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Abstract

Motivation: Local ancestry inference (LAI) is the high resolution prediction of ancestry labels along a DNA sequence.
LAI is important in the study of human history and migrations, and it is beginning to play a role in precision medicine
applications including ancestry-adjusted genome-wide association studies (GWASs) and polygenic risk scores
(PRSs). Existing LAI models do not generalize well between species, chromosomes or even ancestry groups, requir-
ing re-training for each different setting. Furthermore, such methods can lack interpretability, which is an important
element in each of these applications.

Results: We present SALAI-Net, a portable statistical LAI method that can be applied on any set of species and ancestries
(species-agnostic), requiring only haplotype data and no other biological parameters. Inspired by identity by descent
methods, SALAI-Net estimates population labels for each segment of DNA by performing a reference matching approach,
which leads to an interpretable and fast technique. We benchmark our models on whole-genome data of humans and we
test these models’ ability to generalize to dog breeds when trained on human data. SALAI-Net outperforms previous
methods in terms of balanced accuracy, while generalizing between different settings, species and datasets. Moreover, it
is up to two orders of magnitude faster and uses considerably less RAM memory than competing methods.

Availability and implementation: We provide an open source implementation and links to publicly available data
at github.com/AI-sandbox/SALAI-Net. Data is publicly available as follows: https://www.internationalgenome.org
(1000 Genomes), https://www.simonsfoundation.org/simons-genome-diversity-project (Simons Genome Diversity
Project), https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html (HapMap), ftp://ngs.sanger.ac.uk/
production/hgdp/hgdp_wgs.20190516 (Human Genome Diversity Project) and https://www.ncbi.nlm.nih.gov/bio
project/PRJNA448733 (Canid genomes).

Contact: ioannidis@stanford.edu

Supplementary information: Supplementary data are available from Bioinformatics online.

1 Introduction

1.1 Genomic data and its applications
Sequencing technology advances are enabling the generation of
genome-wide data at rapidly decreasing cost. These genome sequen-
ces, combined with modern statistical and computational techni-
ques, are providing a new data-driven paradigm in many areas
including population genetics, precision medicine and agriculture.
For example, genome-wide data for human individuals are allowing
prediction of disease risk through genome-wide association studies
(GWASs) and polygenic risk scores (PRS) and allowing for the study
of migration and historical events through genomic ancestry ana-
lysis. These analyses are not unique to human data, but are also
being applied to animals and plants, leading to improvements in
farming and agriculture, while providing methods to better under-
stand genetic and phenotypic differences between breeds, cultivars
and species. The increase in data availability and in genomic-based

applications has created a need for computational tools that are fast,
efficient and portable across species and applications.

Genome sequences are composed of four nucleotides, typically
represented with the letters: A, T, C and G. While the majority of
genomic positions are fixed across individuals of the same species, a
small fraction is known to be variable. Most of these positions are
single-nucleotide polymorphisms (SNPs) that have two variants or
forms, which allows for a binary encoding with a common or major-
ity variant (encoded as a zero) shared among the majority of individ-
uals and a minority or alternative variant (encoded as a one)
(Avallone et al., 2020; Ioannidis et al., 2020; Kumar et al., 2020;
Maples et al., 2013; Thornton and Bermejo, 2014).

Throughout history human populations across distinct geographic-
al regions have experienced periods of isolation and independent genet-
ic drift along with periods of migration and admixture. This process
has resulted in various genetic ancestry clusters (populations) that have
slightly different allele frequencies and allele correlations (linkage
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disequilibrium). While this variation allows us to date and quantify his-
torical migration events, it also makes the development of globally ap-
plicable statistical predictive models difficult. For example, a PRS
model developed using samples from European populations will, in
many cases, perform poorly when applied to African individuals
(Martin et al., 2017). Such a lack of generalization across populations
leads in turn to disparities in the efficacy of disease risk prediction and
drug response adjustment.

