
High-performance simulation of
the 16th Hilbert’s problem

Author: Francesc Forn Cañabate

Director: Grigori Astrakharchik, Marina

Gonchenko

Bachelor Thesis

Specialisation in Computer Science

Abstract

The main goal of this Bachelor’s thesis is to numerically tackle the second part
of the famous Hilbert’s 16th problem, particularly the detection of limit cycles in
two-dimensional systems of quadratic ordinary differential equations (ODEs). We
developed and successfully verified a high-performance algorithm to concurrently
target this problem, harvesting the computational capabilities of modern Graphical
Processing Units (GPUs).

In this project we studied the performance and precision of different numerical
methods for solving the system of differential equations, and have chosen the best
algorithm with optimal parameters for the best convergence and performance. We
developed and programmed a numerical solver based on the fourth-order Runge-
Kutta integration scheme. In addition, we applied Poincaré mapping for identifying
the limit cycles in the systems using different interpolation schemes. We considered
known examples with four limit cycles and successfully reproduced them.

We first implemented the code sequentially in MATLAB, and later developed a
parallel implementation in Julia using the library Cuda.jl. We benchmarked the
accuracy of the solver in the analytically solvable case of a circular harmonic oscil-
lator system. After that, we were able to accurately replicate the example provided
in [1]. The developed code is freely accessible in repository hosted in github.

com/FiberFranch/Hilberts-16/ and is useful for finding the limit cycles of any
quadratic ODE system efficiently using GPUs.

1

github.com/FiberFranch/Hilberts-16/
github.com/FiberFranch/Hilberts-16/

Resumen

El objetivo principal de este trabajo de fin de grado es abordar numéricamente la
segunda parte del famoso problema 16 de Hilbert, en particular la detección de ciclos
ĺımite en sistemas bidimensionales de ecuaciones diferenciales ordinarias cuadráticas.
Hemos desarrollado y verificado con éxito un algoritmo de alto rendimiento para
abordar este problema de forma concurrente, aprovechando las capacidades com-
putacionales de las unidades de procesamiento gráfico (GPU) modernas.

En este proyecto hemos estudiado el rendimiento y la precisión de diferentes métodos
numéricos para resolver el sistema de ecuaciones diferenciales, y hemos elegido el
mejor algoritmo con los parámetros óptimos para obtener la mejor convergencia y
rendimiento. Hemos desarrollado y programado un solucionador numérico basado en
el esquema de integración Runge-Kutta de cuarto orden. Además, hemos aplicado
el mapeo de Poincaré para identificar los ciclos ĺımite en los sistemas utilizando
diferentes esquemas de interpolación. Consideramos ejemplos conocidos con cuatro
ciclos ĺımite y los reprodujimos con éxito.

Primero implementamos el código de forma secuencial en MATLAB, y posterior-
mente desarrollamos una implementación paralela en Julia utilizando la biblioteca
Cuda.jl. Comprobamos la precisión del solucionador en el caso anaĺıtico de un sis-
tema de osciladores armónicos circulares. Después de eso, fuimos capaces de replicar
con precisión el ejemplo proporcionado en [1]. El código desarrollado es de libre ac-
ceso en el repositorio alojado en github.com/FiberFranch/Hilberts-16/ y es útil
para encontrar los ciclos ĺımite de cualquier sistema ODE cuadrático de forma efi-
ciente utilizando las GPU.

2

github.com/FiberFranch/Hilberts-16/

Resum

L’objectiu principal d’aquest treball de fi de grau és abordar numèricament la segona
part del famós problema 16 de Hilbert, en particular la detecció de cicles ĺımit
en sistemes bidimensionals d’equacions diferencials ordinàries quadràtiques. Hem
desenvolupat i verificat amb èxit un algorisme d’alt rendiment per a abordar aquest
problema de manera concurrent, aprofitant les capacitats computacionals de les
unitats de processament gràfic (GPU) modernes.

En aquest projecte hem estudiat el rendiment i la precisió de diferents mètodes
numèrics per a resoldre el sistema d’equacions diferencials, i hem triat el millor
algorisme amb els paràmetres òptims per a obtenir la millor convergència i rendi-
ment. Hem desenvolupat i programat un solucionador numèric basat en l’esquema
d’integració Runge-Kutta de quart ordre. A més, hem aplicat el mapatge de Poincaré
per a identificar els cicles ĺımit en els sistemes utilitzant diferents esquemes d’interpolació.
Considerem exemples coneguts amb quatre cicles ĺımit i els vam reproduir amb èxit.

Primer implementem el codi de manera seqüencial en MATLAB, i posteriorment
desenvolupem una implementació paral·lela en Julia utilitzant la biblioteca Cuda.jl.
Comprovem la precisió del solucionador en el cas anaĺıtic d’un sistema d’oscil·ladors
harmònics circulars. Després d’això, vam ser capaços de replicar amb precisió
l’exemple proporcionat en [1]. El codi desenvolupat és de lliure accés en el repositori
allotjat en github.com/fiberfranch/hilberts-16/ i és útil per a trobar els cicles
ĺımit de qualsevol sistema ODE quadràtic de manera eficient utilitzant les GPU.

3

github.com/fiberfranch/hilberts-16/

Contents

1 Context 11

1.1 Terms and concepts . 11

1.1.1 High-Performance Computing and HPC tools 11

1.1.2 Limit cycles . 12

1.2 Introduction and context . 13

1.2.1 Hilbert’s Problems . 13

1.2.2 Hilbert’s 16th Problem . 14

1.2.3 Problem to be solved . 15

1.3 Stakeholders . 16

1.4 Justification . 16

1.4.1 Performance . 17

1.5 Scope . 18

1.5.1 Objectives . 18

1.5.2 Requirements . 19

1.5.3 Potential obstacles and risks 20

1.6 Methodology and rigour . 21

1.6.1 Methodology . 21

1.6.2 Monitoring tools and validation 21

2 Time planning 22

2.1 Description of the tasks . 22

2.1.1 Task definition . 22

2.1.2 Time estimation . 25

2.1.3 Task summary . 26

2.1.4 Gantt chart . 26

4

2.2 Resources . 28

2.3 Risk management . 29

2.3.1 Project deadline . 29

2.3.2 Inexperience with languages 29

2.3.3 Inexperience with CUDA . 30

3 Budget 31

3.1 Personnel costs . 31

3.2 General costs . 33

3.2.1 Amortisation of resources . 33

3.2.2 Software licencing . 33

3.2.3 Indirect costs . 34

3.2.4 General costs summary . 34

3.3 Contingency . 34

3.4 Incidental costs . 35

3.5 Budget summary . 35

3.6 Management control . 36

4 Sustainability assessment 37

4.1 Self-assessment . 37

4.2 Environmental impact . 37

4.3 Economic impact . 38

4.4 Social impact . 39

5 Implementation and results 40

5.1 Limit cycle detection method . 40

5.2 Numerical Methods . 43

5

5.2.1 Runge-Kutta 4 . 43

5.2.2 Adaptive algorithms and the Runge-Kutta-Fehlberg method . 46

5.3 Software built-in functions . 47

5.3.1 MATLAB’s ode45 . 47

5.3.2 Julia libraries . 47

5.4 Methods implemented . 48

5.4.1 Integration method used in this thesis 48

5.4.2 Additional remarks on accuracy 48

5.5 Testing . 49

5.5.1 Replication of known results 49

5.5.2 Precision tests . 55

5.6 Parallel implementation . 60

5.6.1 Strategy and kernel programming 60

5.6.2 Performance . 62

6 Conclusions and future work 65

6.1 Conclusions . 65

6.2 Future work . 65

References 66

6

List of Figures

1 Example of a Van der Pol stable limit cycle in the phase space (limit
cycle marked in red). 12

2 Typology of limit cycles. Limit cycles inidcated by bold, closed cycles.
The tendency of the other trajectories indicated by the arrows. 13

3 Visualization of four limit cycles in the phase space for a two-dimensional
polynomial quadratic system. On the left, a large limit cycle in the
negative half-plane. On the right, three nested normal-sized limit
cycles on the positive half-plane. 15

4 Estimated Gantt chart for the project. 27

5 Illustration of Poincaré mapping for identifying limit cycles in the
phase space. Starting on a point on the transverse section, Σ, we
follow the trajectory for one cycle and obtain its ending point. This is
how the mapping relates the initial and final points for each trajectory.
The section Σ is coloured in blue. In this example, an attractive limit
cycle in draw in bold, and two trajectories orbiting towards it are
shown to illustrate the mapping described. 40

6 Example of a trajectory of in phase space. This trajectory starts at
the initial point in the x-axis (0.5, 0) and ends at the point (1.17, 0). . 41

7 Representation of the same trajectory in phase space (in blue) with
the distance between start and end of trajectory (in red). Total dis-
tance, dx = 0.667 is displayed. 42

8 This image illustrates the slopes used by the Runge-Kutta 4 method
for a given one-dimensional function y(t), for which we know the
derivative y′(t), and the initial point y(t0) = y0. Here we want to
evaluate the function at the time t = t1. The slopes evaluated by the
RK4 method are indicated by the red vectors: k1 at the beginning
of the interval, k2 and k3 at the midpoint, and k4 at the end of the
interval. The exact trajectory of the function in time-position space
is plotted in blue, and the RK4 approximation of the point at time
t1 is depicted by the green asterisk at (t1, y1), which lies very close to
the real value. The black lines join the initial point to each slope and
to the final point. 45

