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Online Assortment Optimization for Two-sided
Matching Platforms

Ali Aouad
London Business School, aaouad@london.edu

Daniela Saban
Stanford Graduate School of Business, dsaban@stanford.edu

Motivated by online labor markets, we consider the online assortment optimization problem faced by a

two-sided matching platform that hosts a set of suppliers waiting to match with a customer. Arriving

customers are shown an assortment of suppliers, and may choose to issue a match request to one of them.

After spending some time on the platform, each supplier reviews all the match requests she has received

and, based on her preferences, she chooses whether to match with a customer or to leave unmatched.

We study how platforms should design online assortment algorithms to maximize the expected number of

matches in such two-sided settings. We establish that a simple greedy algorithm is 1/2-competitive against an

optimal clairvoyant algorithm that knows in advance the full sequence of customers’ arrivals. However, unlike

related online assortment problems, no randomized algorithm can achieve a better competitive ratio, even

in asymptotic regimes. To advance beyond this general impossibility, we consider structured settings where

suppliers’ preferences are described by the Multinomial Logit and Nested Logit choice models. We develop

new forms of balancing algorithms, which we call preference-aware, that leverage structural information

about suppliers’ choice models to design the associated discount function. In certain settings, these algorithms

attain competitive ratios provably larger than the standard “barrier” of 1− 1/e in the adversarial arrival

model. Our results suggest that the shape and timing of suppliers’ choices play critical roles in designing

online assortment algorithms for two-sided matching platforms.

Key words : online algorithms, two-sided matching, assortment optimization, choice models

1. Introduction

In recent years, online platforms that match customers with service providers have experienced

sustained growth in a variety of two-sided markets. For example, travelers find accommodations

on Airbnb, independent workers connect with relevant businesses using online marketplaces such

as Upwork, Rover, and DesignCrowd, etc. In the majority of these settings, matches are not cen-

trally dictated by the platform. For instance, in graphic design marketplaces such as DesignCrowd,

designers browse through open projects (or design contests) and choose where to submit their

designs. Generally speaking, the matches are formed through a decentralized search process initi-

ated by one side of the market. When the corresponding users reach the platform (e.g., freelancers),

they are presented with an assortment of alternatives listed on the other side of the market (e.g.,
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job openings). Based on her preferences, each user chooses whether to request a match and with

whom (e.g., applications for job openings). If a request is accepted by the other party, a match is

formed. From an operational standpoint, the platform influences the matching process by selecting

the assortment initially displayed to the users. This core decision is analogous to assortment plan-

ning, i.e., the question of how firms should optimize the variety of products offered to customers

based on underlying assumptions on their preferences. While this issue is extensively studied in

previous literature, researchers have, by and large, focused on applications to brick-and-mortar

retailing as well as e-commerce, where the displayed assortment can be further personalized.

Naturally, one may consider leveraging the assortment algorithms designed for retail applications

in the context of online matching platforms. However, one salient difference between retail and

matching settings is the presence of one-sided versus two-sided preferences. In retailing, customers

have preferences over products; a request to purchase an available product generally yields a suc-

cessful transaction. By contrast, in many online matching platforms, a transaction (i.e., match)

does not automatically occur after a match request is submitted; rather, a transaction occurs only

after both parties agree on it. For example, for a match to happen on DesignCrowd, not only must

the designer choose to submit a design to an open project, but also the client must select this

design out of all the submissions she has received. Importantly, the decision of whether to accept a

request and “complete the transaction” ultimately depends on the set of received match requests

and the preferences of the client who reviews and evaluates them. Going forward, the notion of

two-sided preferences refers to the fact that transactions occur only if they suit both parties.

The preceding discussion suggests a shift in perspective from one-sided marketplaces such as

those for retail, where only one side has preferences and actively makes choices, to two-sided

matching platforms where both parties sequentially express their preferences. The platform plays a

crucial role in guiding the matching outcomes by controlling the assortment displayed to the users

on the side of the market that initiates the match requests. Hence, it is natural to hypothesize that

preferences on both sides of the market should be accounted for when designing online assortment

algorithms in such settings. The goal of our research is twofold. First, we ask whether and when

the presence of two-sided preferences has fundamental implications on the performance of online

algorithms in comparison with one-sided preferences. Second, we study how to design near-optimal

online assortment algorithms: what type of information is useful to optimize their design? Which

characteristics of the underlying market affect their performance?

1.1. Preview of our main results

This paper studies, both conceptually and technically, how to design online assortment algorithms

for two-sided matching platforms. To this end, we first introduce a model for the assortment



3

optimization problem faced by these platforms. As formally described in Section 2.1, we take the

perspective of a platform that hosts a set of suppliers (e.g., firms with open positions), who are

waiting to match with a customer (e.g., freelancer). We use the terminology of customers and

suppliers to simplify the comparison with models studied in the previous literature: the matching

process is initiated from the customer. In practice, however, what we refer to as a customer and a

supplier might not be natural in certain applications.

Our analysis leads to the following results:

1. There are significant conceptual and algorithmic differences between one-sided and two-sided

assortment problems. Specifically, when considering our two-sided setting in a general form, it is

not possible to design efficient algorithms achieving a competitive ratio higher than that of a simple

greedy algorithm.

2. Structural information about the suppliers’ choice models is useful for developing algorithms

that achieve better performance guarantees. In particular, we devise so-called preference-aware

balancing algorithms that exploit the substitution patterns of these choice models.

3. Depending on the structure of the suppliers’ preferences, the online assortment optimization

problem for two-sided matching markets can be easier or harder than for retail (one-sided) markets.

For instance, assortment optimization is harder in markets where suppliers’ preferences induce

greater competition among customers.

In what follows, we discuss our contributions in more detail.

Modeling approach. Our first main contribution is to introduce a model for the online assort-

ment optimization problem faced by a platform operating in the aforementioned markets. As

formally described in Section 2.1, we take the perspective of a platform that hosts a set of suppliers

who are waiting to match with a customer. Each arriving customer is shown an assortment of

suppliers, and may choose to issue a match request to one of them. Before leaving the platform,

each supplier reviews all the match requests she has received, and based on her preferences, she

chooses whether to accept one these requests and match with a customer or to leave unmatched.

The platform’s objective is to devise an online assortment algorithm that maximizes the total

expected number of matches over a finite time horizon. As the suppliers’ choices are captured by

a general set function, our formulation generalizes the online one-sided assortment optimization

setting.

Differences with one-sided settings: Analysis of the greedy algorithm. As is common in

the literature, we use the notion of competitive ratio as a performance criterion for online assortment

algorithms; this notion is formally defined Section 2.1. Extending what is known with regard to

special cases of the online two-sided assortment problem, we show in Section 3 that a simple greedy

algorithm, which offers to each arriving customer the assortment that maximizes the expected
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increase in matches, is 1/2-competitive for this problem. By leveraging the hardness result for online

submodular welfare maximization (Kapralov et al. 2013), we show that this performance guarantee

is best-possible in the two-sided setting; i.e., there is no randomized polynomial-time algorithm

that can achieve a better competitive ratio. Interestingly, the greedy algorithm remains optimal

even in a suitably defined scaling of the problem instances, termed the small probability regime,

for which improved asymptotic competitive ratios were established for related online matching and

assortment settings. These results suggest that the probabilistic structure of customers’ choices has

no effect on the best-possible competitive ratio. By contrast, the hardness of the online two-sided

assortment problem stems from the structure of suppliers’ choice preferences.

Beyond greedy: Preference-aware algorithms. The impossibility of devising algorithms

better than 1/2-competitive is established when suppliers’ preferences are captured by any arbi-

trary rank-based choice model without any further (parametric) assumption. However, in real-world

applications, practitioners often specify structured families of choice models, such as the Multi-

nomial Logit (MNL) and Nested Logit (NL) models. Hence, to advance beyond this impossibility

result, our main contribution is to introduce a family of simple deterministic algorithms, termed

preference-aware balancing algorithms, that leverage this structure to achieve improved competi-

tive ratios.

Balancing algorithms can be viewed as variants of the greedy algorithm that optimize a tradeoff

between maximizing the immediate rewards from matching the current customer and leaving suffi-

cient “capacity” to match future customers. This notion is implemented by applying a discount on

the matching rewards, where the discount function maps the remaining capacity of each supplier to

a multiplicative discount. Previous literature shows that balancing algorithms with exponentially

shaped discount functions asymptotically achieve the optimal constant-factor competitive ratio of

1− 1/e in many related settings, including the online one-sided assortment problem (Mehta et al.

2005, Golrezaei et al. 2014).

Using structural properties of the MNL and NL models, we show that carefully calibrated dis-

count functions, which satisfy certain ordinary differential inequalities, yield balancing algorithms

with better competitive ratios. Our analysis provides several interesting conceptual findings. When

suppliers have MNL preferences, we construct algorithms with competitive ratios better than

1 − 1/e whereas this constant is a fundamental barrier for related online assortment problems

under adversarial arrivals. Interestingly, the discount function used to attain this result signifi-

cantly differs from exponentially shaped discount functions used in related settings. Moreover, our

analysis of the NL choice model sheds light on structural properties of suppliers’ preferences that

affect the tractability of the online two-sided assortment problem. Specifically, we show that our

performance guarantees improve as a function of the nest dissimilarity coefficient of the NL model,
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a parameter that intuitively controls the degree of substitution between comparable customers in

a nest. Specifically, competitive ratios better than 1− 1/e can be achieved for large dissimilarity

coefficients; however, the performance guarantee achieved by our algorithms deteriorates to 1/2

for small dissimilarity coefficients. This suggests that online assortment optimization is inherently

more difficult in markets where suppliers’ preferences capture starker competition effects between

comparable customers.

Organization. In Section 1.2, we review the literature that is directly related to our work. In

Section 2, we present our modeling approach and discuss its connection with practice. In Section 3,

we analyze the performance of a greedy algorithm and present our general impossibility result. In

Section 4, we introduce and analyze the class of preference-aware balancing algorithms. Finally, in

Section 5, we summarize our main findings and discuss some modeling extensions.

1.2. Related Literature

In this section, we review three lines of research that are directly related to our paper: online

matching, dynamic matching, and assortment optimization.

Online matching. Online matching problems have been widely studied in the computer science,

operations research, and computational economics communities. The seminal paper Karp et al.

(1990) introduces the online bipartite matching problem, where vertices on one side (online cus-

tomers) are revealed sequentially and can be irrevocably matched to neighbor vertices on the

other side of the graph (offline suppliers). The objective is to maximize the size of the matching.

The authors propose a randomized algorithm that achieves a competitive ratio of 1 − 1/e and

provide a matching lower bound. Numerous papers have extended the online bipartite matching

model to capture more complex resource allocation settings (Mehta 2013), including the online

b-matching problem (Kalyanasundaram and Pruhs 2000) and the Adwords problem (Mehta et al.

2005). Finally, there is a line of research that focuses on the design of online matching algorithms

in Bayesian settings (Feldman et al. 2009, Manshadi et al. 2012, Jaillet and Lu 2013).

Closer to the present paper, Kapralov et al. (2013) study the online welfare maximization prob-

lem, a generalization of online matching where suppliers are assigned multiple customers and have

submodular valuations over the set of customers. This paper establishes that no polynomial-time

randomized algorithm can achieve a constant-factor competitive ratio better than 1/2 under cov-

erage valuation functions. As shown in Section 3, the online welfare maximization problem can

be cast as a special case of our problem in its utmost generality, due to a direct analogy between

coverage valuation functions and rank-based choice models. However, rather than viewing sup-

pliers’ valuations as arbitrary functions, we consider parametric choice models; these structural

assumptions enable us to attain competitive ratios better than 1− 1/e in certain settings. The
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online two-sided assortment problem is also connected to online fractional matching with concave

returns (Devanur and Jain 2012), whereby competitive ratios better than 1− 1/e are achievable.

Nonetheless, the latter setting has two salient differences: items are fractionally matched rather

than randomly assigned to customers’ via probabilistic choice models, and rewards are captured by

univariate functions as opposed to set functions.1 Due to the latter, our algorithm and analytical

approach are significantly different.

Dynamic matching. Motivated by the growth of online markets, several recent papers have stud-

ied dynamic variants of the online matching setting, where vertices arrive dynamically on the two

sides of the graph; see, e.g., Gurvich and Ward (2015), Akbarpour et al. (2020), Anderson et al.

(2017), Ashlagi et al. (2019), Afeche et al. (2019), and Aouad and Saritaç (2020) which propose

various models in this spirit. This line of work focuses on capturing the market dynamics that

describe the agents’ arrivals and departures, while the matching decisions are controlled by a cen-

tral platform. By contrast, we focus on a setting in which both sides of the market have complex

choice preferences and the users choose whether and with whom to match.

Several recent papers study platform design questions in dynamic matching settings where users

can choose among a set of potential partners; we refer the reader to the survey in Lobel (2021)

that reviews recent research on marketplace management. These papers argue that various design

choices can improve the efficiency of the market, including carefully selecting which side of the

market should be sending the match requests and limiting the information that users see (Kanoria

and Saban 2021), limiting the number of match requests a user can submit (Arnosti et al. 2021),

optimizing the information disclosure policy (Bimpikis et al. 2020), and more. However, these

papers do not take an algorithmic approach.

Assortment optimization. Since the seminal paper of Talluri and van Ryzin (2004), a great deal of

attention in the revenue management literature has been paid to assortment optimization problems.

In its standard form, the static assortment problem aims to determine an assortment of products

that should be offered to customers in order to maximize the expected revenue with respect to a

given choice model, i.e., a probabilistic prior on the customers’ choice preferences. This problem

has been studied under a variety of choice models and constrained formulations (Rusmevichientong

et al. 2010, Sumida et al. 2020, Désir et al. 2014, Blanchet et al. 2016). Closer to our setting,

Golrezaei et al. (2014) introduce what we call the online one-sided assortment problem, the problem

of personalizing the assortment of products offered to each arriving customer given initial inventory

levels for each product. This problem is a generalization of the online matching setting, where

customers make random choices rather than being assigned to an item. Several extensions are

1 While MNL preferences can be represented using similar univariate valuation functions, this is no longer true for
the NL choice model.
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considered in recent literature (Gong et al. 2019, Rusmevichientong et al. 2020, Ma and Simchi-

Levi 2020). Our setting not only considers customers’ choices but also introduces suppliers’ choices,

thereby further generalizing the online assortment problem in Golrezaei et al. (2014).

There are only a few papers that examine assortment optimization problems that are relevant to

the design of matching markets. Motivated by applications to school choice, Shi (2019) studies the

design of priority systems for matching agents to heterogeneous items, but accounts for one-sided

preferences only. Ashlagi et al. (2020) study an assortment optimization problem for two-sided

matching markets where customers and suppliers sequentially express their preferences. Neverthe-

less, this problem is formulated in a static setting, where all customers and suppliers are initially

known. Rios et al. (2020) study a dynamic assortment optimization problem in collaboration with

a dating app; however, they focus on practical applications, which result in significant differences

in terms of modeling angle and algorithmic contributions.

2. Model

We consider a platform that facilitates the matching between customers and suppliers, both of

which have exogenous preferences. The platform hosts a set of suppliers, who are waiting to match

with a customer.

Customers arrive dynamically over time. Each time a customer arrives, the platform presents

her with an assortment of suppliers, out of which the customer may choose at most one alternative,

whereupon the corresponding supplier receives a match request. Before leaving the platform, each

supplier chooses either to match with one customer among all the requests she has received or to

leave unmatched; when the former happens, we say that a match occurs. The platform must choose

an online assortment algorithm that maximizes the total expected number of matches over a finite

time horizon. In Section 2.1, we describe each component of the model in more detail. Next, in

Section 2.2, we discuss the connections with previous literature.

2.1. Problem formulation

Preliminaries. We consider a discrete-time problem over a finite horizon of T time periods, and

use [T ] to denote the set {1, . . . , T}. Let S be the set of all potential suppliers that may join the

platform. In line with the applications described in Section 1, suppliers need not be on the platform

throughout the entire time horizon. For example, in design marketplaces, new projects arrive over

time and have a deadline by which the supplier (client requesting designs) makes a decision. As

a result, we allow suppliers to arrive and depart over time and denote by {St}Tt=1 an exogenous

stochastic process that describes the evolution of the set of available suppliers on the platform.
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Customers’ choice process. In each time period t∈ [T ], a new customer arrives. Each customer is

associated with a type that specifies (i) a choice model that describes, for every given assortment,

the probability that she requests a match with each supplier, and (ii) customer-specific features

that determine how attractive this customer is to each supplier. For example, in labor markets such

as Upwork and DesignCrowd, customers correspond to freelancers and the supply side is formed by

all the jobs listed by clients on the platform. Each freelancer has preferences over the jobs available;

her job applications can be viewed as a random experiment described by a choice model. In turn,

due to freelancers’ unique skills and each job’s characteristics, a freelancer’s application or design

submission is more or less attractive to different clients. These customer-specific features will be

implicitly captured by the suppliers’ choice models, which we define subsequently.

Formally, we denote by Z the set of all possible customer types. Once the t-th customer arrives,

her type zt ∈Z is revealed. Knowing the customer’s type, the platform may offer her any feasible

assortment A ⊆ St of suppliers, where St ⊆ S denotes the set of suppliers available at the time

of the customer’s arrival. Then, the customer either requests a match with her preferred supplier

within the assortment A, or leaves the platform unmatched. Specifically, customer t’s choices are

prescribed by a probabilistic choice model that depends only on her type zt. We denote by φz
i (A)

the probability that a customer of type z ∈Z chooses supplier i when presented with assortment

A. Consequently, we use ξt(A) to denote the random variable that describes customer t’s choice

within assortment A, i.e., ξt(A) takes values in A∪ {0}, where 0 refers to the no-match option in

case customer t chooses to leave the platform and Pr[ξt(A) = i|zt = z] = φz
i (A) for every i ∈A and

z ∈Z. By a slight abuse of notation, we sometimes make time implicit and use ξz(A) to designate

this multinomial random variable.

We do not impose any structural restriction on the customers’ choice model. That said, we make

the following computational assumption, which states that we have access to an efficient oracle to

solve the corresponding class of static assortment optimization problems.

Assumption 1 (Static oracle). For all z ∈Z, there exists a polynomial-time algorithm to solve

the static assortment optimization problem with respect to type z’s choice model. Here, the static

assortment optimization problem consists in finding A ⊆ S so as to maximize
!

i∈A riφ
z
i (A), for

every subset of suppliers S ⊆ S and collection of non-negative per-unit revenues {ri}i∈S.

Assumption 1 is not particularly restrictive for practical purposes since it is satisfied by a large

class of choice models, including widely used logit-based models (Talluri and van Ryzin 2004,

Rusmevichientong et al. 2006, Davis et al. 2014). A similar pre-requisite is common in the literature
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Period t Period t+1

Customer t

arrives;

new suppliers

may arrive

Platform observes

supplier set St and

customer type zt and

chooses assortment A⊆ St

Customer may choose

at most one

supplier i∈A;

if so, zt is added to Ci

Suppliers departing

in t observe

Ci and make

matching decisions

Figure 1 Timing of events.

on online assortment optimization; see, e.g., Golrezaei et al. (2014), Ma and Simchi-Levi (2020),

and Goyal et al. (2020).2

Finally, we briefly discuss two natural extensions of our model. First, to ease the exposition,

we assume that customers request to match with at most one supplier. That said, as long as

Assumption 1 is satisfied, the case where customers submit several requests to match can be readily

accommodated; we defer a detailed discussion on this topic to Section 5. Second, while we focus on

assortment decisions for simplicity, all our results extend to settings in which the platform instead

chooses a display ranking (Gallego et al. 2020, Aouad and Segev 2021, Sumida et al. 2020).

Suppliers’ choice process. Before her permanent departure from the platform, a supplier examines

the set of all customer requests she has received and decides whether to accept a match with one

of these customers or to leave unmatched. If the supplier accepts a request, a match occurs.

In more detail, suppose that C ∈NZ
0 is the set of customer requests that supplier i has received.

Here, a set C ∈NZ
0 is represented by a vector that counts, in coordinate z, how many customers of

type z are in the set. We assume that each supplier’s random choices depend only on the vector of

customer requests C at the time of her departure. Specifically, the expected outcome from supplier

i’s choice decision is summarized through a set function wi :NZ
0 →R, which we refer to as supplier

i’s aggregate match probability function (or aggregate match function, for short). Here, wi(C) is

the total probability that supplier i chooses to match with any customer in C. That said, we note

that all our subsequent results do not require the image of wi(·) to be in the interval [0,1].