Current human population groups are far less isolated from each
other and recently admixed individuals are increasingly common.
Such genetic admixture occurs when previously largely separated
populations come into contact. Genomic sequences from such
admixed individuals tend to have a mosaic-like structure with differ-
ent segments of their genomes originating from different ancestral
populations (Supplementary Fig. S1a). Admixture can continue over
multiple generations, yielding individuals with DNA from different
ancestries and of different lengths. Local ancestry inference (LAI) is
a method to identify this mosaic of ancestry segments, allowing
ancestry-specific models to be applied to the labeled genomes
(Atkinson et al., 2021; Ioannidis et al., 2021; Marnetto et al., 2020).

Other animal and plant species possess genetic variation typically
much greater than that observed within humans, making LAI in them
possible and important. While variation within wild species typically
reflects geography, with more distant groups more different genetically,
domesticated animals and plants tend to have genetic substructures
reflecting their breeding (artificial selection) by humans. Techniques to
characterize the ancestry composition of animals and plants are in-
creasingly used (Flowers et al., 2019; Joukhadar et al., 2017). Some
examples include commercial applications of breed analysis in domes-
tic animals such as dogs, cats or horses, or phenotypic prediction in
crops. The number of population groups, chromosomes and available
SNPs vary widely (from thousands to millions of SNPs) between spe-
cies and sequencing technologies. Therefore, methods that can easily
adapt to widely different settings and can handle potentially long
sequences are required if ancestry analysis is to be easily adopted within
the genetic analysis of both human and non-humans.

1.2 Introduction to LAI
LAI is the prediction of the ancestral origin for each piece of an individ-
ual’s genome. LAI has become increasingly important in the field of
genomic data processing (Martin et al., 2017; Raghavan et al., 2015;
Thornton and Bermejo, 2014) and its applications range from the study
of human migrations and evolution (Avallone et al., 2020; Ioannidis
et al., 2020; Padhukasahasram, 2014; Raghavan et al., 2015) to
GWAS adjustment (Atkinson et al., 2021) and PRS prediction
(Marnetto et al., 2020; Martin et al., 2017; Suarez-Pajes et al., 2021).

Most previous methods for LAI learn a set of parameters [e.g.
parameters of graphical models such as Hidden Markov Models
(HMMs)] (Price et al., 2009; Sundquist et al., 2008; Tang et al.,
2006) or weights of neural networks (Montserrat et al., 2020) tail-
ored to the specific genotypes available within a reference training
panel, for a given species, chromosome and set of population
groups. Such methods completely fail when faced with SNP loci not
seen during training. That is, for example, when seeing genomic
positions from different species or even from different chromosomes
or genetic positions in the same species. Such lack of generalization
is due to the fact that the statistics of the genomic sequences vary
greatly across positions on the genome and across species.
Therefore, such methods require re-training for each new setting. In
this work, we adopt a new framework, which, unlike the usual LAI
methods, allows us to perform inference on any species, chromo-
somes and set of populations, without the need for training a new
model. This is accomplished by estimating the ancestry along the se-
quence by looking at similarities between the input sequence and a
reference panel (Supplementary Fig. S1b), without learning any new
species or chromosome-specific parameters. We refer to this ap-
proach as species-agnostic or setting-agnostic LAI.

In order to perform training or inference with local ancestry meth-
ods, a reference panel of sequences from single-ancestry individuals
with known ancestry group labels (ground-truth) is required. Such ref-
erence information is obtained through self-reported ancestry, prior

domain knowledge or unsupervised clustering (Gimbernat-Mayol
et al., 2021), and in many cases, validated with additional statistical
analyses. While traditional LAI methods can be trained with single-
ancestry sequences, recent LAI models have demonstrated training
with synthetically generated data (Montserrat et al., 2019; Perera
et al., 2022). These synthetic references can be computationally
admixed (Karavani et al., 2019), and by tracking which DNA seg-
ments are recombined with each other during admixture simulation,
high-resolution ancestry labels from (simulated) admixed individuals
can be obtained (Gravel, 2012), enabling the production of large syn-
thetic datasets with high resolution ground truth labels. Such simula-
tion of recombination is a common practice when evaluating LAI
methods, as obtaining ground-truth admixed genome labels (via
sequencing of trios) is costly and time-consuming.