7

9 Comparison of the Runge-Kutta methods for the differential equa-
tion y′ = sin(t)2, the exact function plotted in orange. In the figure,
the trajectories y(t) correspond to numerical solutions obtained using
different methods: in violet Euler’s (first order) method, in blue Eu-
ler’s method with the time increment reduced in half, in green Heun’s
(second order) method, and in olive, RK4. The plot shows that, not
only is the RK fourth order method the most precise, but that it also
lies very close to the real function. 46

10 Poincaré mapping of the start-to-end distances of trajectories in the
positive semi-axis using a positive time step. The presence of limit
cycles is indicated by the x-axis crossings, two for each limit cycle. . . 49

11 Example of three nested positive normal-sized limit cycles in the
phase space. Parameter values taken from article [1] 50

12 Poincaré mapping of the start-to-end distances of trajectories in the
positive semi-axis using a negative time step. The presence of limit
cycles is indicated by the x-axis crossings, two for each limit cycle. . . 51

13 Superposition of Poincaré mappings of the start-to-end distances of
the trajectories with positive and negative time steps. They intersect
at the same x-axis crossings, indicating that the limit cycles detected
with forward and backward time steps match. 52

14 Poincaré mapping of the start-to-end distances of trajectories in the
negative semi-axis using a negative time step. The presence of the
limit cycle is indicated by the x-axis crossing. In this case, the other
crossing of this cycle has been cut out to zoom-in on the region around
this intersection. This is the example of the large negative limit cycle
provided in [1]. 53

15 Example of large negative limit cycle in the phase space. Parameter
values taken from article [1] . 54

16 Solution of the harmonic oscillator system in the phase space. As
mentioned, the result is a circle centred at the origin with radius of
10 units. 55

17 Absolute error of RK4 integration of the harmonic oscillator system
combined with inverse linear interpolation of the crossing. The x
marks correspond to the results obtained with RK4 and linear inter-
polation at the crossing. The dashed lines correspond to typical time
step dependence of linear, quadratic, and cubic methods, which in
log-log plots are represented by straight lines. The horizontal black
line depicts the maximum precision obtainable, which correspondss
to the machine epsilon, ϵ. 56

8

18 Absolute error of RK4 integration of the harmonic oscillator system
combined with inverse quadratic interpolation of the final point. . . . 57

19 Absolute error of RK4 integration of the harmonic oscillator system
combined with with a recursive reduction of the time step to achieve
the desired error tolerance of 1× 10−15 at the final point. 58

20 Absolute error of RK4 integration of the limit cycle of the example
case combined with with a recursive reduction of the time step to
achieve the desired error tolerance of 1× 10−15 at the final point. . . 59

21 Log-log plot of the time taken to sequentially and concurrently exe-
cute the kernel with different number of trajectories. The sequential
time (in blue) is directly proportional to the number of trajectories,
whereas the parallel execution benefits from larger computations up
to a certain extent. 62

22 Log-log plot of the time taken to sequentially and concurrently launch
the kernel with different number of trajectories. In red is the line
corresponding to the average execution time per trajectory multiplied
by the number of trajectories computed.. The sequential times are
indicated by the blue crosses, and the parallel by the green. We can
see that the sequential execution time lines up with the line of the
average expected execution time . 63

23 Speed-ups obtained by the parallel kernel for different numbers of
trajectories computed. In red is the speed-up of 1. We can see that
below 10 trajectories the resulting speed-up is lower than 1, which
means that using the parallel implementation is slower than sequen-
tially computing it. 64

List of Tables

1 Summary of task dependencies and expected times. 26

2 Average wages of the development team. 31

3 Estimated personnel cost of activities. 32

4 Hardware amortisation cost. 33

5 Estimation of incidental costs. 35

6 Budget summary. 35

9

List of abbreviations

• CPU: Central Processing Unit.

• GPU: Graphics Processing Unit.

• HPC: High-Performance Computing.

• ODE: Ordinary Differential Equation.

• RK4: Fourth-order Runge-Kutta integration method.

• RKF45: Runge-Kutta-Fehlberg integration method.

10

1 Context

This project is a Bachelor’s thesis in Informatics Engineering for the specialisation in
Computer Sciences from the Facultat d’informàtica de Barcelona (FIB) of the Uni-
versitat Politècnica de Catalunya (UPC). It was carried out under the supervision
of Dr. Grigori Astrakharchik and Dr. Marina Gonchenko.

In this project we took advantage of the computational capabilities of graphical pro-
cessor units (GPUs) to concurrently tackle Hilbert’s 16th problem through numerical
methods.

1.1 Terms and concepts

1.1.1 High-Performance Computing and HPC tools

High performance computing (HPC) is one of the most essential tools fueling the
advancement of computational science. HPC most generally refers to the practise
of aggregating computing power in a way that delivers much higher performance
than one could get out of a typical desktop computer or workstation to solve large
problems in science, engineering, or business. [2]

CUDA

Compute Unified Device Architecture (CUDA) is a parallel computing platform
and programming model developed by NVIDIA for general computing on its own
GPUs. CUDA has allowed developers to speed up compute-intensive applications
by harnessing the power of general purpose GPUs to parallelise their computations.
Thanks to these advancements, highly complex problems that were once impossible
to compute in realistic time frames can now be computed even on average consumer
hardware GPUs. [3]

11

1.1.2 Limit cycles

For this thesis, it was important to understand the mathematical concept of limit
cycles.

In mathematics, in the study of dynamical systems with two-dimensional phase
space, a limit cycle is a closed trajectory in phase space. It is topologically dis-
tinguished from neighbouring trajectories that are not closed. In two-dimensional
systems, these neighbouring trajectories spiral either toward or away from the limit
cycle, either as time approaches infinity or negative infinity. Limit cycles are inher-
ently nonlinear phenomena and thus cannot occur in linear systems. [4, 5]

Figure 1: Example of a Van der Pol stable limit cycle in the phase space (limit cycle
marked in red). [6]

The limit cycle is stable (or attracting) if all neighbouring trajectories approach it.
If otherwise, all neighbouring trajectories are away from a limit cycle, it is said to
be unstable. A limit cycle can be neither stable nor unstable, and in such cases it
is said to be half-stable. These types are shown in Figure 2:

12

Figure 2: Typology of limit cycles. Limit cycles inidcated by bold, closed cycles.
The tendency of the other trajectories indicated by the arrows. [5]

1.2 Introduction and context

1.2.1 Hilbert’s Problems

In his famous lecture of the 1900 International Congress of Mathematicians, David
Hilbert published a list of 23 problems with deep significance for the advance of
mathematical science. These problems, ranging greatly in topic and precision, were
the subject of intensive research throughout the 20th century, and even today they
are the object of discussion. [7, 8]

In the 120 years since Hilbert’s talk, the 23 problems have all received significant
attention. By 2012, of the 23 problems, ten were considered solved, and a further
seven have solutions that have partial acceptance, although there exists some con-
troversy as to whether they are solved or not. Of the six remaining problems, three
of them were considered unresolved, and three others considered too vague to even
be resolved. [7, 9]

Still, some of Hilbert’s problems concern what are now flourishing mathematical
sub-disciplines, like the theories of quadratic forms and real algebraic curves. One
such problem, and the concern of this Bachelor’s thesis, is Hilbert’s 16th problem.
[9]

13

1.2.2 Hilbert’s 16th Problem

Hilbert’s 16th is a two-part problem, sometimes called the ’Problem of the topol-
ogy of algebraic curves and surfaces’. It is one of the few problems which is still
unresolved, though results on this problem continue to be published to this date.
[8, 10, 11]

First part of Hilbert’s 16th Problem

The first part asks for the relative positions of closed ovals of an algebraic curve
given by the set of points which are solutions of a polynomial equation:

P (x, y) = 0

In 1876 Harnack investigated algebraic curves in the real projective plane and found
that the maximal number of separate connected components a curve of degree n
could have been no more than:

n2 − 3n+ 4

2

Furthermore, he showed how to construct curves that attained that upper bound,
and thus that it was the best possible bound.

Regarding the relative positions, even if this is a purely algebraic problem, there has
been little progress on the general case, while there is progress for small values of
the degree of the polynomial P (degree less than or equal to 7). [8, 12]

Second part of Hilbert’s 16th Problem

The second part of the problem is a problem of ordinary differential equations
(ODEs), but with the components of the vector field given by polynomials as follows:

dx

dt
= P (x, y),

dy

dt
= Q(x, y)

This part asks for the maximal number and relative positions of limit cycles of
these planar polynomial (real) vector fields of a given degree n. This problem,
opened for more than a century, has been at the centre of many developments in
differential equations. The main difficulty of Hilbert’s problem is that, although a
polynomial vector field is an algebraic object, its trajectories are not algebraic. In the
neighbourhood of singular points they may not even be analytic. The fascination of
Hilbert’s 16th problem comes from the fact that it sits at the confluence of analysis,
algebra, geometry and even logic. [8, 12]

The second part is completely open. Even if the problem was stated as early as

14

1900 it was only in 1987 that Ecalle and Ilyashenko proved independently that a
polynomial vector field has a finite number of limit cycles.

