
Preprocessing algorithms for SAT and

Pseudo-Boolean solvers
Final project

Ramon Cano Aparicio
Director: Robert Nieuwenhuis, Computer Science Department

June 2022

1



Contents

1 Introduction and contextualization 4
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Justification 6
2.1 Previous studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Scope 6
3.1 Objectives and sub-objectives . . . . . . . . . . . . . . . . . . . . 6
3.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Potential obstacles and risks . . . . . . . . . . . . . . . . . . . . . 7

4 Methodology and rigour 8
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Monitoring tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Description of tasks 8
5.1 Weekly meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Project planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3 Previous study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.4 Practical implementation . . . . . . . . . . . . . . . . . . . . . . 10
5.5 Final experimentation, analysis and conclusions . . . . . . . . . . 10
5.6 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.7 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Time estimations 12
6.1 Task time estimations and dependencies . . . . . . . . . . . . . . 12
6.2 GANTT diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Risk management 14
7.1 Not being able to find a path in an early stage of the project . . 14
7.2 Inexperience in the field . . . . . . . . . . . . . . . . . . . . . . . 14
7.3 Having no access to proper equipment. . . . . . . . . . . . . . . . 14

8 Budget 15
8.1 Personnel Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.2 Material costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.3 Deviations of the budget . . . . . . . . . . . . . . . . . . . . . . . 18
8.4 Final budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2



9 Sustainability report 19
9.1 Environmental sustainability . . . . . . . . . . . . . . . . . . . . 19
9.2 Economic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.3 Social . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10 SAT Problems 21
10.1 Proving our problem is NP . . . . . . . . . . . . . . . . . . . . . 22
10.2 Proving our problem is NP-Complete . . . . . . . . . . . . . . . . 23
10.3 SAT Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

11 Linear Programming 32

12 Integer Programming 33
12.1 From SAT to IP . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.2 Taking advantage of IP . . . . . . . . . . . . . . . . . . . . . . . 34

13 First approach 35
13.1 Definition: q = n - k . . . . . . . . . . . . . . . . . . . . . . . . . 35
13.2 Definition: subsumption . . . . . . . . . . . . . . . . . . . . . . . 35
13.3 Definition: trie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
13.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

14 Reducing the scope 41
14.1 Q1 and Q2 clauses . . . . . . . . . . . . . . . . . . . . . . . . . . 41
14.2 Focus on Q1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

15 Find all maximal cliques 46
15.1 Proving our problem is NP . . . . . . . . . . . . . . . . . . . . . 46
15.2 Proving our problem is NP-Complete . . . . . . . . . . . . . . . . 47
15.3 Using the find-all-maximal-cliques algorithm to solve our problem 47

16 Definition: Probing 49

17 Definition: Pigeon Hole problems 50

18 Tests 52
18.1 Pigeon Hole problems . . . . . . . . . . . . . . . . . . . . . . . . 52
18.2 Real problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

19 Conclusions 54
19.1 Mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
19.2 Obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
19.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3



1 Introduction and contextualization

1.1 Introduction

Many real-life problems can be expressed as a set of restrictions. If those re-
strictions can be satisfied, then there’s a solution to the problem, otherwise, the
problem can be classified as not solvable.

The set of those problems that can be codified using boolean formulas, that
is to say, where the variables of the problems can take the values 0 and 1, are
wildly known as SATISFIABILITY (SAT) problems. Therefore, if a program
is capable of assigning values to the variables such that all the restrictions of a
given problem are satisfied, then the solution to the problem is found.

Although many problems can be easily represented this way, deciding whether
there’s a solution to the problem or giving a solution if it exists is not easy to
compute.

SAT is the first family of problems proven to be NP-Complete by Stephen
Cook and Leonid Levin. Therefore, there’s no known algorithm that runs in
polynomial time capable of solving this kind of problem.

This project tries to transform the SAT problem into an LP problem, as
well as applying preprocessing techniques to express the information in a more
optimized way for the LP solver.

The code of the project is available in https://github.com/rcanoaparicio/
tfg-sat-preprocessing.

1.2 Context

This TFG project takes place in the context of the Logics and Programming
research group at the UPC and its spin-off Barcelogic. Barcelogic is a company
that uses Logic Programming to solve various types of problems: sports league
scheduling, mobility or planning.

This project aims to further improve the solver technology developed in this
group. Concrete solvers include systems for deciding/optimizing combinatorial
problems expressed as logical formulas or as 0-1 Integer Linear Programs (ILPs).
We will focus on formula preprocessing techniques: how to express input knowl-
edge in the most compact and powerful form, and also on inprocessing, that is,
doing the same for new formulas being learned by the solver.

This work has a theoretical side, studying the correctness and power of dif-
ferent methods and devising new algorithms for them, but it also has a practical
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experimental side, implementing (mostly in C++) and benchmarking.

1.3 Concepts

In this section, some key concepts are described in order to better follow the
explanations.

1.3.1 SAT Problem

SAT Problem is a family of problems consisting of if there exists an interpreta-
tion of a boolean formula that satisfies it.

1.3.2 NP and NP-complete

These are terms used in computational complexity theory.

NP (Nondeterministic Polynomial time) is a class of problems ”for which
there exists an efficient certifier”[4].

NP-Complete is a class of problems ”computationally hard for all practical
purposes, though we can’t prove it”[4].

1.3.3 Clause

A clause is a set of literals (can take the value of true or false) and a logical
connection between them.

1.3.4 CNF

CNF (Conjunctive Normal Form) is a conjunction of clauses, where each of the
clauses is a disjunction of literals.

1.3.5 Constraint logic programming

Constraint Logic Programming is ”a combination of logic programming and con-
straint solving [...] Programmers are given more control by having constraints
for variables in the body of a program. The body of a constraint logic program
is evaluated similarly to normal logic programming, however, the constraints
which are in the body must be satisfied.”[5]

1.3.6 Cardinality constraint

A cardinality constraint is a constraint of the form l1 + ...+ ln >= k, where the
li are the literals and k is a natural number.
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1.3.7 Subsunction

A is said to subsume B if only if A is an equivalent or stronger representation
of B. Let A = L ≥ k and B = L′ ≥ k′

L ≥ k |= L′ ≥ k′ iff |L/L′| ≤ k − k′

For example:

L1 + L2 ≥ 10 |= L1 + L3 ≥ 6 iff |L2| ≤ 4

1.3.8 Probing

Probing is the procedure used for detecting hidden binary clauses, that is, clauses
that are not explicit in the problem.

2 Justification

2.1 Previous studies

Due to the importance of the subject, there already exist various previous stud-
ies addressing the preprocessing of this kind of problem. Most of them are
focused on solving the problem using the well known DPLL algorithm and try-
ing to find ways to improve it.[8] There are some cases, though, in which the
modern solves still struggle, for example with the pigeon wholes problem.

Other studies focused on this kind of problem [9], using techniques adapted
to this kind of problem in order to solve them faster.

2.2 Justification

This project, instead of being centred on improving the existing algorithm, will
focus on the previous step, that is, the preprocessing of the input, transforming
it into an Integer Linear Programming problem.

3 Scope

3.1 Objectives and sub-objectives

The general objective of this project is to find a more powerful form of express-
ing the original input of the problem such that the final program computes the
result at a faster speed.

For doing so the input will first obtain information from the input that is
not explicit. Then will express that information in a compact way.
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3.1.1 Theoretical objectives

• Find existing algorithms of preprocessing

• Make modifications of the existing algorithms in order to make them fast
enough

• Identify the possible parallelization of the algorithms

• Compute the temporal and spatial cost of the different solutions

3.1.2 Practical objectives

• Implement the different algorithms in C++

• Benchmark the results and make comparisons

• Obtain a faster way to calculate the solution for the problems

• Make this project act as a base for future development from other students
who are interested in the field

3.2 Requirements

Some requirements are needed to ensure the quality of the project:

• Write clean code that can be understood by other programmers

• Write tests in order to ensure the correctness of the result

• Make use of the most appropriate structures for each problem

• Make an implementation being conscious of the architecture of the ma-
chines, accesses to memory and cache

• Machines with certain computational power to perform the execution and
benchmarks

3.3 Potential obstacles and risks

Through the investigation, implementation and documentation of the process,
some risks and possible obstacles can occur and, thus, need to be taken into
account:

• Not being able to find a path in an early stage of the project.
Since it’s an unsolved and investigation project, it’s possible not to be able
to find a path to advance.

