
Automatic vehicle counting area creation based on
vehicle Deep Learning detection and DBSCAN

Gerardo Alvarez Piña
Maestrı́a en Ciencias computacionales
Universidad Autónoma de Guadalajara

Guadalajara, Jalisco, Mexico
jesusg.alvarez@edu.uag.mx

E. Ulises Moya-Sánchez
Coordinación general de innovación and Universidad Autónoma de Guadalajara

Gobierno de Jalisco
Guadalajara, Jalisco, Mexico
eduardo.moya@jalisco.gob.mx

Abraham Sánchez-Pérez
Coordinación general de innovación

Gobierno de Jalisco
abraham.sanchez@jalisco.gob.mx

Ulises Cortés
HPAI

Barcelona Supercomputing Center/UPC
Barcelona, Spain

ulises.cortes@bsc.es

Abstract—Deep learning and high-performance computing
have augmented and speed-up the scope of video-based vehicles’
massive counting. The automatic vehicle counts result from the
detection and tracking of the vehicles in certain areas or Regions
of Interest (ROI). In this paper, we propose a technique to
create a counting area with different traffic-flow directions based
on YOLO and DBSCAN You Only Look Once version five
(YOLOv5) and Density-Based Spatial Clustering of Applications
with Noise (DBSCAN). We compare the performance of the
method against the manually counted ground truth. The pro-
posed method showed that it is possible to generate the ROIs
(counting areas) according to the traffic flow using deep learning
techniques with relatively good accuracy (less than 5 % error).
These results are promising but we need to explore the limits of
this method with more street-view configurations, time and other
detection and tracking algorithms, and in an HPC environment.

Index Terms—Deep learning, vehicle counting, DBSCAN

I. INTRODUCTION

The count of on-road vehicles can have many applications
such as traffic management, signal control, urban planning,
and most recently the evaluation of citizen mobility due to the
COVID restrictions [1], [2]. Automatic detection and counting
of vehicles in a video is a challenging task and the machine
vision vehicle counting approach is an integrated procedure
comprised of detection, tracking, and trajectory processing [3].

The use of video cameras presents a non-intrusive approach
to obtaining vehicle counts. However, computer vision algo-
rithms are an expensive computational method. This study
is motivated by the need to present an automatic vision-
based counting system that addresses the challenging real-
world vehicle counting problem. In our experience, analyzing
more than 30 CCTV cameras and around 2000 hours of traffic
flow videos the visual understanding of the scene to define the
counting area was a very time-consuming task. To define this
area it is necessary to take into account the traffic direction,
the projected geometry, and the region of interest. Moreover,

a compromise has to be chosen on its size i.e. the zone has to
be large enough to avoid too many false positives and small
enough to count every vehicle whatever its size.

In this context, we propose a new method to generate a
counting zone based on the You Only Look Once version five
(YOLOv5) [4] detection and Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) clustering [5]. For this
work, we present the results using a GPU implementation
because it was five times faster than our CPU implementation.
We conducted experiments on three public videos, and the
proposed method showed good performance in terms of error
comparison with humans. In summary, this study provides the
following contributions:

• A new vehicle-counting area strategy is presented. The
developed strategy exploits the traffic flow density infor-
mation to obtain an automatic counting area.

This method could help to automate the counting of vehicles
in a fully integrated and automated pipeline.

II. BACKGROUND

YOLO [4] is one of state of the art real-time1 detector.
Their architecture is divided into three main parts: i) model
backbone mainly used to extract important features from the
given input image, ii) model neck is mainly used to generate
feature pyramids to generalize well on object scaling, and
iii) model head mainly used to perform the final output
vectors with class probabilities, object scores, and bounding
boxes. YOLO performance is a trade-off between the size
(number of convolutional layers) and the number FLOPS.
The reported performance of small YOLOv5s (in Pytorch) is
17.4 FLOPS processing time frame of 4.2 ms (inference, in
V100 GPU). In this work, we present the results on the small
version (YOLOv5s) with 213 layers, and 7,225,885 trainable
parameters.

1Using a GPU

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. DOI 10.1109/CLUSTER51413.2022.00069



The other machine learning tool that we use was the
DBSCAN [5] for clustering the points. This method is a
point-density clustering algorithm. The basic idea behind is
that given a set of points, it is possible to group together if
many points are nearby neighbors. It is important to note that
DBSCAN has a notion of noise, helping to mark the low-
density region as outliers points. In this case, high-density
regions in combination with geometric priors were enough to
create the counting areas. As a non-supervised method, the
evaluation of its performance was done by a human.

III. DATA

Although we use more than 2000 hours of CCTV from
Guadalajara city, in this work we only present the results
using public data, see Table I. These videos represent the
most common and similar camera/street-view configuration
compared with the local (Guadalajara) data. All the videos
have the following: 15 frames per second (fps), two-way
avenues, simultaneous vehicles, and front perspective. Figure
1 shows one frame of each public video (link video 1, link
video 2 link video 3).

TABLE I
CHARACTERISTICS OF THE PUBLIC VIDEOS.