1.2.3 Problem to be solved

The object of this Bachelor’s thesis was to address the second part of the 16th Hilbert
problem numerically and develop a parallel code to run on a dedicated GPU.

The principal task was to develop a highly efficient parallel code for the simulation of
the 16th Hilbert problem. The goal was to develop a code capable of (i) performing
the integration of a system of two differential equations with polynomials of second
order and (ii) analysing the solutions for the possible presence of limit cycles.

In previous works, the maximum number of limit cycles found for vector fields of
polynomial quadratic systems was 4. [1]

Figure 3: Visualization of four limit cycles in the phase space for a two-dimensional
polynomial quadratic system. On the left, a large limit cycle in the negative half-
plane. On the right, three nested normal-sized limit cycles on the positive half-plane.
[1]

These vector fields of polynomials of second degree are described by the following
equations:

dx

dt
= a1x

2 + b1xy + c1y
2 + α1x+ β1y

dy

dt
= a2x

2 + b2xy + c2y
2 + α2x+ β2y

15

Leonov [13] showed that these systems could be simplified to reduce the number of
parameters to 5, obtaining the following system:

dx

dt
= x2 + xy + y

dy

dt
= a2x

2 + b2xy + c2y
2 + α2x+ β2y

Although each integration is rather simple, the phase space of the free parameters
is large. If each parameter is sampled at 100 different values, a complete study
requires analysis of ten billion different choices of parameters. Such an expansive
task through brute-force approach would greatly benefit from a parallel approach,
thus the computations will be concurrently performed on GPUs.

1.3 Stakeholders

The main stakeholders in the successful realisation of this thesis were its directors,
Dr. Grigori Astrakharchik and Dr. Marina Gonchenko, and me, Francesc Forn
Caabate, as the student responsible for seeing it through.

The results of this thesis may also be of use to members of the scientific community
working in the field of dynamic systems, keeping in mind that this project does not
provide an analytical solution to Hilbert’s 16th problem, but rather offers a concur-
rent numerical approach from which to draw conclusions and improve computation
performance.

1.4 Justification

Much work has been done on Hilbert’s 16th problem; both analytical and numeri-
cal methods have been used to study the two-dimensional vector fields of quadratic
polynomials. In this thesis, we focused solely on numerical approaches to the prob-
lem and how to exploit the parallelisability of the parameter-space search. Our aim
was to build upon works such as Ref. [1], implementing methods to solve the ODE
systems numerically to then explore the parameter-space in order to find limit cycles
concurrently.

16

To illustrate the vastness of this problem, we offer the quote by A.N. Kolmogorov
which is described by V.I. Arnold in Ref. [14]:

“To estimate the number of limit cycles of square vector fields on plane, A.N. Kol-
mogorov had distributed several hundreds of such fields (with randomly chosen co-
efficients of quadratic expressions) among a few hundreds of students of Mech &
Math Faculty of Moscow State University as a mathematical practice. Each student
had to find the number of limit cycles of a field. The result of this experiment was
absolutely unexpected: not a single field had a limit cycle!”

This shows just how complex the problem we are dealing with is, and how much
it stands to benefit from modern HPC. The goal was therefore to develop our own
parallel code to be executed in a GPU to efficiently exhaust this parameter space.

1.4.1 Performance

The CUDA framework has API for several programming languages, including C/C++,
Python, Julia, FORTRAN, MATLAB, among others. The official CUDA program-
ming toolkit is in C/C++ and offers the most customisability and low-level config-
uration to adapt the code to the hardware. [15]

While performance was of the utmost importance, we also had to keep in mind the
time restrictions of this thesis. For this reason, we ideally wanted to work with
a programming language that allowed for fast development at high level without
significant detriment to performance.

Two possibilities were the use of Python’s pyCUDA and Julia’s Cuda.jl libraries.
These libraries bind to the C CUDA API and interface the data between the kernels
and the programming language. As such, the performance of the kernels that run
in the GPU should be equivalent in all cases but the data models and processing of
different languages makes a difference when interfacing between the GPU code and
the CPU code. [15]

Another alternative was the use of MATLAB’s Parallel Computing Toolbox, which
allows to computationally solve data-intensive problems concurrently using high-
level constructs such as parallel for-loops, special array types, and parallelised nu-
merical algorithms.

The initial phases of the project were carried out in MATLAB due to its ease of
access and the researcher’s prior knowledge of the language. However, due to its
limitations when parallelising the code, the program was later moved to Julia, which
is, according to the literature, faster than Python, and the performance of Julia’s
CUDA library has only a 0.50% impact on performance compared to C. [15, 16]

17

1.5 Scope

1.5.1 Objectives

As presented in Section 1.2.3, the main objective of this project is to develop par-
allel code to simulate the 16th Hilbert problem. We aim for both correctness and
performance. To this end, the following objectives and sub-objectives have been set:

Definition of the approach

Before implementing a solution, a deep understanding of the theoretical background
of the thesis is required. For this task, the following points need to be covered:

• Research and review of the literature. An initial investigative phase to become
familiar with Hilbert’s 16th problem and the current status of its resolutions.

• Explore system dynamics and understand the concept of limit cycles.

• Study numerical methods for solving ODEs.

• Research methods for detecting limit cycles and determine their number in a
given system.

With these, we will define the approach to the solution in the implementation phase.

Solution implementation

Once the theoretical bases are covered, a practical stage can begin. At this stage,
the idea is to cover the following sub-objectives:

• Implement the numerical algorithms for ODE resolution and limit cycle de-
tection in the language decided.

• Implement methods for limit cycle detection.

• Adapt code into parallel solution.

18

Results analysis

Once the program is developed and the results are obtained, a final phase of analysis
and discussion of future steps will take place. The objectives set for this phase are
as follows:

• Visualisation and analysis of results.

• Performance benchmarking.

• Study of alternatives, further exploitation of parallelisability and future work.

1.5.2 Requirements

In a thesis of this nature, where a program will be developed, the usual requirements
and good practises will have to be met:

• Readability and cleanness of code. Following good programming practises
to make the code readable, maintainable, and adaptable to the needs of other
parties.

• Correctness. Naturally, the program must address the problem at hand in a
mathematically correct manner.

• Adequate implementation. The implementation of the algorithms and nu-
merical methods must take into account the convergence of methods, precision
errors and other factors that will affect the results obtained.

• Efficiency. It is vital that the solution is developed with efficiency in mind,
considering the complexity of the problem and the need for parallelisation.

19

1.5.3 Potential obstacles and risks

The potential risks and obstacles the ones that are usually associated with a project
of this nature:

• Deadline of the project. The time restrictions of the project present one
of the major challenges in its fulfilment. As mentioned in Section 1.2.3, there
are many combinations of parameters that need to be studied, making time a
precious resource. This also means that if time is not managed appropriately,
the obstacles encountered may be too great to tackle within the time limit.

• Inexperience with parallelisation. To parallelise and execute the code on
a GPU, knowledge of CUDA is required. A significant amount of time will
be required to go over the teachings of the courses on parallelism and graphic
cards and to determine how to apply them to the task at hand. Additionally,
in order not to work with CUDA C, some time will have to be dedicated
to adapt the code to a different programming language through the use of a
library which adapts CUDA C to the language of choice, in this case, Julia.

• Inexperience in the field. My lack of expertise in mathematical fields such
as system dynamics may hamper my ability to efficiently carry out this project,
whether in the form of difficulties in selecting the best methods for the project,
a potential inability to detect errors in the results obtained, or the slow pace at
which I will be able to direct my research and read through the bibliography.
With support from my tutor, I hope to overcome these.

• Complexity of the Topic. While some of the methods that will be employed
are well known and documented, information on the topic of this thesis is
in itself rather scant. That, of course, is to be expected, being a problem
considered unresolved. In the documentation phase, we will study previous
numerical implementations and learn from them.

• Result accuracy and misinterpretation. Precision errors may arise due
to the use of numerical methods and limitations on hardware precision, which
will need to be accounted for in order to draw adequate conclusions.

20

1.6 Methodology and rigour

1.6.1 Methodology

Due to the short time available for the realisation of this thesis, an Agile-based
methodology may be best suited to organise the tasks. Following this methodology,
we divide the work into tasks or sprints according to the different stages of de-
velopment, starting with the initial implementation of the problem and from there
working incrementally on the optimisation and parallelisation of the code.

1.6.2 Monitoring tools and validation

For managing and monitoring the progress of the project, we have many tools at
our disposal.

• To set and manage the weekly progress and sprints, a Trello board with the
updated tasks and their state will be used.

• To have access to a shared and updated project report, the files will be up-
loaded and edited on Overleaf.

• Lastly, for version control of the code developed we will use git. We will do this
through a shared repository on GitHub. This will allow us to have access to
previous versions of the code should we have the need to backtrack, to define
a main branch with the current working code, and for the code to be shared
and monitored by the tutor.

21

2 Time planning

The project started on February 21, and the expected defence project date is on June
30th. This gives us some 18 weeks to work on this project. Taking into consideration
the project’s credit score, it should take around 450 hours worth of work to see it
through. The aim of this section is to plan out how these hours will be distributed
among the different tasks.