• Inexperience in the field. Not having prior experience in investigation
projects in general, and more specifically in Logic Programming projects.

• Having no access to proper equipment. Having no access to the
necessary equipment in order to run the experiments and obtain reliable
results.
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4 Methodology and rigour

From the beginning of the project, an agile methodology is defined.

4.1 Methodology

Since it’s an investigation project, continuous communication, as well as fast
prototyping of ideas, are key factors for the success of the dissertation. There-
fore, there will be a meeting every week. Every meeting will be divided into two
main parts:

• Analysis of the results. Explain the results obtained through the week
and detect existing or potential problems.

• Next step. Although a general path is defined from the beginning, it’s
important to define smaller tasks. This way it will be easier to react to
possible problems, explore new ways and reject the ones not useful.

In the beginning, when there are no results yet, more time will be spent en-
suring the correct understanding of the problem and the approaches for solving
it.

4.2 Monitoring tools

Github will be used as version control tool. The existence of branches makes
the creation and maintenance of different versions of the code easier. The code
of the project will be public and accessible to everyone through the development
of the project.

5 Description of tasks

The duration of the project will be of 9 months, with an expected total duration
of 540 hours approximately. The project start date is on September 28th of 2021
and its delivery date is between the 27th of June and 1st of July 2022.

Each week 15 hours distributed in 3 days will be dedicated to the develop-
ment of this project. This estimated time includes a variety of tasks such as
planning, investigation and implementation.

Following each task will be defined, providing a definition and an estimation
of the time needed for each one in hours. Important factors to take into account
are: identifying dependencies between the tasks, as well as taking into account
which tasks are more critical and the potential risks and obstacles.

The tasks defined below are not listed in sequential order, since some of them
may be done in parallel, but they’re ordered according to the natural sequence
of events in the project.
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5.1 Weekly meetings

Through the project, there will be a weekly meeting of 1 hour with the tutor of
the thesis. What will be done in each meeting will vary according to the phase
of the project.

• Instruction. During the first phase of the project the main purpose of
the meetings will be to understand the project itself, this is, define the
goals, learn the theoretic base needed for the development of the project
and solve mostly theoretical doubts that may emerge.

• Investigation. The next step will be to investigate and experiment. In
this phase, the meetings will be used to define the smaller short-time ob-
jectives, solve more practical doubts, extract conclusions from the results
obtained and, again, define the new objectives. This phase will follow a
very cyclic pattern in form of sprints. Each sprint will have a duration of
around a month, depending on the estimated difficulty of the task planned.

• Conclusions and final results. Once the investigation phase is done,
the results obtained so far will be benchmarked and conclusions will be
extracted.

5.2 Project planning

This will be the first task of the project. When developing a project, especially
if it’s a complex and long term one like this one, it’s important to define the
scope of the project, the resources needed to achieve the goals and the resources
available to succeed.

In each of the items listed below, the time dedicated in the previous study
of project management is also taken into account.

• Contextualization and project scope. In this step is defined the main
goal of the project, as well as secondary goals that can vary according to
the resources available and accomplishments. Therefore, it’s important
in this step to well define which goals are the most important ones to
prioritize them if needed. All this will be done with the tutor and director
of the thesis.

• Time planning. Once the tasks are defined, the next step will be to
define the estimated duration of each task.

• Economic management and sustainability. Definition of the cost for
each of the tasks and resources needed as well as the sustainability of the
project.

• Final document. Once all the subtasks are finished, a final document
containing all the information will be redacted, making sure everything is
coherent and making the needed corrections.
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5.3 Previous study

Before starting the implementation, a previous study must be done. Being
mostly an investigation thesis, only having a good theoretical basis we can
ensure the success of this project.

• Logic Programming basis. All the basic theoretic concepts needed to
proceed and understand the project.

• Problem definition. Once the theoretic basis is established, the next
step will be to understand the problem.

• Current solutions. Find already existing algorithms for solving the
problem.

5.4 Practical implementation

This phase will be very cyclic, mainly consisting of implementing an idea, ob-
taining results and, according to those results, identifying the problems that
can be solved and defining the next steps of the investigation.

• Implementation of the base algorithm. Naive implementation of the
theoretical algorithm using C++. The implementation will be then tested
using a small test input to identify the problems of the solution.

• Problem identification. The implementation will be tested using a
small test input to identify the problems of the solution.

• Investigate a solution. For each of the problems, a solution will be
investigated and a new algorithm will be defined.

• Implementation of the new algorithm. Implementation of the new
theoretical algorithm using C++. The implementation will be then tested
using a small test input to identify the problems of the solution.

5.5 Final experimentation, analysis and conclusions

The algorithms will be tested using a final set of inputs and then conclusions
will be taken.

• Testing the algorithms. The different versions of the algorithms will be
tested using a set of inputs. For each one, the results will be benchmarked.

• Results analysis and conclusions. Analyze the results obtained and
make the conclusions.
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5.6 Documentation

Through the project, all the tasks and results will be documented.

• Project planning. Making the pertinent corrections and adding the
project planning information to the final document.

• Implementation. Explanation of the algorithms used their costs and
problems.

• Results and conclusions. Final results and conclusions obtained.

• Exposition

5.7 Resources

To develop the thesis there exist a few needed resources, both human and ma-
terial.

5.7.1 Human Resources

The human resources needed are

• Project manager. In charge of planning the project.

• Researcher. In charge of analysing results and thinking of new ways to
solve the problems.

• Developer. In charge of implementing the algorithms.

• Tester. In charge of testing the implementations and gathering the re-
sults.

• Mentoring. Tutor of the thesis.

5.7.2 Material resources

The material resources needed for this project are

• Computers. 16GB of RAM and AMD Ryzen 5 3600 6-Core 3.60GHz
CPU

• IDE. Atom and Visual Studio

• Compiler. g++

• Atenea.

• Version Control software. Github is used for this project.
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6 Time estimations

6.1 Task time estimations and dependencies

Task Description Time(h) Dependencies
T1 Weekly meetings 38
T2 - Instruction 6 -
T3 - Investigation 30 T2
T4 - Conclusions and final results 2 T3
T5 Project planning 65
T6 - Contextualization and project scope 25 -
T7 - Time planning 15 T6
T8 - Economic management and sustainability 15 T7
T9 - Final document 10 T6, T7, T8
T10 Previous study 60
T11 - Logic Programming basis 40 -
T12 - Problem definition 10 -
T13 - Current solutions 10 -
T14 Practical implementation 300
T15 - Implementation of the base algorithm 20 T10
T16 - Problem identification 100 T15
T17 - Investigate a solution 100 T15
T18 - Implementation of the new algorithm 80 T15
T19 Final experimentation, analysis and conclusions 15
T20 - Testing the algorithms 10 T16, T17, T18
T21 - Results analysis and conclusions 5 T20
T22 Documentation 55
T23 - Project plannig 5 -
T24 - Implementation 30 -
T25 - Results and conclusions 10 -
T26 - Exposition 10 T23, T24, T25

Table 1: Time estimation and dependencies for each task.
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6.2 GANTT diagram

Estimated schedule using a GANTT diagram.

Figure 1: GANTT diagram of the tasks
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7 Risk management

There exist some potential risks in the course of developing this project. Here are
described the ways of preventing them or acting once they appear to eliminate
them or try to reduce their effects as much as possible.

7.1 Not being able to find a path in an early stage of the
project

Since it’s an unsolved and investigation project, it’s possible not to be able to
find a path to advance towards to.

• Impact:. High

• Probability: Low. Before starting the project, the thesis tutor has al-
ready some ideas.

• Proposed solution:. Try to work with the tutor, look for already existing
solutions to the problem or try to exploit those parts where some results
were achieved.

7.2 Inexperience in the field

Not having prior experience in investigation projects in general, and more specif-
ically in Logic Programming projects.

• Impact:. Low

• Probability: High

• Proposed solution:. Asking for help from the tutor, spend more time
looking for resources.

7.3 Having no access to proper equipment.

Having no access to the necessary equipment in order to run the experiments
and obtain reliable results.

• Impact:. Having no access to proper equipment

• Probability:. Very low.

• Proposed solution:. Nowadays finding new equipment is relatively easy.
In case it wasn’t possible, any other machine could be used, although it
may alter the rigour of the results slightly.
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8 Budget

In this section, the economic cost of the project will be discussed. The cost of
the project will be estimated following the tasks listed before, which will include
material and personnel costs.