The adopted reference panel matching approach, described in
detail in the next section, removes entirely the need for re-training
the system for new populations, new species or new chromosomes
and for performing simulations of admixed genomes, leading to a
faster and less computationally demanding system that is also more
accessible, especially for users without the hardware resources and
expertise needed to fully train a machine-learning model in an agile
and optimal fashion. In fact, by providing pre-trained models, our
method only requires that a set of single-ancestry reference panels be
provided by the user, no subsequent model training is necessary.

1.3 Previous work
Over the last 15 years, there have been many different approaches to
LAI. Some examples include techniques based on HMMs such as
SABER (Tang et al., 2006), HAPAA (Sundquist et al., 2008) and
HAPMIX (Price et al., 2009). Other examples include LAMP
(Sankararaman et al., 2008), which outperforms HMM-based meth-
ods and is based on a window-level probability maximization.
However, its publicly available implementation is limited in the
number of ancestries that can be used. While such methods perform
accurately on low-resolution genotype array data, they are not opti-
mized for whole-genome sequencing technologies, which generally
lead to extremely large training times that are not possible in prac-
tice. More recent methods, such as RFMix (Maples et al., 2013),
based on random forests with conditional random fields, provide
higher accuracy with more tractable training times on whole genome
data. Recently Loter (Dias-Alves et al., 2018), which is based on dy-
namic optimization, has achieved better accuracy and robustness
across different species than previous methods. Finally, LAI-Net
(Montserrat et al., 2020), the first neural network-based local ances-
try algorithm, has surpassed RFMix accuracy.

Neural networks have become the state of the art in multiple tasks
involving sequence modelling across fields and data modalities (Kong
et al., 2019; Oord et al., 2016; Ren et al., 2019; Vaswani et al., 2017).
These networks model sequences using parametric linear transforma-
tions combined with non-linear mappings. The parameters of these
models are optimized in an end-to-end fashion for a given loss function.
An important building block of many neural networks are convolutions,
which are adopted in this work, and are widely used in computer vision
(Voulodimos et al., 2018), natural language processing (Oord et al.,
2016; Vaswani et al., 2017) and genomic data processing (Mantes
et al., 2022; Montserrat et al., 2020; Zaheer et al., 2020). LAI-Net
(Montserrat et al., 2020) was the first neural network-based method to
perform LAI and it reaches competitive results while providing robust-
ness to missing or noisy data. Despite its accuracy, this model is not
species-agnostic and requires re-training for every new setting encoun-
tered, which can be computationally demanding, since GPUs are
required to properly train the neural network. Similar to RFMix, LAI-
Net follows a two-stage approach: an initial classification stage and a
smoothing or refinement stage. LAI-Net begins by segmenting the input
sequence into non-overlapping windows of 500 SNPs. Next, a different
two-layer multi-layer perceptron (MLP) of hidden size 30 is applied to
each window to obtain an initial estimation of the ancestry predictions.
Then, the smoother stage corrects the errors induced by the MLP classi-
fiers by using information from neighbouring windows through a
trained convolutional layer of kernel size 75 with kernel depth and
number of kernels equal to the number of population groups. This two-
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stage design used in LAI-Net and RFMix inspires the architecture used
in SALAI-Net, but novel classifiers and smoothing approaches are intro-
duced in order to obtain the desired species-agnostic portability and to
remove the need for training and simulation.