2.1 Description of the tasks

2.1.1 Task definition

The different tasks in this project fall into four major groups:

1. Project planning and management.

2. Research.

3. Implementation.

4. Experimentation and result analysis.

Project planning and management

The aim of this planning phase is to set the course for the realisation of the project.
During this phase, weekly drafts documenting different studies and approach deci-
sions will be produced.

1. Context and project scope. Study of the project context and scope. Defi-
nition of the project objectives, choice of work methodology, and investigation
of related works and how to take advantage of them.

2. Time planning. Manage and distribute available time among the different
tasks to be carried out. Definition of the tasks, estimation of the time require-
ment for each of them, creation of a realistic schedule in which to carry out
the tasks in the form of a Gantt diagram, analysis of risks and alternatives
and their effect on the schedule.

3. Budget and sustainability. Analysis of economic and environmental im-
pact. Identification of costs, cost estimation, management control mechanisms,
sustainability report.

4. Final document. Last deliverable, in which all previous sections are up to
date with the feedback received.

22

The actual documentation process will last for the whole of the project. As it is a
continuous and dynamic process, some decisions or results obtained may change as
we progress, so all these changes will have to be accounted for in the final document.

Lastly, there will be one more weekly managerial task, a regular meeting with the
thesis director to discuss the weekly advances, check on progress, and consider where
we are on the schedule.

Literature and investigation

The aim of this phase is to get a solid grasp of the many theoretical and practi-
cal topics required for this thesis. These include:

• Read on ODE system resolution through numerical methods. Study
the many standard numerical methods for solving ODEs and devise how to
apply them to the systems we are interested in.

• Read on methods for identifying limit cycles. Investigation on non-
analytical methods for detecting limit cycles.

• Become acquainted to MATLAB Parallel Computing Toolbox. Study
the official documentation and examples available.

• Become acquainted to Cuda.jl. Study official documentation. Look at
practical examples and courses available online, and investigate how to apply
it to project’s context.

Implementation

At this stage, the idea is to carry out the more practical part of the project, mainly
consisting of implementing the different algorithms, studying their potential for par-
allelisation, implementing the concurrent solution and running tests.

• Implementation of of ODE system solver. Program the methods studied
for solving the systems.

• Implementation of limit cycle detection. Program the code responsible
for exploring the parameter space sequentially.

• Implementation of parallel solution. Adapt the previous stages into code
that can be executed concurrently in a GPU by using parallelisation strategies
in Cuda.jl.

• Code testing. Run tests on the code to verify correctness and efficiency.

23

Experimentation and result analysis

Once a prototype has been developed, the trial phase may begin. In this phase,
we will first execute a few tests to study the parallel behaviour of the program.
After analysing the results, we will compute new cases and finally draw conclusions
about the overall project.

• Test cases. Initial connection with GPU. Execution of test cases with known
solutions to verify the correct concurrent functioning of the code.

• Test analysis. Performance study of the different methods comparing effi-
ciency, accuracy, memory usage, etc.

• Real cases. Execution the code on new cases with the selected search space.

• Analysis of results. Further performance analysis and analysis of limit
cycles.

• Conclusions and further work. Conclusions drawn from all results. Discuss
possible further work.

(Note: CUDA related tasks may be considered an additional goal of the thesis,
should the time allow for it. However, the MATLAB implementation and results
should suffice for the goals of the project.)

24

2.1.2 Time estimation

In this section I will offer an estimate of the time I predict each task will potentially
last.

Project planning takes place over four weeks, one week for each section. Taking
into account a work load of 15 hours for each task, this is equivalent to 60 hours in
total. In this phase, the duration of the weekly meetings is also included. That is,
a total of 15 meetings of one hour each, so in total, this phase should encompass
about 75 hours of the project.

In the literature and investigation phase, I expect that not much time will be
needed to look into methods for solving ODEs, considering I have previously coursed
subjects in numerical computing. The current estimation is that, between this and
the study of limit cycles, it should take me around 35 hours. Since programming
with MATLAB Parallel Computing Toolbox does not deviate much from regular
MATLAB code, I estimate it should not take longer than 15 hours to become ac-
quainted with it. However, I project I might need around 45 hours to complete a
course on Julia and read documentation, as well as learn how to use Cuda.jl, given
I have no prior knowledge of the language.

The implementation phase is the most critical of all stages of the project. I expect
it to very well last over 150 hours, during which time I will adapt the numerical
methods to my own solution and, most importantly, implement the parallel solutions.

Lastly, for the experimentation and results analysis phase, I expect around
120 hours worth of work, in which I will test the code with known cases and draw
conclusions on these, then adapt it to new cases, benchmark performance, and finally
analyse the results obtained. In this time, it is possible that I will need to go back
to the implementation and make some changes based on the results obtained.

25

2.1.3 Task summary

The task duration and dependencies are summarised in Table 1:

ID Name Prerequisites Duration (h)

P Project planning 75
P1 Context and scope 15
P2 Time planning P1 15
P3 Budget and sustainability P2 15
P4 Final documentation P3 15
P Meetings 15

R Literature and investigation P 95
R1 Read on ODE methods 10
R2 Read on limit cycles R1 25
R3 Study MATLAB 15
R4 Study Julia + Cuda.jl 45

I Implementation P 150
I1 ODE solvers R1 15
I2 Limit cycle detection R2, I1 35
I3 MATLAB implementation R3, I2 40
I4 Cuda.jl implementation R3, I2 40
I5 Code testing I3, I4* 20

E Experimentation and results I 120
E1 Test cases 30
E2 Test analysis E1 10
E3 Real cases E2 50
E4 Result analysis E3 20
E5 Conclusions and further work E4 10

M Project management -

D Documentation -

O Defense preparation 10

Table 1: Summary of task dependencies and expected times.

2.1.4 Gantt chart

Figure 4 shows the expected schedule for the thesis in the form of a Gantt chart:

26

Figure 4: Estimated Gantt chart for the project.

2.2 Resources

Human resources

For the most part, this project is carried out by me, Francesc Forn Cañabate, with
the supervision and guidance of my thesis directors, Dr. Grigori Astrakharchik and
Dr. Marina Gonchenko; as well as Javier Juan Morales Sorolla, who provides feed-
back on the drafts produced in the planning phase.

Material resources

The material resources needed for the project are mainly the bibliography, software
and hardware used. These include:

• Bibliography: The previous papers, books, lectures, courses, etc. used to
produce the solution (see References).

• Overleaf : The site for the production and sharing of documentation.

• GitHub: Where the code repository is hosted.

• Programming languages: Mainly Julia and MATLAB.

• GPU: The NVIDIA Titan V GPU in which the code will be run, and my own
GeForce GTX 1070.

• Computers: My own PC and laptop in which the documentation and code
are produced.

28

2.3 Risk management

As mentioned in Section 1.5.3, there exist some potential risks that can delay or even
hinder the progress of this thesis. In this section we will discuss how to plan ahead
of these risks, and discuss possible alternatives in case they become too obstructive.

2.3.1 Project deadline

One of the main risks in this thesis is to underestimate the work needed to see it
through. This may render the predicted schedule outdated and result in delays in
the solution.

• Impact: Medium.

• Plan: In the previous section, a road map was designed to plan out the
different phases of the thesis. Sticking to this schedule aims to minimise the
probability of delays and misuse of time.

2.3.2 Inexperience with languages

Another minor risk is the possible lack of experience of the programming languages
to be used (mainly with Julia).

• Impact: Low.

• Plan: This is already accounted for in the time estimation of tasks. Julia is
a popular and well documented language, so any doubt I may have is prob-
ably already solved online. Additionally, Julia has a wide range of libraries
available, which may facilitate much of my work.

• Alternative: an alternative has already been proposed, which consists of
developing a solution entirely in MATLAB, which I am already familiar with.

29

2.3.3 Inexperience with CUDA

Much of the difficulty of this project may arise from the development of a parallel
implementation of the code using CUDA. This platform requires specific knowledge
and tools which I am not acquainted with. Familiarising myself with these may be
lengthy and not realisable within the duration of the project, if combined with other
obstacles.

• Impact: Medium.

• Plan: The current plan already accounts for the difficulty of CUDA. We
have already proposed the alternative not to work directly with CUDA C but
rather to work with a library that binds the CUDA framework to a higher-lever
language in order to facilitate its implementation. Additionally, CUDA-related
tasks make up a large portion of the project with the purpose of trying to plan
ahead of these difficulties.

• Alternative: Again, an alternative has been found in the form of employing
the MATLAB’s Parallel Computing Toolbox.

30

3 Budget

In this section, we will discuss the economic needs of the project.

3.1 Personnel costs

Though this project has been carried out by the thesis directors and I, the researcher,
in this section we will consider the costs that would accompany the realisation of this
very project in the hands of the usual members in a software development company.

In the development of a program, we would typically have the following.

• A project manager in charge of the whole process.

• The junior researcher in charge of studying the prior work, the knowledge o
system dynamics and the mathematics required for the project.

• The junior developer who implements the parallel solution.

• An analyst to draw conclusions from the data.

• The tester who will verify the program’s correctness.

Considering the average pay per hour for each of these roles and considering the
estimates of time expenditure discussed in Section 2.1.2, we can approximate the
total staff spending required. These are summarised in Table 2 and Table 3.