8.1 Personnel Costs

First of all, the different roles needed will be defined for each task. The salary
for each role will be estimated using the average salary1 for that position and
the hours calculated for each of the tasks.

As for the positions, many are considered Junior roles, since a lot of time
dedicated to formation due to inexperience is taken into account when estimat-
ing the time of the project.

• Weekly meetings. In all the weekly one-hour meetings the Junior
Project Manager will be present, as well as the Junior Researcher and
the Project Tutor.

• Project planning. This task will be executed by the Junior Project
Manager.

• Previous investigation. This task will be executed by the Junior Re-
searcher, in charge of thinking of new solutions.

• Practical Implementation. This task will be executed both by the
Junior Researcher and the Junior Developer.

• Final experimentation, analysis and conclusions. The tests will the
driven by the Tester, and then the results will be analysed by the Junior
Researcher and Project Tutor.

• Documentation. The final documentation of the project will be redacted
by the Junior Researcher.

Once the roles for each task are defined, the cost of each one using the fol-
lowing salaries. For the sake of simplifying the calculations, the salary will be
expressed as €/h. Also, since we’re computing the cost, the 35% of the average
salary will be added as Social Security contribution:

Therefore, we conclude that the personal economic cost of the project will
be around 14.626€.

1The numbers will be obtained from www.glassdoor.es
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Role Cost(€/h)
Project mentor 27 [10]
Junior Project Manager 33 [11]
Junior Researcher 20 [12]
Junior Developer 20 [13]
Tester 26 [14]

Table 2: Cost estimated for each role.

Task
Project

Mentor(h)

Junior
Project

Manager(h)

Junior
Researcher(h)

Junior
Developer(h)

Tester(h)

Weekly
meetings

38 38 38 0 0

Project
planning

0 65 0 0 0

Previous
investigation

0 0 60 0 0

Practical
implementation

0 0 100 200 0

Final experimentation,
analysis

and conclusions
0 2 5 0 10

Documentation 0 55 0 0 0

Table 3: Cost in hours estimated for each task.

Task Cost(€)
Weekly meetings 3040
Project planning 2145
Previous investigation 1200
Practical implementation 6000
Final experimentation, analysis and conclusions 426
Documentation 1815

Table 4: Economic cost estimated for each task.
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8.2 Material costs

All the software used in the development of the project is free.

8.2.1 Amortization of the resources

The hardware used is a computer with an estimated cost of 1.000€. The com-
puter will be used in the Project planning, Previous investigation, Practical
implementation, part of the Final experimentation, analysis and conclusions
and Documentation, a total of 490 hours.

Amortization = 1.000e∗ 1
5 years∗

1
12 months∗

1
160 hours of work∗490 hours worked =

51, 05e

8.2.2 Indirect costs

The indirect costs of the project also need to be taken into account:

• Electricity. 0.50€/kWh [15]. The total cost will be 0.50e/kWh ∗
490 hours = 245e

• Travel cost. The cost of the public transport for 9 months using a T-Jove
[16] is 105, 20e ∗ 3 = 315, 60e

• Internet cost. Assuming a cost of 40€/month, the total cost will be of
40e/month ∗ 9months = 360e

8.2.3 Generic cost of the project

Taking into account all the costs listed above, the cost will be 441,25€.
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Item Cost(€)
Amortization 51,05
Electricity 245,00
Travel 105,20
Internet 40,00
Total 441,25

Table 5: Estimation of the indirect costs

Item Cost(€)
Personnel 16088,60
Material
- Electricity

214,86

Electricity 343
Total 16647,48

Table 6: Estimated total budget.

8.3 Deviations of the budget

Since some unexpected events can appear through the development of the
project, the budget will be incremented by 10% to be able to deal with those cir-
cumstances. As for the light price, instead of a 10% extra, 40% will be applied,
since recently its price it’s been quite unstable.

8.4 Final budget

The total budget is 16647,48€.
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9 Sustainability report

The sustainability report will be divided into three sections: environmental,
economic and social sustainability.

Each section will contain three parts: project put into production (PPP),
exploitation of the project and the risks inherent to the project.

9.1 Environmental sustainability

9.1.1 PPP

Have you estimated the environmental impact of undertaking the
project? Have you considered how to minimise the impact, for ex-
ample by reusing resources?

Since a great part of the project will need the use of a computer, there’s a
minimal environmental impact inherent in the development of the project.

Especially the testing will require executing the code a larger amount of time.
To reduce this, during the development, the code will be tested in a smaller set
of problems than the final test.

Although the hardware used also consumes more resources than other prod-
ucts in the market, the cost of producing a new one instead of using the hardware
already available would be more expensive both economically and environmen-
tal in a project of such short duration.

Since the development of this project doesn’t require any special equipment,
the amount of energy consumed can be seen in the previous section.

9.1.2 Exploitation

How is the problem that you wish to address resolved currently (state
of the art)? In what ways will your solution environmentally improve
existing solutions?

The success of this project would lead to a great reduction in energy con-
sumption. Since the main goal of the study is to reduce the computational
time and resources needed to solve SAT Problems, the environmental beneficial
impacts are evident.
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9.2 Economic

9.2.1 PPP

I Have you estimated the cost of undertaking the project (human and
material resources)?

The cost of undertaking the project has been estimated and can be seen in
section Budget.

9.2.2 Exploitation

How is the problem that you wish to address resolved currently (state
of the art)? In what ways will your solution economically improve
existing solutions?

The success of this project would lead to a great reduction in energy con-
sumption, as well as being able to solve more problems. Since the main goal
of the study is to reduce the computational time and resources needed to solve
SAT Problems, the economic beneficial impacts are evident.

9.3 Social

9.3.1 PPP

What do you think undertaking the project has contributed to you
personally?

First, this project will bring me the opportunity to develop a research
project, something I’ve no prior experience with.

Also, I’ll be able to learn more about the treatment of SAT Problems, an
area that caught my attention but I’m very ignorant about.

How is the problem that you wish to address resolved currently
(state of the art)? In what ways will your solution socially improve
(quality of life) existing? Is there a real need for the project?

Currently, there’s no clear solution to this problem. SAT is a widely known
NP-Complete problem, and the preprocessing of this type of problem it’s still
under research.

Last but not least, a positive result in this thesis would lead to solving
SAT Problems faster. Since many real-life problems can be represented as SAT
Problems, it would have an impact on society.
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10 SAT Problems

SAT problems are the set of problems consisting on deciding the satisfiability
of formula expressed in Conjunctive Normal Form.

A formula is said to be in CNF when it’s a conjunction of one or multiple
clauses. Conjunctions are represented using the symbol ∨.

All the clauses in a CNF formula must be a disjunction of literals. Disjunc-
tions are expressed using the symbol ∧.

Literals are atomic formulas represented using lowercase letters and can be
positive or negated. For example, the variable a can be the literal a or its nega-
tion ¬a.

All the following formulas belong to this group:

1. p. A formula consisting of a single clause p

2. p ∨ q. A formula consisting of a single clauses: p ∨ q

3. p∧ (q∨¬q)∧r∧s. A formula consisting of two clauses: p∧q and ¬q∧r∧s

All the following formulas are not CNF formulas:

1. (p ∨ q) ∧ r.

2. p ∧ (q ∨ ¬q ∧ r) ∧ s.

Deciding SAT means determining if, for a given CNF formula, there is an
interpretation that satisfies it, that is, if is it possible to assign values to the
variables such that the formula is true.

To this question there are two possible answers:

• Satisfiable: an interpretation such that the formula is satisfied does exist

• Unsatisfiable: there’s no possible interpretation that satisfies the formula

This problem belongs to NP-Complete.
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10.1 Proving our problem is NP

According to the computational complexity theory, Nondeterministic Polynomial-
time (NP) problems are the set of decision problems in which the positive answer
can be verified in polynomial time by a deterministic Turing machine.

In the case of the SAT problem, a certificate function running in polynomial
time can be provided, that is, a function that is able to verify a solution for a
given SAT problem.

As described before, the input for any SAT problem is a formula in Con-
junctive Normal Form. Therefore, the certificate function provided has to check
that at least one of the literals in each of the DNF clauses is evaluated to be
true in the given solution. A straightforward algorithm can solve this problem
in polynomial time as shown in Algorithm 1 below.

