

same TG, their intersections correspond to orbits that can be
2 Note that the periapsis of the heliocentric orbit of the S/C can

never be higher than the orbit of the flyby planet.
linked by flybys with these planets. For example, in the
sequence of Fig. 1, the S/C departs Earth on a 3 km/s contour,
performs a flyby with Venus at 5 km/s of v1 and passes by the

Earth with a relative speed of 9 km/s twice (resonant flybys)
before reaching Jupiter with a relative speed of 6 km/s.

A v1 contour can also be used to construct sequences of

consecutive flybys with the same planet and characterized by
the same hyperbolic excess speed. For example, in Fig. 7c, after
tangential departure from Earth, the S/C returns after an inte-

ger number of revolutions, hence with the same encounter
geometry (a� = 0) and heliocentric velocity. If aþ = 45
degrees, the new periapsis radius is 0.98 au and the apoapsis

radius is 1.37 au.
The relationship ([26] Chapt. 2)

sin
d
2

� �
¼ 1þ rpv

2
1

l2

� ��1

; ð13Þ

where rp denotes the pericenter radius of the planetocentric

hyperbola, links the minimum flyby height to the maximum
achievable deflection angle dmax. For example, if the minimum
periapsis height above the surface of the Earth on a v1 contour
of 3 km/s is 200 km, dmax = 121 degrees. dmax in turn limits the

maximum displacement along a v1 contour that can be
achieved with a single flyby.

3.2. Selection of the v1 levels

Constructing a TG requires the selection of the planets and the
identification of suitable v1 levels for each one of them. Even

for the experienced orbit analyst, this task is not trivial, espe-
cially when the solution space is wide and involves several bod-
ies. Furthermore, since the goal is to build sequences of flybys

from departure to arrival, only those pairs of v1 contours that
intersect each other are useful. Fig. 8 provides some insight
into this problem. Each panel refers to a specific pair of plan-
ets. The axes report v1 values for each planet, so that each

point in the diagram can be associated with a pair of v1 con-
tours. The shaded area shows the combinations of v1 for
which intersection exist. The apex (marked with a solid circle)

corresponds to a Hohmann transfer between the two planets.
It is the heliocentric ellipse that intersects both circular orbits
with minimum hyperbolic excess velocity at departure and

arrival. Therefore, the apex must lie at the bottom left corner
of the shaded region. The charts can be used to narrow quickly
the range of v1 contours that must be explored. For example,



Fig. 5 Three versions of the same TG for different choices of the orbital parameters: apoapsis radius (left), orbital period (center) and

orbital energy (right) versus periapsis radius. The circle represents the flyby planet, the Earth in this case, and the v1 contours correspond

to values of the hyperbolic excess speed of 1, 2, 3, 4, 5 and 6 km/s, respectively.

Fig. 6 A non-monotonic v1 contour for Saturn in which

retrograde orbits (lower branch of the curve) appear for a > 130

degrees.

Fig. 7 Construction
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consider an Earth-Mars transfer for which the combination of
launcher and payload limits the departure C3 to 36 km2/s2 (v1
= 6 km/s). From Fig. 8, the useful v1 values for Earth lie
between 3 and 6 km/s, while in the case of Mars we have to
include contours from 2.7 to 10.5 km/s. Points (i.e., pairs of
v1 values) outside the shaded area can safely be ignored, as

they cannot yield an intersection. That is the case, for example,
for the combination of v1 = 7 km/s at Mars and 11 km/s at
Jupiter. This can be crosschecked against Fig. 2, which shows

that, as expected, there is no intersection between those
contours.

4. Tisserand PathFinder

The TPF algorithm is based on the representation of the TG as
a tree structure: an intersection between contours in the graph

is a tree node and a transfer between intersections along a con-
tour is a branch. The set of nodes and branches constitutes the
tree. Each node has one parent node and may have one or
more children nodes. A tree search algorithm has been applied
of a v1 contour.



Fig. 8 Maps of intersections between v1 contours of different planets.
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to this representation in order to traverse the graph in an
ordered way, collect transfers between planets and form

encounter paths. Fig. 9 (top) illustrates an interplanetary TG
for a transfer from Earth to Mars with Earth, Venus and Mars
flybys and two v1 contours for each planet (3 and 5 km/s). The
black crosses mark contour intersections and the arrows signal

transfers between planets. The construction of the tree struc-
ture from the TG is shown in the bottom part of the figure:
starting from Earth with a = 0 and v1 = 3 km/s (root node),

the possible paths are determined traversing the nodes and
branches of the tree. The path indicated by the arrows goes
through four nodes (Earth 3, Earth 3 - Venus 5, Venus 5 -
Earth 5, Earth 5 - Mars 5) and three branches (Earth 3 to
Venus 5, Venus 5 to Earth 5, Earth 5 to Mars 5).