Role ID Wage (€/h)

Project manager M 23
Junior researcher R 15
Junior developer D 22
Analyst A 13
Tester T 8

Table 2: Average wages of the development team.

31

Activity Roles Duration (h) Cost (€)

Project planning 75
Preface documentation M 15 345
Time management plan M 15 345
Budget and sustainability reports M 15 345
Final documentation M 15 345
Meetings M, R, D 15 900

Research
Research ODE methods R 10 150
Research limit cycles R 25 375
Learn MATLAB D 15 330
Learn CUDA D 45 990

Implementation 130
ODE solvers D 15 330
Limit cycle detection D 25 550
MATLAB solution D 40 880
CUDA solution D 40 880
Code testing T 20 160

Experimentation and results
Test cases D 30 660
Test analysis A 10 130
Real cases D 50 1100
Result analysis A 20 260
Conclusions and further work M, A, R 10 510

Total 9585

Table 3: Estimated personnel cost of activities.

And so, the expected total staff costs of the project add up to 9585€.

32

3.2 General costs

3.2.1 Amortisation of resources

The direct costs of this project come from the use of hardware and software licences.
To consider the costs of hardware usage, we would need to take into account its
amortisation.

Effectively, this thesis has been completely carried out in my home computer. Con-
sidering average of 3.5 hour workdays over a period of a little over 18 weeks, these
add up to 450 hours in total. Equation 1 shows how to evaluate the amortisation:

Amortisation = Price× 1
Y ears of use

× 1
Days of work

× 1
Hours per day

×Hours used

(1)

Considering a lifespan of 5 years, 250 work days a year, 8 hours of usage per day,
and the duration of 450 hours of this project, we obtain the following amortisation
cost:

Hardware Cost (€) Amortisation (€)

Home computer 1800 81

Table 4: Hardware amortisation cost.

3.2.2 Software licencing

Another cost to consider is the price of software licencing. The only non-open source
software used in this project is MATLAB. While provided by the university, its costs
must also be considered for this project. A non-perpetual MATLAB license costs
800€ per year. Since this project takes place from February until June, five twelfths
of the price should be covered in the project’s budget, so 333.33€ in total. All the
other resources used are open source, and therefore incur no additional
costs.

33

3.2.3 Indirect costs

The major source of costs in this project is the use of the computer. The indirect
costs associated with its usage are the Internet and electricity.

The monthly internet cost is around 90€/month. As seen in the previous section,
if we consider that this project spans from February until the end of May, this
accounts for four month of internet payments. Given the bound of 3.5 hours of work
per day, we obtain a total of:

(90 €/month) * (5 months) * (30 days/30) * (3.5 work hours/24) = 65.63€

The electricity costs can be approximated by calculating the hours worked multi-
plied by the (current) average cost per kWh. Approximately, my desktop computer
consumes a load wattage of around 327W. [17]

Over the course of this projects, this means a total consumption of:

(327 W) * (1kW/1000W) * (450 hours) = 147.15 kWh

Taking into account the price of 0.41194 €/kWh today [18], the total adds up to
60.62€

3.2.4 General costs summary

Considering the 81€ of hardware amortisation, the 333.33€ of software licensing,
and the 126.25€ of indirect costs, the total general costs add up to 540.58€

3.3 Contingency

It is a good measure to set aside a contingency margin in case unforeseen events
hinder the project. We assume that a 15% of the total costs will make for an
adequate budget. Therefore, considering the 9585€ of the costs per action, and the
540.58€ of general costs, we should set aside some 1518.84€.

34

3.4 Incidental costs

Another good practice is to take into account the costs that may arise from the risks
identified in Section 2.3. We can categorise them into the risk of failing to deliver
within the project deadline, and the risks arising from my inexperience.

Incident Estimated cost (€) Likelihood (%) Cost (€)

Project deadline 450 25 112.5
Inexperience 400 50 200

Total 850 - 312.5

Table 5: Estimation of incidental costs.

3.5 Budget summary

Activity Cost (€)

Personnel 9585
General 540.58

Contingency 1518.84
Incidental 312.5

Total 11956.92

Table 6: Budget summary.

35

3.6 Management control

Though we have discussed in previous sections how we account for potential risks
and incidents in our initial budget, we also will need to model how the actual costs
deviate from our estimations. Upon completing a task t, we will calculate the budget
deviation as follows:

dt = Et −Rt (2)

Where:

• Et = Estimated cost of the task t in the initial budget.

• Rt = Real cost of the task t upon completion. The budget cost estimates
will have to be recalculated for this.

• dt = Budget deviation of task t.

A negative deviation indicates that the budget for a task was underestimated, and
the funding for it will have to be obtained elsewhere. On the other hand, a positive
deviation indicates that the cost of the task was overestimated, and the leftover bud-
get can be allocated elsewhere, for instance to make up for those negative deviations,
or to a fund in case of further risks or incidences.

If this were an actual project, with the employees discussed, and such, it would
be good practise to keep a tab on the deviations in the form of a spreadsheet to
continuously evaluate the budget situation, to easily detect the need for further
funding or discuss the possible applications of unused resources.

36

4 Sustainability assessment

4.1 Self-assessment

As this is not my first engineering thesis of this nature, I like to think I am well ac-
quainted with some of the concepts surrounding sustainability, both environmental,
social, and economic.

As with any project, we have responsibility on how we will impact society and the
environment, so it is important when planning the thesis to consider the factors
described in order to maximise the positive impact.

The indicators provided and the project requirements offer useful tools to ensure
that our thesis covers the baselines for sustainability. For example, numerically
evaluating the economic impact or environmental footprint of hour project design
may lead us to discussing and analysing possible alternatives that may lead to better
performance, reduction of waste, or improve the impact our project will have both
on ourselves and the people it impacts, be it directly or indirectly.

The questionnaire made me reflect not only on aspects that I was already aware of
but also on some aspects that I may have otherwise not considered. Still, many of
them are not reflected in this body of work, due to time restrictions, relevancy, and
the scope of the thesis. Nevertheless, these aspects are important and significant
and should therefore not go unmentioned or ignored.

4.2 Environmental impact

PPP: Have you estimated the environmental impact of undertaking the
project?

Though not in detail, in Section 3.2.3, we saw the estimated consumption of the
PC I will work on throughout the thesis. As there are no production processes, dis-
tribution channels, or other logistics involved in this thesis, electrical consumption
is our main environmental concern. From the aforementioned consumption esti-
mate, we can easily estimate the kilograms of CO2 produced throughout the project
(around 63.13 kg).

37

PPP: Have you considered how to minimise the impact, for example by
reusing resources?

As the main consumption comes from computer usage, the main way to reduce
the impact (considering working hours cannot be reduced) would be through the
use of a more energy-efficient machine. Using a public PC, such as the ones avail-
able on campus, would be highly unpractical, both in terms of time efficiency and
transportation emissions. Investing in a new, less consuming machine is also out of
the question for many reasons, including the actual budget of 0€ for the project or
the environmental impact of acquiring a new computer and recycling / discarding
the old one. Exploitation: How is the problem that you wish to address
resolved currently (state of the art)?

Currently there exist some numerical solutions to Hilbert’s 16th problem. In this
project we have been significantly influenced by them and aim to build on top of
their work.

Exploitation: In what ways will your solution environmentally improve
existing solutions?

The main objective for this thesis is to develop a solution that will be on-par with
existing ones but maximising the computing efficiency. This translates not only
into reduced execution times, but also into lower emissions and less resources and
computer power wasted.

4.3 Economic impact

PPP: Have you estimated the cost of undertaking the project (human
and material resources)?

In Section 3 we have provided and in-depth analysis of this project’s material and
human needs, as well as potential risks and contingencies

Exploitation: How is the problem that you wish to address resolved cur-
rently (state of the art)? In what ways will your solution economically
improve existing solutions?

Again, there exist some implementations of numerical solutions of the problem we
want to solve. As mentioned in the previous section, this project aims to reduce
both the resources and the time required to solve the problem, which translates into
economic savings.

38

4.4 Social impact

PPP: What do you think that carrying out the project has contributed
to you personally?

The realisation of this project has allowed me to implement various skills and much
of the knowledge I have accumulated throughout the degree, and has given me in-
sight into a new field that I did not know before. Exploitation: How is the
problem that you wish to address resolved currently (state of the art)?
In what ways will your solution socially improve (quality of life) existing
solutions? Is there a real need for the project?

Though no apparent direct benefit is clear to me (given my lack of knowledge in
the fields involved), I am convinced it this will contribute positively to the field of
system dynamics that is concerned with the topics reviewed in this thesis; and could
bring some insight into Hilbert 16th problem, which is still to this day considered
unresolved.

39

5 Implementation and results

5.1 Limit cycle detection method

As stated in Section 1.2.3, the aim of this thesis was to identify the limit cycles in
two-dimensional second-order differential systems. To do this, we devised a method
based on Poincaré mapping.

Poincaré maps (or first return maps) are helpful for analysing systems that show
periodic behaviour. A Poincaré map defines a section Σ, transverse to the flow of
the trajectories in the phase space. This section is a map from Σ to itself, and what
it tells us is that, if we start at any point in this map and run forward in time
following a trajectory, where will we next intersect the map. That is to say, if we
start at a point k in our section, a Poincaré map will tell us where the next point
k + 1 lies on the section after one rotation through our flow.