Algorithm 1 Boolean satisfiability problem certificate

F contains the SAT formula
I contains the interpretation of F to verify
for c ∈ F do ▷ Iterate through each clause in F

Found← False
for l ∈ c do ▷ Iterate through each literal in c

Found ← Found ∨ I[l]
end for
if Found == False then

return False ▷ Any of the literals was interpreted as true
end if

end for
return True ▷ For the given interpretation, in all the clauses there’s at
least one literal that evaluates true

The provided algorithm iterates once for every clause. For each of the clauses
iterates once for every literal. The interpretation of the literal can be evaluated
in constant time if the value is stored as an array. Therefore, the answer can be
computed in linear time O(N), where N is the size of the input, SAT problem
is proved to belong to NP.
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10.2 Proving our problem is NP-Complete

The next step will be to prove SAT problem belongs to the NP-Complete class.

In fact, the SAT problem is a very well-known problem in the computational
complexity theory field, since it was the first known NP-Complete problem. It
was proven to belong to this class by the computer scientist Stephen Cook in
1971 and Leonid Levin in 1973.

The theorem is known as the Cook-Levin theorem. In order to prove our
problem is NP-Complete, it will be necessary to prove the problem belongs to
both NP and NP-hard. It was already proven in the previous section Proving
our problem is NP and that the problem belongs to NP. Therefore, in this sec-
tion, the focus will be on proving that the problem belongs to NP-hard too.

10.2.1 NP-hard definition

An NP-hard problem can be defined as a problem at least as hard as any NP-
problem2, that is, if ∀p ∈ NP, p ≤ x, then x is an NP-hard problem.

2https://mathworld.wolfram.com/NP-HardProblem.html
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Figure 2: Euler diagram of P, NP, NP-complete and NP-hard families. Source
.

In this case, the goal will be to prove that ∀p ∈ NP, p ≤ SAT . That is,
reduce every problem to the SAT problem.

The idea behind the proof is, that for each problem in NP we can construct a
non-deterministic touring machine that solves the problem in polynomial time.
In order to visualize the idea better, all the different configurations of the previ-
ously mentioned touring machine can be encoded into a table. Each of the rows
of the table will represent a configuration of the machine, while the columns
will represent the different symbols of the tape. Each of the cells will describe
the transition.

From the definition given above, it’s known that the table will have a poly-
nomial number of rows since it has a polynomial number of configurations and
a polynomial number of columns since it’s known that runs in polynomial time.
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Figure 3: Table encoding the configurations of a touring machine. Source
.

In the table, each cell will correspond to a variable identified as Xi,j,s, where
i will correspond to the row, j to the column and s to the value.

The goal will be to create a formula that satisfies the following restrictions:

1. Each cell has exactly one value.

2. The first row is the start configuration.

3. At least one row is the end configuration.

4. Each row yields next.

The final formula will be the conjunction of all four formulas.

10.2.2 Each cell has exactly one value

When working with SAT problems, in order to express extitexactly one restric-
tion we need to divide the work in two simpler parts: at least one and at most
one.

At least one: ∀i∀j
∨
s∈Z

(Xi,j,s)

At most one: ∀i∀j
∧

s,t∈Z,s ̸=t

(¬Xi,j,s ∨ ¬Xi,j,t)

φ1 = ∀i∀j
∨
s∈Z

(Xi,j,s) ∧
∧

s,t∈Z,s̸=t

(¬Xi,j,s ∨ ¬Xi,j,t)
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10.2.3 The first row is the start configuration

Being I the input, the initial configuration must contain all the input elements
at the beginning of the tape.

φ2 = ∀i
|I|∧
j

Xi,j,Ij

10.2.4 At least one row is the end configuration

At least one of the states must be an accepting state.

φ3 = ∀i∀j
∨
s∈Z

(Xi,j,qaccept
)

10.2.5 Each row yields next

First of all, what is a valid transition must be defined. In each step, the touring
machine can move either to the right or to the left.

Move to the left: Xi,j−1,s ∧Xi,j,t ∧Xi,j+1,u ∧Xi+1,j−1,t ∧Xi+1,j,s

Move to the right: Xi,j−1,s ∧Xi,j,t ∧Xi,j+1,u ∧Xi+1,j−1,s ∧Xi+1,j+1,t

At least one movement: Xi,j−1,s ∧Xi,j,t ∧Xi,j+1,u ∧Xi+1,j−1,t ∧Xi+1,j,s ∨
Xi,j−1,s ∧Xi,j,t ∧Xi,j+1,u ∧Xi+1,j−1,s ∧Xi+1,j+1,t

At most one movement: ¬Xi,j−1,s ∨ ¬Xi,j,t ∨ ¬Xi,j+1,u ∨ ¬Xi+1,j−1,t ∨
¬Xi+1,j,s ∨ ¬Xi,j−1,s ∨ ¬Xi,j,t ∨ ¬Xi,j+1,u ∨ ¬Xi+1,j−1,s ∨ ¬Xi+1,j+1,t

V alidMovementi,j = (Xi,j−1,s ∧ Xi,j,t ∧ Xi,j+1,u ∧ Xi+1,j−1,t ∧ Xi+1,j,s ∨
Xi,j−1,s ∧ Xi,j,t ∧ Xi,j+1,u ∧ Xi+1,j−1,s ∧ Xi+1,j+1,t) ∧ (¬Xi,j−1,s ∨ ¬Xi,j,t ∨
¬Xi,j+1,u∨¬Xi+1,j−1,t∨¬Xi+1,j,s∨¬Xi,j−1,s∨¬Xi,j,t∨¬Xi,j+1,u∨¬Xi+1,j−1,s∨
¬Xi+1,j+1,t)

Once defined what a valid transition is, there can only be one valid transition
in any row.

At least one transition: ∀i
∨
j∈Z

V alidMovementi,j

At most one transition: ∀i
∧

j∈Z,k∈Z,j ̸=k

(¬V alidMovementi,j∨¬V alidMovementi,k)

φ4 = ∀i(
∨
j∈Z

V alidMovementi,j)∧(
∧

j∈Z,k∈Z,j ̸=k

(¬V alidMovementi,j∨¬V alidMovementi,k))

The final formula is φ = φ1 ∧ φ2 ∧ φ3 ∧ φ4. Since it is possible to transform
the input of any NP problem into a SAT problem input, it’s proven that the
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SAT problem belongs to NP-Hard.

As stated before, if the problem belongs both to NP and NP-Hard, it means
the problem belongs to the NP-complete family of problems.

10.3 SAT Solvers

If the problem dealing with belongs to NP-hard, how can a problem deal with it?

Different SAT solvers follow different strategies in order to solve this kind
of problems. In this section, there will be provided with a brief introduction
about how SAT Solvers work, first describing a simple and straightforward ap-
proach, and later enumerating and explaining different techniques that can help
the program reduce the computational cost of finding the solution.

10.3.1 Naive algorithm

In this section, the naive recursive algorithm to solve SAT problems will be
explained. Although it may seem that it’s too inefficient, most SAT solvers use
this algorithm as a base and, then, implement some other techniques over this
base.

This approach consists in testing all the possible assignments of true or false
to the different variables. If one of them is a valid solution (can be done in
polynomial time - in fact, linear time - as shown before) then the algorithm
can stop. Otherwise, the algorithm will keep trying combinations. Once all
the combinations are exhausted and there was no valid assignment found, the
algorithm can conclude that the given input is unsatisfiable, that is, there’s no
possible assignment of variables that satisfies the given formula.

In the algorithm will be used the function described in the section Proving
our problem is NP to check if a solution was found.
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Algorithm 2 Naive solution for the SAT problem

P contains the SAT problem in CNF
V contains the variables, initially contains all the variables
if V = ∅ then

return isV alidSolution(P )
end if
v = V.pop() ▷ extract a variable from V
setTrue(v)
if naiveSolveSAT (P, V ) then

return True
end if
setFalse(v)
return naiveSolveSAT (P, V )

If the initial calculation of the variables is taken into account, it can be com-
puted in time O(N), being N the number of literals in the input formula and
storing them in a hash set. This is computed in the beginning and then it’s
passed as an argument to the function.

Except for the recursive calls, all the operations in the functions have a con-
stant computational cost. As for the recursive calls, each time the function does
at most 2 calls. In fact, in the worst case, that is, when all of the calls return
false, all the executions of the function will make 2 calls. Therefore the cost is
O(2N ).