In what follows, we impose very mild assumptions on the functions wi(·) that are satisfied by all

commonly used choice models including the class of random utility maximization models. First,

for computational considerations, we assume that the functions wi(·) are presented by means of

a value oracle, which can answer queries of the form “What is the value of wi(C)?”3 Second, we

require that these functions satisfy two natural properties, diminishing returns and monotonicity.

2 Online assortment algorithms typically use a subroutine to solve the static assortment optimization problem in
each time period. As such, their computational performance hinges on the ability to efficiently compute an optimal
(or near-optimal) static assortment. Moreover, it is worth mentioning that Assumption 1 can be relaxed and our
algorithmic results continue to hold in a weaker form: if there exists a polynomial-time β-approximation algorithm
for the static assortment optimization problem, our performance guarantees degrade by a multiplicative factor of β.

3 For most choice models, these queries can be answered in time polynomial in T , which is the maximum number of
customer requests that a supplier can receive.
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Definition 1 (Diminishing returns). A function f :NZ
0 →R is said to satisfy the diminish-

ing returns property if, for any x≤ y (coordinate-wise) and any unit basis vector ez for z ∈Z, we

have that f(x+ ez)− f(x)≥ f(y+ ez)− f(y).

We observe that, when restricted to the {0,1}Z domain, this property is equivalent to submod-

ularity. We also consider the following natural notion of monotonicity.

Definition 2 (Monotonicity). A function f :NZ
0 →R is monotone if, for any x≤ y, we have

that f(x)≤ f(y).

Consequently, we make the following assumption that we keep throughout the paper.

Assumption 2. For every i∈ S, we assume that wi(·) is monotone and satisfies the property of

diminishing returns.

To illustrate the above concepts, we introduce two examples of set functions wi(·) arising from

supplier-side choice models, that satisfy Assumption 2.

Definition 3 (MNL). Suppose that supplier i’s preferences are governed by the Multinomial

Logit (MNL) choice model. For every customer type z ∈ Z, let qz,i be the preference weight that

supplier i assigns to a customer of type z. Then, for any given customer set C,

wi(C) =

!
z∈Z Cz · qz,i

1+
!

z∈Z Cz · qz,i
,

where Cz represents the number of customers of type z in set C and the value of the no-match

option has been normalized to 1.

Definition 4 (Rank-based preferences). Suppose that supplier i’s preferences are gov-

erned by a distribution (α1, . . . ,αK) over ranked lists L1, . . . ,LK . Each list Lk is a subset of customer

types together with a strict order on these types. For any given customer set C, supplier i samples

a ranked list out of L1, . . . ,LK according to the multinomial distribution (α1, . . . ,αK) and chooses a

customer of the topmost ranked type among those in C; if there is no such customer, then supplier i

is unmatched. Here, we have wi(C) =
!

k∈Kαk ·min{|Lk ∩C|,1} , where we abuse notation and use

Lk and C to denote the set of types contained in the list Lk and the customer set C, respectively.

Platform’s algorithm. The platform’s objective is to design an online assortment algorithm that

maximizes the expected total number of matches in the T periods. An algorithm π for the online

two-sided assortment problem describes a non-anticipating randomized sequence of assortments

{Aπ
t }Tt=1 shown to the incoming customers. Formally, the stochastic process {Aπ

t }Tt=1 is Hπ
t -adapted,

where {Hπ
t }Tt=1 is the filtration describing algorithm π’s history; i.e., letting sπ be π’s random

seed, we have Hπ
1 = σ(sπ, z1,S1) and Hπ

t = σ(Hπ
t−1,A

π
t−1, ξt−1(A

π
t−1), zt,St) for every t ∈ {2, . . . , T}.

We require that the assortment of suppliers be restricted to the subset of available suppliers in

each time period, i.e., Aπ
t ⊆ St for every t ∈ [T ]. We denote by Π the set of all admissible online
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assortment algorithms. We mention in passing that our modeling approach can easily capture

additional structural constraints on the assortments selected in each time period, such as constraints

on the number of suppliers shown to each customer.

The platform’s objective is to maximize the total expected number of successful matches, denoted

by Mπ = E[
!

i∈S wi(C
T+1,π
i )], where Ct,π

i ∈NZ
0 is the set of customer requests that supplier i has

received by the beginning of period t, i.e., the requests from the first t− 1 arriving customers. As

the platform may only show suppliers who are available, the set CT+1,π
i coincides with the set seen

by supplier i immediately before departing. Thus, without loss of generality, we sometimes assume

that suppliers’ choices occur at the end of the time horizon.

To characterize the performance of an algorithm with respect to specific arrival patterns, we

denote by Mπ({zt}Tt=1,{St}Tt=1) the expected number of matches conditional on the sequences of

customer types and of suppliers available given by {zt}Tt=1 and {St}Tt=1, respectively. Here, the

expectation is taken with respect to the choices made by each customer, the choices made by the

suppliers, and possibly random selections of the algorithm, if the latter is not deterministic.

Competitive ratio. In the remainder of the paper, we do not impose any assumption on the

sequence of arrivals and suppliers, unless explicitly said otherwise. Thus, our goal is to devise

online assortment algorithms that are robust to arbitrary arrival patterns {zt}Tt=1 and {St}Tt=1. To

analyze the performance of a proposed algorithm π ∈Π, we compare it to an optimal clairvoyant

algorithm πC that knows a priori the realization of the sequence of customers’ arrivals {zt}Tt=1, and

of suppliers’ sets {St}Tt=1, but does not know the realization of customers’ and suppliers’ choices. We

define the competitive ratio as the following quantity that measures the relative expected number

of matches generated by π against πC :

inf
T

inf
{zt}Tt=1,{St}Tt=1

Mπ ({zt}Tt=1,{St}Tt=1)

MπC ({zt}Tt=1,{St}Tt=1)
.

Unless specified otherwise, this criterion is used to characterize the performance of online assort-

ment algorithms. To conclude, we note that the same online optimization problem can be specified

more succinctly by “folding” the information regarding the sequence of available suppliers {St}Tt=1

into the customer types4 {zt}Tt=1. However, we include a time-varying set of available suppliers in

our model description as it is more natural for the applications of interest.

Asymptotic analysis: Small probability regime. For purposes of tractability, the related literature

(see Section 1.2) often focuses on asymptotic competitive analysis by considering a scaling of the

problem instances. At a high level, the initial amount of resources is assumed to be large compared

4 This means that we redefine the collection of customer types as Z × 2S . Here, the choice model of a new customer
type z′ = (z,S) with z ∈Z and S ⊆ S satisfies φz′

i (A) = φz
i (A∩S) for every i∈ S ∪ {0} and A⊆ S.



12

to the quantity depleted by each individual match. For example, the online one-sided assortment

problem is analyzed under the large inventory regime, meaning that the initial inventory of each

product tends to infinity (Golrezaei et al. 2014, Rusmevichientong et al. 2020, Goyal et al. 2020).

Similarly, the small bid regime introduced in Mehta et al. (2005) for the AdWords problem assumes

that bids are small relative to the total advertisers’ budgets. Along similar lines, we introduce the

small probability regime in the context of the online two-sided assortment problem.

Definition 5 (ε-small probability regime). Given a parameter ε ∈ (0,1), we define the ε-

small probability regime as the family of instances for which wi(ez)≤ εmaxC∈NZ
0
wi(C) for all i∈ S

and z ∈Z.

Technically speaking, the small probability condition generalizes both the small bid and large

inventory regimes discussed above. This connection is formally stated in Appendix EC.1.2. From a

practical standpoint, this regime best applies to markets where the suppliers are “hard-to-please,”

meaning that each individual match request has a small probability of being successful. As a

concrete example in which this regime would be meaningful, contests listed on DesignContest.UK

often receive hundreds of submissions, whereas typically one submission is selected. As a result,

the probability that a designer wins any given contest tends to be small.

2.2. Connection with related optimization settings

We conclude this section by describing in more detail the connections between the online two-sided

assortment problem described in Section 2.1 and related online optimization problems.

Connection to online (one-sided) assortment. We first argue that our problem formulation sub-

sumes the standard online one-sided assortment problem introduced by Golrezaei et al. (2014) as

a special case. Here, an instance is defined by the inputs (T,Z,{ci}i∈S ,{ri}i∈S), where T is the

time horizon, Z is the set of customer types, S is the collection of offline resources, ci is the initial

inventory for each offline item i∈ S, and ri is the revenue associated with selling one unit of item i.

Given an instance of the online one-sided assortment problem, for each offline item i∈ S, we specify

a corresponding set function wi(·) such that wi(C) = ri ·min{|C|, ci} for every customer set C. Next,

we construct an equivalent instance of the online two-sided assortment problem that has identical

collections of customer types Z and suppliers S; each supplier i∈ S is endowed with the aggregate

match function wi(·). This instance clearly satisfies all the assumptions stated in Section 2.1. This

example illustrates that, while for simplicity we interpret the functions {wi(·)}i∈S as suppliers’

choice probabilities over customers’ requests, we do not restrict the image of these functions to

be in the [0,1] domain. Therefore, we can easily incorporate supplier-dependent weights, akin to

vertex weights in online matching and per-unit revenues in assortment optimization problems.
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To highlight conceptual differences between the online one-sided and two-sided assortment prob-

lems, as a brief detour, we first examine a variant of our problem formulation with immediate sup-

plier feedback. In this context, immediately after receiving a match request, each supplier irrevoca-

bly decides whether to reject the request or to accept it and leave the platform. In Appendix EC.1.1,

we show that the resulting online optimization problem is in fact reducible to the online one-sided

assortment problem.5 Hence, in two-sided markets with immediate supplier feedback, it is possible

to leverage the online assortment algorithms developed by the previous literature for the one-sided

setting. While two-sided markets with immediate supplier feedback need not be different from one-

sided markets, many settings of interest do not fit the latter framework. For instance, in the online

labor marketplaces mentioned in Section 1, job openings have deadlines and “suppliers” accumu-

late a number of match requests before making a decision. As shown by our subsequent analysis,

under this form of delay, the online two-sided assortment problem can no longer be mapped to its

one-sided counterpart, and fundamental differences between these settings arise.

Connection to online matching with submodular valuations. At the other end of the spectrum,

our modeling approach for the two-sided assortment problem has close connections with the online

welfare maximization problem with submodular valuations, which was studied by Kapralov et al.

(2013) among others. Here, customers arrive online; each customer can be assigned to an offline

resource within a subset of compatible suppliers, revealed upon her arrival. In turn, suppliers have

submodular valuations over the subset of customers they have been assigned to, and the objective

is to maximize the sum of suppliers’ valuations. Technically speaking, this online optimization

problem can be viewed as a special case of our problem formulation whereby suppliers can only

be offered a singleton assortment containing a compatible supplier, which is then chosen with

probability 1; i.e., letting S ⊆ S be the subset of compatible suppliers for customer type z ∈Z, we

have φz
i ({j}) = 1 for all j ∈ S and φz

i ({j}) = 0 for all j ∈ S \ S. This reduction is made formal in

Section 3.2 to establish our hardness result.

Despite this formal connection, the online two-sided assortment problem presents a significant

modeling extension by capturing stochastic customers’ choices. At this stage, it is important to

note that the incorporation of customers’ choices is precisely what differentiates the online (one-

sided) assortment problem from the classical online matching problem. The implications of this

generalization are non-trivial since the best-possible competitive ratio for the online assortment

problem is still unknown (Golrezaei et al. 2014), even in special cases (Goyal and Udwani 2020).

5 Intuitively, a match between a customer and a supplier occurs if and only if two (independent) events occur: (i)
the customer, after being presented with an assortment, requests to match with that supplier and, (ii) conditional on
receiving the request, the supplier accepts it. Thus, an equivalent instance of the one-sided problem is constructed
by specifying customers’ choice models formed by the multiplicative combination of the probabilities of these events.
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The added complexity is closely related to the formulation of a suitable benchmark due to the post-

allocation stochasticity of customers’ choices. Moreover, in online welfare maximization problems,

the valuation functions (the counterpart of the aggregate matching function in our setting) can

be arbitrarily and adversarially chosen under Assumptions 1 and 2. By contrast, we aim to better

understand how the structure of the suppliers’ choice models affect the performance of online

algorithms. Thus, in Section 4, we study special cases in which suppliers’ preferences are governed

by practical families of choice models.

3. The Optimality of the Greedy Algorithm

The goal of this section is to better understand the differences between the online one-sided and

two-sided assortment problems. For this purpose, we establish a clear distinction between these

settings: the best-possible constant-factor competitive ratio in the two-sided setting is worse than

that achievable in the one-sided setting. In fact, we show that a simple greedy algorithm is generally

optimal, and we discuss a number of conceptual implications of this result.

3.1. The greedy algorithm

We formally introduce the greedy algorithm. As before, we denote by St the set of suppliers present

on the platform at time t. Recall that Ct,π
i stands for the set of customer requests that supplier

i∈ S has received by the beginning of time t under algorithm π. Define C̄t,π = (Ct,π
i )i∈S to be the

sets of customer requests over all suppliers in vector form.

Suppose that a customer of type z ∈ Z arrives at a time when the set of customer requests is

C̄ = (Ci)i∈S . If the arriving customer is shown assortment A ⊆ S, the total expected number of

matches increases by the following quantity:

Rz

"
C̄,A

#
= Eξz(A)

$
%

i∈A

(wi(Ci + ez · I [ξz(A) = i])−wi(Ci))

&

=
%

i∈A

φz
i (A) (wi(Ci + ez)−wi(Ci))' () *

expected marginal increase in i’s matches

,

In what follows, the critical quantity Rz(C̄,A) is called the marginal reward, for short.

The greedy algorithm πg is the algorithm that maximizes the marginal reward in each time

period. That is, for every t∈ [T ], the greedy algorithm presents the t-th arriving customer with an

assortment Aπg
satisfying

Aπg ∈ argmax
A⊆St

Rzt

+
C̄t,πg

,A
,

. (1)

We note that the maximization problem (1) is an instance of the static assortment optimization

problem defined in Assumption 1, where the “revenue” associated with each supplier i∈ St is equal
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to ri =wi(C
t,πg

i +ezt)−wi(C
t,πg

i ). Hence, by Assumption 1, the selection of an assortment at each

greedy step can be solved in polynomial time. It is worth noting that the greedy algorithm is

adaptive. By the property of diminishing returns (Assumption 2), the contribution of each supplier

to the marginal reward is non-increasing over time, and thus the greedy algorithm is less likely to

pick those suppliers who are most likely to match given the customer requests they have received

so far. Nonetheless, the greedy algorithm is myopic: it takes into account the type of the current

customer and the set of requests received by the suppliers so far, but it ignores the impact of the

current decision on the marginal rewards to be collected in the future. Moreover, the information

about suppliers’ preferences required by the algorithm is minimal: no specific (or distributional)

knowledge about the suppliers’ choice model is needed other than the information revealed up until

the current customer.

3.2. Performance of the greedy algorithm

Here, we analyze the greedy algorithm in a general setting, where Assumption 2 is the only restric-

tion on the suppliers’ aggregate match probability functions. The proofs of the results presented

in this section are deferred to Appendix EC.2.2. We begin by stating the performance guarantee

for the greedy algorithm.

Proposition 1. The greedy algorithm achieves a competitive ratio of 1/2 for the online two-

sided assortment problem.

The proof follows the same line of argumentation as that of Chan and Farias (2009), which

identifies sufficient conditions for the greedy algorithm to be 1/2-competitive. This result cannot

be directly invoked in our setting since the depletion of resources is described by multiset state

variables. Nonetheless, we establish Proposition 1 by showing that the sufficient conditions of Chan

and Farias (2009) are easily extended to our setting.

It is well known that the greedy algorithm is 1/2-competitive in the special cases discussed in

Section 2.2, including the online matching problem and the online one-sided assortment problem.

However, there exist algorithms with better (constant-factor) competitive ratios in these settings.

For instance, Karp et al. (1990) show that the best-possible competitive ratio for the online match-

ing problem is 1− 1/e, thus substantially improving upon greedy’s 1/2-competitiveness. Similarly,

in the ε-small probability regime defined in Section 2, the previous literature has developed algo-

rithms that asymptotically attain a competitive ratio of 1−1/e as ε tends to zero for the b-matching

problem (Kalyanasundaram and Pruhs 2000), the Adwords problem (Mehta et al. 2005), and the

online one-sided assortment problem (Golrezaei et al. 2014). By contrast, our next proposition

shows that there is no efficient randomized online algorithm that achieves a competitive ratio better

than 1/2, not even asymptotically.
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Proposition 2. Unless6 NP = RP, for any constants δ, ε> 0, there is no (1/2+ δ)-competitive

polynomial-time algorithm for the online two-sided assortment problem when suppliers have rank-

based preferences in the ε-small probability regime.

The above proposition establishes a fundamental difference between the one-sided and two-sided

online assortment problems: the two-sided setting is not only a generalization of the one-sided one,

but also harder to solve. This difference emerges from a connection to the online welfare maxi-

mization problem. In this context, Kapralov et al. (2013) establish that no online algorithm (even

randomized, against an oblivious adversary) is better than 1/2-competitive for online welfare max-

imization with coverage valuations. Our proof of Proposition 2 exploits this result by providing a

direct mapping between coverage valuations and rank-based preferences. We show that the restric-

tion imposed by the ε-small probability assumption can be viewed as a cardinality constraint on

the set system generating the valuation functions. This constraint can be imposed on the “hard”

instances without any loss.

It is instructive to contrast the effects of incorporating customers’ preferences versus suppliers’

preferences on the performance of online algorithms. The celebrated result of Karp et al. (1990)

shows that no online algorithm can be better than (1− 1/e)-competitive for the online matching

problem, even though the offline version of this problem (maximum cardinality matching) can

be optimally solved in polynomial time. Naturally, this negative result also applies to the online

one-sided assortment problem, which is a generalization of the online matching problem. However,

in this setting as well, there exist polynomial-time algorithms attaining (1− 1/e)-competitiveness

in an asymptotic sense, as shown by Golrezaei et al. (2014). Hence, this hardness stems mainly

from the online nature of the problem (i.e., not knowing the sequence of arrivals in advance),

rather than from the complexity added by modeling customers’ preferences. Focusing now on

suppliers’ preferences, the above negative result shows that incorporating such preferences limits

the best-possible constant-factor competitive ratio to 1/2. To explain this phenomenon, note that,

in addition to facing the challenges related to the online nature of the problem, even the offline

version of the welfare maximization problem is hard to approximate. This inapproximability is

crucially exploited in the proof of Kapralov et al. (2013).

We conclude this section by showing that a stochastic assumption on the arrival process leads

to improved performance guarantees. Specifically, we tightly characterize the competitive ratio of

the greedy algorithm under i.i.d. sequences of customers’ arrivals.

6 Randomized polynomial time (RP) is the complexity class of decision problems for which a polynomial-time ran-
domized algorithm exists such that it always returns NO when the correct answer is NO, and returns YES with
probability at least c for a fixed constant c ∈ (0,1] whenever the correct answer is YES (Motwani and Raghavan
1995).
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Proposition 3. Suppose that the set of suppliers is time invariant (i.e., St = S) and that in

every period t= 1, . . . , T , the type of an arriving customer, zt, is drawn independently and identically

from a common distribution D over the set of types Z. Then, we have

inf
D

E{zt}Tt=1

-
Mπg

({zt}Tt=1,{St}Tt=1)
.

E{zt}Tt=1

-
MπC ({zt}Tt=1,{St}Tt=1)

. ≥ 1− 1

e
.

Moreover, unless NP = RP, there is no polynomial-time algorithm for the online two-sided assort-

ment problem with rank-based suppliers’ preferences that achieves a competitive ratio of 1−1/e+δ,

for fixed δ> 0, in this setting.

Consequently, the performance of the greedy algorithm is optimal even under an i.i.d. arrival

process. This result further highlights the differences between the one-sided and two-sided settings.

Indeed, no algorithm is better than (1− 1/e)-competitive in the two-sided setting, whereas Gol-

rezaei et al. (2014) present an algorithm that asymptotically achieves a competitive ratio of at

least 3/4 in the one-sided setting.

The preceding results suggest that the hardness of the online two-sided assortment problem is

driven by the lack of immediate supplier feedback, which ultimately allows suppliers to choose

from a set of customer requests according to rank-based preferences: as in the one-sided setting,

the uncertainty associated with the customers’ choice process does not make the problem harder.

Our analysis so far has focused on rank-based suppliers’ choice models. However, this modeling

approach is almost generic: rank-based models have the power to express the class of random utility

maximization choice models within any desired degree of accuracy (Rusmevichientong et al. 2006,

Farias et al. 2013). The optimality of the greedy algorithm in such a general setting raises the

question of whether improved competitive algorithms can be developed by leveraging additional

structural properties of suppliers’ preferences. This important practical development is examined

in the next section.