Figure 5: Illustration of Poincaré mapping for identifying limit cycles in the phase
space. Starting on a point on the transverse section, Σ, we follow the trajectory for
one cycle and obtain its ending point. This is how the mapping relates the initial and
final points for each trajectory. The section Σ is coloured in blue. In this example,
an attractive limit cycle in draw in bold, and two trajectories orbiting towards it
are shown to illustrate the mapping described. [19]

This can help us identify limit cycles in the following way: if we compute one rotation
starting at every point in our section, and compute the euclidean distance between
the starting and ending points, we can identify limit cycles as those trajectories in
our section where the distance between the starting and ending points is zero (as
they are closed trajectories).

40

We can formalise this somewhat. We start by assigning values to the parameters
a2, b2, c2, α2, and β2. For these parameters, we solve a set of initial value problems
given by each point in the section.

Generally, we took the section Σ to be the x-axis, so we defined a set of initial value
problems given by the starting point (x0, 0), ∀ x0 ∈ Σ (which is to say ∀ x0 ∈ R, as
Σ is the x-axis).

So, as described, for each value of x0 in the section we computed the trajectory
of the curve that passed through (x0, 0), understanding by trajectory one complete
cycle of the segment of the curve, starting at the initial point, and passing through
the x-axis twice, as is shown in the following Figure 6:

Figure 6: Example of a trajectory of in phase space. This trajectory starts at the
initial point in the x-axis (0.5, 0) and ends at the point (1.17, 0).

After computing the trajectory, we measured the distance between the starting point
and the ending point.

41

Figure 7: Representation of the same trajectory in phase space (in blue) with the
distance between start and end of trajectory (in red). Total distance, dx = 0.667 is
displayed.

As in the example above, we measured this distance for all the initial value problems
and studied how it evolves as we move along the x-axis.

We plotted the distance against the value of x0 to observe how the system evolved
and to visualise the presence of limit cycles, as is done in Figure 10. Keeping in
mind that each cycle crosses the x-axis twice, the number of crossings is twice the
number of limit cycles.

To summarise, for the given values of the parameters, we scanned the x-axis within
a given range until we found up to four cycles (as demonstrated in article [1]). With
the prior knowledge that there are generally three small limit cycles in the positive
half-plane, and a large limit cycle at the negative half-plane, the search space could
be somewhat reduced.

In the next section, we described some numerical methods considered to integrate
the ODE systems to obtain the curves.

42

5.2 Numerical Methods

5.2.1 Runge-Kutta 4

The first methods we considered were the Runge-Kutta methods. The Runge–Kutta
methods are effective and widely used methods for solving the initial-value problems
of differential equations. They can be used to construct high order accurate numer-
ical approximation of functions, without needing their high order derivatives. [20]

Consider the following (two dimensional) first-order initial value problem:
x′ = f(x, y)

y′ = g(x, y)

t0 ≤ t ≤ tf

with the initial values: {
x(t0) = x0

y(t0) = y0

The Runge-Kutta methods divide the interval [t0, tf] into N sub-intervals [ti, ti+1],
for i = {0, 1, ..., N - 1}. Starting with the sub-interval [t0, t1], with the known initial
values of (x0, y0), the aim is to calculate the values of (x1, y1) by approximating the
slope of the functions within the interval. Having approximated these values, the
method moves on to the next sub-interval and so on.

The most widely known member of the Runge-Kutta family is the fourth-order
method. It is generally referred to as “RK4”, the “classic Runge–Kutta method” or
simply as “the Runge–Kutta method”.

In the Runge-Kutta 4 method, the values of x and y are approximated by the
following equations:

xi+1 = xi +
1

6
h(k1x + 2k2x + 2k3x + k4x)

yi+1 = yi +
1

6
h(k1y + 2k2y + 2k3y + k4y)

where
ti+1 = ti + h

43

Here xi+1 and yi+1 are the RK4 approximations of x(ti+1) and y(ti+1) respectively.

At any time t = ti the values of xi+1 and yi+1 are determined by the current known
values xi and yi plus the weighted average of four increments, where each increment
is the product of the size of the interval, h, and an estimated slope specified by
functions f and g.

The expressions for the slopes are the following:

k1x = f(xi, yi)

k1y = g(xi, yi)

k2x = f(xi +
1
2
k1x, yi +

1
2
k1y)

k2y = g(xi +
1
2
k1x, yi +

1
2
k1y)

k3x = f(xi +
1
2
k2x, yi +

1
2
k2y)

k3y = g(xi +
1
2
k2x, yi +

1
2
k2y)

k4x = f(xi + k3x, yi + k3y)

k4y = g(xi + k3x, yi + k3y)

where:

• k1 is the slope at the beginning of the interval (as in Euler’s method).

• k2 is the slope at the midpoint of the interval, using the value of k1.

• k3 is the slope at the midpoint of the interval, but now using the value of k2.

• k4 is the slope at the end of the interval, using the value of k3.

In averaging the four slopes, greater weight is given to the slopes at the midpoint.
[21]

44

Figure 8: This image illustrates the slopes used by the Runge-Kutta 4 method for a
given one-dimensional function y(t), for which we know the derivative y′(t), and the
initial point y(t0) = y0. Here we want to evaluate the function at the time t = t1.
The slopes evaluated by the RK4 method are indicated by the red vectors: k1 at
the beginning of the interval, k2 and k3 at the midpoint, and k4 at the end of the
interval. The exact trajectory of the function in time-position space is plotted in
blue, and the RK4 approximation of the point at time t1 is depicted by the green
asterisk at (t1, y1), which lies very close to the real value. The black lines join the
initial point to each slope and to the final point. [21]

45

Comparison of Runge-Kutta methods

Figure 9: Comparison of the Runge-Kutta methods for the differential equation
y′ = sin(t)2, the exact function plotted in orange. In the figure, the trajectories
y(t) correspond to numerical solutions obtained using different methods: in violet
Euler’s (first order) method, in blue Euler’s method with the time increment reduced
in half, in green Heun’s (second order) method, and in olive, RK4. The plot shows
that, not only is the RK fourth order method the most precise, but that it also lies
very close to the real function. [21]

Figure 9 provides a comparison of the precision of different-order RK methods. As
the figure shows, the results obtained through the Runge-Kutta 4 methods were more
precise than those obtained by its lower-order counterparts. Additionally it shows
that the RK4 method provides a an accurate approximation of the real function
(provided the time step is adequate).

5.2.2 Adaptive algorithms and the Runge-Kutta-Fehlberg method

Numerical ODE solvers need to use appropriate step sizes between evaluation points
to achieve high levels of accuracy while also quickly finding solutions across the
evaluation interval. Adaptive ODE solvers reduce step size, h, where needed to
meet accuracy requirements. To improve performance, they also increase the step
size when the accuracy requirements can be satisfied with a larger step size. [22]

46

The Runge-Kutta-Fehlberg method (denoted RKF45) uses fourth and fifth order
Runge-Kutta ODE solvers to adjust the step size at each evaluation point.

Some adaptive ODE algorithms make course changes to the step size such as either
cutting it in half or doubling it. The RKF45 function first finds a scalar value,
s, from a tolerance value and the difference between the solutions from the two
algorithms. The new step size comes from multiplying the current step size by the
scalar. The scalar will be one if the difference between the solutions is half of the
tolerance. The algorithm progresses to the next step if the difference between the
two solutions is less than the tolerance value. Otherwise, the current evaluation is
recalculated with a smaller step size. The multiplier is restricted to not exceed two.
So the step size will never increase to more than twice its current size. The tolerance
and the threshold to advance to the next point are tunable parameters. [22]

5.3 Software built-in functions

Both Julia and MATLAB have their own libraries and built-in functions to integrate
ODEs.

5.3.1 MATLAB’s ode45

MATLAB’s standard solver for ODEs is the built-in function ode45. This function
implements a Runge-Kutta method with a variable time step for efficient computa-
tion. ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince
pair. It is a single-step solver – in computing y(ti+1), it needs only the solution at
the immediately preceding time point, y(ti). [23]

5.3.2 Julia libraries

Julia has many libraries available to solve ODEs. The most prominent among them
are DifferentialEquations.jl and DiffEqGPU.jl.

47

5.4 Methods implemented

5.4.1 Integration method used in this thesis

For the purposes of this thesis, we opted to program our own implementation of the
RK4 method to solve the systems, so that we could adapt it to our needs in finding
each trajectory. We implemented it first in MATLAB to run tests and evaluate
performance, and later on in Julia to parallelise it using the Cuda.jl library.

5.4.2 Additional remarks on accuracy

Rarely did the previous methods evaluate the systems at the point where they
intersects with the x-axis. It was, of course, more probable that they evaluate points
before and after crossing it, since they use discrete time steps h (fixed or adaptive).
For this reason, further methods were necessary to close in on the crossing to the
desired degree.

There were many ways to do this, for instance, using one of the previous methods
with a finer step in the region where the function changes sign. Another option
was to use inverse interpolation methods to attempt to find this value. In Section
5.5.2 we analysed the accuracy of reverse linear interpolation, reverse quadratic
interpolation, and time-step reduction.

48

5.5 Testing

In this section we will cover the tests performed to analyse the correctness and
precision of the methods used.