Loter (Dias-Alves et al., 2018) is the current state of the art in in-
terpretable species-agnostic LAI. Loter uses a reference panel
matching-based approach combined with a dynamic programming
decoding (Viterbi-like) to infer the ancestry composition of admixed
sequences. By assigning a cost that penalizes over-splitting of the an-
cestry segments, the optimal sequence of ancestry transitions is
found. Moreover, Loter uses a data bagging scheme that makes mul-
tiple initial predictions with different hyperparameters and reference
panel subsets and then produces the final prediction with a voting
ensemble. Our method adopts a different reference panel matching
strategy and replaces the dynamic programming by a simple convo-
lution, leading to both faster and more accurate predictions.

2 Materials and methods

2.1 SALAI-Net
We refer to our presented model as SALAI-Net: Species Agnostic
LAI Network (Fig. 1). Similarly to previous methods, SALAI-Net
follows a two-stage approach: a reference matching layer followed
by a smoother layer. The reference matching layer provides
window-level initial estimates and the smoother layer improves the
initial predictions by exploiting neighbouring window information
and smoothing out errors. SALAI-Net is trained in a specific setting
and after that it can be used for LAI across any other species, or for
any other set of ancestries, without needing retraining or tuning.

2.1.1 Reference matching layer

The reference matching layer (Fig. 2) computes initial matching scores
between the query sequence (the input admixed sequence) and the ref-
erence panel (templates). The proposed layer has few learnable parame-
ters, which is critical to assuring generalization to other species and
settings while maintaining accuracy. First, the admixed query sequence
and reference panel sequences are split into Nwin non-overlapping win-
dows of size W SNPs. Then, a cosine similarity score between the query
sequence and each of the Nrefs reference sequences is computed at every
window using a –1, 1 sequence encoding of the SNPs. This similarity
can also be seen as a linearly scaled Hamming distance in the [–1, 1]
range. The matching process results can be represented as a sequence
of Nwin elements of Nrefs dimensions with each element representing
the pairwise similarities between input query and reference sequences
at each window. Then, the computed similarities are grouped by popu-
lation categories at each window and a top-k pooling operation is
applied, leading to the highest k similarities for each population group.
Finally, a weighted sum with learned weights is performed to combine
the top-k similarities into a unique score per ancestry. Note that when

k¼1, the top-k pooling is equivalent to a maxpooling operation com-
monly used in neural networks applied independently at each popula-
tion group. The output of the reference matching layer is a sequence of
Nwin elements of size Nclasses. Each element of the output sequence rep-
resents the matching scores between the corresponding query sequence
window and each of the classes or populations in the reference panel.

The reference matching layer compresses the SNP sequence into
a lower dimensional representation that captures better the ancestry
composition. Note that such layer can be applied to sequences of
any length with any number of population groups and any number
or reference sequences per group (as long as there are at least k
sequences per population). Such portability is what allows for train-
ing the parameters of the layer once (the weighted sum) and apply-
ing it to a different setting without the need of retraining and
without a loss of classification accuracy. In Supplementary Section
S2.2.5, we assess other reference matching layer architectures with
more parameters, which show a tendency to overfit to the training
setting. While Loter’s matching mechanism provides a matching in-
dicator for every SNP and every reference sequence (based on
Hamming distance), our layer provides a unique score per window
and population group (based on cosine similarity), providing a
much lower resolution representation that results in faster computa-
tion, lower memory requirements and less overfitting.

2.1.2 Smoother layer and up-sampling

The per-ancestry, window-level similarity score computed by the
reference matching layer is fed into a smoothing layer that combines
the information of neighbouring windows to provide an ancestry es-
timate. Our proposed smoother model is a learned 1D convolutional
filter that is applied independently to each of the Nclasses classes
across the sequence length, as shown in Figure 3. Padding is added
to the sequences at the start and end to make sure the output length
is the same as the input length after the convolution operation.
Furthermore, the convolution operation is applied to the scores of
each population group independently, allowing reuse of the same
layer even if further population groups are included or some
removed. In Supplementary Section S2.2.4, we depict how the model
learns a low-pass filter, which is consistent with the concept of a
smoother layer. After the convolutional layer, a softmax normal-
ization is applied independently for each window to map the un-
bounded smoother outputs (logits or ancestry scores) into
probabilities (between 0 and 1). Finally, the predicted probabilities
are up-sampled by repeating each vale W times in order to provide
a prediction value for each SNP of the original sequence (instead
of a window-level prediction). Note that at inference time, the
softmax can be replaced by a simple max operation to obtain the
ancestry predictions.