Video ID Max Time Mean vehicles per min Lane per way
1 34.08 min 150 3
2 118.45 min 50 3
3 14 min 75 2

IV. METHODS

The proposed method is divided into two main stages. First,
detects and tracks the vehicles in the videos, second, selects
a high-density area and then conducts the clustering using the
vehicle centroids. Figure 3 introduces a simplified illustration
of the main steps in our method.

A. Detection and tracking

As a first step, we detect the vehicles in all field of view of
the video frame. The vehicle detection was performed using a
pre-trained deep learning model, YOLOv5 [4] with PyTorch.
During this process, the time (frame number) and geometric
information (centroid and box size) are recorded. Next, we
use the time and geometric information to make the tracking.
To put it simply, during this process we take into account the
orientation and the distances from the centroid to the nearest
vehicles between frames.

B. Counting area creation

In this stage, a selection and clustering process is done. The
selection of centroids of interest is based on the detection-
tracking outcomes (centroid, ID, box size, frame, among
others) and some geometric priors (see Figure 3). We assume
that the view of the camera has a projective perspective. As
a result, we select the apparently bigger boxes (closer to the
cameras). One of the main reasons to do it is because the
tracking performance decreases significantly in the remote

Fig. 1. One example frame of each video used in this work. From top to
down: video 1, video 2, video 3.

areas of the field of view. The clustering process is based
on the DBSCAN clustering algorithm [5]. We choose this
clustering method after comparing the results with K-means,
and Gaussian mixture methods. Finally, with the DBSCAN
centroids and detected-box limits we define a limit of the en-
try/creation zone (red polygon) and counting/exit zone (green
polygon).

It is important to note that the proposed method depends
on traffic-flow density, traffic direction, time, and geometry of
the field of view. These limitations are discussed in the results
and conclusion sections.

V. RESULTS AND ANALYSIS

An example of the proposed counting area and the human-
proposed counting area is presented in Figure 4. It is possible
to see that the proposed method is capable of generating
two counting areas for each traffic direction. Moreover, the
counting areas are bigger to facilitate the count of buses and
trucks.

https://www.youtube.com/watch?v=iA0Tgng9v9U&t=3928s
 https://www.youtube.com/watch?v=PNCJQkvALVc
 https://www.youtube.com/watch?v=PNCJQkvALVc
https://www.youtube.com/watch?v=nt3D26lrkho


Fig. 2. Counting area creation workflow. The detection and tracking is
represented by a blue box and blue line. The section and clustering is based
on the boxes (green and red) represented one vehicle ID. The counting areas
are represented by a red and green polygons (entry and exit zones).

In Table II we present the numerical results of each video.
The vehicle counting error in all the cases is less than 5 %. In
addition, this error is reduced if the video duration (and the
number of vehicles) to create the counting areas increases. The
ground truth was obtained by human counting. According to
our most recent experiments counting areas with less than 50
vehicles are not well defined. It is necessary to explore more
in detail where the error occurs, and detect possible bias for
the type of vehicle, color, or other features.

TABLE II
COUNTING COMPARISON

ID time Left Right Total Ground Truth Error
1 1 min 75 83 158 151 4.63%
1 2 min 130 169 299 292 2.39%
2 1 min 25 39 64 62 3.23%
2 2 min 37 52 89 88 1.12%
3 1 min 36 31 67 69 2.98%
3 1.5 min 65 55 120 119 0.83%

Fig. 3. Selected points of the video based on the geometric priors and box
size.

Fig. 4. Example of the automatic (up) counting area created with the proposed
method and example of the manual counting area.

VI. CONCLUSIONS

In this work, we show a new method to create counting
areas with different traffic-flow directions of on-road vehicles.
The presented results show, in all cases errors, below 5%. It is
also shown that an increase in video duration reduces the error
in the three videos. Although, these results are promising we
need to explore the limits of this method in different street-
view configurations, video duration, and other detection and
tracking algorithms. We would like to test this method in an
HPC environment to speed up automatic vehicle counting.



ACKNOWLEDGMENT

We want to thank the CADS-UDeG for providing com-
puting time in the Leo Atrox supercomputer to conduct the
inferences of the videos.

REFERENCES

[1] V. Mandal and Y. Adu-Gyamfi, “Object detection and tracking algorithms
for vehicle counting: a comparative analysis,” Journal of big data ana-
lytics in transportation, vol. 2, no. 3, pp. 251–261, 2020.

[2] J.-P. Lin and M.-T. Sun, “A yolo-based traffic counting system,” in 2018
Conference on Technologies and Applications of Artificial Intelligence
(TAAI), pp. 82–85, IEEE, 2018.

[3] A. Gomaa, T. Minematsu, M. M. Abdelwahab, M. Abo-Zahhad, and R.-
i. Taniguchi, “Faster cnn-based vehicle detection and counting strategy
for fixed camera scenes,” Multimedia Tools and Applications, pp. 1–29,
2022.

[4] G. Jocher, K. Nishimura, T. Mineeva, and R. Vilariño, “yolov5,” Code
repository, 2020.

[5] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.,”
in kdd, vol. 96, pp. 226–231, 1996.


	Introduction
	Background
	Data
	Methods
	Detection and tracking
	Counting area creation

	Results and Analysis
	Conclusions
	References