4. Beyond Greedy: Accounting for Suppliers’ Preferences

In Section 3, we established that the greedy algorithm is essentially optimal under general rank-

based preferences. Here, our objective is to demonstrate that structural properties of suppliers’

choice models may be useful for constructing more competitive algorithms. From an algorith-

mic perspective, we develop new preference-aware balancing algorithms, which leverage general

information about suppliers’ choice models to achieve improved performance guarantees. From a

conceptual standpoint, we show that the “shape” of these choice models (a notion we will make

precise in the sequel) directly affects the performance of online assortment algorithms.
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4.1. General framework: Preference-aware balancing algorithms

We start by describing the general framework within which our subsequent results unfold. As dis-

cussed in Section 3, the related literature shows that it is possible to develop competitive algorithms

better than the greedy algorithm, with near-optimal asymptotic performance for several special

cases of the online two-sided assortment problem. Results in this spirit include the b-matching

problem (Kalyanasundaram and Pruhs 2000), the AdWords problem (Mehta et al. 2005), and the

online one-sided assortment problem (Golrezaei et al. 2014). The approach followed by these papers

is based on two ingredients, which we describe using the terminology of our model:

(i) Asymptotic regime: Instances are analyzed under a suitable problem scaling, whereby the

amount of offline resources depleted by each individual assignment is small relative to their initial

quantities. As explained in Section 2, this condition is captured in our setting by the ε-small

probability assumption (Definition 5) for some parameter ε∈ (0,1).

(ij) Balancing algorithm: A so-called balancing algorithm is introduced. Intuitively, these algo-

rithms aim to balance between maximizing the increase in matches due to the current customer

and leaving sufficient capacity to match future customers.

Similarly to previous literature, we define the family of balancing algorithms for the online two-

sided assortment problem. Next, we conceptually explain how the design of these algorithms can be

guided by underlying assumptions on suppliers’ choice models. Throughout the rest of the section,

to simplify the exposition, we assume that the aggregate match functions wi(·) have an image in

the [0,1] domain.

The family of balancing algorithms. The central ingredient of balancing algorithms is a discount

function f(·) : [0,1]→ [0,1], which is usually assumed to be monotone non-decreasing. Each discount

function f(·) induces a corresponding balancing algorithm, which we denote by πf . Specifically,

for every t∈ [T ], the assortment Aπf

t offered to the t-th customer is picked according to the static

optimization problem:

Aπf

t ∈ argmax
A⊆St

%

i∈A

φzt
i (A) ·

+
w(Ct,πf

i + ezt)−w(Ct,πf

i )
,

' () *
Marginal increase in matches

·
+
1− f

+
wi

+
Ct,πf

i

,,,

' () *
Discount due to past requests

. (2)

Here, recall that Ct,π
i stands for the (random) set of arriving customers who have requested to

match with supplier i before period t (i.e., by the time customer t arrives) under algorithm π. To

gain intuition on Equation (2), we note that the greedy algorithm is a special case of the family

of balancing algorithms for which the discount is constant and equal to zero; i.e., by specifying

f(x) = 0 for all x ∈ [0,1], we recover Equation (1). In general, at each arrival t ∈ [T ], balancing

algorithms solve a modified static assortment problem, where the expected marginal increase in

the aggregate match probability of each supplier i ∈ S is discounted by the multiplicative factor
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1− f(wi(C
t,πf

i )). Intuitively, this discount is related to the notion of opportunity cost: the match

request sent by the current customer reduces the platform’s ability to match the corresponding

supplier with future customers. The discount level increases as a supplier is more likely to be

satisfied with past customer requests; this likelihood is captured by the state variable wi(C
t,πf

i ).

We mention in passing that discount-based algorithms in this spirit were also employed in the

literature on online matching with stochastic rewards (Mehta and Panigrahi 2012, Mehta et al.

2015, Goyal and Udwani 2020).

Preference-awareness. When designing such balancing algorithms, the intriguing question is:

how should the discount function be specified for optimal performance? Quite surprisingly, most

papers in the above-mentioned literature show that an exponentially shaped discount function,

e.g., f(x) = e−(1−x), yields an asymptotically optimal balancing algorithm. However, as shown in

Section 3, one challenge inherent in the online two-sided assortment problem is that no polynomial-

time algorithm can achieve a competitive ratio better than 1/2, even asymptotically in the small

probability regime (Proposition 2). Hence, regardless of how the discount function is specified, the

resulting balancing algorithm is subject to the same fundamental limitation.

To advance beyond this impossibility result, we restrict attention to practical instances of the

two-sided assortment problem. Key to our hardness reduction in the proof of Proposition 2 is the

fact that suppliers’ preferences are formed by arbitrary rank-based choice models. By contrast,

we now turn our attention to widely used parametric choice models, namely, the Multinomial

Logit (MNL) and Nested Logit (NL) models, which accurately describe preference rankings in

real-world settings. In Section 4.2, we present a calibration method for the discount function that

embeds the parametric structure of suppliers’ preferences by using non-linear ordinary differential

inequalities (ODI). We call this approach preference-awareness. We show that preference-aware

balancing algorithms achieve constant-factor competitive ratios significantly better than 1/2.

Going forward, it is worth noting that our notion of information on the structure of the suppliers’

choice models is minimal; we assume only that suppliers’ choice models fall in a broad class of

choice models (e.g., MNL), out of which any particular instance is feasible. Our competitive analysis

continues to be under adversarial arrivals, meaning that the performance guarantees are robust to

worst-case instances within the class of choice models that we consider.

4.2. Main results

In this section, we develop the preference-aware algorithmic approach described in Section 4.1. To

present our approach in its simplest possible form, we first examine the special case of the MNL

choice model, for which our ordinary differential inequalities are explicitly formulated. Next, we

consider the NL model in full generality; here, our approach is more technically involved and the

crucial ODI is only implicitly specified. To simplify our notation, without loss of generality, we

assume that each arriving customer is of a different type, i.e., Z = [T ].
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Warm-up: MNL model. We assume that the suppliers’ aggregate match probability functions

wi(·) are consistent with the MNL choice model. Recall from Definition 3 that the MNL model is

described as follows. For every supplier i∈ S and customer set C ∈ {0,1}T , we have

wi(C) =

!
t∈[T ]Ct · qi,t

1+
!

t∈[T ]Ct · qi,t
,

where the weight parameter qi,t > 0 measures the attractiveness of customer t to supplier i. Under

such choice models, the ε-small probability assumption is equivalent to the condition qi,t ≤ ε
1−ε

for all i ∈ S and t ∈ [T ]. We highlight that the weight parameters depend on both the customer

type and the supplier. Hence, the MNL model already captures a rich spectrum of heterogeneous

suppliers’ preferences from a practical standpoint.

We proceed by introducing the family of preference-aware balancing algorithms for the MNL

choice model. To this end, the discount function is constructed using the following ODI in the

variable x∈ [0,1], parametrized by κ∈ (0,1):
/0 x

0

f(u)du+
1
1− f(x) · (1−x)≥

√
κ . (MNL-ODI)

Let κ∗ be the supremum value of the parameter κ ∈ (0,1) for which the inequality (MNL-ODI)

admits a non-decreasing Lipschitz solution f : [0,1]→ [0,1]. For all κ ∈ (0,κ∗), we denote by fκ a

non-decreasing Lipschitz function that satisfies the latter properties; let ηκ > 0 stand for a Lipschitz

constant associated with fκ, i.e., |fκ(x)−fκ(y)|≤ ηκ · |x−y| for all x, y ∈ [0,1]. Later, we will explain

how these discount functions are computed, and how the value of κ∗ is numerically approximated.

For the time being, we note that κ∗ ≥ 1/2, since the inequality (MNL-ODI) is met when specifying

the constant function f(x) = 1/2 with κ= 1/2.

The family of preference-aware balancing algorithms for the MNL choice model corresponds to

the balancing algorithms πfκ obtained by specifying the discount functions fκ where κ ∈ (0,κ∗).

The next theorem shows that the preference-aware balancing algorithm πfκ asymptotically achieves

a competitive ratio of κ−O(ε) in the ε-small probability regime, as ε tends to zero.

Theorem 1. Fix κ ∈ (0,κ∗) and let fκ(·) be a corresponding Lipschitz non-decreasing discount

function that satisfies the ODI in (MNL-ODI) with a corresponding Lipschitz constant ηκ. Then,

for all ε ∈ (0,1/ηκ), the preference-aware balancing algorithm πfκ achieves a competitive ratio of

κ− (κ+κηκ)ε+κηκε
2 for the online two-sided assortment problem with MNL suppliers’ preferences

in the ε-small probability regime.

A detailed outline of the proof is provided in Section 4.4, where we invoke the main technical

ingredients of our analysis and give further intuition on the ODI. Rather than relying on a linear-

programming benchmark, we construct an upper bound on the optimal expected number of matches
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by using a careful decomposition of the expected number of matches in the spirit of Goyal et al.

(2020). Next, by revealing the connection with inequality (MNL-ODI), we show that this upper

bound is matched by the performance of our preference-aware algorithm up to a constant factor;

inequality (MNL-ODI) is closely related to the substitution patterns prescribed by the MNL choice

model.

An important caveat is that Theorem 1 is non-constructive. This raises the question of whether

it is possible to construct a discount function that satisfies inequality (MNL-ODI). We answer this

question in the affirmative in Appendix EC.3.6 by formulating an efficient dynamic program that

constructs a preference-aware discount function fκ for every κ∈ (0,κ∗) and certifies all its required

properties. Consequently, we numerically show that κ∗ ≥ 0.67 using a computer-aided approach.

These findings are summarized by the following claim.

Corollary 1. There exists an online assortment algorithm that achieves a competitive ratio of

0.67−O(ε)> 1− 1
e
−O(ε) for the online two-sided assortment problem with MNL-based suppliers’

preferences in the ε-small probability regime.

General case: γ-NL model. We now describe our result in the most general setting. We start by

formally defining the γ-Nested Logit choice model for any given parameter γ ∈ (0,1].

Definition 6 (γ-Nested Logit). Let γ ∈ (0,1]. Suppose that supplier i’s preferences are gov-

erned by the γ-Nested Logit choice model with partially captured nests (abbreviated γ-NL). Then,

there exists a partition N1, . . . ,NK of the set of customer types [T ] into nests, and non-negative

weights {qi,t}Tt=1 such that, for every customer set C ∈ {0,1}T ,

wi(C) =

!K

k=1(
!

t∈Nk
Ct · qi,t)γ

1+
!K

k=1(
!

t∈Nk
Ct · qi,t)γ

.

The parameter γ is referred to as the nest dissimilarity coefficient; the MNL model corresponds

to the case where γ = 1. By restricting attention to the regime γ ∈ (0,1], our modeling approach

conforms to the standard form of the Nested Logit model (Börsch-Supan 1990), in which the

corresponding aggregate match functions {wi(·)}i∈S satisfy the property of diminishing returns

(Assumption 2). Interestingly, the nest dissimilarity coefficient γ has concrete implications for

suppliers’ preferences; smaller values of γ capture starker competition effects between customers in

each nest. Specifically, when γ = 1, customers within a nest are “dissimilar,” and thus the benefit

of an extra request is independent of how the previous customers are distributed over the nests.

By contrast, as γ decreases, customers within a nest are more “similar” and the requests in the

same nest cannibalize each other’s acceptance probabilities. As γ approaches zero, the benefit of a

second customer request in the same nest is only marginal. Technically speaking, these properties

are related to the curvature of the aggregate match functions.
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Next, we present our ODI in order to construct preference-aware discount functions under the

γ-NL choice model. We assume that the platform knows the value of γ ∈ (0,1] that is consistent

with all suppliers’ choice models. With this information at hand, we introduce the ODI in the

variable x∈ [0,1], parametrized by κ∈ (0,1), where

min
α∈(0,1)

1

α
·
20 x

0

f(u)du+(1− f(x)) ·x (1−x) ·
22

1+

3
α · (1−x)

x · (1−α)

4 1
γ

5γ

− 1

55
≥ κ . (NL-ODI)

It is not difficult to verify that, when γ = 1, inequalities (NL-ODI) and (MNL-ODI) are identical.

In this case, the inner optimization problem with respect to α∈ (0,1) can be easily solved in closed

form. Extending our previous notation, we denote by κ∗(γ) the supremum value of the parameter

κ∈ (0,1) for which inequality (NL-ODI) admits a non-decreasing Lipschitz solution f : [0,1]→ [0,1].

We denote by fγ,κ a discount function with the latter properties. We are now ready to state our

main analytical result.

Theorem 2. Fix γ ∈ (0,1] and κ∈ (0,κ∗(γ)). Then, there exists ε(κ,γ)> 0 such that, for all ε∈
(0, ε(κ,γ)), the preference-aware balancing algorithm πfγ,κ achieves a competitive ratio of κ−O(ε)

for the online two-sided assortment problem with γ-NL-based suppliers’ preferences in the ε-small

probability regime.

Due to lengthy technical details, the proof is presented in Appendix EC.3.4. Our analysis is

similar to that of the MNL setting; in particular, we recover the statement of Theorem 1 when

γ = 1. Nonetheless, the substitution patterns of the γ-NL choice model are far more complex to

analyze than those of the MNL model. The γ-NL choice model adds a combinatorial dimension

to the system state: for each supplier i ∈ S, the state variable wi(C
t,πfγ,κ

) is jointly characterized

by the nest-level quantities
!

τ∈Nk∩[t−1]C
τ,πfγ,κ · qi,τ for every k ∈ [K], rather than the aggregate

quantity
!

τ≤t−1C
τ,πfγ,κ · qi,τ for the MNL model. Hence, our competitive analysis is based on a

non-convex mathematical program that reveals the worst-case arrival sequence under the γ-NL

choice model; this mathematical program is closely related to inequality (NL-ODI).

4.3. Analytical and managerial implications

Here, we discuss various implications of our algorithmic results and analysis.

Beating the (1− 1/e) barrier. The significance of Theorems 1 and 2 is to provide rigorous evidence

that online algorithms may leverage the structure of suppliers’ preferences to achieve improved

performance guarantees. This is an important deviation from the one-sided assortment problem,

where the structure of the customers’ choice models has no bearing on the design of competitive

algorithms, other than the computational aspects of the static assortment problem.

To our knowledge, our result in the MNL setting is the first competitive algorithm that beats

the (1− 1/e) barrier for an online assortment problem with adversarial (non-stochastic) arrivals.
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Figure 2 Visualization of various discount functions. Left-hand plot: The solid (red) line represents the function

fκ for κ= 0.67 generated by our preference-aware approach in the MNL setting. The dashed (black) and the

dotted-dashed (blue) functions represent the discount functions used in the one-sided assortment and AdWords

problems, respectively. Right-hand plot: Plots of fγ,κ∗(γ) for different values of γ ∈ (0,1] using close

underestimates of κ∗(γ).

At first glance, this fact might be surprising in light of the negative result of Section 3.2. Indeed,

Proposition 2 shows that no competitive algorithm can surpass the 1/2 upper bound even in the

small probability regime. Additionally, it is easy to show that the MNL-based online two-sided

assortment problem generalizes the one-sided problem. To see this, we adopt a similar reduction to

that of Section 2.2, where each unit of inventory is represented as a distinct supplier i∈ S with the

aggregate match function wi(C) = ri ·min{|C|,1}. Observe that the aggregate match function wi(·)
can be approximated up to an O(δ)-factor by specifying an MNL instance with weights qi,t =

1
δ
for

every compatible customer t ∈ [T ]. Therefore, neither the MNL model assumption nor the small

probability assumption in itself is sufficient to alleviate the 1− 1/e upper bound on the achievable

competitive ratios. The conjunction of these structural properties, small probability regime and

MNL-based suppliers’ preferences, is paramount to derive Theorem 1. Note that, using the classical

upper triangular family of instances, we derive an upper bound of 0.8074 on the competitive ratio

achievable by any online assortment algorithm (see Proposition EC.3 in Appendix EC.4).

Shape of the discount functions. To gain a better understanding of why it is possible to develop

algorithms better than (1− 1/e)-competitive, it is instructive to contrast the shape of preference-

aware discount functions with previously used exponential discount functions. We provide an illus-

tration of these differences in Figure 2. With respect to the AdWords problem, Mehta et al. (2005)

proposed a balancing algorithm that assigns the ad to the bidder with the highest discounted bid,

where bids are discounted using the function f(x) = e−(1−x) over the fraction x of unspent budget.
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Figure 3 The performance guarantees attained by different discount functions under the γ-NL choice model as

a function of γ ∈ [0,1].

In the context of the online one-sided assortment problem, Golrezaei et al. (2014) analyze a balanc-

ing algorithm with the discount function f(x) = 1− e
e−1

(1− e−x), where x stands for the fraction

of remaining inventory. In fact, Goyal et al. (2020) recently observed that a similar competitive

ratio can be achieved by specifying the same discount function f(x) = e−(1−x) as in the paper of

Mehta et al. (2005). In both settings, the constant-factor competitive ratio (1− 1/e) is optimal.

However, one fundamental property of these problems is that the marginal rewards associated

with matching a supplier or selling a unit of product are constant; each unit of product sold

generates the same unit of revenue for the platform regardless of how many units of the same

product have been previously sold. By contrast, the online two-sided assortment problem exhibits

diminishing returns; the marginal increases in the expected number of matches due to additional

customer requests are strictly diminishing. Intuitively, this implies that, regardless of how the

discount function is specified, the optimization problem (2) solved by balancing algorithms at each

greedy step already promotes suppliers having received fewer requests. This observation might

explain the concave shape of the discount functions fγ,κ∗(γ) generated by our preference-aware

approach.

The effects of within-nest competition. Using a computer-aided approach described in

Appendix EC.3.6, we numerically approximate the largest competitive ratio κ∗(γ) that can be

achieved by Theorem 2. The variations of the asymptotic competitive ratio κ∗(γ) as a function of

the nest dissimilarity coefficient γ ∈ (0,1] are plotted in Figure 3. We observe that the performance

of our online assortment algorithm increases as a function of γ. The highest competitive ratio is

attained when suppliers’ preferences follow the MNL choice model (i.e., γ = 1). That our perfor-

mance guarantee is maximized under the MNL model (i.e., κ∗(γ) ≤ κ∗(1)) is not surprising. In
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fact, for any fixed value of γ ∈ (0,1], the γ-NL setting subsumes the MNL model as a special case.

This generalization property is due to the arbitrary structure of the partition into nests. Indeed,

given an instance of the MNL model described by the weights {qt}Tt=1, an equivalent instance of

the γ-NL model is constructed by specifying the nests Nt = {t} for every t∈ [T ] and the modified

weights q̃i,t = q
1
γ
t . We note in passing that the ε-small probability assumption is preserved by this

reduction.

When γ tends to zero, the competitive ratio converges to 1/2, which suggests that our γ-NL-

balancing algorithm might only be marginally better than greedy in this regime. This observation

suggests that assortment optimization is inherently harder in markets where there is greater com-

petition among comparable customers. This is mirrored by the fact that the discount functions

we have generated numerically converge to the constant function f(x) = 1/2, as shown by the

right-hand plot of Figure 2. In fact, it is not difficult to formally establish that no deterministic

algorithm is better than 1/2-competitive as γ tends to zero. To see this, we construct instances

comprised of two suppliers i ∈ {1,2} having γ-NL preferences, and two customers t ∈ {1,2} form-

ing distinct nests. Suppose that each customer t ∈ {1,2} chooses to send a match request to the

highest-numbered supplier i ∈ At ∩ St, where At is the assortment displayed to customer t and

St ⊆ S is her “compatibility set.” For example, if St = {1,2}, then customer t sends a match request

to supplier 1 when At = {1,2}, and to supplier 2 when At = {2}. To satisfy the ε-small probabil-

ity condition, we specify uniform preference weights qi,t = w = (ε/(1− ε))1/γ for all i ∈ {1,2} and

t ∈ {1,2}. Now, our analysis proceeds by fixing a deterministic algorithm π and by considering

the following two instances. For Instance 1, we have S1 = {1,2}, S2 = {2}, whereas, for Instance

2, we have S1 = {1,2}, S2 = {1}. Due to the symmetry between suppliers 1 and 2, without loss of

generality, we may assume that algorithm π assigns customer 1 to supplier 1. Hence, in Instance 2,

the total expected number of matches is (2w)γ/(1+ (2w)γ) since supplier 1 receives two requests.

By contrast, the clairvoyant algorithm obtains 2 ·wγ/(1 +wγ) matches in expectation since each

supplier receives one request. Consequently, we have just shown that, as γ tends to zero, the

best-possible constant-factor competitive ratio is 1/2.