LAI-Net’s smoother consists of a convolutional layer with input
and output channels equal to the number of ancestries. This allows
for better exploiting specific population statistics and inter-
populations correlations, but makes the model unable to generalize
to unseen populations, since, in general, the number of populations
and their statistics vary greatly between applications. This differs
from SALAI-Net’s single-channel, single-kernel convolution, which
treats each population independently and allows for adding or
removing ancestries. Moreover, reducing the number of parameters
and complexity of the model helps avoiding overfitting, especially in
settings with small amounts of training data.

3 Results

3.1 Genomic datasets
We benchmark our method using three different datasets: whole-
genome human sequences, human genotyping array samples and
whole-genome sequences from dogs. These datasets contain sequen-
ces of single-ancestry references that are used to create sequences of
admixed individuals using simulated recombination for training and
evaluating. The admixture process is performed by recombining
these genomes to produce admixed progeny where the number of
recombinations per generation is approximately modelled as a

Reference matching

Smoother

Admixed query sequence

Reference Panel

Local Ancestry Predictions

(N_SNPs x 1)
(N_SNPs x N_refs)

(N_windows x N_classes)

Upsampling

(N_SNPs x N_classes)

(N_windows x N_classes)

Fig. 1. Diagram of the two main layers of SALAI-Net, followed by an up-sampling

layer that repeats each window prediction to match the original sequence length
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Poisson random variable as in Karavani et al. (2019) The recombin-
ation rates across the genome are obtained from the appropriate
genetic map (Maples et al., 2013). For each dataset, we split the
available founders into reference panel and founders for admixture
simulation (samples used to simulate admixed progeny). The admix
founder samples are divided into train, validation and test founders.
By doing so, subsequences of the training founders cannot leaked
into simulated admixed testing samples. We share the same refer-
ence panel for training, validation and test (unless testing on a differ-
ent species or populations). For each setting’s training, validation
and test sets, we simulate 5080, 1270 and 1270 haploid sequences.
A summary of the three datasets can be found in Supplementary
Section S2.1.

3.1.1 Whole-genome human dataset

We use human whole-genome data from three publicly available
datasets: the 1000 Genomes Project (1 kg) (Siva, 2008), the Simons
Genome Diversity Project (Mallick et al., 2016) and the Human
Genome Diversity Project (Bergström et al., 2020). We refer to the
combination of the three datasets as the whole genome dataset. We
have a total of 1360 chromosome 22 diploid sequences of single an-
cestry individuals grouped as African (AFR), European (EUR), East
Asian (EAS), South Asian (SAS), West Asian (WAS), Oceanian
(OCE) and Native American (NAT). We split the individuals into
four non-overlapping sets. Three are used to simulate admixed sam-
ples as train, validation and test data. A fourth set is used as a

reference panel and is shared between train, test and validation scen-
arios. The resulting reference panels consist of 38 AFR, 49 EAS, 16

EUR, 8 NAT, 2 OCE, 17 SAS and 7 WAS diploid individuals, where
these ancestries are defined as in Hilmarsson et al. (2021).

3.1.2 Hapmap dataset

The Hapmap dataset (Consortium et al., 2010) is a publicly available
dataset that contains 1301 DNA sequences of 11 different human sub-

populations. We use the following six continental populations groups:
EUR including Utah residents with Northern and Western European
ancestry from the CEPH collection and Toscani in Italia; EAS includ-

ing Han Chinese in Beijing, China and Japanese in Tokyo, Japan; East
African (EAFR) including Maasai in Kinyawa, Kenya and West

African (WAFR) including Yoruba in Ibadan, Nigeria populations.
Note that the samples from the Hapmap dataset have significant-

ly fewer SNP positions than the sequences from the whole-genome

dataset, which allows us to evaluate our method on low resolution
genotyping array data. We present the results for this genotype-

array dataset in Supplementary Section 2.3.