5.5.1 Replication of known results

With the implementation of our integration methods, we first had to analyse their
correctness. To this end, we reproduced the example provided in the paper “Vizual-
isation of four normal size limit cycles in a two-dimensional polynomial quadratic
system” [1] (parameter values of a2 = −10, b2 = 2.2, c2 = 0.7, α2 = −71.22, and
β2 = 0.0015).

Following the methodology explained in Section 5.1, we started with the positive
limit cycles. We used x ∈ [−1, 20], discretised in steps of 0.01.

With an implementation in MATLAB of the RK4 method, we produced the plot of
the cycle start-to-end distance against the initial value of x, as shown in Figure 3:

Figure 10: Poincaré mapping of the start-to-end distances of trajectories in the
positive semi-axis using a positive time step. The presence of limit cycles is indicated
by the x-axis crossings, two for each limit cycle.

49

In Figure 10 we identified the limit cycles going through the approximate points
(0.66, 0), (2.2, 0), and (15.96, 0). The other three negative intersects correspond
to their other crossing to complete the cycle, remembering that each cycle crosses
twice. These limit cycles are shown in the following Figure 11.

Figure 11: Example of three nested positive normal-sized limit cycles in the phase
space. Parameter values taken from article [1]

The results matched those obtained in the paper with the same parameter values,
so we concluded that our implementation of RK4 is on par with the paper’s use of
MATLAB’s ode45 (and our own tests with the built-in function).

50

To cover our bases, we repeated this process with a negative time step to ensure we
obtained the same results:

Figure 12: Poincaré mapping of the start-to-end distances of trajectories in the
positive semi-axis using a negative time step. The presence of limit cycles is indicated
by the x-axis crossings, two for each limit cycle.

51

As we expected, the crossings with both time steps were the same:

Figure 13: Superposition of Poincaré mappings of the start-to-end distances of the
trajectories with positive and negative time steps. They intersect at the same x-axis
crossings, indicating that the limit cycles detected with forward and backward time
steps match.

52

Following the same process for the large negative cycle, for x ∈ [−3900,−3500] this
time with a step of 0.5, we obtained:

Figure 14: Poincaré mapping of the start-to-end distances of trajectories in the
negative semi-axis using a negative time step. The presence of the limit cycle is
indicated by the x-axis crossing. In this case, the other crossing of this cycle has
been cut out to zoom-in on the region around this intersection. This is the example
of the large negative limit cycle provided in [1].

53

This indicated the presence of the large cycle that goes through the point (−3712, 0),
which is shown in the following figure.

Figure 15: Example of large negative limit cycle in the phase space. Parameter
values taken from article [1]

Having seen that our results matched those of [1], we believed our method to be
correct and ready to be applied to further cases.

54

5.5.2 Precision tests

In Section 5.4.2 we discussed the need of further numerical methods so as to pinpoint
the final point of each trajectory. In this section, we analysed the precision of each
method.

To do this, we used a harmonic oscillator system in order to be able to compare the
experimental results, with real well-known results.

By imposing a starting point at (10, 0), the expressions that describe this system
are the following:

x′ = y

y′ = −x
(x0, y0) = (10, 0)

This yielded the known result of a circumference of radius 10 centred around the
origin:

Figure 16: Solution of the harmonic oscillator system in the phase space. As men-
tioned, the result is a circle centred at the origin with radius of 10 units.

55

How these tests worked: we computed one whole cycle of the circumference with dif-
ferent time steps and measured how the final point approximated by RK4 combined
with the numerical method of interest deviated from the final theoretical point of (10,
0). We plotted the results on a log-log plot and compared them with polynomials
of different orders.

Inverse linear interpolation

First, we ran the test with inverse linear interpolation, and we obtained the following
results:

Figure 17: Absolute error of RK4 integration of the harmonic oscillator system com-
bined with inverse linear interpolation of the crossing. The x marks correspond to
the results obtained with RK4 and linear interpolation at the crossing. The dashed
lines correspond to typical time step dependence of linear, quadratic, and cubic
methods, which in log-log plots are represented by straight lines. The horizontal
black line depicts the maximum precision obtainable, which correspondss to the
machine epsilon, ϵ.

With this method the maximum precision was of the order of 1× 10−12 when using
a time step of 1× 10−6. At this point,point, we reached the maximum precision of
this method, and any further value of dt would not improve the precision. As we
can see, the order of the absolute error lies on the line of x2.

56

Note: MATLAB works with double precision, so the maximum precision we could
aspire to is of 2−52, which is indicated with the horizontal black line labeled maximum
precision in all graphs.

Inverse quadratic interpolation

Then, we ran the test with inverse quadratic interpolation and we obtained the
following results:

Figure 18: Absolute error of RK4 integration of the harmonic oscillator system
combined with inverse quadratic interpolation of the final point.

With this method, we could achieve a precision of 1 × 10−13 with a time step of
only 1 × 10−3, which was already a great improvement over the previous method.
The maximum precision was on the order of 1 × 10−14 when using a time step of
1× 10−5. At this point, we reached the maximum precision of this method, and any
further value of dt would not improve the precision. As we can see, the order of the
absolute error lies approximately on the line of x4.

57

Dichotomic scheme

Lastly, we tested the final method in which we ran the RK4 algorithm recursively in
the region where the function changes sign, halving the time step until we achieved
the desired tolerance between points (say, 1× 10−15:

Figure 19: Absolute error of RK4 integration of the harmonic oscillator system
combined with with a recursive reduction of the time step to achieve the desired
error tolerance of 1× 10−15 at the final point.

With this method the maximum precision was of the order of 1× 10−15 when using
a time step of only 1 × 10−3. At this point, we reached the maximum precision of
this method, and any further value of dt would not improve the precision. As we
can see, the order of the absolute error lies on the line of x5. This is the best of the
methods tested.

58

Implementation on the example case

When running this test on the example with parameter values of a2 = −10, b2 = 2.2,
c2 = 0.7, α2 = −71.22, and β2 = 0.0015, the precision if the results was several
orders of magnitude lower. Running the test on the cycle that goes through the
point (2.1837, 0), we obtain the following results:

Figure 20: Absolute error of RK4 integration of the limit cycle of the example case
combined with with a recursive reduction of the time step to achieve the desired
error tolerance of 1× 10−15 at the final point.

While the precision is worse than that of the harmonic oscillator, an absolute error
of 1× 10−8 while using a time step of 1× 10−3 is still very accurate for the purposes
of this thesis. In this case, the results obtained with inverse quadratic interpolation
are very similar.

The reduction in precision most likely arises due to the increase in complexity of the
system, and the fact that the point (2.1837, 0) is obtained experimentally, so it is
not an exact value, and therefore a source of error capping the maximum precision
obtainable.

59

5.6 Parallel implementation

With the correctness of the code tested, and the precision of the method bench-
marked, the final step was to develop a parallel implementation of the code.

5.6.1 Strategy and kernel programming

One of the most common tasks in CUDA programming is to parallelise a loop
using a kernel. Common CUDA guidance is to launch one thread per data element,
which means that to parallelise the loop we write a kernel that assumes we have
enough threads to more than cover the array size. This is sometimes referred to as
a monolithic kernel.

However, for problems as complex as what we’re dealing with, rather than assume
that the thread grid is large enough to cover the entire data array, we instead add
a grid-stride loop to our kernel. That is, we write a kernel that loops over the data
array one grid-size at a time. Notice that the stride of the loop is

blockDim.x ∗ gridDim.x

which is the total number of threads in the grid. So if there are 1280 threads in the
grid, thread 0 will compute elements 0, 1280, 2560, etc. This is why it is called a
grid-stride loop. By using a loop with stride equal to the grid size, we ensure that
all addressing within warps is unit-stride, so we get maximum memory coalescing,
just as in the monolithic version.

The resulting kernel function something like this:

Algorithm 1 GPU Kernel

1: procedure KernelFunction
2: index← (blockId.x - 1) * blockDim.x + threadId.x
3: stride← blockDim.x * gridDim.x
4:

5: for i← index : stride : length(initialPoints) do
6: if i < length(initialPoints) then
7: dx(i)← RK4(initialPoints(i), timeStep)

60

There are several benefits to using a grid-stride loop.

Scalability and thread reuse. By using a loop, you can support any problem
size, even if it exceeds the largest grid size your CUDA device supports. Moreover,
you can limit the number of blocks you use to tune performance. For example,
it’s often useful to launch a number of blocks that is a multiple of the number of
multiprocessors on the device to balance utilization. When you limit the number
of blocks in your grid, threads are reused for multiple computations. Thread reuse
amortises thread creation and destruction cost along with any other processing the
kernel might do before or after the loop (such as thread-private or shared-data
initialisation).

Debugging. By using a loop instead of a monolithic kernel, you can easily switch
to serial processing by launching one block with one thread.

Portability and readability.The grid-stride loop code is more like the original
sequential loop code than the monolithic kernel code, making it clearer for other
users. [24]

61

5.6.2 Performance

To benchmark the performance, we ran a series of tests on my NVIDIA GeFORCE
GTX 1070 GPU, which has a clock frequency of 1594 MHz (around 0.6ns for a single
period).