The value of being preference-aware. Finally, we evaluate the theoretical gains in performance

achieved by our preference-aware approach against other balancing algorithms. Specifically, in

Figure 3, we plot the performance guarantees that can be established in the γ-NL setting for the

MNL-optimal discount function f1,κ∗(1) as well as the exponential discount function f : x *→ e−(1−x),

i.e., the maximum value of κ for which these functions satisfy inequality (NL-ODI). Here, the

comparison with the MNL-optimal discount function informs about the loss of performance incurred

by a misspecification of the nest dissimilarity coefficient. Additionally, the comparison with the

exponential discount function underlines the value added of calibrating the discount function to
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the problem at hand, rather than employing existing ones. In both cases, we find that the gaps

between the performance guarantees can be very significant. That said, when interpreting this plot,

it is important to bear in mind that our ODI only gives a sufficient condition to guarantee a certain

competitive ratio; it is unclear whether or not this analysis is tight.

4.4. Proof outline of Theorem 1

In this section, we provide a comprehensive outline of our proof for Theorem 1. To this end, we

fix a sequence of customer-type arrivals {zt}Tt=1 and a sequence of available suppliers {St}Tt=1. Let

ε∈ (0,1/ηκ), where ηκ > 0 is a Lipschitz constant for fκ. For simplicity of notation, for every i∈ S

and t ∈ [T ], let ∆t
i = wi(C

t,πfκ

i + et)−wi(C
t,πfκ

i ) stand for the marginal increase of the aggregate

match probability for supplier i upon receiving a request from customer t.

General approach. The objective of our proof is to bound the ratio between the expected number

of matches generated by the preference-aware balancing algorithm πfκ and that generated by the

optimal clairvoyant algorithm πC as follows:

Mπfκ
({zt}Tt=1,{St}Tt=1)

MπC ({zt}Tt=1,{St}Tt=1)
=

!
i∈S E

6
wi

+
CT+1,πfκ

i

,7

!
i∈S E

6
wi

+
CT+1,πC

i

,7 ≥ κ− (κ+κηκ) ε+κηκε
2 . (3)

To establish this inequality, we will relate the random variables wi(C
T+1,,πfκ

i ) and wi(C
T+1,πC

i ) for

every i ∈ S using a sample path-based analysis. For this purpose, we introduce a coupling ω that

describes a joint probabilistic space for the sequences of assortments shown and customers’ match

requests under the arrival patterns ({zt}Tt=1,{St}Tt=1). This probabilistic coupling is arbitrarily cho-

sen: our subsequent sample path arguments hold for any valid coupling ω. Going forward, as all

random variables are expressed with respect to this probabilistic space, we drop the reference to

ω to ease readability.

Our proof proceeds in three steps, which are detailed next.

Step 1: Lower bound via a decomposition method. We begin by decomposing the expected number

of matches generated by our algorithm πfκ to obtain a lower bound on Mπfκ
({zt}Tt=1,{St}Tt=1).

Importantly, this lower bound relates the matching decisions of our balancing algorithm πfκ to

those of the clairvoyant benchmark πC , as formally described by the next lemma.

Lemma 1. For every supplier i∈ S, we define the random variable Ri as follows:

Ri =
+
1− fκ

+
wi

+
CT+1,,πfκ

i

,,,
·
2

T%

t=1

∆t
i · I

6
ξt

+
AπC

t

,
= i

75
(4)

+
T%

t=1

∆t
i · I

6
ξt

+
Aπfκ

t

,
= i

7
· fκ

+
min{1,wi

+
Ct,πfκ

i

,
+ ε}

,
.
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Then, the expected number of matches generated by πfκ is lower bounded by

Mπfκ "{zt}Tt=1,{St}Tt=1

#
≥ (1− ηκ · ε) ·

2
%

i∈S

Eω [Ri]

5
.

The proof, presented in Appendix EC.3.1, is based on simple algebraic comparisons using the

optimality criterion of the balancing algorithm in (2), together with the fact that wi(et) ≤ ε for

every i∈ S and t∈ [T ]. However, we do not use any structural property of the MNL choice model.

As such, this lower bounding method holds for any rank-based choice model.

Taking a closer look at Equation (4), we observe that, for every i ∈ S, the random variable Ri

decomposes into the sum of two terms, which we interpret as follows:

Ri =
+
1− fκ

+
wi

+
CT+1,πfκ

i

,,,
·
2

T%

t=1

∆t
i · I

6
ξt

+
AπC

t

,
= i

75

' () *
Discounted rewards of πC with respect to the state variables {Ct,πfκ

i }t∈[T ]

(5)

+
T%

t=1

∆t
i · I

6
ξt

+
Aπfκ

t

,
= i

7
· fκ

+
min{1,wi

+
Ct,πfκ

i

,
+ ε}

,

' () *
Sum of discounts accumulated by πfκ

. (6)

The second term (6) is simply the cumulative discounts that the balancing algorithm πfκ accrues

over T time periods. The first term (5) has a more complex interpretation: it can be viewed as a

“counterfactual” to the discounted rewards generated by the assortment decisions of the clairvoyant

algorithm πC with respect to the sequence of state variables {Ct,πfκ

i }t∈[T ]. That is, for every time

period t ∈ [T ], we compute what would have been the marginal increase ∆t
i · I · [ξt(Aπfκ

t ) = i] of

supplier i’s aggregate match probability if one were to implement the assortment decisions of πC ,

given the set of customer requests Ct,πfκ

i generated by πfκ thus far. Then, this quantity is multiplied

by (1− fκ(wi(C
T+1,πfκ

i )), the discount factor reached by πfκ at the end of the time horizon.

Now, why is this decomposition useful? Intuitively, we wish to show that the assortment decisions

of πfκ are competitive against those of πC for every supplier i∈ S. The first term of the decompo-

sition, (5), precisely relates the assortment decisions of πfκ to those of πC . However, the challenge

is that the counterfactual rewards are computed with respect to the sequence of state variables

{Ct,πfκ

i }t∈[T ] created by the assortment decisions of πfκ , rather than the sequence {Ct,πC

i }t∈[T ] cre-

ated by the assortment decisions of πC . The subsequent analysis will show that the potential loss

against the expected number of matches of πC is “more than offset” by the cumulative discounts

accrued by πfκ ; we argue that the second term (6) compensates any loss in (5) relative to the

sequence of state variables {Ct,πC

i }t∈[T ], up to a factor of κ−O(ε).
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Step 2: Sample-path analysis using the MNL structure. Next, we separately analyze the random

variables Ri for each supplier i∈ S on every sample path. Namely, our next lemmas bound each of

the two terms appearing in the decomposition (4).

Lemma 2. For every sample realization of ω and every supplier i∈ S, we have

T%

t=1

∆t
i · I

6
ξt

+
AπC

t

,
= i

7
≥ (1− ε) ·

+
1−wi

+
CT+1,πfκ

i

,,2

· wi(C
T+1,πC

i )

1−wi(C
T+1,πC

i )
.

Lemma 3. For every sample realization of ω and every supplier i∈ S, we have

T%

t=1

∆t
i · I

6
ξt

+
Aπfκ

t

,
= i

7
· fκ

+
min

8
1,wi

+
Ct,πfκ

i

,
+ ε

9,
≥
0 wi(C

T+1,πfκ

i )

0

fκ (u)du .

The proofs are presented in Appendices EC.3.2 and EC.3.3. Here, contrary to Step 1, our analysis

exploits the specific structural properties of the MNL-based online two-sided assortment instances

we consider. In particular, Lemma 2 follows from the substitution patterns captured by the MNL

choice model, among other properties. Lemma 3 crucially relies on the ε-small probability regime

and the Lipschitz property of the discount function. Intuitively, we show that the sum of discounts

under policy πfκ is well approximated by an integral given the small marginal increments accrued

in each time period.

At this point, we note that the main technical challenge to establish our general result for

the Nested Logit choice model (Theorem 2) resides in deriving a lower bound on
!T

t=1∆
t
i ·

I
6
ξt

+
AπC

t

,
= i

7
along the same lines as Lemma 2. In this context, we formulate a non-convex

mathematical problem that implicitly determines the worst-possible sequence of arrivals under γ-

NL preferences. Contrary to Lemma 2, the optimal solution of this mathematical problem cannot

be fully expressed in closed form.

Step 3: Revealing the connection with the ODI. The final step of our proof combines together

the lower bounds obtained in Step 2 and reveals why (MNL-ODI) gives a sufficient condition for a

competitive ratio of κ−O(ε). That is, for every supplier i ∈ S and every sample realization of ω,

Lemmas 2 and 3 imply that

Ri

wi(C
T+1,πC

i )

≥ 1− ε

1−wi(C
T+1,πC

i )
·
+
1− fκ

+
wi

+
CT+1,πfκ

i

,,,
·
+
1−wi

+
CT+1,πfκ

i

,,2

+
1

wi(C
T+1,πC

i )
·

:

;
0 wi(C

T+1,πfκ

i )

0

fκ (u)du

<

=

≥

:

>;

?@@A
0 wi(C

T+1,πfκ
i )

0

fκ (u)du+

B
(1− ε) ·

+
1− fκ

+
wi

+
CT+1,πfκ

i

,,,
·
+
1−wi

+
CT+1,πfκ

i

,,
<

C=

2

(7)
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where the second inequality is obtained by minimizing over wi(C
T+1,πC

i ) and observing that the

minimum of the function α *→ c1
α
+ c2

1−α
is attained for α=

√
c1√

c1+
√
c2
. Consequently, we wish to bound

the last expression in (7). This lower bound originates from inequality (MNL-ODI), which requires

that, for all x∈ [0,1], /0 x

0

f(u)du+
1
1− f(x) · (1−x)≥

√
κ .

Taking x=wi(C
T+1,πfκ

i ), since fκ(·) is a solution of (MNL-ODI) with parameter κ, we have

Ri

wi(C
T+1,πC

i )
≥

"√
1− ε ·

√
κ
#2

= (1− ε) ·κ . (8)

By summing this inequality over all i∈ S and by taking the expectation, we conclude that

Mπfκ "{zt}Tt=1,{St}Tt=1

#
=

%

i∈S

Eω

-
wi

"
CT+1

i

#.

≥ (1− ηκ · ε) ·
2
%

i∈S

Eω [Ri]

5

≥ (1− ηκ · ε) ·
2
%

i∈S

Eω

6
(1− ε) ·κ ·wi(C

T+1,πC
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κ−κ(1+ ηκ)ε+κηκε
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#
·
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i∈S

Eω

6
wi(C

T+1,πC

i )
75

=
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κ−κ(1+ ηκ)ε+κηκε

2
#
·MπC "

{zt}Tt=1,{St}Tt=1

#
,

where the first inequality follows from Lemma 1 and the second one from (8).

5. Concluding Remarks

To our knowledge, our work is the first to formally study the implications that the presence of

two-sided preferences has on the design of online assortment algorithms for matching platforms.

We find that, in settings where suppliers do not immediately accept or reject the requests to match,

the two-sided setting is a strict generalization of the one-sided problem. In fact, we show that no

efficient algorithm is better than greedy under rank-based suppliers’ preferences. That said, our

work also demonstrates that the design and performance analysis of online assortment algorithms

strongly depend on the functional form of suppliers’ preferences. When restricting attention to

preference models widely used by academics and practitioners, online assortment optimization in a

two-sided matching platform can be easier or harder than in retail platforms. When suppliers have

MNL preferences, we develop simple algorithms better than (1−1/e)-competitive, whereas, in the

Nested Logit case, we establish that no deterministic algorithm has a constant-factor competitive

ratio better than 1/2 in certain cases. Overall, our results showcase the importance of carefully

accounting for suppliers’ preferences in two-sided markets.
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Model extensions. We briefly discuss the robustness of our modeling approach when considering

practically relevant extensions. First, our model may account for time-varying constraints on the

assortment of suppliers shown to each customer, such as constraints of the assortment size; our only

requirement, stated by Assumption 1, is that the single-stage constrained assortment optimization

problem needs to be computationally tractable. Second, in online marketplaces, it is not uncommon

that the same worker simultaneously desires to be matched with multiple jobs/tasks. As discussed

in Section 2, our modeling approach and algorithmic results can be directly leveraged when cus-

tomers choose to send multiple matching requests on the condition that Assumption 1 still holds.

Nonetheless, one implicit assumption of our model is that, if the firm agrees to match in return,

the worker proceeds with the job in question. In reality, this assumption is reasonable when the

worker has sufficient capacity to fulfil all the tasks she is matched with, or if the work is completed

by the time the match request is sent. For example, the latter condition holds in contest design

marketplaces; here, each match request corresponds to a full design submission, and there is often

no further work to be done after the firms reveal which submissions are rewarded. Hence, in these

settings, our approach and results are directly applicable. For completeness, in Appendix EC.5, we

also examine a variant of our problem where workers can fulfil a single match, even if they submit

multiple match requests. Through numerical simulations, we find that, in realistic market regimes,

the number of conflicts is relatively small compared to the total expected number of matches; a

conflict designates two match requests from the same customer being simultaneously accepted by

suppliers. This finding suggests that our model may still provide a good first-order approximation

of the matching outcomes.

Open questions. This paper is a first stride towards formulating and analyzing online assortment

problems in two-sided matching markets where preferences are expressed by both parties. A number

of interesting and challenging directions are left for future research. In particular, one may want

to account for the interdependencies between the timing of suppliers’ feedback and the process

describing the customers’ match requests. For example, suppliers might endogenously decide when

to match based on the requests they have accumulated thus far. Moreover, the customers’ arrivals

and choice process might exhibit serial dependencies; e.g., an unmatched customer might return

to the platform to seek additional matches if her previous requests are left unsatisfied. While

practically relevant, all these extensions introduce complex information dynamics and feedback

loops; making progress in analyzing such models likely requires introducing a higher degree of

stylization in modeling the customers’ and suppliers’ preferences.
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Online Companion

EC.1. Additional material to Section 2
EC.1.1. Online two-sided assortment problem with immediate feedback

As described in Section 1, one of our main research objectives is to understand when the online

two-sided assortment problem significantly differs from the one-sided setting. We next show that

a setting where suppliers provide immediate feedback after each customer match request can be

reduced to the online one-sided assortment problem. We formalize this idea by introducing the

online two-sided assortment problem with immediate feedback and constructing a mapping to the

one-sided setting.

Definition EC.1 (Immediate supplier feedback). An instance of the online two-sided

assortment problem with immediate feedback is described by the set of customer types Z, the choice

probability φz
i (·) that a customer of type z ∈ Z chooses supplier i ∈ S, the probability wi,z that

supplier i ∈ S immediately accepts a request from a customer of type z ∈Z, and the sequences of

arriving customer types {zt}Tt=1 and supplier sets {St}Tt=1.

Proposition EC.1. There exists a polynomial-time approximation-preserving reduction from

the online two-sided assortment problem with immediate feedback to the online one-sided assortment

problem.

Proof. Building on the observation made in Section 2.2, without loss of generality, we focus on

the setting where St = S for all t ∈ [T ]. Consequently, given an instance I of the online two-sided

assortment problem with immediate feedback, we construct an instance Ĩ of the online one-sided

assortment problem through the following mapping:

1. For every supplier i ∈ S, we create a corresponding item i in Ĩ with revenue ri = 1 and

corresponding inventory ci = 1.

2. We keep the number of time periods to be the same, meaning that T is the number of time

periods in Ĩ. For every customer type z ∈Z, we create a corresponding type z in Ĩ.

3. Customers’ choice models in Ĩ are specified as follows. For every customer type z ∈Z, assort-

ment A ⊆ S, and item i ∈ A, the probability φ̃z
i (A) that a customer of type z chooses item i in

assortment A is given by φ̃z
i (A) =wi,z ·φz

i (A).

In what follows, we fix a sequence of customer types {zt}Tt=1. We show that there is a direct

correspondence between algorithms for I and those for Ĩ. Specifically, given an algorithm π for the

two-sided problem I, we devise an algorithm π̃ for the one-sided problem Ĩ such that the expected

revenue Rπ̃({zt}Tt=1) generated by π̃ is equal to the expected number of matches Mπ({zt}Tt=1)

generated by π.
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The construction of π̃ proceeds from an inductive coupling argument. To this end, we use St ⊆ S

to denote the subset of suppliers available at time t∈ [T ] with respect to the algorithm π, and ST+1

is the set of unmatched suppliers after all customers’ arrivals. Similarly, we denote by S̃t ⊆ S the

subset of items remaining at time t∈ [T +1] with respect to the algorithm π̃. Hence, St and S̃t are

random variables with respect to our coupled probabilistic space. The invariant of our induction is

the property that S̃t = St and Aπ
t =Aπ̃

t for every t∈ [T ].

Base case: t= 1. By item 1 of our mapping, we initially have S̃1 = S1. Consequently, it is clear

that it is feasible to select the assortment Aπ̃
1 =Aπ

1 .

Inductive case: t≥ 2. Suppose that S̃t−1 = St−1 and Aπ̃
t−1 =Aπ

t−1. Define the Bernoulli random

variable ηi,t−1 that indicates whether supplier i would accept a match request from the t− 1-th

arriving customer in the two-sided problem I, i.e, Pr[ηi,t−1 = 1|Hπ
t−1] = wi,zt−1

. In addition, we

define ξ̃t−1(A) as the random item chosen by the t− 1-th arriving customer when presented with

the assortment A⊆ S in the one-sided problem I. Note that

Pr
6
S̃t = S̃t−1 \ {i}

DDDHπ̃
t−1

7
= Pr

6
ξ̃t−1

"
Aπ̃

t−1

#
= i

DDDAπ̃
t−1, zt−1

7

= φ̃
zt−1
i

"
Aπ̃

t−1

#

= wizt ·φ
zt−1
i

"
Aπ̃

t−1

#

= wizt ·φ
zt−1
i

"
Aπ

t−1

#

= Pr [ηi,t = 1|zt−1] ·Pr
-
ξt−1

"
Aπ

t−1

#
= i

DDAπ
t−1, zt−1

.

= Pr
-
St = St−1 \ {i}|Hπ

t−1

.
,

where the third equality proceeds from item 3 of our mapping between I and Ĩ, and the next

equality holds since our induction hypothesis implies that Aπ̃
t−1 =Aπ

t−1. Based on the above equal-

ity, it is clear that there exists a coupling of the random variables S̃t and St such that S̃t = St.

Consequently, for every t ∈ [T ], it is feasible to select the assortment Aπ̃
t =Aπ

t with respect to our

inductive coupling.

To conclude the proof of Proposition EC.1, observe that

Rπ̃({zt}Tt=1) =E
6DDDS \ S̃T+1

DDD
7
=E

6
|S \ST+1|

7
=Mπ

"
{zt}Tt=1

#
,

where the second equality holds since our induction shows that S̃T+1 = ST+1. □

EC.1.2. Connection between small probability and large inventory regimes

In the one-sided setting, the platform is endowed with ci units of inventory for each item i ∈ S.

The large inventory regime consists in analyzing the performance of algorithms as a function of the

parameter cmin =mini∈S ci in the asymptotic regime cmin →+∞. Here, we formally show that the
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ε-small probability condition subsumes the class of online one-sided assortment problems where

the inventory satisfies cmin ≥ 1/ε. Thus, the small probability regime is indeed a generalization of

the large inventory regime studied in the previous literature.

To show this, we slightly modify the reduction devised in Section 2.2, where units of inventory

in the online one-sided assortment problem were treated as distinct suppliers i∈ S in the two-sided

setting. Instead, we develop an exact reduction to the two-sided assortment problem by representing

each item i as a supplier i∈ S endowed with the aggregate matching function wi(·) such that, for

every C ∈NZ
0 ,

wi(C) = rici ·min

E!
z∈Z Cz

ci
,1

F
.

Observe that this reduction is equivalent to the one presented in Section 2.2. Now, the important

observation is that, for every t ∈ [T ], we have wi(et) ≤ (1/cmin) ·maxC∈NZ
0
wi(C). Consequently,

the above-constructed instance of the online two-sided assortment problem satisfies the ε-small

probability condition when ε≥ 1/cmin.

EC.2. Proofs of Section 3
EC.2.1. Proof of Proposition 1

To establish the result in Proposition 1, we start by highlighting the connection to the broad class

of stochastic depletion problems introduced in Chan and Farias (2009). Informally, a stochastic

depletion problem is specified by item types and activity sets. In each time period, an activity must

be chosen, which results in (random) depletion of items of various types. The distribution of the

number of items of each type that are depleted may depend on the activity employed, the number of

items of that type available, and exogenous stochastic processes. Item depletions generate rewards.

The objective is to design an adaptive activity selection policy that can use its knowledge of system

dynamics to maximize the total expected reward. Many challenging dynamic optimization problems

can be formulated as stochastic depletion problems, including optimal control of parallel-server

queuing models, optimal AdWords allocation, and more. Surprisingly, Chan and Farias (2009)

identify some simple sufficient conditions of the reward function under which a myopic policy

generates an expected reward within a factor of 1/2 of the optimal adaptive policy for that problem.