3.1.3 Canid dataset

We use whole-genome sequences from dogs and wolves (Plassais

et al., 2019) to evaluate our model in a different species.
Specifically, we use sequences from Wolves and Terrier and

Retriever breeds. In this dataset, we perform a train/test/val

Window-wise
cosine similarity

Ancestry-level
max-pooling

. . . . . . . .

Top-k pool +
weighted sum

. Represents the
cosine similarity

Top-k pool +
weighted sum

Top-k pool +
weighted sum

Fig. 2. Scheme of the reference matching layer for a query sequence and eight reference panel sequences. Different colours refer to different ancestries. The input sequences are

split into windows, then we apply the cosine similarity and ancestry-level top-k pooling and weighted sum. At the output of the reference matching layer, we have a per-class

score for each window

N_windows

N_classes

Kernel_size

Fig. 3. Diagram of the smoother, which is a single convolutional kernel (in purple) that acts across the sequence length independently for each ancestry. It can also be viewed

as a 2D convolution shifting across both dimensions
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reference panel split and the reference panel has 11 Retriever, 24
Terrier and 12 Wolf samples.

3.2 Experimental results
3.2.1 Implementation details

The reference matching layer has a window size of W¼40 for the
Hapmap dataset and of W¼200 for whole-genome human and
canid data with no overlap between windows. The kernel size is
nk ¼ 75 for the convolutional smoother in both settings. We use
k¼130 in the top-k pooling operation in the reference matching
layer for the Hapmap data and k¼1 for whole-genome data, where
the number of sequences in the reference panel is smaller. The net-
work is trained for 50 epochs with the cross-entropy loss between
predicted and ground truth ancestries using the Adam (Kingma and
Ba, 2014) optimization algorithm with a learning rate of 0.01 and
betas ¼ (0.9, 0.999) and a minibatch size of 32. At inference time,
we use the best-performing model (with highest validation accuracy)
from all the training epochs. The model and pipeline was imple-
mented using Pytorch (Paszke et al., 2019).

3.2.2 Generalization to unseen ancestries

First, we explore the method’s capabilities to generalize to unseen
population groupings. In order to do so, we train a model (learning
the smoother layer and the learnable parameters of the matching
layer) with four population groups—AFR, EAS, EUR and SAS
(Group 1)—and then evaluate the learnt parameters with a different
set of populations—OCE, NAT and WAS (Group 2). Specifically,
we generate a simulated dataset containing sequences of admixed
individuals with up to four population groups including a wide
range of segment lengths (subsequences of the same ancestry) by
generating from 2 to 128 generations of admixture events. During
training, the network has 16 EUR, 17 SAS, 49 EAS and 38 AFR
sequences as reference panel for the reference matching layer, which
add up to 120 reference individuals. We train the model with 2540

admixed diploid individuals (5080 haploid sequences) and validate
it with 635 admixed individuals (1270 haploid sequences).

For evaluation, we simulate an admixed testing dataset with 635
admixed diploid individuals from the OCE, NAT and WAS popula-
tions. The testing admixture time is also in the 2–128 generations
range. During testing, the reference panel is replaced by 2 OCE, 8
NAT and 7 WAS individuals. We evaluate SALAI-Net accuracy and
compare it with Loter and LAI-Net. Note that Loter does not have
any training parameters, as it is an inference-only method; therefore,
we directly provide the same reference panel as SALAI-Net (includ-
ing OCE, NAT and WAS) and perform inference with the default
hyperparameters. The official implementation of LAI-Net takes the
OCE, NAT and WAS reference sequences and internally performs
admixed progeny simulation and training. Table 1 shows the accur-
acy of both methods. SALAI-Net surpasses Loter even when its net-
work parameters are learnt for entirely different population groups
and it remains competitive with LAI-Net, which achieves a higher
accuracy score. Note that LAI-Net can only work when the popula-
tion groups used during training and inference completely match, as
it does not have population-agnostic capabilities. Furthermore, note
that, SALAI-Net obtains very similar accuracy regardless of the
training set used, showing that either training set provides equally
generalizable learnt parameters.