Since the first part, before calling the function, has a cost of O(N) and the
function itself has a cost O(2N ), the total cost is O(2N ).

10.3.2 Improvements: Propagate conflict

The cost of this solution is too high. Therefore, some strategies are often ap-
plied in SAT solvers in order to minimize the cost. In this section, we’ll cover
some of the most basic ones, since they’ll serve as a base to understand better
the problem and will serve in future sections of this project.

Propagate conflicts is one of the most basic, yet most effective techniques
used in this kind of SAT solver.

It consists in, as the name says, propagating the conflicts after deciding the
value of a variable. In order to understand it better, the concept of conflict
propagation is shown in the next example:

(¬p ∨ q) ∧ (¬q ∨ ¬r) ∧ (r ∨ s)
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In the formula shown above, if the variable p is set to True, then q must be
set to True, otherwise, the clause can not be satisfied.

Following the same logic, if q is set to True, then ¬q ∨ ¬r can only be sat-
isfied if r is set to False.

Finally, if r is set to False, s must be True in order to satisfy r ∨ s.

Therefore, a satisfiable assignment would be p = 1, q = 1, r = 0, s = 1. It’s
worth noticing that we arrived at this assignment just propagating the conflict
from the first assignment. When working with real-life problems, this situa-
tion occurs very often. Although it’s not common to be able to satisfy all the
CNF formulas just through one decision as in the short example shown, we can
avoid making decisions that will provoke the final assignment to be unsatisfiable.

Adding the modification to the previous algorithm would result in the fol-
lowing algorithm:

Algorithm 3 Propagate conflict solution for the SAT problem

P contains the SAT problem in CNF
V contains the variables, initially contains all the variables
if V = ∅ then

return isV alidSolution(P )
end if
v = V.pop() ▷ extract a variable from V
setTrue(v)
propagateConflict(P, v)
if naiveSolveSAT (P, V ) then

return True
end if
setFalse(v)
propagateConflict(P,¬v)
return naiveSolveSAT (P, V )

The cost of the algorithm was previously explained in the previous section,
but this time there’s a new function propagateConflict.
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Algorithm 4 Propagate conflict

P contains the SAT problem in CNF
v contains the literal to propagate
S stack
S.push(v)
while notS.empty() do

l = S.pop()
for c in P do

if not exists l ∈ C, l == True then
if all l ∈ C, l == False then

return Conflict
end if
if countUndef(c) == 1 then

setTrue(undefined literal)
S.push(undefined literal)

end if
end if

end for
end while

The algorithm above iterates for every variable in the stack. At most, there
will be M variables. For each one, iterates through all the N literals in the
formula. Therefore the cost of the function is O(N ∗M).

If the costs of the two functions are combined, the cost of the total function
is the same as before, that is, O(2N ).

10.3.3 Improvements: Occurrence lists

This is not the only technique that can be applied to improve performance. In
this section, another technique will be explained: the usage of Occurrence lists.

Following the same strategy as before, conflict propagation, there’s a bet-
ter way to look for where the conflicts may occur. Using the same example as
before, we pay attention to which clauses the conflict appears: the clauses in
which the exists the negation of the literal.

The first part of the modification can be done when reading the input. It
just consists in creating a map, where the key will be the literal (which can be
positive or its negation) and the value a list of occurrences.

Once all the occurrences are stored, the rest of the algorithm can continue as
before. The only modification will be in the Propagate conflict function: instead
of iterating through every clause in the formula, it will just iterate through the
clauses where the negation of the literal treating appears. That is, if we’re
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treating the literal l, the algorithm will loop over the occurrences of ¬l. If the
literal is negated, ̸ l, the algorithm just needs to loop through the occurrences
of l.

Algorithm 5 Propagate conflict using Occurrences List

P contains the SAT problem in CNF
v contains the literal to propagate
S stack
S.push(v)
while notS.empty() do

l = S.pop()
for c in occurrences(¬l) do

if not exists l ∈ C, l == True then
if all l ∈ C, l == False then

return Conflict
end if
if countUndef(c) == 1 then

setTrue(undefined literal)
S.push(undefined literal)

end if
end if

end for
end while

This simple modification, although doesn’t change the complexity of the al-
gorithm, in practice will make it faster, since it’s avoiding many unnecessary
operations.

These concepts explained above are enough to understand the future tech-
niques that will be explained in future sections.
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11 Linear Programming

In this section, the concept of Linear Programming will be explained. Although
the explanations about it will not be exhaustive, it’s worth having a base, since
this project takes advantage of this kind of programming.

Linear Programming is a programming technique used to optimize a linear
objective function, subject to linear inequality and linear inequality constraints3.

Usually, the input of a Linear Programming problem has the following parts:

1. A linear function to be maximized or minimized

2. Problem constraints

3. Variables

3https://en.wikipedia.org/wiki/Linearprogramming
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12 Integer Programming

12.1 From SAT to IP

The goal of this project is to transform a SAT input into an IP problem after
applying some preprocessing techniques. Although the preprocessing techniques
will be explained later, this section will introduce the concept of the transfor-
mation from SAT to IP.

Let’s start with a simple example in order to understand it better. The
clause p∨ q expresses that at least one of the two literals p and q must be posi-
tive. That is:

p ∨ q is equivalent to p+ q >= 1.

Now let’s see what happens with a longer clause. For example, the clause
p ∨ q ∨ r ∨ s. This clause implies that at least one of the literals must be true,
therefore as before:

p ∨ q ∨ r ∨ s is equivalent to p+ q + r + s >= 1.

It’s easy to see that, when all the literals in a clause are positive, the trans-
formation is quite straightforward. When dealing with clauses with false literal
the transformation requires a bit more effort.

Let’s take, for example, the clause p ∨ ¬q. We can rewrite as before:

p ∨ ¬q is equivalent to p+ ¬q >= 1.

Although p+ ¬q >= 1 it’s understandable, it’s not in a format that can be
inputted to a IP solver. Therefore, the negation has to be transformed into a
positive literal, while maintaining the meaning. It can be done by changing all
the negated literals for 1− the literal.

p+ ¬q >= 1 is equivalent to p+ (1− q) >= 1.

If we isolate the literals on the left side of the inequation:
p+ (1− q) >= 1 is equivalent to p− q >= 0.

Finally, the whole formula, that is, the whole set of clauses can be expressed
as a set of restrictions following the steps shown above. To illustrate it with an
example, let’s take the CNF formula p ∧ (¬p ∨ q) ∧ (¬p ∨ ¬r).

p ∧ (¬p ∨ q) ∧ (¬p ∨ ¬r) can be expressed as the set of restrictions:

p >= 1
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−p+ q >= 0
−p− r >= −1

12.2 Taking advantage of IP

All the explained above is just a plain translation from one kind of problem to
another. In that case, only if the IP is able to solve the problem faster, then
the mentioned transformation will be worthwhile. SAT solvers, especially the
most modern ones, are already very good at solving problems, using techniques
more advanced and complex than the ones explained. Therefore, in order to
obtain better results, the transformation has to express the information in a
more powerful way for the LI or LP solver.

There are cases where various SAT clauses can be expressed in a smaller
number of restrictions in LP. By doing so, the LP solver may have a chance to
perform faster than the SAT solver. This will be the main goal of the following
sections of the project.

The reason will be detailed in the next section, but to get an idea of what
it looks like, below there will be an example:

The formula (p ∨ q) ∧ (p ∨ r) ∧ (q ∨ r) can be rewriten as three constraints,
like in previous sections, but it can also be expressed as one single constraint
p+ q + r >= 2.

This way, the LP solver will just have to deal with a single constraint and
will be able to perform faster than when having multiple.
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13 First approach

The first approach will be, as explained in the previous section, to try to trans-
form the clauses of the SAT problem into LP clauses. After explaining the
concept of subsumption and how the algorithm will use it, the algorithm de-
signed by Robert Nieuwenhuis will be presented.

The algorithm will mainly work around cardinality constraints of the form
l1 + l2 + ...+ ln ≥ k, where li are the literals and k is a natural number.

Only the constraints of form ... ≥ ... will be considered, since we have that
l1 + ...+ ln ≤ k ≡-l1 + ...+−ln ≥ n− k.