To establish our result, it is useful to think of the platform’s problem as a stochastic deple-

tion problem. In each time period, the platform needs to choose an assortment for the arriving

customer; choices made by customers ultimately result in depletions of the suppliers’ aggregate

matching quantity. We describe our problem in those terms next. In particular, we adopt the same

terminology as in Chan and Farias (2009): the stochastic depletion problem is formulated as a

dynamic program and online algorithms are referred to as policies.
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Notation and preliminaries. Recall that Ct
i denotes the set of customer requests received by

supplier i at time t, and C̄t = (Ct
i )i∈S is the vector of sets of customer requests up to time t. In each

time period t, the policy selects an assortment A ⊆ St that results in a random depletion vector

XA
t ∈ {0,1}S , where XA

t,i = 1 if customer t requests a match with supplier i. Based on our model

described in Section 2, the distribution of XA
t is specified by customer t’s choice model over the set

of alternatives in A, i.e., XA
t,i = 1 if and only if ξzt(A) = i. In particular, XA

t is also independent of

all past depletions. (For the sake of readability, from now on we omit the superscript A from XA
t

whenever this is clear from the context.)

Dynamic programming formulation. Based on the above observations, we cast the online two-

sided assortment problem as a dynamic program. Recall that, to demonstrate the performance of

the greedy policy, we compare it to a clairvoyant policy that knows the realization of the sequence

of customer arrivals and of the suppliers’ set. As a result, we assume that {zt}Tt=1 and {St}Tt=1 are

fixed, and we work with a reduced state space where each state is characterised by the time period

and the set of customer requests received so far. Formally, let Σ denote the state space where

each state σ ∈ Σ is described by (t(σ), C̄(σ)), where 0≤ t(σ) ≤ T is the current time period and

C̄(σ) = (C1(σ), . . . ,Cm(σ))⊆ Nm×Z
0 is the vector of sets of customer requests at the beginning of

period t(σ).

In state σ, after the algorithm shows assortment A to customer t(σ), the next state is
"
t(σ)+ 1, C̄↑(σ)

#
, where C̄↑(σ) is the set of customer requests C̄(σ) shifted by at most one unit,

i.e.,

C̄↑
i (σ) = C̄i(σ)+ ezt(σ)

·Xt,i ∀i∈ S . (EC.1)

To ease exposition, we sometimes write C̄(σ)+ezt(σ)
·Xt or simply C̄(σ)+Xt as a shortcut for the

expression in (EC.1).

Let g :Nm×Z
0 ×Nm×Z

0 →R be defined as

g(C̄, C̄ ′) =
%

i∈S

(wi(C
′
i)−wi(Ci)) ,

and define the random reward function R :Σ× 2|S| →R+ as

R(σ,A) = g(C̄(σ), C̄(σ′)) =
%

i∈S

wi(Ci(σ
′))−

%

i∈S

wi(Ci(σ)), (EC.2)

where σ′ is the random state reached by the system after assortment A is shown to the incoming

customer in state σ. With this notation at hand, we define the reward-to-go under policy π starting

at state σ as

Jπ (σ) =E

G

H
T−1%

u=t(σ)

R (σu,π (σu)))

I

J . (EC.3)
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Consequently, we let J+(σ) = supπ∈Π Jπ(σ) denote the maximum expected number of matches that

can be achieved starting from state σ, and let π+ denote the corresponding optimal policy. Let πg

denote the greedy policy, i.e.,

πg(σ)∈ argmax
A

E [R(σ,A)] ,

where R is defined as in (EC.2) and the expectation is taken with respect to customer t’s choices.

Note that this definition agrees with that of the greedy algorithm in Section 3. Therefore, the

following claim directly implies Proposition 1.

Proposition EC.2. Fix {zt}Tt=1 and {St}Tt=1. For every σ ∈Σ we have J+(σ)≤ 2 · Jπg
(σ).

To establish the above result, we follow a line of argumentation similar to that of Chan and

Farias (2009). Namely, we establish two properties, value function monotonicity and immediate

rewards, that will allow us to establish the desired result. These properties are established in the

subsequent lemmas.

Lemma EC.1. Consider states σ and σ′ satisfying t(σ) = t(σ′) and Ci(σ)⊆Ci(σ
′) for all i∈ S.

Then, J+(σ)≥ J+(σ′).

Proof. We consider a coupling of the systems starting at states σ and σ′, with Ci(σt)⊆Ci(σ
′
t)

for all i∈ S, such that both systems witness identical sample paths for the customers’ decisions. In

what follows, we use our standard notation for the system starting at state σ, while prime notation

is used to designate random variables corresponding to the system starting at state σ′. Hence, if

the same assortment is shown to the arriving customer at time t in both systems, the resulting

depletion vectors are equal, i.e., Xt =X′
t.

Now, assume that the system starting at σ′ uses the optimal policy π+ whereas the system

starting at σ uses a policy π̄ that mimics the actions of the optimal policy under state σ′. Note

that π̄ is an admissible policy. Under the coupling, it follows that

R(σ, π̄(σ)) =
%

i∈S

+
wi(Ci(σ)+ ezt(σ)

Xt,i)−wi(Ci(σ))
,

=
%

i∈S

+
wi(Ci(σ)+ ezt(σ)

X′
t,i)−wi(Ci(σ))

,

≥
%

i∈S

+
wi(Ci(σ

′)+ ezt(σ)
X′

t,i)−wi(Ci(σ
′))

,

= R(σ′,π+(σ′)) ,

where the second equality follows from the coupling argument, the first inequality follows from the

fact that Ci(σt)⊆Ci(σ
′
t) together with the diminishing returns assumption (see Assumption 2) and

the fact that the arrival sequence {zt}Tt=1 and the suppliers’ set sequences {St}Tt=1 are assumed to

be a priori given.
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Moreover, suppose that, under the above policies, both systems transition to states σt(σ)+1 and

σ′
t(σ)+1, respectively. By the coupling argument, Ci(σt(σ)+1)⊆Ci(σt(σ)+1) for all i∈ S, and thus the

argument above can be repeated for step t(σ)+ 1. Therefore, one can establish that, in every time

set, the system starting at σ and controlled by policy π̄ earns a reward at least as large as that of

the system starting at σ′ and controlled by the optimal policy π+. Taking expectation over the Xt

and X′
t processes, we obtain J+(σ′)≤ J π̄(σ)≤ J+(σ). □

Lemma EC.2. Define σ̃ :Σ×Nm×Z
0 →Σ as σ̃(σ,α) = σ′ with t(σ′) = t(σ) and Ci(σ

′) =Ci(σ
′)+

αi,∗. That is, state σ̃(σ,α) is obtained if one is permitted to add αi,∗ ≥ 0 customer request to each

set without using a time step. Then, for all σ ∈Σ and all α∈Nm×Z
0 we have

J+(σ) ≤ g(C̄(σ), C̄(σ)+α)+ J+(σ̃(σ,α));

i.e., it is advantageous to incur a depletion of α without advancing the system by any time step.

Proof. Fix a state σ ∈ Σ and α ∈ Nm×Z
0 . Let σ+

T denote the random state under the optimal

policy at the end of the horizon starting from σ. Similarly, let σ̃T denote the random state under

the optimal policy at the end of the horizon starting from σ′ = σ̃(σ,α). Note that

J+(σ) =E

$
%

i∈S

wi(Ci(σ
+
T ))

&
−
%

i∈S

wi(Ci(σ))

and

J+(σ′) =E

$
%

i∈S

wi(Ci(σ̃
+
T ))

&
−
%

i∈S

wi(Ci(σ
′)) .

We consider a coupling of the systems starting at states σ and σ′ such that both systems witness

identical sample paths for the customers’ decisions. If the same assortment is shown to the arriving

customer at time t in both systems, the resulting depletion vectors are equal, i.e., Xt =X′
t. Now,

assume that the system starting at σ uses the optimal policy π+ whereas the system starting at

σ′ uses a policy π̄ that mimics the actions of the optimal policy under state σ, that is, π̄(σ′) =

π+(t(σ′), (C̄(σ′)−α)). It follows that

J+(σ) = E

$
%

i∈S

wi(Ci(σ
+
T ))

&
−
%

i∈S

wi(Ci(σ))

= E

G

H
%

i∈S

wi

:

;Ci(σ)+
T%

t=t(σ)

eztXt,i

<

=

I

J−
%

i∈S

wi(Ci(σ))

= E

G

H
%

i∈S

wi

:

;Ci(σ)+
T%

t=t(σ)

eztX
′
t,i

<

=

I

J−
%

i∈S

wi(Ci(σ))
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≤ E

G

H
%

i∈S

wi

:

;Ci(σ)+αi,∗ +
T%

t=t(σ)

eztX
′
t,i

<

=

I

J−
%

i∈S

wi(Ci(σ))

= E

G

H
%

i∈S

wi

:

;Ci(σ
′)+

T%

t=t(σ)

eztX
′
t,i

<

=

I

J−
%

i∈S

wi(Ci(σ
′))+

%

i∈S

wi(Ci(σ
′))−

%

i∈S

wi(Ci(σ))

= J π̄(σ′)+
%

i∈S

wi(Ci(σ
′))−

%

i∈S

wi(Ci(σ))

≤ J+(σ′)+
%

i∈S

wi(Ci(σ
′))−

%

i∈S

wi(Ci(σ)) ,

where the first equality follows from the definition of the optimal policy, the second equality

proceeds by conditioning on the Xt process, and the third equality follows from the coupling

argument. The inequality in the fourth line is a consequence of the monotonicity of wi(·), and the

equality in the fifth line uses the fact that Ci(σ
′) =Ci(σ)+αi,∗. □

Proof of Proposition EC.2. The proof is by induction in the number of remaining steps. If

t(σ) = T , then the myopic and optimal policies agree. Consider a state with t(σ)<T and assume

that the claim is true for all σ′ with t(σ′)> t. If π+(σ) = πg(σ), then the next states are identically

distributed and using the induction hypothesis immediately yields the desired result.

Suppose that π+(σ) ∕= πg(σ). We denote by X+
t(σ) and Xg

t(σ) the random vector of depletions in

period t(σ) under the optimal and greedy policies, respectively. Let σ↑ : Σ × Nm×Z
0 → Σ be the

mapping such that, for every α ∈Nm×Z
0 , we have σ↑(σ,α) = σ′ with t(σ′) = t(σ) + 1 and Ci(σ

′) =

Ci(σ
′) + αi,∗. That is, σ↑ specifies the next state obtained by starting from σ and depleting the

suppliers’ matching sets by α. Consequently, we have

E
-
R(σ,π+(σ))|X+

t(σ)

.
+ J+

"
σ↑(σ,X+

t(σ))
#

≤E
-
R(σ,π+(σ))|X+

t(σ)

.
+ J+(σ↑(σ,0))

≤E
-
R(σ,π+(σ))|X+

t(σ)

.
+ g

+
C̄(σ), C̄(σ)+Xg

t(σ)

,
+ J+

+
σ̃(σ↑(σ,0),Xg

t(σ))
,

=E
-
R(σ,π+(σ))|X+

t(σ)

.
+E

6
R(σ,πg(σ))|Xg

t(σ)

7
+ J+

+
σ̃
+
σ↑(σ,0),Xg

t(σ)

,,

=E
-
R(σ,π+(σ))|X+

t(σ)

.
+E

6
R(σ,πg(σ))|Xg

t(σ)

7
+ J+

+
σ↑

+
σ,Xg

t(σ)

,,

≤E
-
R(σ,π+(σ))|X+

t(σ)

.
+E

6
R(σ,πg(σ))|Xg

t(σ)

7
+2 · Jg

+
σ↑

+
σ,Xg

t(σ)

,,
,

where the first inequality follows from Lemma EC.1, and the second inequality follows from

Lemma EC.2 and the fact that the state is equal to σ↑(σ,0) and α=Xg
t(σ); the first equality pro-

ceeds by noting that, using the definitions of σ̃ and σ↑, we have σ̃
+
σ↑(σ,0),Xg

t(σ)

,
= σ↑

+
σ,Xg

t(σ)

,
.

The last inequality immediately follows from the induction hypothesis.
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To conclude, note that

J+(σ) = E
-
E
-
R (σ,π+(σ))|X+

t(σ)

.
+ J+

"
σ↑(σ,X+

t(σ))
#.

≤ E
-
E
-
R(σ,π+(σ))|X+

t(σ)

..
+E

6
E
6
R(σ,πg(σ))|Xg

t(σ)

7
+2Jg

+
σ↑

+
σ,Xg

t(σ)

,,7

≤ E [R(σ,π+(σ))] +E [R(σ,πg(σ))] + 2 ·E
6
Jg

+
σ↑

+
σ,Xg

t(σ)

,,7

≤ 2 · Jg(σ) ,

where the last inequality uses the fact that E [R(σ,π+(σ))]≤E [R(σ,πg(σ))] by the definition of the

greedy policy, and the definition of Jg(σ). □

EC.2.2. Proof of Proposition 2

To establish the tightness of the 1/2 approximation, we exploit the hardness result in Kapralov

et al. (2013) for the online welfare maximization problem.

In the online welfare maximization problem, there are n items arriving online from a set N ;

each item should be allocated upon arrival to one of m agents (suppliers). Each agent i ∈ [m] is

endowed with a valuation function vi : 2
n →R+. The goal is to maximize

!m

i=1 vi(Ci), where Ci ⊆N

is the subset of items allocated to agent i. We now introduce the class of coverage functions, which

imposes further restrictions on the agents’ valuation functions.

Definition EC.2 (Coverage valuations). A valuation function v : 2|N | → R+ is called a

coverage valuation if there is a set system (U ,{Uj}j∈N) given by a finite set of elements U and a

family {Uj}j∈N of subsets of U such that v(C) = |∪j∈C Uj| for all C ⊆N .

As stated in the next claim, Kapralov et al. (2013) show that, under a plausible complexity

assumption, there exists no algorithm better than 1/2-competitive for the online welfare maximiza-

tion problem with coverage valuation functions.

Theorem EC.1 (Kapralov et al., 2013). Unless NP = RP, there is no (1/2+δ)-competitive

polynomial-time algorithm (even randomized, against an oblivious adversary) for the online welfare

maximization problem with coverage valuations and constant δ≥ 0.

Proof of Proposition 2. We first establish the result without any assumptions on ε. Specifically,

for any δ > 0 we show that there is no (1/2 + δ)-competitive polynomial-time algorithm for the

online two-sided assortment problem. The proof proceeds by contradiction. Suppose that there

exists a δ > 0 such that there is a (1/2+ δ)-competitive polynomial-time algorithm for the online

two-sided assortment problem. Let π be such an algorithm. We will argue below that we can use π

to compute a (1/2+ δ) approximation for the online welfare maximization problem with coverage

valuations, thereby contradicting Theorem EC.1.
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Specifically, let I = (NI ,MI ,{vi}i∈MI ) be an instance of the online welfare maximization problem

with coverage valuations, where NI is the set of items, MI denotes the set of agents, and {vi}i∈MI

are their corresponding coverage valuations defined over a set system (U ,{Uj}j∈NI ). As in the

proof of Theorem EC.1 in Kapralov et al. (2013), each item j ∈ NI is associated with a set in

{Uj}j∈NI and each valuation vi is defined by a permutation αi :NI →NI over the sets such that

vi(C) =
DD∪j∈CUαi(j)

DD for any C ⊆ NI . Next, we construct an instance Ĩ of the online two-sided

assortment problem as follows:

- Define the time horizon T as T = |NI |.
- Let Z =NI . That is, for each item j ∈NI , add customer type j defined by (i) a choice model

without an outside option; i.e., for each set of suppliers S we require that φ0(S) = 0 whenever S ∕= ∅,
and that (ii) customer type j be associated with the set Uj, which we use below when constructing

the suppliers’ preferences.

- Let S =MI . That is, for every agent i ∈MI , add a supplier (denoted also by i) to the set S
and define St = S for every 1≤ t≤ T . Each supplier i∈ S has rank-based preferences, generated as

follows. Construct the preference lists Li
1,L

i
2, . . . ,L

i
|U| (one for each element in the ground set), where

Li
k is formed by the elements {j : k ∈Uαi(j)} ranked in an arbitrary order. Supplier i’s preferences

are governed by the uniform distribution over lists Li
1,L

i
2, . . . ,L

i
|U|. That is, the probability that

supplier i matches given a set of customer requests C is equal to the hitting probability wi(C) =

1
|U| ·

!
k∈U I [C ∩Li

k ∕= ∅].
There are two crucial observations. First, for every i∈MI and C ⊆NI , we have

vi(C) =
DD∪j∈CUαi(j)

DD=
%

k∈U

I
-
k ∈

"
∪j∈CUαi(j)

#.
=
%

k∈U

I
-
C ∩Li

k ∕= ∅
.
= |U| ·wi(C) . (EC.4)

Second, let OPT (I) denote the (offline) optimal welfare in instance I, and let {C+
i }i∈MI denote

an optimal solution. As in the online two-sided assortment instance Ĩ, the set of suppliers S is

constant over time and customers do not have outside options, which means that an algorithm

that shows to each arriving customer j the assortment Uj = {i} if and only if j ∈C+
i is guaranteed

to end with the set of requests C̄T = {C+
i }i∈MI . Thus, for any sequence of arrivals {zt}Tt=1 in the

online two-sided assortment instance Ĩ, we have

MπC "
{zt}Tt=1,{St}Tt=1

#
≥
%

i∈S

wi(C
+
i ) =

%

i∈NI

1

|U| · vi(C
+
i ) =

1

|U| ·OPT (I) . (EC.5)

Now, we devise an algorithm π̄ for instance I of the online welfare maximization problem that

mimics algorithm π. Let sπ be π’s random seed and n1 denote the first arrival in instance I. Let
Aπ

1 be the assortment shown by algorithm π to customer z1 = n1 in instance Ĩ (i.e., when Hπ
1 =

σ(sπ, z1,S1)). Then, algorithm π̄ assigns item n1 to agent i with probability φz1
i (Aπ

1 ). Let ξ1 denote
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the resulting assignment, and let n2 be the incoming item. We define Hπ
2 = σ(Hπ

1 ,A
π
1 , ξ1(A

π
1 ), z2 =

n2,S) and use Aπ
2 to construct the next randomized assignment of π̄ as above, and so on. We

specify algorithm π̄ by iteratively repeating this process. By construction, we have

E[
!

i∈MI
vi(C

T+1,π̄
i )]

OPT (I) =
E[
!

i∈S |U| ·wi(C
T+1,π
i )]

OPT (I) ≥ inf
{zt}Tt=1

Mπ ({zt}Tt=1,{St}Tt=1)

MπC ({zt}Tt=1,{St}Tt=1)
≥ 1

2
+ δ ,

where the first equality proceeds from (EC.4) and the first inequality holds by (EC.5). We have

just shown that the algorithm π̄ achieves a competitive ratio of 1/2 + δ, thereby contradicting

Theorem EC.1.

We next extend our result by imposing the ε-small probability assumption. Specifically, fix any

ε> 0 and any δ> 0. A close inspection of the proof of Kapralov et al. (2013) reveals that the negative

result they obtain for the online welfare maximization problem stems from the NP-hardness of

distinguishing between certain YES-NO Max k-cover instances. We refer the reader to Kapralov

et al. (2013, Section 2) for a formal statement of this NP-hardness result, which was established

in Feige (1998). The crucial observation is that this NP-hardness result holds even under additional

restrictions on the set systems (U ,{Uαi(j)}j∈NI ). Specifically, for large enough parameters s,N0 ∈N,

we may require the following properties:

Property 1: The subsets {Uj}j∈NI are all of size s.

Property 2: The number of elements in the ground set |U| is greater than or equal to N0.

Consequently, the instance of the online two-sided assortment problem Ĩ constructed by our reduc-

tion satisfies, for every customer type j ∈Z,

wi(ej) =
1

|U| ·
%

k∈U

I
-
ej ∩Li

k

.
=

1

|U| ·
%

k∈U

I
-
k ∈Uαi(j)

.
=

|Uαi(j)|
|U| ≤ s

N0

,

where the inequality is a direct consequence of Properties 1 and 2. Hence, the ε-small probabil-

ity condition is met when s
N0

≤ ε. Consequently, for every δ, ε > 0, we infer that there exists no

polynomial-time randomized algorithm with a competitive ratio better than 1/2+ δ in the ε-small

probability regime. □

EC.2.3. Proof of Proposition 3

Let pz denote the probability that an arriving customer is of type z ∈ Z under distribution D.