Additionally, we provide a qualitative evaluation of real (non-
simulated) admixed samples for which ground truth labels are not
knowable. Figure 4 shows the results of LAI with SALAI-Net on a
Puerto Rican individual from Puerto Rico and AFR, EUR and NAT
segments are detected.

3.2.3 Generalization to unseen species

To further explore the generalization capabilities of our method, we
use the parameters learnt with sequences from human individuals
(AFR, EUR, SAS and EAS) described in the previous section and
evaluate on a dataset composed of DNA sequences from dogs and
wolves. The testing dataset contains admixed samples simulated
from single-ancestry sequences of Wolf, Terrier and Retriever.
Specifically, a total of 29 Wolf, 61 Terrier and 28 Retriever are used
to simulate 1270 testing admixed sequences from 2 to 128 genera-
tions. Similarly, 12 Wolf, 24 Terrier and 11 Retriever individuals
(47 individuals in total) are used as a reference panel to perform in-
ference with SALAI-Net and Loter. Furthermore, we benchmark
with LAI-Net, trained with admixed sequences generated from the
same 47 founders in the SALAI-Net’s reference panel. Both Loter
and LAI-Net are evaluated using their default recommended hyper-
parameters. Table 2 shows that our model obtains higher accuracy

Table 1. Benchmark on unseen populations

Method Train populations Test populations Accuracy

Loter – Group 2 75.74%

LAI-Net Group 1 Group 2 N/A

LAI-Net Group 2 Group 2 85.20%

SALAI-Net Group 1 Group 2 81.62%

SALAI-Net Group 2 Group 2 81.17%

Note: Group 1 refers to EUR, AFR, EAS and SAS populations and Group 2

refers to OCE, NAT and WAS populations.

Fig. 4. Result of running LAI on chromosome 22 of a Puerto Rican individual from

Puerto Rico. Graphics using tagore (Rishishwar et al., 2015). Red, yellow and green

represent AFR, EUR and NAT ancestries, respectively

Table 3. Comparison of time and memory usage in the dogs dataset

Method Hardware Average sequence time (s) Time ratio RAM memory consumption (G)

Loter CPU 29.83 � 372 15.3

LAI-Net GPU 0.279 � 3.5 7.8

LAI-Net CPU 2.031 � 25 9.2

SALAI-Net GPU 0.080 � 1 2.3

SALAI-Net CPU 0.387 � 4.8 2.4

Note: Speed ratio is with respect to SALAI-Net on GPU hardware. Results in bold indicate the best performing solution.

Table 2. Accuracy on dog whole-genome data

Method Train species Test species Accuracy

Loter – Dogs 78.39%

LAI-Net Dogs Dogs 86.38%

LAI-Net Humans Dogs N/A

SALAI-Net Dogs Dogs 87.66%

SALAI-Net Humans Dogs 87.27%

Notes: Human whole genomes included EUR, AFR, SAS and EAS

populations.
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than Loter and LAI-Net when tested on a different species (dogs)
than the one it has been trained on (humans). Furthermore, we train
a new model with canid genomes as training data and compare it
with a model that has been trained with human data. When testing
with canid data, the model trained with canids obtains an accuracy
of 87.66%, while the model trained with humans an accuracy of
87.26%. This small gap on accuracy highlights the capabilities of
the learnt parameters to transfer into completely different inference
scenarios.