4.1. Determination of the intersection of two v1 contours

The intersections between v1 contours are determined finding
the zeros of the function

f eð Þ ¼ rp2 eð Þ � rp1 eð Þ; ð14Þ
where the orbital energy is taken as the independent variable

and rp1 and rp2 are the periapsis radii on the two contours.

To solve Eq. 14, the regula-falsi technique [27] has been chosen



Fig. 9 TG (top) and the corresponding tree of encounter paths (bottom) for an Earth-to-Mars transfer in which flybys with Earth, Venus

and Mars are considered. The arrows indicate an Earth-Venus-Earth-Mars path.

Fig. 10 Algorithm to obtain rp from e in a v1 contour relative to

a planet with orbital radius a2. Prograde orbit assumed.
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due to its simplicity (no derivatives required) and robustness.
The Illinois variant [28] of the algorithm is used for improved

performance. At each iteration, e is used to determine rp in

both contours following the procedure outlined in Fig. 10.
The initial search interval is the range of e common to both
contours, i.e., between ea ¼ max min e1ð Þ;min e2ð Þð Þ and
eb ¼ min e1 a ¼ 0�ð Þ; e2 a ¼ 0�ð Þð Þ, as shown in the example of

Fig. 11. The iterations stop when the absolute value of f eð Þ falls
below a specified tolerance. As a reference, it takes up to six
iterations to reach an accuracy of 10 km.

4.2. Tree search

Tree search algorithms [29] are often used in optimization

problems in which, given a starting point, several options must
be explored to find the optimal solution. In our case, the goal is
building a comprehensive set of candidate solutions, i.e., to
find all the paths in the TG connecting the departure planet

with the target planet, regardless of their performance. Driven
by this requirement, we chose an uninformed depth-first algo-
rithm [30]: the uninformed tree search is suitable when there is

no a priori knowledge of the tree, and the depth-first variant
(which initially explores the nodes at the deepest levels of the
tree and backtracks when it hits a dead-end) offers high speed

and low memory consumption when dealing with complex
trees.

The main drawback of the depth-first method is that it can

get trapped in loops (in our case, repeated flybys with the same
planet). To limit the number of planetary encounters and the
computation time, the maximum depth of the tree is set by
the user. Once the maximum depth is reached, the search does
not proceed further along the current branch of the tree. This
modified version of the depth-first method is referred to as the

depth-limited search method. Program data is arranged in two
main structures:



Fig. 11 Two intersecting contours for Earth and Mars with v1
of 5 and 4 km/s, respectively.

Fig. 12 Global functio

Fig. 13 Flowchart of the child
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� Node database: It contains a list of the active nodes. Each

node has a unique identifier (ID) and is associated with a
parent node ID, a planet and specific values of v1 and e.
The parent node is the preceding encounter in the sequence

of flybys. Once a node reaches the target destination, the
parent IDs are used to rebuild the sequence of encounters.

� Stack: This is a FIFO (First-In First-Out) heap where the
identifiers of nodes in process are stored. The depth-first

search method uses the FIFO strategy: as the tree is
expanded vertically, the most recently created nodes – those
at the lowest levels of the tree – are processed first.

4.3. Search algorithm

To make the explanation easier to follow, we shall split the
program structure in two distinct functional blocks:
nal diagram of TPF.

ren node generation block.
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� Processing of parent nodes (Fig. 12): These nodes are stored

in the stack and were in turn created from other parents in
previous iterations of the algorithm.

� Generation of children nodes (Fig. 13): These are the nodes

that can be reached from the parent nodes by means of a
flyby, and subsequently become new parents.

4.3.1. Processing of parent nodes

The nodes on the stack are examined and their children are
generated through these steps:

(1) Read input data: List of planets and v1 contours associ-
ated with each one, departure conditions (planet and v1
corresponding to the launch energy) and target (arrival

planet and, if applicable, range of v1).
(2) Initialize the stack with the root node (departure planet

and v1).
Fig. 14 Validation case V1: two Earth-to-Mercury paths found by S

TPF (bottom). The letters V, E and Y mean Venus, Earth and Mercu
(3) If the stack is empty, terminate the program. Otherwise,

read the node at the top of the stack. It becomes the cur-
rent parent node (PN), associated with planet PL1,
v1=HEV1 and specific orbital energy e=E1.

(4) Check if PN has reached the final state specified by the
user (i.e., target planet and v1 level). If that is the case,
rebuild the path from departure to destination planet
using the parent node IDs, save it and proceed to step 6.

(5) If PN has not reached the user-defined maximum depth,
find its children nodes (see 4.3.2. Generation of children
nodes).