The focus of the problem of this project will be on answering the following
question: Given a set of constraints, how to detect all the cardinality constraints
that are logical consequences of it?

13.1 Definition: q = n - k

In this section there are three variables that will be used quite often, those are
q, n and k. The value of the three is related.

It’s easy to understand the values of n and k if they’re presented in a LP
constraint like the following:

a0 + a1 + ...+ an ≥ k

The value of n stands for the number of variables on the left side of the in-
equation, while the k represents the constant on the right side of the inequation.

The remaining variable q is the result of n−k, q = n−k. q can be understood
as the degrees of freedom in the constraint, that is, the number of variables in
the constraint that can be false with the constraint still remaining satisfiable.

The smaller the value of q, the more restrictive the constraint is.

13.2 Definition: subsumption

Once well defined the concepts presented above, it’s time to introduce what will
be a very key concept in this project: the concept of subsumption.

L ≥ k |= L′ ≥ k′ iff | LL′ | <= k − k′

In order to understand better the statement, the following example is pro-
vided:
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x+ y + z + u+ v ≥ 3 |= x+ y + z ≥ 1

In the example above, the | LL′ | = |x+y+z+u+v
x+y+z | = 2. Then, it’s easy that

2 <= k − k′, since k − k′ = 3 − 1 = 2. We have that 2 <= 2, which is true,
therefore the second constraint is subsumed by the first one.

This concept may not be intuitive at first, but it’s worth taking some time
to understand it since it will be used to determine the relationship between
constraints in future algorithms.

13.2.1 Prove

In order to use the statement above, we first need to prove that such a statement
is true.

Lemma:
L ≥ k |= L′ ≥ k′ iff | LL′ | <= k − k′.

Prove:
L1 + L2 ≥ k |=
L1 ≥ k − |L2| |=
L1 + L3 ≥ k − |L2|

13.3 Definition: trie

The concept presented above requires a good data structure that allows the al-
gorithm to store the required data, as well as perform the necessary comparisons
as fast as possible. For that reason, the trie data structure will be used.

The trie is simply a prefix tree, that is, all the children under a node have a
common prefix. For that reason, this data structure is often used when working
with strings.

For example, a trie encoding the words {AA,AB,BA} would be like the
following:

A

A B

B

A

AAABBA

When working with a trie, we can perform some operations at a very low
cost, for example, those related to the search. The cost of checking if a word is
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in the Trie is, in the worst case, the height of the Trie.

The insert operation is not expensive either. Since we need to have a node
for each character in a word, it’s doable in O(N) time, where N is the length
of the word.

In the case of this project, instead of strings, the constraints will be stored
in it.

How can we store the constraints in the trie?

In order for the algorithm to be consistent, the data structure used must be
well defined. First, all the values in the constraint will be ordered in ascended
order. This way it can be assured that constraints having the same prefix will
be under the same node.

If we use an example similar to the one before using words, but using con-
straints instead, we obtain a trie like the one below. In this case, the constraints
to store in the trie will be:

a1 + a2 − a3 >= 1

−a1 + a2 >= 1

a3 + a4 >= 1

−a1 + a3 + a4 >= 2

First of all, the constraints must be all in order as described. Since any vari-
able is more important than another it doesn’t matter which goes first as long as
it’s consistent. In the case of this project, in order to determine the value (only
important for the order of the variable in the constraint) of a variable, it will k
for ak for positive variables and −k for ak when the variable has a negative sign:

−a3 + a1 + a2 >= 1

−a1 + a2 >= 1

a3 + a4 >= 1

−a1 + a3 + a4 >= 2
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−a3

a1

a2

−a1

a2 a3

a4

a3

a4

1

1

2

1

In case multiple constraints collide, that is, they’re the same but the value
of k, then for the sake of the goal of the algorithms that will be explained in
future sections, the bigger value of k will be stored in the Trie, since it’s more
restrictive.

13.4 Algorithm

In this section, first, the goal of the algorithm will be presented and then the
details of the algorithm.

13.4.1 Introduction

Given a cardinality constraint C : l1 + ... + ln ≥ k, we have, from stronger to
weaker:

• if k > n, then C is unsatisfiable

• if k = n, then all li must be true (C is equivalent to l1 ∧ ... ∧ ln)

• if k = n−1, then at most one li can be false (C is equivalent to
∧

1≤i<j≤n

(li∨

lj))

• if k = n−2, then at most one li can be false (C is equivalent to
∧

1≤i<j<r≤n

(li∨

lj ∨ lr))

• ...

From the succession presented above, we make the following observation.

Lemma: we have l1 + ... + ln ≥ k iff S ≥ k − 1 for all subsets S of l1, ..., ln
with |S| = n− 1.

In the presented lema, when it’s said we have means that exists the con-
straint literally or something stronger, that is, a constraint that subsumes the
constraint (defined in the section Definition: subsumption).
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By induction, this goes down to all clauses S ≥ 1, where |S| = n− k + 1.

It’s worth noticing that the shorter the clauses we start with, the stronger
the cardinality constraints obtained will be.

Starting with clauses of size 2 will produce cardinality constraints l1 + ...+
ln ≥ k, where k = n− 1.

Starting with clauses of size 3 will produce cardinality constraints l1 + ...+
ln ≥ k, where k = n− 2.

Starting with clauses of size 3 will produce cardinality constraints l1 + ...+
ln ≥ k, where k = n− 3.

13.4.2 Pseudocode

The base algorithm is the following:

Algorithm 6 Detect constraints by Robert Nieuwenhuis

Clauses contains the clauses
Constraints = ∅
for q = 1 to maxQ do

for clause in Clauses where 1 = n− q do
constraint = toConstraint(clause, 1) ▷ transform clause l1 ∨ ... ∨ ln

into l1 + ...+ ln ≥ 1
Constraints.add(constraint)

end for
for k = 1 to maxK do

for constraint in Constraints where k = n− q do
for l′ such that ”we have” S+ l′ ≥ k for all subsets S of {l1, ..., ln}

with |S| = n− 1 do
Constraints.add(l1 + ...+ ln + l′ >= k + 1)

end for
end for

end for
end for

The algorithm looks quite simple and straightforward, following the rules
stated in the previous sections. That’s because there’s one part of the algo-
rithm missing, that is the we have check condition.

In order to create that function, the Trie structure explained above will be
used to store the constraints.
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For this algorithm is assumed that the Trie structure is received as a pa-
rameter, as well as the constraint and the literal trying to extend with.

Algorithm 7 We have

trie
constraint constraint trying to extend
l literal trying to extend with
newConstraint = ∅
for v in constraint do

newConstraint = substitute(constraint, v, l)
if have(trie, newConstraint) == False then

return False
end if

end for
return True

The recursive function have is the following:

Algorithm 8 Trie - we have

trieNode initially the root of the Trie
constraint new constraint
e margin of ”error”, in the first call e =
if trieNode.hasConstraint and isConsequence(constraint, trieNode.constraint)
then

return True
end if
if trieNode.next == null then

return False
end if
if trieNode.maxK < e then

return False
end if
f = False
for c in trieNode.next do

if constraint.contains(c) then
f = have(trie.next[c], constraint, e)

end if
if f == False then

f = have(trie.next[c], constraint, e+ 1)
end if

end for
return f

If the Trie structure, the algorithm would have to iterate through all the
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constraints in order to make the checks, also there will be no option to discard
branches when a constraint for the necessary k doesn’t exist.

This function time’s execution is too large. When trying to execute the test
files, the execution didn’t finish in a reasonable time. Therefore we must rethink
the strategy to follow.

14 Reducing the scope

The first change will be to reduce the scope. In the previous version of the
algorithm, all the values of q were considered.

If we think about what each value of q means (see Introduction), it’s easy to
realize that the bigger the value of q, the smaller the probability of it existing
is since more clauses are required to satisfy the condition.

For example, in order to have: l1 + ... + ln ≥ n − 3, that is, q = 3, all the
combinations in {l1, ..., ln} of groups of 4 elements.

Therefore in this approach, the algorithm will just focus on the q = 1 and
q = 2 cases. Since we’re reducing the problem, maybe there’s a way to adapt
the algorithm to work with a more specific problem. In addition, the nature of
the problem now is much smaller, since for each q the algorithm was iterating
through every variable and every constraint.

14.1 Q1 and Q2 clauses

The algorithm now will get rid of q in its complexity, since only the cases of
q = 1 and q = 2 will be taken into account.