Recall that a customer set C ∈NZ
0 is a vector with coordinates z ∈Z, where Cz denotes the number

of match requests from customers of type z. In the remainder of this section, we use the shorthand

C = [T ]S to denote the collection of all possible customer sets generated over a time horizon of T

periods.
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We establish Proposition 3 through a sequence of lemmas. To this end, we introduce the following

linear program:

(UB) max
x,y

%

i∈S

%

C∈C

xi(C) ·wi(C)

s.t.
%

C∈C

xi(C) ·Cz ≤
%

A⊆S

φz
i (A) · yz(A) · pzT ∀i∈ S, ∀z ∈Z

%

A⊆S

yz(A) = 1 ∀z ∈Z

%

C∈C

xi(C) = 1 ∀i∈ S

xi(C)≥ 0 ∀i∈ S,C ∈ C

yz(A)≥ 0 ∀z ∈Z,A⊆ S .

Hereinafter, we denote by UB the optimal value of the linear program (UB).

Lemma EC.3. The optimal value of (UB) is an upper bound on the optimal expected number

of matches in the stochastic i.i.d. model with time-invariant supplier sets, where the expectation is

taken over the arrival process. That is, for all instances satisfying the conditions in the statement

of Proposition 3, we have

UB ≥ E{zt}Tt=1

6
MπC "

{zt}Tt=1,{St}Tt=1

#7
.

Proof. Fix an arbitrary arrival sequence {zt}Tt=1 and an algorithm. Let the random variables

A1, . . . ,AT denote the sequence of assortments offered by the algorithm, and let ξ1, . . . , ξT be the

random variables corresponding to the customers’ choices. Note that At can depend on A1, . . . ,At−1

and ξ1, . . . , ξt−1, and we allow CT+1
1 , . . . ,CT+1

m to depend on A1, . . . ,AT and ξ1, . . . , ξT as well. Note

that the expected number of matches is given by

E

$
%

i∈S

%

C∈C

wi(C) · I
-
CT+1

i =C
.
&
=
%

i∈S

%

C∈C

wi(C) ·Pr
-
CT+1

i =C
.
.

For every C ∈ C, let x̄i(C) = Pr[CT+1
i =C], and let x̄= (x̄i(C))i∈S,C∈C. Note that, by definition, we

have x̄i(C)≥ 0 for all i ∈ S and C ∈ C, and
!

C∈C x̄i(C) = 1 for all i ∈ S. Therefore, it suffices to

show that there exists ȳ such that (x̄, ȳ) is a feasible solution to (UB).

To construct such a vector ȳ, we remark that, with probability 1, supplier i cannot see more

requests of customers of type z than those directed to him. That is, with probability 1, we have

%

C∈C

Cz · I
-
CT+1

i =C
.
≤

T%

t=1

%

A⊆S

I [At =A, ξt = i, zt = z].
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By taking expectations, on both sides, we have

%

C∈C

Cz · x̄i(C) ≤ E

$
T%

t=1

%

A⊆S

I [At =A, ξt = i, zt = z]

&

= E

$
φz
i (A) ·

T%

t=1

%

A⊆S

I [At =A,zt = z]

&

=

2
T%

t=1

%

A⊆S

φz
i (A) ·Pr [At =A|zt]Pr [zt = z]

5

= pz ·
2

T%

t=1

%

A⊆S

φz
i (A) ·Pr [At =A|zt]

5
,

where the first equality follows from the tower property of conditional expectation, by not-

ing that E[I [ξt = i]|At = A,zt = z] = φz
i (A). The second equality follows from the definition of

E[I [At =A,zt = z]]. Lastly, the third equality holds since the arrivals are i.i.d.

Now, let ȳz(A) = 1
T
·
!T

t=1Pr [At =A|zt] and ȳ= (ȳz(A))z∈Z,A⊆S . It remains to show that ȳ sat-

isfies the constraints in UB. First, note that, as Pr [At =A|zt = z]≥ 0 for all A, we have ȳz(A)≥ 0.

Moreover, by definition, it is necessary that
!

A⊆S Pr [At =A|zt = z] = 1. Therefore, both con-

straints are satisfied, which completes our proof. □

Lemma EC.4. For every time period t∈ [T ] and vector of customer sets (C ′
i)i∈S ∈ [T ]

S×Z
, con-

ditional on the event
K

i∈S{Ct
i = C ′

i}, the expected increase in the number of matches from the

random request made by the t+1-th arriving customer is at least 1
T
· (UB−

!
i∈S wi(C

′
i)).

Proof. In the remainder of the proof, we condition on the event
K

i∈S{Ct
i =C ′

i}, meaning that

the current vector of customer sets is precisely (C ′
i)i∈S . Let (x,y) be any feasible UB solution and

let niz =
!

C∈C xi(C) · Cz. We use the notation C ′
i + C to denote the union of the multisets C ′

i

and C, adding up the multiplicities of each customer type. By the property of diminishing returns

(Assumption 2), we have

wi(C
′
i +C)−wi(C

′
i)≤

%

z∈Z

Cz · (wi (C
′
i + ez)−wi(C

′
i)) .

By the inequality xi(C)≥ 0 for all i∈ S and all C ∈ C, we have

%

C∈C

xi(C) · (wi(C
′
i +C)−wi(C

′
i)) ≤

%

C∈C

%

z∈Z

xi(C) ·Cz · (wi(C
′
i + ez)−wi(C

′
i))

=
%

z∈Z

niz · (wi(C
′
i + ez)−wi(C

′
i)) .

Since
!

C∈C xi(C) = 1 by feasibility and wi(C
′
i +C)≥wi(C) by monotonicity, we obtain

%

C∈C

xi(C) ·wi(C)−wi(Ci)≤
%

z∈Z

niz (wi (C
′
i + ez)−wi(C

′
i)) . (EC.6)
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Now, consider the following randomized assortment decision: if the next customer is of type z,

show her assortment A with probability yz(A). (By the feasibility of (x,y), we have yz(A)≥ 0 and
!

A⊆S yz(A) = 1.) Then, the random gain (i.e., increase in number of matches) from using this

assortment decision is equal in expectation to

E [random gain] =
%

z∈Z

pz ·
%

A⊆S

yz(A)

2
%

i∈S

φz
i (A) (wi(C

′
i + ez)−wi(C

′
i))

5

=
%

i∈S

%

z∈Z

(wi(C
′
i + ez)−wi(C

′
i)) ·

2
%

A⊆S

pz · yz(A) ·φz
i (A)

5

≥
%

i∈S

%

z∈Z

(wi(C
′
i + ez)−wi(C

′
i)) ·

niz

T

≥ 1

T
·
2
%

i∈S

%

z∈Z

xi(C) ·wi(C)−wi(C
′
i)

5
. (EC.7)

The first inequality follows from the feasibility of (x,y), where we have

%

C∈C

xi(C) ·Cz ≤
%

A⊆S

φz
i (A) · yz(A) · pzT ∀i∈ S, z ∈Z.

The second inequality follows from (EC.6).

To complete the proof, note that a greedy assortment decision gains as much as the randomized

assortment decision for all feasible solutions (x,y). Therefore,

E [greedy gain]≥E [random gain]≥ 1

T
· (UB−wi(C

′
i)) ,

where the last inequality follows from replacing x with the optimal solution of (UB) in (EC.7).

□
We now conclude the proof of Proposition 3.

Proof of Proposition 3. Denote the set of customer requests obtained after t periods as C̄t =

(Ct
1, . . . ,C

t
m). By Lemma EC.4, conditioned on C̄t, the expected number of matches after the next

customer arrives and is offered an assortment is

E

$
%

i∈S

wi(C
t+1
i )

DDDDD C̄
t

&
≥
%

i∈S

wi(C
t
i )+

1

T
·
2
UB−

%

i

wi(C
t
i )

5
.

Taking the expection over C̄t, we obtain

E

$
%

i

wi(C
t+1
i )

&
≥
%

i∈S

E [wi(C
t
i )] +

1

T
·E

$2
UB−

%

i∈S

wi(C
t
i )

5&
.

Let W (t) =E [wi(C
t
i )]. By the last inequality, we have

W (t+1)≥W (t)+
1

T
· (UB−W (t))
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or, equivalently,

UB−W (t+1)≤
3
1− 1

T

4
· (UB−W (t)).

Consequently, by a straightforward induction on t∈ [T ], we have

UB−W (t)≤
3
1− 1

T

4t

· (UB−W (0))≤ e−
t
T ·UB.

Since the expected value of the solution found by the greedy algorithm at time T is W (T ) =

E
-!

i∈S wi(C
T+1
i )

.
, we conclude that

W (T )≥
3
1− 1

e

4
·UB≥

3
1− 1

e

4
·E{zt}Tt=1

6
MπC "

{zt}Tt=1,{St}Tt=1

#7
.

Finally, we observe that the performance of the greedy algorithm is best-possible as a by-product

of the following result in Kapralov et al. (2013):

Theorem EC.2 (Kapralov et al., 2013). Unless NP = RP, there is no (1 − 1/e + δ)-

competitive polynomial-time algorithm for welfare maximization with coverage valuations in the

i.i.d. stochastic model, for fixed δ> 0.

Using the reduction in the proof of Proposition 2, we can show that a (1− 1/e+ δ)-competitive

polynomial-time algorithm for the online two-sided assortment problem in the i.i.d. setting of

Proposition 3 would imply the existence of a (1− 1/e+ δ)-competitive polynomial-time algorithm

for welfare maximization with coverage valuations in the i.i.d. stochastic model. □

EC.3. Proofs of Section 4
EC.3.1. Proof of Lemma 1

We proceed by stating a series of valid inequalities that will prove the claim. Define f̃κ(x) =

fκ(min{1, x+ ε}).

Mπfκ "{zt}Tt=1,{St}Tt=1

#
=

%

i∈S

Eω

6
wi

+
CT+1,πfκ

i

,7

=Eω

G

LH
T%

t=1

%

i∈Aπfκ
t

∆t
i ·φt

i

+
Aπfκ

t

,
I

MJ

≥Eω

G

LH
T%

t=1

%

i∈Aπfκ
t

∆t
i ·

1− fκ(wi(C
t,πfκ

))+ f̃κ(wi(C
t,πfκ

))

1+ ηκ · ε
φt
i

+
Aπfκ

t

,
I

MJ

≥ (1− ηκ · ε) ·Eω

G

LH
T%

t=1

%

i∈Aπfκ
t

∆t
i ·φt

i

+
Aπfκ

t

,
·
+
1− fκ

+
wi

+
Ct,πfκ

i

,,,
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+
T%

t=1

%

i∈Aπfκ
t

∆t
i ·φt

i

+
Aπfκ

t

,
· f̃κ

+
wi

+
Ct,πfκ

i

,,
I

MJ

≥ (1− ηκ · ε) ·Eω

G

LH
T%

t=1

%

i∈AπC
t

∆t
i ·φt

i

+
AπC

t

,
·
+
1− fκ

+
wi

+
Ct,πfκ

i

,,,

+
T%

t=1

%

i∈Aπfκ
t

∆t
i ·φt

i

+
Aπfκ

t

,
· f̃κ

+
wi

+
Ct,πfκ

i

,,
I

MJ

= (1− ηκ · ε) ·
%

i∈S

Eω

$
T%

t=1

∆t
i · I

6
ξt

+
AπC

t

,
= i

7
·
+
1− fκ

+
wi

+
Ct,πfκ

i

,,,

+
T%

t=1

∆t
i · I

6
ξt

+
Aπfκ

t

,
= i

7
· f̃κ

+
wi

+
Ct,πfκ

i

,,&

≥ (1− ηκ · ε) ·
%

i∈S

Eω

$+
1− fκ

+
wi

+
CT+1,πfκ

i

,,,
·
2

T%

t=1

∆t
i · I

6
ξt

+
AπC

t

,
= i

75

+
T%

t=1

∆t
i · I

6
ξt

+
Aπfκ

t

,
= i

7
· f̃κ

+
wi

+
Ct,πfκ

i

,,&
,

= (1− ηκ · ε) ·
2
%

i∈S

Eω [Ri]

5
,

where the first inequality holds since 0≤ f̃κ(x)−fκ(x)≤ ηκ · ε by the definition of f̃κ(·) and ηκ. The

third inequality follows from the optimality criterion used by the balance algorithm (see Eq. (2)),

together with the fact that we assume ε∈ (0,1/ηκ) so that 1−ηκ · ε> 0. The next equality holds by

the tower property of conditional expectations. Finally, the last inequality holds since the function

f(·) is non-decreasing.

EC.3.2. Proof of Lemma 2

For simplicity, we drop the reference to the coupled probabilistic space ω. We start by noting that

T%

t=1

∆t
i · I

6
ξt

+
AπC

t

,
= i

7

=
T%

t=1

+
wi

+
Ct,πfκ

i + et

,
−wi

+
Ct,πfκ

i

,,
· I
6
ξt

+
AπC

t

,
= i

7

=
T%

t=1

qi,t
(1+

!
j∈C

t,πfκ
i

qi,j) · (1+ qi,t +
!

j∈C
t,πfκ
i

qi,j)
· I
6
ξt

+
AπC

t

,
= i

7

≥
T%

t=1

qi,t
(1+

!
j∈C

T+1,πfκ
i

qi,j) · (1+ qi,t +
!

j∈C
T+1,πfκ
i

qi,j)
· I
6
ξt

+
AπC

t

,
= i

7
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≥
T%

t=1

(1− ε) · qi,t
(1+

!
j∈C

T+1,πfκ
i

qi,j)2
· I
6
ξt

+
AπC

t

,
= i

7

= (1− ε) ·
+
1−wi

+
CT+1,πfκ

i

,,2

·
2

T%

t=1

qi,t · I
6
ξt

+
AπC

t

,
= i

75

= (1− ε) ·
+
1−wi

+
CT+1,πfκ

i

,,2

· wi(C
T+1,πC

i )

1−wi(C
T+1,πC

i )
,

where the first inequality holds since Ct,πfκ

i ⊆CT+1,πfκ

i for every t∈ [T ]. For the second inequality,

we use the fact that the small probability assumption together with the MNL assumption imply

that qi,j ≤ ε, plus the fact that 1/(1+ ε)≥ (1− ε). The second-to-last equality uses the probabilistic

structure of the MNL model, which implies that

1

(1+
!

j∈C
T+1,πfκ
i

qi,j)2
=
+
1−wi

+
CT+1,πfκ

i

,,2

.

The final equality follows from the fact that

wi(C
T+1,πC

i ) =

!T

t=1 qi,t · I
6
ξt

+
AπC

t

,
= i

7

1+
!T

t=1 qi,t · I
-
ξt
"
AπC

t

#
= i

. .

EC.3.3. Proof of Lemma 3

Define f̃κ(x) = fκ(min{1, x+ ε}). For simplicity, we drop the reference to the coupled probabilistic

space ω. In addition, we observe that

T%

t=1

∆t
i · I

6
ξt

+
Aπfκ

t

,
= i

7
· f̃κ

+
wi

+
Ct,πfκ

i

,,

=
T%

t=1

+
wi

+
Ct,πfκ

i + et

,
−wi

+
Ct,πfκ

i

,,
· I
6
ξt

+
Aπfκ

t

,
= i

7
· fκ

+
min

8
1,wi

+
Ct,πfκ

i

,
+ ε

9,

≥
T%

t=1

I
6
ξt

+
Aπfκ

t

,
= i

7
·

:

;
0 wi(C

t,πfκ

i +et)

wi(C
t,πfκ
i )

fκ (u)du

<

=

=

0 wi(C
T+1,πfκ

i )

0

fκ (u)du , (EC.8)

where the inequality follows by noting that

+
wi

+
Ct,πfκ

i + et

,
−wi

+
Ct,πfκ

i

,,
· fκ

+
wi

+
Ct,πfκ

i

,
+ ε

,
=

0 wi(C
t,πfκ

i +et)

wi(C
t,πfκ
i )

fκ

+
wi

+
Ct,πfκ

i

,
+ ε

,
du

≥
0 wi(C

t,πfκ

i +et)

wi(C
t,πfκ
i )

fκ (u)du ,

since fκ(·) is non-decreasing and wi(C
t,πfκ

i +et)≤wi(et)+wi(C
t,πfκ

i )≤ ε+wi(C
t,πfκ

i ) by the ε-small

probability assumption plus the fact that wi(·) satisfies the diminishing returns property.
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EC.3.4. Proof of Theorem 2

By Lemma 1, we have

Mπfγ,κ "{zt}Tt=1,{St}Tt=1

#

≥ (1− ηκ · ε) ·
%

i∈S

Eω

$+
1− fκ

+
wi

+
CT+1,πfγ,κ

i

,,,
·
2

T%

t=1

∆t
i · I

6
ξt

+
AπC

t

,
= i

75

+
T%

t=1

∆t
i · I

6
ξt

+
Aπfγ,κ

t

,
= i

7
· f̃κ

+
wi

+
Ct,πfγ,κ

i

,,&

= (1− ηκ · ε) ·
%

i∈S

Eω [Ri(ω)] . (EC.9)

With respect to the optimal clairvoyant algorithm, we have

MπC "
{zt}Tt=1,{St}Tt=1

#
=
%

i∈S

Ew

6
wi

+
CT+1,πC

i (ω)
,7

. (EC.10)

The remainder of the proof proceeds by fixing a sample realization of ω, and by comparing the

random variables appearing in the expectations (EC.9) and (EC.10) for each given supplier i∈ S.
Specifically, the competitive ratio of Theorem 2 immediately follows from the next claim.

Lemma EC.5. Ri(ω)

wi(C
T+1,πC

i (ω))
≥ (1− ε) ·κ.

Proof. We begin by formulating an optimization problem that is closely related to our analysis.

Define B(ε) as the set of non-negative vectors s= {st,k}t∈[T ],k∈K such that
!

k∈K(st,k)
γ ≤ ε/(1− ε)

for every t ∈ [T ]. Given a non-negative vector x= (x1, . . . , xK) and α ∈ (0,1], the (x,α)-marginal

nest allocation problem is defined as follows:

min
s∈B(ε)

T%

t=1

2 !K

k=1 (xk + st,k)
γ

1+
!K

k=1 (xk + st,k)
γ
−

!K

k=1 x
γ
k

1+
!K

k=1 x
γ
k

5
(EC.11)

s.t.

!K

k=1(
!T

t=1 st,k)
γ

1+
!K

k=1(
!T

t=1 st,k)
γ
≥ α .

In what follows, we denote by h(x,α) the optimal value of the above mathematical program. In

the next claim, we provide a lower bound on h(x,α), which is a key ingredient of our analysis.

Lemma EC.6. For every x≥ 0 and α∈ (0,1], we have

h(x,α)≥ (1− ε) · ν(x) (1− ν(x)) ·
22

1+

3
α · (1− ν(x))

ν(x) · (1−α)

41/γ
5γ

− 1

5
,

where ν(x) =
!K

k=1 x
γ
k/(1+

!K

k=1 x
γ
k).

To avoid deviating from our main argument, the proof is deferred to Appendix EC.3.5. In the

remainder of the proof, we use the shorthand α= wi(C
T+1,πC

i ). Let ψi,t,k = I[ξt(AπC

t ) = i, t ∈Nk]
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for every t ∈ [T ] and k ∈ [K]. In addition, we specify the vectors x = (
!

t∈Nk
CT+1,πfγ,κ

i,t · qi,t)k∈K

and s= (qi,t ·ψi,t,k)t∈[T ],k∈[K].

Note that

T%

t=1

∆t
i · I

6
ξt

+
AπC

t

,
= i

7

=
T%

t=1

+
wi

+
Ct,πfγ,κ

i + et

,
−wi

+
Ct,πfγ,κ

i

,,
· I
6
ξt

+
AπC

t

,
= i

7

≥
T%

t=1

+
wi

+
CT+1,πfγ,κ

i + et

,
−wi

+
CT+1,πfγ,κ

i

,,
· I
6
ξt

+
AπC

t

,
= i

7

=
T%

t=1

!K

k=1(
!

u∈Nk
CT+1,πfγ,κ

i,u · qi,u + qi,t ·ψi,t,k)
γ

1+
!K

k=1(
!

u∈Nk
CT+1

i,u · qi,u + qi,t ·ψi,t,k)γ
−

!K

k=1(
!

u∈Nk
CT+1,πfγ,κ

i,u · qi,u)γ

1+
!K

k=1(
!

u∈Nk
CT+1,πfγ,κ

i,u · qi,u)γ

=
T%

t=1

!K

k=1(xk + st,k)
γ

1+
!K

k=1(xk + st,k)γ
−

!K

k=1 x
γ
k

1+
!K

k=1 x
γ
k

≥ f (x,α)

≥ (1− ε) · ν(x) (1− ν(x)) ·
22

1+

3
α · (1− ν(x))

ν(x) · (1−α)

41/γ
5γ

− 1

5

= (1− ε) ·wi

+
CT+1,πfγ,κ

i

,
·
+
1−wi

+
CT+1,πfγ,κ

i

,,
·

:

;

:

;1+

2
α · (1−wi(C

T+1,πfγ,κ

i ))

wi(C
T+1,πfγ,κ

i ) · (1−α)

51/γ
<

=
γ

− 1

<

= , (EC.12)

where the first inequality proceeds from the submodularity of the aggregate matching function

wi(·). The second inequality follows by noting that the vector s is feasible with respect to the

(x,α)-marginal nest allocation problem (EC.11). Indeed, we have

α=wi(C
T+1,πC

i ) =

!
k∈[K](

!
t∈[t] st,k)

γ

1+
!

k∈[K](
!

t∈[t] st,k)
γ
.