(6) Purge PN from the stack and go back to step 3.

4.3.2. Generation of children nodes

The sequence of steps to create new Children Nodes (CN) is:

(1) Select a candidate planet PL2 to explore (PL2– PL1).
trange & Longuski [2] (top) and the same sequences obtained with

ry, respectively.



Fig. 15 Validation case V2: match between the Earth-to-Neptune path of Hughes et al. [17] (top) and that computed by TPF (bottom).
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(2) Select one of the v1 levels for PL2 (HEV2).

(3) Search for an intersection between contours HEV1 of
PL1 and HEV2 of PL2. Let E2 be the orbital energy
of the intersection point (if it exists). If no intersection

is found, proceed to step 6.
(4) Add as many intermediate nodes as needed to move

from E1 to E2 along the HEV1 contour. These nodes

represent consecutive flybys with PL1 to achieve suffi-
cient deflection angle without colliding with the planet.
The intermediate nodes give rise to linear branches of

the tree (i.e., no bifurcations) and they are never placed
in the stack (because they require no further analysis).
Intermediate nodes are important, however, because
they add to the tree depth.

(5) If the maximum depth has not been exceeded, the inter-
section becomes a CN and is placed at the top of the
stack. PL2, HEV2, E2 and PN are stored in the database

entry for this CN.
(6) If there are more v1 levels to explore for PL2, go back to

step 2.
(7) If there more planets to process, go back to step 1.

4.4. Garbage collection

Memory consumption can be an issue when evaluating large

tree structures. To reduce the memory footprint of TPF, nodes
that are no longer useful (e.g., nodes with no children or nodes
from a branch that has been entirely explored) are deleted

from the database (pruned) periodically. Because the database
does not contain all the nodes analyzed, the information
required to reconstruct the sequence of encounters is stored
in the output file. Whenever a path to the target planet is

found, the list of encounters and the corresponding nodes
are stored in the output file. The list of nodes in the output



Fig. 16 Validation case V3: match between the Venus-Earth-Mars cycler path of Jones et al. [23] (top) and that computed by TPF

(bottom).

Table 1 CPU time, number of encounter paths and number of planet sequences for the three validation cases (V1, V2, V3) and the

two mission scenarios (M1, M2) discussed in the text.

CPU time (s) Number of Number of

encounter paths planet sequences

V1 0.940 3376 12

V2 110.000 124104 101

V3 0.060 154 7

M1 0.004 4 2

M2 1.300 854 41

1038 D. de la Torre Sangrà et al.
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data, while only a small subset of those explored, is sufficient
to interpret the paths.

A Matlab script implementing the TPF algorithm has been

published under LGPL license [31]. The results presented in
the following sections have been computed in Matlab
R2019a running under Windows 10 1803 in an Intel Core i7-

6700 K CPU with 4.00 GHz and 32 GB of RAM. In the dis-
cussion, the encounter paths are grouped into planet
sequences, i.e., paths that connect the same ordered list of

planets regardless of the v1 levels.

5. Validation

The results obtained with TPF have been compared with three
solutions (named V1, V2, V3) presented in the literature.

� V1: from Earth to Mercury. The TG contained in the upper
part of Fig. 14 shows two encounter paths identified by
Strange & Longuski [2]: (1) Earth 3, Earth 3 – Venus 5,
Venus 5 – Earth 7, Earth 7 – Venus 9, Venus 9 – Mercury

9; (2) Earth 3, Earth 3 – Venus 5, Venus 5 – Earth 9, Earth
9 – Mercury 11. TPF yields the same two paths (Fig. 14 bot-
tom). Additionally, TPF indicates that the sequence of

encounters for the first path is Earth-Venus-Earth-Venus-
Venus-Mercury because a transfer to Mercury 9 from Earth
7 requires two consecutive Venus flybys to prevent a colli-

sion with the planet (due to the deflection angle limitation).
� V2: from Earth to Neptune. Hughes et al. [17] identify 72
planet sequences between Earth and Neptune. The path
marked in Fig. 15 top is Earth 5, Earth 5 – Venus 7, Venus

7 – Earth 11, Earth 11 – Jupiter 7, Jupiter 7 – Neptune 3.
TPF is able to find the same sequence (Fig. 15 bottom).
Fig. 17 Scenario M1: TG for an Earth-to-Mars transfer and the

highlighted in the diagram.
� V3: Venus-Earth-Mars cycler. Jones et al. [23] identify a tri-

ple cycler through Venus, Earth and Mars. The path high-
lighted in Fig. 16 top is Venus 4, Venus 4 – Earth 5, Earth 5
– Mars 3, Mars 3 – Earth 3, Earth 3 – Venus 4. TPF finds

the same solution (Fig. 16 bottom).