3.2.4 Computational benchmarking

We compare the memory usage and computational time of SALAI-
Net, LAI-Net and Loter when running the models with and without
the use of GPU hardware. Since LAI-Net is not ancestry-specific and
requires training each time, the time benchmark includes the param-
eter optimization procedure to fit the model to the specific setting.
In Table 3, we present the computation benchmark in the canid
dataset. SALAI-Net’s RAM consumption is considerably lower than
that of the other systems and it can run without GPU hardware in a
reasonable time with almost no additional memory usage. Because
some LAI models can be very computationally expensive and require
hardware that might not be available, SALAI-Net is a good fit for
low-resources settings, even for running on a personal laptop. From
a practical perspective, inference can take around 9 h to perform on
300 whole-genome sequences using Loter, while with SALAI-Net
more accurate results can be obtained in just minutes. Loter’s
Viterbi-like decoding method can be computationally expensive and
limits speed. The available Loter implementation allows for CPU
multi-core parallelization and we run it on 16 cores. On the other
hand, our proposed one-channel one-kernel convolutional smoother
layer is extremely computationally light, making the reference
matching layer the computational bottleneck in SALAI-Net (due to
the computation of window-level cosine similarities). However, we
implemented the distances in the reference matching with single ma-
trix multiplication and 2D convolution with stride, taking advan-
tage of Pytorch’s fast implementation and of our available GPU
hardware. This large acceleration changes the way users can per-
form LAI in different species or populations, reducing the time
bottleneck.

4 Discussion

4.1 Relationship with identity by descent
Many genetic applications require interpretable techniques, and, un-
like previous machine-learning-based local ancestry approaches, our
proposed approach is highly interpretable, as each prediction is
obtained by a pattern matching of sequences. This is similar to the
identity by descent (IBD) paradigm wherein two segments of a se-
quence are inferred to be identical by descent (deriving from the
same ancestor) if they match closely (Albrechtsen et al., 2009;
Browning and Browning, 2010; Gusev et al., 2009; Purcell et al.,
2007). SALAI-Net can thus be seen as a smoothed, generalized ver-
sion of IBD, where ancestry cluster membership is predicted for each
window instead of IBD, and the closeness needed for matching and
the weighting of different patterns of mismatches is learnt.

4.2 Relationship with kernel and non-parametric

methods
The reference matching layer resembles kernel machines and
similarity-based methods such as k-nearest neighbour (k-NN) and
support vector machines (SVMs). For example, a k-NN classifier
provides a classification label through a weighted average of the
labels from the k-closest samples given a pre-specified distance met-
ric and a fixed set of weights, whereas our proposed reference
matching layer provides a unique score for each ancestry present in
the reference panel by performing a weighted sum (with learnt
weights) of the top-k cosine similarities. In a similar fashion, SVMs
compute a membership score by computing a distance between the
input sequence and a set of reference panel (support vectors) with a

kernel function and performing a learnt weighted average, where a
different weight is assigned to each of the pairwise difference. SVMs
differ from our proposed matching layer by how the weighted aver-
age is performed: while SVMs require re-training the model once
new training samples are present (in order to estimate the weighting
coefficient for each sample) our top-k pooling and weighting ap-
proach allows reusing the weighting coefficients, since the same
coefficients are applied to different samples depending on their rank-
ing within cosine similarity. Therefore, the proposed layer could be
understood as a SVM with a cosine similarity kernel, where the lin-
ear weights are dynamically assigned conditioned by the cosine
similarities.

5 Conclusion

We propose a novel species-agnostic method for LAI based on refer-
ence panel matching that outperforms the previous state-of-the-art
techniques across multiple different datasets and settings, while ena-
bling an acceleration of up to two orders of magnitude and consum-
ing significantly less memory. When trained with human data, the
proposed method shows a very small generalization error gap when
applied (without any retraining) to other settings, including other
species, demonstrating robust portability across new ancestry group-
ings, chromosomes, admixture timings and reference panel sizes.
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