The algorithm will remain quite similar to the used before:
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Algorithm 9 Detect constraints q=1 and q=2

Clauses contains the clauses
Constraints = ∅
for q = 1 to 2 do

for clause in Clauses where 1 = n− q do
constraint = toConstraint(clause, 1) ▷ transform clause l1 ∨ ... ∨ ln

into l1 + ...+ ln ≥ 1
Constraints.add(constraint)

end for
for k = 1 to maxK do

for constraint in Constraints where k = n− q do
for l′ such that ”we have” S+ l′ ≥ k for all subsets S of {l1, ..., ln}

with |S| = n− 1 do
Constraints.add(l1 + ...+ ln + l′ >= k + 1)

end for
end for

end for
end for

As said before, with this version of the algorithm the q is not a problem
anymore, but it still being not fast enough. The program is not fast enough to
process the input tests in a reasonable time.

Therefore, for the next version of the algorithm, the strategy to follow will
be to further reduce the scope of the problem, trying first to work only with
the q = 1 case, and only once achieving success in the most simple case, try to
expand it to q = 2.

14.2 Focus on Q1

Since this time the algorithm just needs to focus on the q = 1 case, this time
the strategy will be quite different.

According to the previous definitions (see Introduction), in order to have
q = 1, that is, a constraint l1 + ... + ln ≥ k, where k = n − 1, we need to have
all the binary combinations of the set {l1, ..., ln} as clauses.

The difference now is that we have this time is literal. Without taking the
unary clauses into account, it’s for sure that there will not be stronger con-
straints in the set of constraints created from reading the input clauses than the
binary clauses.

Therefore, when checking if a constraint exists, the operation will be more
straightforward, since it’s known beforehand the exact constraint we’re looking
for.
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Also, the algorithm will try to be more selective with the literals trying to
extend the constraints with. It will do so using the Trie structure once again.

This time the main algorithm will remain simple, and the complexity will
rely on the auxiliary function getCandidateV ariables.

Algorithm 10 Detect constraints q=1

Constraints contains the initial binary clauses as constraints
constraints = Constraints
k = 1
result = ∅
while constraints.empty() == False do

trie = build(constraints)
nextConstraints = ∅
for constraint in constraints do

candidateV ariables = getCandidateV ariables(trie, vars(constraint), 0, k)
for variable in candidateV ariables do

newConstraint = constraint
newConstraint.add(variable)
newConstraint.k+ = 1
nextConstraints.push(newCOnstraint)

end for
end for
result.append(constraints)
constraints = nextConstraints
k += 1

end while

The next algorithm to describe will be getCandidateV ariables.
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Algorithm 11 Get candidate variables

trie contains the contrains in a Trie structure
variables contains the variables of the constraint
idx index of the variable checking
left variables left to check
result
if left == 0 then

for node in trie.nodes do
result.push(node.variable)

end for
if trie.nodes.contains(vars[idx]) == False then

return result
end if
nextCandidates = getCandidateV ariables(trie.nodes[idx], vars, idx +

1, left− 1)
if idx+ left ≥ vars.size() then

return nextCandidates
end ifsiblingCandidates = getCandidateV ariables(trie, vars, idx +

1, left)
return intersection(nextCandidates, siblingCandidates)

end if

This algorithm is much simpler than the previous versions, but it’s still not
able to preprocess the input in a reasonable time. After further analyzing and
understanding what the algorithm is doing, there’s a clear reason for the exe-
cution being too slow.

Let’s imagine the result is a constraint of length n. Because of the algorithm
we’re using, we know that the constraint is made up of constraints of length
n− 1. Those constraints are all made up of constraints of length n− 2, and so
forth until arrived at the constraints of length 2.

What that means is the algorithm is generating all the combinations of the
variables l1, ..., ln of sizes from 2 to n.
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As the plot shows, the number grows very fast. Therefore, we need an-
other strategy, an algorithm that is able to find the solution without needing to
generate all the middle steps.
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15 Find all maximal cliques

When studying different strategies to solve the problem, representing the prob-
lem as a graph was one of them.

Each variable is represented as two vertexes in the graph: one for the posi-
tive value and another one for the negative. In the graph, there will be an edge
between a vertex li and lj if the clause li ∨ lj exists.

This way, the goal of the algorithm will be to find the groups of vertex
where all the vertex are connected to the rest since that will mean that for
every edge(li, lj) in the graph there is a clause li ∨ lj . We want each group of
vertexes to be as big as possible. This is, in fact, solving the problem of Finding
all maximal cliques, a well-known NP-Complete problem.

15.1 Proving our problem is NP

To prove the problem of the Maximal Cliques is NP, as before, we prove that
there’s an algorithm that can verify the result in a polynomial time.

Algorithm 12 Max Clique certificate

G is the graph
clique is the set of vertex
for v in G do

if v /∈ clique then
found = False
for u in clique do

if edge(u, v) == ∅ then
found = True

end if
end for
if found == False then

return False
end if

end if
end for
return True

The algorithm iterates for each vertex v in the graph G, and then checks
for each vertex if is connected to the clique. The check can be done in constant
time. The cost is O(N2), where N is the number of vertex in the graph G.
Therefore there exists a certificate that runs in polynomial time.
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15.2 Proving our problem is NP-Complete

In order to prove the problem is NP-Complete, it needs also to be proven that
the problem belongs to NP-Hard. It can be done by reducing a known NP-hard
problem to the one trying to prove since if the problem we’re trying to prove
can be solved in polynomial time, it means that the NP-hard problem can be
solved in polynomial time too.

In the case of the problem, it’s already described above how the reduction
works in the previous section, Find all maximal cliques. The algorithm is the
following:

Algorithm 13 Max Clique certificate

G is the graph
binaryClauses
for clause in binaryClauses do

createEdge(clause[0], clause[1])
end for

The algorithm iterates through each clause in the input and then creates an
edge. Assuming the edge can be created in constant time, the algorithm will
have a linear cost of O(N).

15.3 Using the find-all-maximal-cliques algorithm to solve
our problem

The first approach will be to use a recursive algorithm that solves the problem
without the need of creating all the combinations as before.
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Algorithm 14 Enumerate Max Cliques by Robert Nieuwenhuis

V contains a list of vertices. |V | ≥ 1
if V = {x} then

return {{x}}
end if
x = V.pop() ▷ Extract the element from V
L = {}
A = adj(x)
for k in enumerateMaxCliques(V ) do

if A ⊇ k then
add {x} ∪ k to L

end if
if A ⊇ k == False then

add k to L
if {x} ∪ (A ∩ k) not subsumed then

add {x} ∪ (A ∩ k) to L
end if

end if
end for
return L

For the not subsumed check, the Trie structure can be used to make the
search faster, as shown in previous algorithms.

The algorithm described belongs to a class of algorithms called Output-
sensitive algorithms. That is, the running time of the algorithm is determined
by the size of the output.

In the case of our algorithm, it means the more cliques and the bigger they
are, the more it takes for the algorithm to finish its execution.

After testing with this algorithm and other implementations4 5, the algo-
rithm used will be the Tomita algorithm. The implementation by Darren Strash
can be found here.

After finding an implementation of the algorithm fast enough, another strat-
egy will be used in order to profit from it.

4https://en.wikipedia.org/wiki/Bron%E2%80%93KerboschalgorithmWithoutpivoting
5https://github.com/darrenstrash/quick-cliques
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16 Definition: Probing

When working with SAT problems, sometimes the relationship between two
variables is explicitly expressed as a clause, li ∨ lj , but other times it may not
be explicit.

For example, if there’s a formula (p∨ q)∧ (p∨ r)∧ (q ∨ r)∧ (¬r ∨ s)∧ (¬r ∨
t) ∧ (s ∨ t). In this case, there’s also a not-explicit relation between p and s, p
and t, q and s, and q and t.

Detecting those relationships will allow the algorithm to detect longer con-
straints if they exist. Probing is a technique used to find those hidden clauses.

The algorithm used is very similar to the conflict propagation explained in a
previous section. In fact, the same propagateConflict function can be used. In
the main function, each time we decide on a variable and propagate the conflicts,
the algorithm will create a clause for each variable propagated and the decided
variable.