Table 1 records the total CPU time, the number of encoun-
ter paths found and the number of planet sequences identified

for the three validation cases.

6. Application to mission design

The following two mission scenarios have been designed and
optimized with the aid of TPF: a transfer from Earth to Mars
(M1) and the trajectory of JUICE [32] (M2). These applica-

tions illustrate the advantages of coupling TPF with a trajec-
tory optimizer, allowing fully automated mission design and
optimization. The optimizer determines the launch conditions

and impulsive maneuvers required (both in deep-space and
during flybys) that connect the planets in each sequence and
minimize the total propellant consumed. The user can specify

an arbitrary number of mission constraints like departure win-
dow, maximum time of flight, launch energy and minimum
flyby heights at each planet. The software uses a collection
of global optimization algorithms (genetic, differential evolu-

tion, particle swarm and simulated annealing) to find minima
without computing the derivatives of the cost function. For
this particular application, the distinct paths of each planet

sequence are not used, since the optimizer only requires an
ordered list of planets and works by varying the encounter
dates within each sequence. The TGs of the two scenarios have

a maximum tree depth, including the departure and arrival
planets, of seven encounters.
optimized interplanetary trajectory obtained from the sequence



Fig. 18 Scenario M2: TG for a JUICE-like transfer and optimized trajectory.
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� M1: the TG contains two v1 contours for each planet
(Earth, Venus, Mars). In order to discard direct Earth-to-
Mars transfers, the lowest v1 at Earth is set at 2.8 km/s.
The path displayed in Fig. 17 is an Earth-Venus-Earth-

Mars with Earth 2.8, Earth 2.8 - Venus 4, Venus 4 - Earth
4, Earth 4 - Mars 2.8. From the corresponding planet
sequence, the interplanetary trajectory optimizer outputs a

solution departing on 07/05/2023 with v1 of 2.8 km/s and
arriving on 19/06/2025 with v1 of 3.0 km/s. The flybys with
Venus and Earth (on 17/10/2023 and 08/70/2024) are pow-

ered and require velocity impulses of 913 and 155 m/s,
respectively. The departure dates explored range from
01/01/2020 to 01/01/2026 and the maximum flight time

between planets is set at 2 years.
� M2: the trajectory chosen for the JUICE mission to Jupiter
[33] is of type Earth-Earth-Venus-Earth-Mars-Earth-Jupi
ter. The first Earth-to-Earth leg includes a deep-space v1
leveraging manoeuvre, capability not available in our tra-
jectory optimizer. Due to this limitation, the TPF-
generated sequence (obtained from three v1 contours at

each planet) passed to the optimizer is Earth-Venus-Eart
h-Mars-Earth-Jupiter, as shown in Fig. 18 (Earth 6, Earth
6 - Venus 6, Venus 6 - Earth 10, Earth 10 - Mars 10, Mars

10 - Earth 12, Earth 12 - Jupiter 6). From this series, the
optimizer generates a 7-year trajectory departing on
19/03/2023 with v1 of 4.9 km/s and performing powered
flybys with Venus (28/10/2023, 84 m/s), Earth

(08/08/2024, 148 m/s), Mars (14/02/2025, 1105 m/s) and
Earth (16/11/2026, 394 m/s). The arrival v1 at Jupiter is
5.6 km/s. The range of launch dates explored is from

01/01/2023 to 31/12/2023, and the flight time between plan-
ets is limited to 2 years.

The performance of TPF for these scenarios is summarized
in Table 1.
7. Conclusions

We described the algorithm and underlying theory of an auto-

mated method (TPF) for extracting interplanetary paths from
a Tisserand graph. The algorithm uses a depth-first tree search
method, building an exhaustive collection of all the encounter

sequences connecting the departure and arrival planets. The
search is depth limited – there is a maximum number of flybys
in the path – to keep the algorithm from creating long repeti-
tive sequences of encounters (loops). The method identifies

seamlessly those situations in which repeated encounters with
the same planet are required to respect the minimum pericenter
height constraint. The algorithm is completely automatic,

relieving the user from the burden of visually identifying the
contour intersections. The process is very fast in contemporary
commodity hardware. Even the most complex scenarios can be

analyzed in a matter of minutes (we presented a case with 124
000 distinct paths that completes in under 110 s). This effi-
ciency gives the user additional freedom when choosing the
number of excess velocity contours to inspect, because the

impact on the duration of the analysis is quite limited. The
automated inspection of the TG reduces the workload of the
mission designer and eliminates the chance of human error,

which is inherent to any tedious tasks. Furthermore, when
TPF is coupled with a trajectory optimizer, the complete work-
flow of mission design and optimization can be streamlined.
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