In addition, note that s∈B(ε) since
!

k∈[K](st,k)
γ ≤ qγi,t ≤ ε/(1−ε) where the last inequality follows

from the ε-small probability assumption. The third inequality above proceeds from Lemma EC.6.

Lastly, the final equality follows by noting that ν(x) =wi(C
T+1
i ).

Now, as in the proof of Theorem 1, we have

T%

t=1

∆t
i · I

6
ξt

+
Aπfγ,κ

t

,
= i

7
· f̃κ

+
wi

+
Ct,πfγ,κ

i

,,
≥
0 wi(C

T+1,πfγ,κ

i )

0

fγ,κ (u)du . (EC.13)

The latter inequality proceeds from the same reasoning as inequality (EC.8) in Appendix EC.3.3.

By combining (EC.12) and (EC.13), we obtain

Ri(ω)

wi(C
T+1,πC

i (ω))
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≥ 1

α
·

:

;
0 wi(C

T+1,πfγ,κ

i )

0

fγ,κ (u)du+(1− ε) ·
+
1− fγ,κ

+
CT+1,πfγ,κ

i

,,
·wi

+
CT+1,πfγ,κ

i

,

·
+
1−wi

+
CT+1,πfγ,κ

i

,,
·

:

;

:

;1+

2
α · (1−wi(C

T+1,πfγ,κ

i ))

wi(C
T+1,πfγ,κ

i ) · (1−α)

51/γ
<

=
γ

− 1

<

=

<

=

≥ (1− ε) ·κ ,

where the second inequality holds since fγ,κ(·) is a solution of inequality (MNL-ODI) with param-

eter κ. □

EC.3.5. Proof of Lemma EC.6

Let h̃(x,α) be the optimal value of a variant of the (x,α)-marginal nest allocation problem, defined

as

min
s≥0

T%

t=1

K%

k=1

(xk + st,k)
γ −xγ

k (EC.14)

s.t.

!K

k=1(
!T

t=1 st,k)
γ

1+
!K

k=1(
!T

t=1 st,k)
γ
≥ α .

Let s̃ be an optimal vector for (EC.14). Observe that, without loss of optimality, we may focus on

solutions were for every k ∈ [K] there exists tk ∈ [T ] such that s̃t,k = 0 for all t ∕= tk. Indeed, suppose

that s̃t1,k, s̃t2,k > 0 for some t1 ∕= t2 and k ∈ [K]. Consider the modified vector s̄ where s̄t1,k = 0,

s̄t2,k = s̃t1,k + s̃t2,k, and s̄t′,k′ = s̃t′,k′ for every (t′, k′) /∈ {(t1, k), (t2, k)}. The key observation is that

the vector s̄ is feasible and has an objective value less than or equal to that of s̃ since

2
T%

t=1

K%

k=1

(xk + s̄t,k)
γ −xγ

k

5
−
2

T%

t=1

K%

k=1

(xk + s̃t,k)
γ −xγ

k

5

= (xk + s̃t1,k + s̃t2,k)
γ
+xγ

k − (xk + s̃t1,k)
γ − (xk + s̃t2,k)

γ

≤ 0 ,

where the last inequality holds since γ ≤ 1. By repeating this procedure a finite number of times,

we ensure that there exists an optimal vector that satisfies the above property. In what follows, we

overload notation by referring to this vector as s̃.

Moreover, the necessary KKT conditions for stationary points imply that there exists θ> 0 such

that, for every nest k ∈ [K],

γ ·
"
xk + s̃tk,k

#γ−1
= θ · γ (

!T

u=1 s̃u,k)
γ−1

(1+
!K

k=1(
!T

t=1 s̃t,k)
γ)2

.



e-companion to Author: Online Assortment Optimization for Two-sided Matching Platforms ec21

By rearranging the above equation, we infer that the ratio (xk + s̃tk,k)/s̃tk,k is uniform across all

the nests k ∈ [K]. Hence, it immediately follows that there exists θ̃ > 0 such that s̃tk,k = θ̃ · xk for

every k ∈ [K]. Consequently, h̃(x,α) can be expressed in closed form as follows:

h̃(x,α) =
T%

t=1

K%

k=1

(xk + s̃t,k)
γ −xγ

k

=
K%

k=1

"
xk + s̃tk,k

#γ −xγ
k

=

2
K%

k=1

xγ
k

5
·
++

1+ θ̃
,γ

− 1
,

=
ν(x)

1− ν(x)
·
22

1+

3
α · (1− ν(x))

ν(x) · (1−α)

41/γ
5γ

− 1

5
, (EC.15)

where the fourth equality holds since (i) from the definition of ν, we immediately infer that
!K

k=1 x
γ
k = ν(x)

1−ν(x)
, and (ii) the optimality of s̃ with respect to the modified optimization prob-

lem (EC.14) implies that θ̃γ · (
!K

k=1 x
γ
k) =

!K

k=1(
!T

t=1 s̃t,k)
γ = α/(1−α), where the latter equality

proceeds by remarking that the constraint in (EC.14) is necessarily binding at optimality.

Now, we are ready to lower bound h(x,α). To this end, let s∗ be an optimal vector with respect

to the original (x,α)-marginal nest allocation problem (EC.11). We obtain

h (x,α) =
T%

t=1

2 !K

k=1(xk + s∗t,k)
γ

1+
!K

k=1(xk + s∗t,k)
γ
−

!K

k=1 x
γ
k

1+
!K

k=1 x
γ
k

5

=
T%

t=1

!K

k=1(xk + s∗t,k)
γ −

!K

k=1 x
γ
k

(1+
!K

k=1(xk + s∗t,k)
γ) · (1+

!K

k=1 x
γ
k)

≥ 1

(1+
!K

k=1 x
γ
k +

!K

k=1 s
∗γ
t,k) · (1+

!K

k=1 x
γ
k)

·
2

T%

t=1

K%

k=1

"
(xk + s∗t,k)

γ −xγ
k

#
5

≥ 1− ε

(1+ (1− ε) ·
!K

k=1 x
γ
k) · (1+

!K

k=1 x
γ
k)

·
2

T%

t=1

K%

k=1

"
(xk + s∗t,k)

γ −xγ
k

#
5

≥ (1− ε) · (1− ν(x))2 ·
2

T%

t=1

K%

k=1

"
(xk + s∗t,k)

γ −xγ
k

#
5

≥ (1− ε) · (1− ν(x))2 · h̃ (x,α)

≥ (1− ε) · ν(x)(1− ν(x)) ·
22

1+

3
α · (1− ν(x))

ν(x) · (1−α)

41/γ
5γ

− 1

5
,

where the first inequality holds since γ ≤ 1. The second inequality is implied by s∗ ∈ B(ε). The

fourth inequality proceeds from the definition of the modified optimization problem (EC.14) relative

to (EC.11). The last inequality immediately follows from (EC.15).
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EC.3.6. Efficient construction of preference-aware balancing functions

Through the next lemma, we develop a numerical method that generates certifiable preference-

aware balancing functions. This approach is implemented in the computer-aided proof program of

Section 4.2.

Lemma EC.7. Fix γ ∈ (0,1) and κ ∈ [1/2,κ∗) such that there exists a K-Lipschitz non-

decreasing discount function that satisfies the nonlinear ordinary differential inequality (NL-ODI).

For every κ′ ∈ [1/2,κ) and ε ∈ (0, ε0), where ε0 =min{(κ− κ′)/(Kκ),κ′/(3 + 2κ/(κ−κ′))} , there

is an algorithm that runs in time O( 1
ε3

· (log 1
ε
)2) and computes a continuous piecewise linear,

non-decreasing discount function fε(·) that satisfies the following nonlinear ordinary differential

inequality in the variable x∈ [0,1]:

min
α∈(0,1)

1

α
·
20 x

0

fε(u)du+(1− fε(x)) ·x (1−x) ·
22

1+

3
α · (1−x)

x · (1−α)

4 1
γ

5γ

− 1

55

≥ κ′ −
3
3+

2κ

κ−κ′

4
ε . (EC.16)

Proof. As in the statement of Lemma EC.7, we fix γ ∈ (0,1) and κ ∈ [1/2,κ∗) such that there

exists aK-Lipschitz continuous, non-decreasing discount function fγ,κ(·) that satisfies the nonlinear
ordinary differential inequality (NL-ODI). Let κ′ ∈ [1/2,κ) and let ε= 1

N
for some integer N ≥ 1

ε0
.

In what follows, we formulate an approximate dynamic program that returns a piecewise linear

function fε(·) : [0,1] → [0,1] with respect to the sequence of intervals {Ik}N
2

k=1, where Ik = [(k −
1)ε2, k · ε2) for each k ∈ [N 2], that meets the properties stated in Lemma EC.7.

Dynamic program. Each state of the dynamic program is described by the integer state variables

(k, d)∈ [N 2]× [0, ⌈log1+εN⌉]. For every d∈ [0, ⌈log1+εN⌉], we define wd = ε ·(1+ε)d. Next, we define

the value function F (·) through the following dynamic programming equations, where for every

integers 2≤ k≤N 2 and 0≤ d≤ [0, ⌈log1+εN⌉], we have

F (k, d) = max
d0∈[0,d]:

F (k−1,d0)≥0

N
F (k− 1, d0)+ ε2 ·wd , if wd−1 ≤ 1−Ψ

"
(k− 1) · ε2, F (k− 1, d0)

#

−1 , otherwise.
(EC.17)

Here, for every x, y ∈ (0,1), we denote by Ψ(x, y) an (1− ε)-close underestimate of the optimal

value of the following optimization problem:

max
α∈(0,1)

I [y≤C1] ·
κ′ ·α− y/(1− ε)

(1−x) ·x · ((1+ (α·(1−x)

x·(1−α)
)
1
γ )γ − 1)

, (EC.18)

where C1 = κ′ · (1− ε)2. We will explain shortly how problem (EC.18) is approximated by propos-

ing an efficient subroutine. To fully specify our dynamic program F (·), we impose the boundary

conditions F (1, d) = ε2 ·wd if (1− ε) · (1− κ′

κ
)≤wd−1 ≤ (1−κ′) and F (1, d) =−1 otherwise.
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As revealed by our subsequent analysis, the value of F (k, d) can be thought of as an “approx-

imation” for the maximum value of the integral
O kε2

0
g(u)du over all continuous piecewise linear,

non-decreasing functions g(·) : [0, kε2] *→ [0,wd] that satisfy the following nonlinear ordinary differ-

ential inequality in the variable x∈ [0, kε2]:

min
α∈(0,1)

1

α
·
20 x

0

g(u)du+(1− g(x)) ·x (1−x) ·
22

1+

3
α · (1−x)

x · (1−α)

4 1
γ

5γ

− 1

55
≥ κ′ −O(ε) .

When no such function g(·) exists, the dynamic program takes the value F (k, d) =−1.

Computational aspects. In terms of running time, the dynamic program F (·) can be solved in

time O(|CΨ| ·N 2 log1+εN), where |CΨ| is an upper bound on the running time for approximately

solving the optimization problem (EC.18) that defines the value of Ψ(x, y) for any given inputs

x, y ∈ (0,1) generated by the dynamic programming equation. For this purpose, we utilize a binary

search method on the variable α ∈ (0,1) as a subroutine to approximate problem (EC.18). Next,

we establish an upper bound on the running time of this method.

Claim EC.1. |CΨ|=O(log 1
ε
).

Based on the above claim, the dynamic program F has an overall running time of O( 1
ε3
(log 1

ε
)2).

Analysis. We proceed by analyzing the dynamic program F (·) to establish the properties stated

by Lemma EC.7. Our analysis is twofold. First, we relate the value function F (·) of our dynamic

program to the function fγ,κ(·). Second, we show how to convert the optimal sequence of dynamic

programming decisions into a piecewise linear, non-decreasing discount function fε(·) that satisfies
the properties of Lemma EC.7. These properties are established via the next claims.

Claim EC.2 (Existence). For every k ∈ [N 2], we have maxd∈[0,⌈log1+ε N⌉]F (k, d) ≥ (1 − ε) ·
(
O kε2

0
fγ,κ(u)du).

Claim EC.3 (Certifiability). Let (1, d∗1), (2, d
∗
2), . . . , (N

2, d∗
N2) be an optimal sequence of

dynamic programming decisions with respect to F (·) and define fε(u) =wd∗
k−1

−1+(u−(k−1)ε2)/ε2 ·
wd∗

k
−1, where d∗0 = d∗1 and k ∈ [N 2] is the unique integer such that u∈ Ik. Then, the function fε(·) is

continuous piecewise linear and non-decreasing, and it satisfies the non-linear ordinary differential

inequality (EC.16).

Proof of Claim EC.1. Fix any inputs x, y ∈ (0,1)2 of the optimization problem (EC.18), as

generated by the dynamic programming equation. To upper bound |CΨ|, we make the following

observations:

• Observation 1: Without loss of optimality, we can restrict the variable α to the domain (C2,1)

where C2 =min{y,C1}/(1− ε)/κ′. The function optimized by problem (EC.18) is unimodal with

respect to α in the domain (C2,1).
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• Observation 2: Let α∗ be the optimal solution of problem (EC.18). By noting that C2 ≤ (1−ε),

it is not difficult to verify that α∗ ≥ (1+ ε3) ·C2.

• Observation 3: In each call to the subroutine for problem (EC.18), the argument x in Ψ(x, y)

satisfies x≤ 1−ε2; this observation proceeds by noting that the argument is of the form x= (k−1)ε2

where k ∈ [N 2]. Based on this observation and the fact that C2 ≤ 1− ε, it is not difficult to verify

that α∗ ≤ 1− ε4.

By combining these observations, we conclude that our binary search method returns a (1− ε)-

underestimate of Ψ(x, y) after O(log 1
εy
) steps. Due to the boundary conditions on F (1, ·), we have

y≥ ε3 in each call to our subroutine, meaning that Ψ(x, y) is determined in time O(log 1
ε
).

□
Proof of Claim EC.2. Define dk = ⌈log1+ε(

1
ε
·max{fγ,κ((k − 1)ε2),1− κ′

κ
})⌉ for every k ∈ [N 2].

We show that the sequence of dynamic programming decisions (1, d1), . . . , (N
2, dN2) is feasible with

respect to the dynamic programming equation (EC.17). It follows that

F (k, dk)≥
k%

q=1

ε2 ·wdq ≥
k%

1=1

0 qε2

(q−1)ε2
max

E
fγ,κ

"
(q− 1) · ε2

#
,1− κ′

κ

F
du

≥
k%

q=1

0 qε2

(q−1)ε2
max

E
fγ,κ (u)−Kε2,1− κ′

κ

F
du≥

3
1− Kκ

κ−κ′ ε
2

40 kε2

0

fγ,κ(u)du

≥ (1− ε) ·
0 kε2

0

fγ,κ(u)du , (EC.19)

where the third inequality holds since fγ,κ(·) is K-Lipschitz and the last inequality ensues from the

fact that ε≤ ε0 ≤ Kκ
κ−κ′ .

Now, we fix k ∈ [N 2] and we seek to show that wdk−1 ≤ 1−Ψ((k− 1)ε2, F (k− 1, dk−1)), meaning

that the corresponding dynamic programming decision at state (k, dk) is feasible. Suppose that

fγ,κ((k− 1)ε2)≥ 1− κ′

κ
. Here, we note that

wdk−1 ≤ fκ((k− 1)ε2)

≤ 1−max

P
Q

R0 , max
α∈(0,1)

κ ·α−
O (k−1)ε2

0
fκ(u)du

(1− (k− 1)ε2) · (k− 1)ε2 · ((1+ ( α(1−(k−1)ε2)

(k−1)ε2·(1−α)
)
1
γ )γ − 1)

S
T

U

≤ 1− max
α∈(0,1)

max

P
Q

R0 ,
κ′ ·α−F (k− 1, dk−1)/(1− ε)

(1− (k− 1)ε2) · (k− 1)ε2 · ((1+ ( α(1−(k−1)ε2)

(k−1)ε2·(1−α)
)
1
γ )γ − 1)

S
T

U

≤ 1−Ψ
"
(k− 1)ε2, F (k− 1, dk−1)

#
, (EC.20)

where the second inequality follows from the differential inequality (NL-ODI). The third inequality

proceeds from inequality (EC.19). The last inequality holds since Ψ(·) is an underestimate of the

optimal value of problem (EC.18).
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Conversely, suppose that fγ,κ((k− 1)ε2)< 1− κ′

κ
=wdk . By multiplying the differential inequal-

ity (NL-ODI) by a factor of (κ′/κ)/(1− fγ,κ((k − 1)ε2)), we obtain in particular that, for xk =

(k− 1)ε2,

min
α∈(0,1)

1

α
·
20 xk

0

fγ,κ(u)du+
"
1−wdk

#
·xk (1−xk) ·

22
1+

3
α(1−xk)

xk · (1−α)

4 1
γ

5γ

− 1

55
≥ κ′ .

Consequently, using a line of reasoning identical to that in the sequence of inequalities (EC.20),

we infer that

wdk−1 ≤ 1− max
α∈(0,1)

max

P
Q

R0 ,
κ′ ·α−

O (k−1)ε2

0
fκ(u)du

(1− (k− 1)ε2) · (k− 1)ε2 · ((1+ ( α(1−(k−1)ε2)

(k−1)ε2·(1−α)
)
1
γ )γ − 1)

S
T

U

≤ 1− max
α∈(0,1)

max

P
Q

R0 ,
κ′ ·α−F (k− 1, dk−1)/(1− ε)

(1− (k− 1)ε2) · (k− 1)ε2 · ((1+ ( α(1−(k−1)ε2)

(k−1)ε2·(1−α)
)
1
γ )γ − 1)

S
T

U

≤ 1−Ψ
"
(k− 1)ε2, F (k− 1, dk−1)

#
.

□
Proof of Claim EC.3. By construction, it is immediate that the function fε(·) is continuous and

piecewise linear. The constraints of the dynamic program (EC.17) guarantee that d∗0 ≤ d∗1 ≤ . . .≤

d∗
N2 , which implies that fε(·) is non-decreasing. Consequently, it suffices to show that, for every

x∈ [0,1] and α∈ (0,1), we have

1

α
·
20 x

0

fε(u)du+(1− fε(x)) ·x (1−x) ·
22

1+

3
α(1−x)

x · (1−α)

4 1
γ

5γ

− 1

55

≥ κ′ −
3
3+

2κ

κ−κ′

4
ε . (EC.21)

To this end, we first verify the above inequality for all x∈ {(k− 1) · ε2 : k ∈ [N 2]} by leveraging the

dynamic programming equation (EC.17). With respect to x= (k− 1) · ε2 for some k ∈ [N 2] and an

arbitrary α∈ (0,1), we have

fε (x) = wd∗
k−1

−1

≤ wd∗
k
−1

≤ 1−Ψ
"
(k− 1)ε2, F

"
k− 1, d∗k−1

##

= 1−Ψ

2
(k− 1)ε2,

k−1%

q=1

ε2 ·wd∗q−1

5

≤ 1−Ψ

2
(k− 1)ε2,

0 (k−1)ε2

0

fε(u)du

5
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≤ 1− (1− ε) · max
α∈(0,1)

max

P
Q

R0 ,
(κ′ − ε) ·α− (

O x

0
fε(u)du)/(1− ε)

(1−x) ·x · ((1+ ( α(1−x)

x·(1−α)
)
1
γ )γ − 1)

S
T

U

≤ 1− (1− ε) · max
α∈(0,1)

max

P
Q

R0 ,
(κ′ − 2ε) ·α−

O x

0
fε(u)du

(1−x) ·x · ((1+ ( α(1−x)

x·(1−α)
)
1
γ )γ − 1)

S
T

U

≤ 1− max
α∈(0,1)

max

P
Q

R0 ,
(κ′ − 3ε) ·α−

O x

0
fε(u)du

(1−x) ·x · ((1+ ( α(1−x)

x·(1−α)
)
1
γ )γ − 1)

S
T

U , (EC.22)

where the first inequality proceeds from the dynamic programming constraint in (EC.17). The

second equality is formed by repeatedly applying the dynamic programming equation. The third

inequality holds since fε(u)≥ wd∗q−1 if u ∈ Iq by construction. The fourth inequality follows from

the definition of Ψ(·) in (EC.18). By rearranging the above inequality, it immediately follows that

inequality (EC.21) is satisfied when x= (k− 1) · ε2.
Now, it remains to consider the case of an arbitrary x∈ Ik, meaning that in particular (k−1) ·ε2 ≤

x≤ k · ε2. Here, we distinguish between two cases.