Algorithm 15 Propagate conflict solution for the SAT problem

P contains the SAT problem in CNF
V contains the variables
for v in V do

setTrue(v)
propagateConflict(P, v)
for pv in propagatedV ariables do

createClause(v ∨ pv)
end for
clearV ariables()
setFalse(v)
propagateConflict(P, v)
for pv in propagatedV ariables do

createClause(v ∨ pv)
end for
clearV ariables()

end for

Since the algorithm is just iterating through all the variables, setting a value
and then propagating the conflicts, the algorithm should be fast enough.

After running the algorithm, we’ve explicitly set the clauses, but there’s a
new problem: the size of the input is much bigger now, so the execution time
will be longer. On the other hand, the results obtained will be more powerful,
since the output will need fewer constraints to express the same information.
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17 Definition: Pigeon Hole problems

In this section, the concept of Pigeon Hole problems will be described, since
they’re a quite common kind of problem when working with SAT problems, and
it’s extremely hard for the SAT-solvers to deal with them, even for the most
advanced ones.

The problem is the following: there’s a total of n pigeons and m holes, hav-
ing n > m. Each pigeon must be in a hole, and in each hole can be at most one
pigeon.

With the example, it’s easy to see where’s the problem. But when working
with real problems, where there are thousands of clauses and literals, it may not
be that intuitive. As shown in the previous section, the relationship between
the variables may not be explicit in the problem, which makes it even harder
to detect. This kind of problem appears especially when treating scheduling
problems.

As stated before, it’s very hard for the solvers to solve this kind of problem.
The graph below shows the execution time of the SAT Solver PicoSAT 6 needed
for Pigeon Hole Problems of different sizes. The number of seconds starts to
grow fast for problems of relatively small size.

6http://fmv.jku.at/picosat/
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Figure 4: Execution time for PicoSAT to solve Pigeon Hole problems of different
sizes

Since SAT Solvers can not deal easily with this kind of problem, maybe it’s
easier for an LP program to solve it using the preprocessing explained.
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18 Tests

At this point, the preprocessing will be tested using different problems as input,
to see if there’s some improvement or not. First, the input will receive a Prob-
ing preprocessing, in order to extract the not-explicit relationships between the
literals. Then the clauses will be converted into a graph for the Max Cliques
solver. The result of the solver will be then transformed into constraints in
order to feed the LP solver with them.

Therefore the total preprocessing time will consist of:

Tpreprocessing = Tprobing + Tmax cliques + Tconstraints

The result will be successful for the cases in which:

Tpreprocessing + TLP solver > TPicoSAT

In concrete, the LP Solver used will be pbsat.

18.1 Pigeon Hole problems

Testing with the pigeon problems the following results are obtained:

Number of Pigeons Execution time PicoSAT (s) Execution time Our Method (s)

2 0.020259 0.004850
3 0.016199 0.006847
4 0.018553 0.004940
5 0.021218 0.005306
6 0.017857 0.005435
7 0.020573 0.005331
8 0.049005 0.005671
9 0.460942 0.006199
10 2.673638 0.007319
20 - 0.007568
30 - 0.007867
40 - 0.007354
50 - 0.007863
100 - 0.008821

Table 7: Execution time for Pigeon Hole Problems

As the table shows, when working using the preprocessing and the LP solver
Pigeon Hole problems of bigger sizes can be treated too without much cost.
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This is a good sign, but those problems are just pure Pigeon Hole problems,
therefore, the number of variables and clauses is considerably smaller than the
ones in real problems.

18.2 Real problems

After testing with some experimental inputs, we tested the algorithm with some
real-life problems.

Problem
Execution time
PicoSAT (s)

Execution time
Our Method (s)

Satisfiability

aes 24 4 keyfind 2-sc2013.cnf - - Satisfiable
Bebel-toughsat 24bits 1.cnf - - Satisfiable
Biere-eqbpwtrc10bpdtlf10.cnf - - Satisfiable
hid-uns-enc-6-1-0-0-0-0-3251.cnf - - Satisfiable
Savicky-size 4 4 4 i0566 r8.cnf - - Satisfiable
horaris1.cnf - 8.024 Unsatisfiable
horaris2.cnf 0.055 24.511 Satisfiable
horaris3.cnf - 176.669 Unsatisfiable

Table 8: Execution time for real SAT Problems

None of the algorithms was able to solve most of the problems in the given
time (at most 5 minutes). This is expected from the PicoSAT solver since it’s
not a commercial solver and the techniques it uses are already outdated.

As for our algorithm, it was only able to solve three of the problems, two of
them which were unsatisfiable. That may be due to those problems containing
Pigeon Hole problems in them.

53



19 Conclusions

Observing the results obtained, the algorithm performs better than the Pi-
coSAT for some problems. Since they’re unsatisfiable scheduling problems, it’s
very likeable they contain pigeonhole problems in them.

Also, the algorithm wasn’t able to decide on the problems of big size, just
the smallest ones. In order to decide whether it’s better than PicoSAT or not,
the experiments would need to last longer. As for the commercial SAT Solvers,
the preprocessing implemented can’t compete with them.

The preprocessing algorithm is fast enough to preprocess most of the prob-
lems, even the bigger ones, in a considerable time. It may be possible for other
LP Solvers to handle the preprocessed input in a shorter time.

Since the program was able to decide a subset of the test problems faster
than the PicoSAT solver, the result of this project is successful.

When trying to treat SAT problems, many different strategies can be exe-
cuted at the same time and stop once one of them finishes. Given the solvers and
problems of this project, our solution will be faster in some of the cases, mak-
ing the execution time much shorter. This will lead to reducing the resources
needed to compute the solution for this kind of problem.

19.1 Mistakes

Through the course of developing this project, many mistakes were made. De-
tecting what the most important mistakes are and well identifying them will
help future studies.

Delay the tests and documentation

Since the initial results were not satisfactory, the focus of the1 project was
moved to finding new ways to solve the problem and implementing them.

This resulted in leaving the documentation of the project and the necessary
tests for the future. Although finally, the results obtained are satisfactory, the
documentation of the process may not reflect it well enough.

Scope too broad

The initial goal of the project was too ambitious and expensive. Pretending
to solve the problem totally from the beginning was a big mistake. Unfortu-
nately, the scope of the project wasn’t reduced until months into the project. It
would have been smarter to tackle first the smallest problem, as we did in the
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end, and then try to extend the solution into the other cases.

One of the reasons was underestimating the problem. Even after reducing
the problem to the clauses of size 2, it was an NP-hard problem. It should have
been more evident that the initial goal of the project was too much.

The code

The code of the project is hard to follow. The versions of the code are dis-
tributed in different files and the files contain unused code.

Since one of the goals of the project is to serve as a base for future investi-
gations, they could be clear and easy to read.

19.2 Obstacles

Through the development of the project some obstacles appeared, some of them
expected and some unexpected. Down are enumerated the most important ones.

Not having access to commercial solvers

Since commercial solvers were not available for the tests, the time it took
to solve the test problems was too much. Therefore, the tests were not able to
finish.

To make a better comparison, it would have been better to execute the tests
with commercial state-of-the-art, in order to determine if the developed pro-
gram is or not an improvement in practice.

Lack of time

In the beginning, the number of hours for the project was estimated. Ac-
cording to this, the hours were assigned through the weeks. Since the length
of this project has been from September 2021 to June 2022, it was difficult to
expect some changes from the start.

In concrete, the biggest unexpected change was starting a full-time job. The
available daily time was largely reduced.

19.3 Future work

In this section, different directions for future studies will be enumerated. The
intention of this project is, not only to make conclusions but also to serve as a
base for future explorations of the problem.
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19.3.1 Improving the tests

As stated before, the quality of the tests was not good enough to determine if
this project’s solution was good enough or to measure how good it is. There
are two main points where this can be improved.

The first of them is to use state-of-the-art solvers. Since the intention of the
project is to determine if applying the preprocessing will result in a reduction
of the execution time needed to decide the problems, testing it with outdated
solvers will not give a good idea if this goal was achieved or not.

The second point is to provide more time for the algorithm to solve the
problems. Since usually, the time designated for solving a problem is larger, it
would be more realistic if the same time was given to test the algorithm too.

19.3.2 Extend the solution to q=2

Is it possible to apply a similar solution to solve the q = 2 case? When working
with the q = 1 case, the input was first expressed as a graph, and then the
algorithm for enumerating the maximal cliques was applied.

Is it possible to extend this idea to more dimensions using a hypergraph?
This could be an idea worth studying.
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