First, we tested our implementation of RK4. We launched the kernel sequentially
for some 200.000 trajectories. On average, it took about 651.5 iterations of RK4 to
compute each trajectory, each iteration lasting on average 33.49ns, which is reason-
able looking at the clock time. If it takes around 21.82µs per trajectory, in a month
we should be able to compute 2.628× 1012 trajectories.

Then, we tested to see how the parallel implementation performs compared to the
sequential one. To test for this we called the kernel with different number of points
to see how the number of trajectories to compute affects performance. The results
are the following:

Figure 21: Log-log plot of the time taken to sequentially and concurrently execute
the kernel with different number of trajectories. The sequential time (in blue) is
directly proportional to the number of trajectories, whereas the parallel execution
benefits from larger computations up to a certain extent.

62

We observed that, for the sequential execution, the execution time is directly pro-
portional to the number of trajectories computed. In fact, when we re-plotted this
with the average execution time, we concluded this was a linear relationship, as one
might expect:

Figure 22: Log-log plot of the time taken to sequentially and concurrently launch
the kernel with different number of trajectories. In red is the line corresponding to
the average execution time per trajectory multiplied by the number of trajectories
computed.. The sequential times are indicated by the blue crosses, and the parallel
by the green. We can see that the sequential execution time lines up with the line
of the average expected execution time

We also concluded that the execution time is generally much faster when the kernel
is executed concurrently. In this graph, we can also observe the effect of the paral-
lelisation overhead for small vectors. The larger the vector, the less significant these
overheads become until they are insignificant.

63

We defined the speed-up of the parallel execution as shown in the next equation:

speed-up = sequential execution time / parallel execution time

With the previous execution times, we obtained the following speed-ups:

Figure 23: Speed-ups obtained by the parallel kernel for different numbers of trajec-
tories computed. In red is the speed-up of 1. We can see that below 10 trajectories
the resulting speed-up is lower than 1, which means that using the parallel imple-
mentation is slower than sequentially computing it.

Figure 23 shows how, for lower number of trajectories, the speed-ups achieved were
very low. This was most likely due to the fact that the faster execution of the few
computations does not make up for the parallelisation overheads. As the number of
trajectories computed increased, with the more efficient scheme and combined with
the re-utilisation of threads, we got much better speed-ups, seemly plateauing at
about 60 for the current parallelisation strategy.

64

6 Conclusions and future work

6.1 Conclusions

In this thesis we developed a program to integrate systems of two second order
polynomial ODEs. We compared different integration methods, and found that an
algorithm based on fourth order Runge-Kutta to be best suited to our needs.

We performed extensive testing of convergence with respect to the time step, made
a study of the accuracy of as a function of the time step for different integration
schemes, and studied the accuracy of different interpolation methods used to find
the point where the trajectory crosses the x-axis, comparing it to the machine ϵ. We
compared the results obtained with the analytical results for a harmonic oscillator.

We developed our own method for detecting limit cycles based on Poincaré mapping
and were able to replicate the results obtained in the literature.

We tested two different parallelisation strategies using MATLAB and Julia, the
latter obtaining a speed of up to 60 in the tests run.

6.2 Future work

As possible future work, the developed code can be used on CUDA clusters (such
as MinoTauro in Barcelona Supercomputing CXenter (BSC)).

Additionally, we would like to explore further parallelisation strategies and imple-
mentations to improve on the speed-up obtained.

65

References

[1] N. Kuznetsov, O. Kuznetsova, and G. Leonov, “Visualization of four normal
size limit cycles in two-dimensional polynomial quadratic system,” Differential
equations and dynamical systems, vol. 21, no. 1, pp. 29–34, 2013. Accessed:
2022-03-21.

[2] InsideHPC, “What is high performance computing?.” https://bit.ly/

3szdUNW, May 2015. Accessed: 2022-03-01.

[3] InfoWorld, “What is cuda? parallel programming for gpus.” https://bit.ly/

3Kaf74C, Aug 2018. Accessed: 2022-03-01.

[4] Wikipedia, “Limit cycle.” https://bit.ly/3IyGiWn, Dec 2021. Accessed:
2022-03-01.

[5] X. Sun and J. Lei, Limit Cycle, pp. 1126–1127. New York, NY: Springer New
York, 2013. https://bit.ly/3MdSMof, Accessed: 2022-03-01.

[6] Wikimedia, “Van der pol stable limit cycle.” https://bit.ly/3vu8DJr. Ac-
cessed: 2022-03-01.

[7] Wikipedia, “Hilbert’s problems.” https://bit.ly/36SKNwV, Jan 2022. Ac-
cessed: 2022-03-01.

[8] C. Rousseau, “Mathematical developments around hilbert’s 16th problem,”
2007. https://bit.ly/3IAtPBq, Accessed: 2022-03-01.

[9] Kiddle, “Hilbert’s problems facts for kids.” https://bit.ly/3MdAVxJ. Ac-
cessed: 2022-03-01.

[10] J. Llibre, “Sobre el problema 16 de hilbert,” Gaceta de la Real Sociedad Matem-
atica Española, vol. 18, no. 3, pp. 543–554, 2015. https://bit.ly/3IG4FBy,
Accessed: 2022-03-01.

[11] P. Pedregal, “Hilbert’s 16th problem.” https://bit.ly/3psAGFD, 2021. Ac-
cessed: 2022-03-01.

[12] Wikipedia, “Hilbert’s sixteenth problem.” https://bit.ly/3K1p3wU, Feb
2022. Accessed: 2022-03-01.

[13] G. Leonov, “Effective methods for investigation of limit cycles in dynamical
systems,” Applied Mathematics and Mechanics, vol. 74, no. 1, pp. 37–73, 2010.

[14] V. Arnol’d, “Experimental mathematics,” Fazis, 2005.

[15] A. Boné Ribó, “High-performance simulation of the 16th hilbert’s problem,”
Jun 2021. Accessed: 2022-06-13.

[16] T. Besard, C. Foket, and B. De Sutter, “Effective extensible programming:
Unleashing julia on gpus,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 30, no. 4, pp. 827–841, 2019.

66

https://bit.ly/3szdUNW
https://bit.ly/3szdUNW
https://bit.ly/3Kaf74C
https://bit.ly/3Kaf74C
https://bit.ly/3IyGiWn
https://bit.ly/3MdSMof
https://bit.ly/3vu8DJr
https://bit.ly/36SKNwV
https://bit.ly/3IAtPBq
https://bit.ly/3MdAVxJ
https://bit.ly/3IG4FBy
https://bit.ly/3psAGFD
https://bit.ly/3K1p3wU

[17] “Power supply calculator - psu calculator.” https://outervision.com/

power-supply-calculator. Accessed: 2022-03-14.

[18] “Precio del kwh de luz por horas.” https://tarifaluzhora.es. Accessed:
2022-03-14.

[19] “Limit cycle poincaré map.” https://bit.ly/39Bw5w2. Accessed: 2022-06-18.

[20] “Runge-kutta method — sciencedirect.” https://bit.ly/3l2CbHD. Accessed:
2022-05-10.

[21] “Runge–kutta methods.” https://bit.ly/3whC8gD, Apr 2022. Accessed:
2022-05-10.

[22] “Numerical differential equations - applied data analysis and tools.” https:

//bit.ly/3PcEt51. Accessed: 2022-05-11.

[23] “ode45 - matlab help center.” https://bit.ly/3ypDSad. Accessed: 2022-05-
11.

[24] “Cuda pro tip: Write flexible kernels with grid-stride loops.” https://bit.ly/
3MVhwkh, Oct 2021. Accessed: 2022-06-14.

67

https://outervision.com/power-supply-calculator
https://outervision.com/power-supply-calculator
https://tarifaluzhora.es
https://bit.ly/39Bw5w2
https://bit.ly/3l2CbHD
https://bit.ly/3whC8gD
https://bit.ly/3PcEt51
https://bit.ly/3PcEt51
https://bit.ly/3ypDSad
https://bit.ly/3MVhwkh
https://bit.ly/3MVhwkh

	Context
	Terms and concepts
	High-Performance Computing and HPC tools
	Limit cycles

	Introduction and context
	Hilbert’s Problems
	Hilbert's 16th Problem
	Problem to be solved

	Stakeholders
	Justification
	Performance

	Scope
	Objectives
	Requirements
	Potential obstacles and risks

	Methodology and rigour
	Methodology
	Monitoring tools and validation

	Time planning
	Description of the tasks
	Task definition
	Time estimation
	Task summary
	Gantt chart

	Resources
	Risk management
	Project deadline
	Inexperience with languages
	Inexperience with CUDA

	Budget
	Personnel costs
	General costs
	Amortisation of resources
	Software licencing
	Indirect costs
	General costs summary

	Contingency
	Incidental costs
	Budget summary
	Management control

	Sustainability assessment
	Self-assessment
	Environmental impact
	Economic impact
	Social impact

	Implementation and results
	Limit cycle detection method
	Numerical Methods
	Runge-Kutta 4
	Adaptive algorithms and the Runge-Kutta-Fehlberg method

	Software built-in functions
	MATLAB's ode45
	Julia libraries

	Methods implemented
	Integration method used in this thesis
	Additional remarks on accuracy

	Testing
	Replication of known results
	Precision tests

	Parallel implementation
	Strategy and kernel programming
	Performance

	Conclusions and future work
	Conclusions
	Future work

	References