Case 1: k≥ 1
!
. Let xk = k · ε2. Using a sequence of inequalities identical to that leading to

inequality (EC.22), we obtain

fε (x) ≤ wd∗
k+1

−1

≤ 1− max
α∈(0,1)

max

P
Q

R0 ,
(κ′ − 3ε) ·α−

O xk
0

fε(u)du

(1−xk) ·xk · ((1+ ( α(1−xk)

xk·(1−α)
)
1
γ )γ − 1)

S
T

U

= 1− max
α∈(0,1)

max

P
Q

R0
(κ′ − 3ε) ·α−

O xk
0

fε(u)du

(1−xk) · ((x
1
γ

k +(α(1−xk)

1−α
)
1
γ )γ −xk)

S
T

U

≤ 1− max
α∈(0,1)

max

N
0

(κ′ − 3ε) ·α−
O xk
0

fε(u)du

(1−x) · ((x 1
γ +(α(1−x)

1−α
)
1
γ )γ −x)

V

= 1− max
α∈(0,1)

max

N
0
(κ′ − 3ε) ·α−

O x

0
fε(u)du−

O xk
x

fε(u)du

(1−x) · ((x 1
γ +(α(1−x)

1−α
)
1
γ )γ −x)

V

≤ 1− max
α∈(0,1)

max

N
0
(κ′ − 3ε) ·α− (1+ 2εκ/(κ−κ′)) ·

O x

0
fε(u)du

(1−x) · ((x 1
γ +(α(1−x)

1−α
)
1
γ )γ −x)

V

≤ 1− max
α∈(0,1)

max

N
0
(κ′ − 3ε− 2εκ/(κ−κ′)) ·α−

O x

0
fε(u)du

(1−x) · ((x 1
γ +(α(1−x)

1−α
)
1
γ )γ −x)

V
,

where the first inequality holds since fε(x) ∈ [wd∗
k−1

−1,wd∗
k
−1]. The third inequality proceeds by

noting that x ≤ xk and, for every θ ≥ 0, the function z *→ (1− z) · (z 1
γ + θ(1− z)

1
γ )γ − z) is non-

increasing over z ∈ [0,1]. The next inequality holds since
O xk
x

fε(u)du ≤ ε2 ≤ ε · x/(1− ε) ≤ 2εκ
κ−κ′ ·

O x

0
fε(u)du, where the second inequality holds since x≥ (k−1) ·ε2 ≥ (1−ε) ·ε and the last inequality

holds since fε(u)≥wd∗0−1 ≥ (1− ε) · (1− κ′

κ
) for every u∈ [0, x].
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Case 2: k < 1
!
. Let xk = (k− 1) · ε2. For every α≥ (

O x

0
fε(u)du)/(κ

′ − 3ε), we have

(1−x) ·
22

1+

3
α(1−x)

x(1−α)

4 1
γ

5γ

− 1

5

≥ (1− ε)
2 · (1−xk) ·

22
1+

3
α(1−xk)

x(1−α)

4 1
γ

5γ

− 1

5
, (EC.23)

where we use the fact that (1− x)≥ (1− ε) · (1− xk) and the super-homogeneity of the function

z *→ (1+ θ · z 1
γ )γ − 1 for every θ≥ 0. Consequently, we have

fε (x) ≤ wd∗
k
−1

≤ 1− max
α∈(0,1)

max

P
Q

R0 ,
(κ′ − 3ε) ·α−

O xk
0

fε(u)du

(1−xk) ·xk · ((1+ ( α(1−xk)

xk·(1−α)
)
1
γ )γ − 1)

S
T

U

≤ 1− (1− ε)2 · max
α∈(0,1)

max

P
Q

R0 ,
(κ′ − 3ε) ·α/xk − (

O xk
0

fε(u)du)/xk

(1−x) · ((1+ ( α(1−x)

xk·(1−α)
)
1
γ )γ − 1)

S
T

U

= 1− (1− ε)2 · max
u∈(0,1/xk)

max

P
Q

R0 ,
(κ′ − 3ε) ·u− (

O xk
0

fε(u)du)/xk

(1−x) · ((1+ ( u(1−x)

(1−u·xk)
)
1
γ )γ − 1)

S
T

U

≤ 1− (1− ε)2 · max
u∈(0,1/x)

max

P
Q

R0 ,
(κ′ − 3ε) ·u− (

O x

0
fε(u)du)/x

(1−x) · ((1+ ( u(1−x)

(1−u·x))
1
γ )γ − 1)

S
T

U

= 1− (1− ε)2 · max
α∈(0,1)

max

P
Q

R0 ,
(κ′ − 3ε) ·α/x− (

O x

0
fε(u)du)/x

(1−x) · ((1+ (α(1−x)

x(1−α)
)
1
γ )γ − 1)

S
T

U

≤ 1− max
α∈(0,1)

max

P
Q

R0 ,
(κ′ − 5ε) ·α/x− (

O x

0
fε(u)du)/x

(1−x) · ((1+ (α(1−x)

x(1−α)
)
1
γ )γ − 1)

S
T

U ,

where the second inequality immediately follows from (EC.22). The next inequality is a direct

consequence of inequality (EC.23). The fourth inequality holds since x≥ xk and the function fε(·)

is non-decreasing. □
□

EC.4. An upper bound on the competitiveness of online algorithms
under MNL preferences

Proposition EC.3. No algorithm, deterministic or randomized, that does not know the

sequence of customer types in advance can obtain a competitive ratio better than 0.8074 for the

online two-sided assortment problem when suppliers have MNL preferences, even under the ε-small

probability assumption.
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To establish Proposition EC.3 we construct a family of instances such that no online algorithm

can obtain a competitive ratio better than 0.8074. Our instances follow the same structure as the

“bad” instances in online matching and online one-sided assortment. In what follows, and to ease

exposition, we will follow the steps in the analogous proof in Golrezaei et al. (2014).

The family of instances. To establish Proposition EC.3, we construct the following family of

instances. Consider a setting with n suppliers. Let T be the time horizon; for simplicity, we think of

T as a very large number (that would tend to infinity) and a multiple of n. Suppliers’ choice models

are symmetric and follow the MNL model with qit = q = n/T for every i ∈ S and t ∈ [T ]. Observe

that, for every ε > 0, we can choose T0 = T0(ε) such that for all T ≥ T0, the ε-small probability

assumption is satisfied.

Customers are divided into 2n−1 types. Each type corresponds to a set Θ ∕= ∅ that contains the

suppliers that a customer of that type equally likes.

The arrival process is defined as follows: customers arrive in n phases of equal length, that is, the

number of customers in each phase is T/n . All the customers in each phase have the same type.

We denote the type of the customers in phase j by Θj . We have Θ1 = {1,2, . . . , n}. For j = 2, . . . , n,

we have Θj =Θj−1\θj−1, where θj−1 is a supplier chosen from Θj−1 uniformly at random. In other

words, the set of suppliers that a customer in phase j likes is equal to the set of suppliers liked

by customers in phase j − 1 minus one of those suppliers; i.e., customers in phase j randomly

lose interest in one of the suppliers of interest in phase j − 1. Therefore there are n! sequences of

customer arrivals, each with equal probability.

Towards the desired upper bound. Having described the arrival process, we now construct an

upper bound on the competitive ratio of online algorithms.

Claim EC.4. The number of expected matches achieved by the optimal clairvoyant algorithm

under the arrival process defined above is at least n T/n·n/T
1+T/n·n/T = n

2
.

Proof. Observe that an online clairvoyant algorithm that shows {θ1} to all customers in phase 1,

{θ2} to all customers in phase 2, and so on, achieves, in expectation,
!n

i=1
T/n·q

1+T/n·q = n T/n·n/T
1+T/n·n/T = n 1

2

matches. Therefore, the optimal clairvoyant algorithm achieves, in expectation, at least that many

matches.7 □
Next, we establish the following lemma.

Lemma EC.8. Consider the arrival process specified above. Then, an algorithm that offers to

each customer the assortment consisting of all suppliers that (i) are of interest to her and (ii) have

7 In fact, one can show that the optimal clairvoyant algorithm is the one just described. While the proof is not
complicated, we decided to skip it in the interest of space and because the weaker claim that lower bounds the number
of expected matches by the optimal clairvoyant algorithm suffices to establish our results.
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the lowest probability of matching given the requests they have received so far, is optimal among all

deterministic algorithms. Moreover, there exists a sequence of customer types such that the expected

number of matches achieved by the algorithm is at most
!n

i=1

!i
j=1

1
n−j+1

1+
!i

j=1
1

n−j+1
.

Proof. The first part of the claim, namely that the algorithm that offers to each customer the

assortment consisting of all suppliers with the lowest match probability that are of interest to

her is optimal among all deterministic algorithms, follows by applying standard (albeit lengthy)

arguments. For the sake of brevity, we refer the reader to the proof of Lemma 6 in Golrezaei

et al. (2014) that establishes the same argument for their setting. The only minor modification

is that our marginal rewards exhibit diminishing returns; however, this is not a problem as the

main arguments in the proof rely on monotonicity and symmetry, two properties that our rewards

(match probabilities) satisfy.

Hence, under the algorithm described above, in each phase, each remaining supplier that is of

interest to the customers in that phase (which are all of the same type) receives an equal number of

the customer requests. In phase j, this is equivalent to T
n

1
n−j+1

requests per supplier that remains

in that phase, as there are n− j+1 suppliers of interest in that phase. Therefore, supplier θ1, i.e.,

the supplier that won’t be of interest to the customers arriving in phase two and onward, will

obtain T
n

1
n
requests. Similarly, supplier θ2 will obtain

T
n

1
n
+ T

n
1

n−1
requests, and so on. Therefore, the

expected number of matches achieved by the algorithm is at most
!n

i=1

!i
j=1

1
n−j+1

1+
!i

j=1
1

n−j+1
, as desired.

□
Combining Claim EC.4 and Lemma EC.8 we obtain the following corollary.

Corollary EC.1. Consider the arrival process specified above. No deterministic algorithm that

knows that the sequence of arrivals is as specified above can achieve a competitive ratio greater than

2 ·
!n

i=1

!i
j=1

1
n−j+1

1+
!i

j=1
1

n−j+1

n
.

Moreover, we have that limn→∞

2·
!n

i=1

!i
j=1

1
n−j+1

1+
!i

j=1
1

n−j+1

n
< 0.8074.

Finally, by applying Yao’s lemma (Yao 1977) to Corollary EC.1, we obtain the result in Propo-

sition EC.3.

EC.5. Model robustness

In this section, we examine the robustness of our model when we consider relevant extensions

to online labor marketplaces. In online marketplaces, it is not uncommon that the same worker

simultaneously desires to be matched with multiple jobs/tasks. As discussed in Section 2, our

modeling approach and algorithmic results can be directly leveraged when customers choose to
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send multiple matching requests; our only requirement, stated by Assumption 1, is that the single-

stage assortment optimization problem needs to be computationally tractable. Nonetheless, one

implicit assumption of our model is that, if the firm agrees to match in return, the worker proceeds

with the job in question. In reality, this assumption is reasonable when the worker has sufficient

capacity to fulfil all the tasks he is matched with, or if the work is completed by the time the match

request is sent. For example, the latter assumption holds in contest design marketplaces such as

DesignCrowd, where the workers’ match request often corresponds to a full design submission, and

there is no work to be done after the firms reveal which submissions are rewarded. Thus, for these

settings, our approach and results are directly applicable.

In what follows, we examine a variant of our online matching problem for practical settings in

which the above assumption is violated. Our modeling approach remains identical with the sole

exception that workers can fulfil a single match, even if they submit multiple match requests.

This setting is mostly relevant to online platforms for full-time employment, rather than part-

time freelancing. The crucial difference with our model is that the matching process often involves

multiple rounds where each side of the market sequentially expresses its preferences, to resolve the

conflicts between match requests, as defined below. This type of mechanism is rarely studied in

the context of online matching markets and, more broadly, when designing online algorithms, due

to the difficulty of modeling repeated interactions between participants. Nonetheless, our goal is

to quantify the degree to which our model gives a good approximation of the optimal expected

number of matches in these types of markets. Consequently, our main objective is to measure the

expected number of conflicts; i.e., a conflict occurs whenever two distinct match requests from

the same customer are simultaneously accepted by suppliers. The resolution of these conflicts is

overlooked by our model. We empirically measure the expected number of conflicts in synthetic

instances, which may reflect realistic market regimes. In Section EC.5.1, we introduce our random

generative model for these instances. In Section EC.5.2, we report our numerical results. We find

that, in realistic market regimes, the number of conflicts is relatively small compared to the total

expected number of matches.

EC.5.1. Synthetic instances

We generate random instances of the online two-sided assortment problem in which customers send

match requests to multiple suppliers. This aspect is captured by a multi-purchase choice model.

We implement our preference-aware balancing algorithm for the MNL model, with a numerical

approximation of the discount function f1,κ∗(1). In what follows, we describe the instance parameters

we use to conduct our simulations in Section EC.5.2:
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Arrival process. The set S = [1,100] is comprised of 100 suppliers and there are T arriving

customers. These parameters are set to reflect that the number of freelancers in the market is

typically much larger than the number of open jobs listed at any point in time.8 We distinguish

between two customer types Z = {zg, zb}, which are respectively said to be good and bad. At

each time period t ∈ [T ], the t-th arriving customer is good with probability θ, Pr[zt = zg] = θ,

independently from the history. We vary the proportion of good customers in the market by picking

θ ∈ {5%,10%,15%,20%}.
Customers’ choice models. Contrary to the standard version of our model, customers now send

multiple match requests. Reflecting this phenomenon, we specify the Bundle-MNL choice model,

which corresponds to a natural generalization of the MNL model in multi-purchase settings (Tula-

bandhula et al. 2020). More specifically, we assume that each customer requests matches with

κ distinct suppliers picked uniformly at random over S. That is, for every customer-type z ∈ Z
and an assortment A⊆ S, we assume that each bundle B ⊆A comprised of exactly κ suppliers is

picked with a uniform probability φz
B(A) = (1 +

"|A|
κ

#
)−1, and the empty bundle B = ∅ is picked

with the residual probability φz
B(A) = (1 +

"|A|
κ

#
)−1. Here, the parameter κ is varied in the set

κ∈ {1,3,5,10,15,20}.
Suppliers’ choice models. Finally, it remains to specify the suppliers’ aggregate match functions

wi(·). We adopt the following MNL choice model: wi(C) =
0.5Cg+0.02Cb

1+0.5Cg+0.02Cb
with respect to the set

of requests C ∈NZ . We assume that all suppliers leave at the end of the time horizon T . Given a

policy π, each supplier i ∈ S picks one random customer ζi ∈CT+1,π with probability Pr[ζi = t] =
0.5·I[zt=zg ]+0.02·I[zt=zb]

1+0.5·CT+1,π
g +0.02·CT+1,π

b

for all t ∈ CT+1,π, and remains unmatched with the remaining probability.

(By a slight abuse of notation, we treat CT+1,π both as a count vector of customer types and a

subset of arriving customers.)

The important quantity we wish to measure is the expected number of conflicts, defined as

E

G

H
%

t∈[T ]

max

N
0,
%

i∈S

I [ζi = t]− 1

VI

J .

If the expected number of conflicts is small, our model remains relevant, even if the matching

process is incomplete after a single round. Intuitively, this metric is affected by two key dimensions

of the problem: (i) the number of match requests κ made by customers, and (ii) the proportion θ of

good versus bad customers in the market. For example, no conflict arises if κ= 1 as we assume in the

remainder of the paper. Good customers attract more match requests from suppliers; this vertical

differentiation means that match requests from suppliers are more concentrated on top customers,

8 For example, in September 2021, DesignCrowd reported 999,462 freelance designers for 410,376 completed projects
since the platform’s inception.
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which exacerbates the market congestion. Hence, we choose to vary both parameters κ and θ while

leaving all other parameters constant. Additionally, we vary the number of arriving customers

T ∈ {200,400,600,800}. We also ran simulations varying other model parameters including the

MNL weights of good customers and bad customers, and the weight of the outside option in the

customers’ choice models. The results are qualitatively similar, and thus omitted for brevity.

EC.5.2. Results

Our numerical results are reported in Table EC.1. The first metric “# matches” gives the aver-

age number of matches, “# conflicts” counts the average number of conflicts, and “% conflicts”

expresses this quantity as a percentage of “# matches.” Overall, we find that the number of con-

flicts ranges from 0% to 14% in proportion to the number of matches. As one might expect, if

customers send a larger number κ of match requests, or if the proportion θ of good customers

increases, then there are more conflicts in the market. The first parameter has a greater influence

on the number of conflicts, but the relative marginal increase tends to diminish for κ ≥ 10. In

Table EC.2, we report the same metrics but this time we vary the number of customers (i.e., the

customer/supplier imbalance) and the number of applications, while fixing the value of θ to 5%.

Based on the numerical findings in Table EC.1, we get a validation that the number of conflicts

might be a relatively small effect in realistic regimes of parameters for online labor marketplaces.

Overall, the existence of conflicts is a negligible concern when κ ≤ 5, but it perhaps becomes

significant when κ≥ 10. Nevertheless, the latter regime means that each worker submits a match

request to 10% of the total number of listings available in the market. To interpret Table EC.1

in more concrete terms, in a large unnamed online labor market,9 there are on average 400 new

jobs posted every day. Each job receives 20 applications on average. The job fill rate is between

40% and 45%. There are 2.5 million freelancers listed but, naturally, we do not expect all of them

to be active or to be compatible with every job. Observe that the combination of parameters in

Table EC.1 that best fits this description (with the market size scaled down to 100 jobs) corresponds

to (θ,κ) = (5%,3), for which the proportion of conflicts is less than 4%.

9 All the information in this paragraph was obtained from the working paper by Horton and Vasserman (2021).



e-companion to Author: Online Assortment Optimization for Two-sided Matching Platforms ec33

Table EC.1 Expected number of conflicts and matches as a function of θ and κ, for a fixed T = 400.

Parameters Metrics

θ κ # matches # conflicts % conflicts

5% 1 17.79 0 0%

5% 3 40.3 1.6 3.97%

5% 5 51.78 3.05 5.89%

5% 10 69.41 6.39 9.2%

5% 15 77.41 8.18 10.56%

5% 20 82.42 9.37 11.37%

10% 1 19.78 0 0%

10% 3 43.37 2.21 5.09%

10% 5 55.64 4.2 7.55%

10% 10 71.5 7.33 10.26%

10% 15 78.88 9.27 11.75%

10% 20 79.06 10.67 13.49%

15% 1 22.18 0 0%

15% 3 47.36 2.77 5.86%

15% 5 58.86 4.81 8.17%

15% 10 75.03 8.81 11.74%

15% 15 81.46 10.34 12.7%

15% 20 85.67 12 13.63%

20% 1 23 0 0%

20% 3 46.76 2.66 5.7%

20% 5 61.52 5.61 9.12%

20% 10 75.92 9.15 12.05%

20% 15 82.41 10.63 12.89%

20% 20 86.14 11.93 13.85%
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Table EC.2 Expected number of conflicts and matches as a function of number of customers T and number of

applications κ, for a fixed θ= 5%.

Parameters Metrics

T κ # matches # conflicts % conflicts

200 1 0.00 9.32 0.00%

200 3 1.26 24.28 5.19%

200 5 3.11 54.42 5.72%

200 10 7.79 54.42 14.32%

200 15 9.34 61.72 15.14%

200 20 12.91 70.24 18.39%

400 1 0.00 17.80 0.00%

400 3 1.60 40.30 3.97%

400 5 3.05 51.79 5.89%

400 10 6.39 69.42 9.21%

400 15 8.18 77.41 10.57%

400 20 9.38 82.42 11.38%

600 1 0.00 25.99 0.00%

600 5 3.11 62.68 4.96%

600 10 5.41 76.13 7.11%

600 15 6.60 83.86 7.87%

600 20 7.73 87.71 8.81%

800 1 0.00 30.48 0.00%

800 5 3.19 69.97 4.56%

800 10 4.82 82.33 5.85%

800 15 5.42 87.16 6.22%

800 20 5.85 90.31 6.48%


