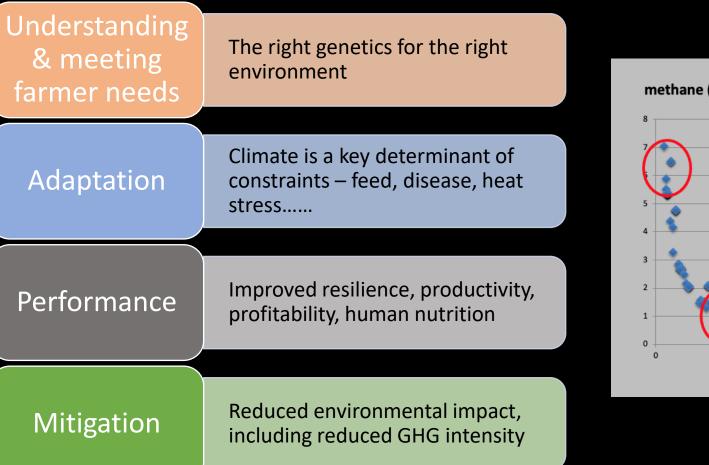
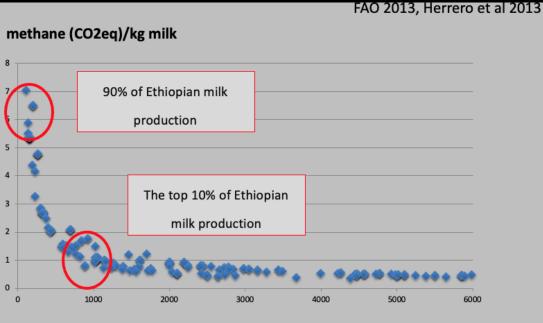

The mosaic genome of African cattle: a unique adaptive genetic resource

International Livestock Research Institute (ILRI) One of the 12 One CGIAR research centres

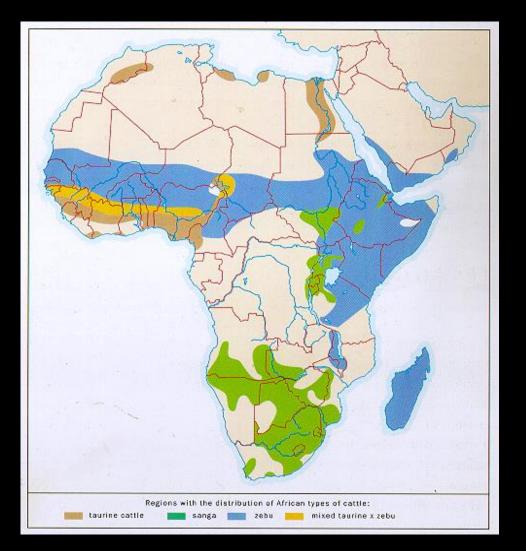

ILRI is a CGIAR research centre, a global research partnership for a foodsecure future. CGIAR science is dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources and ecosystem services.



CGIAR

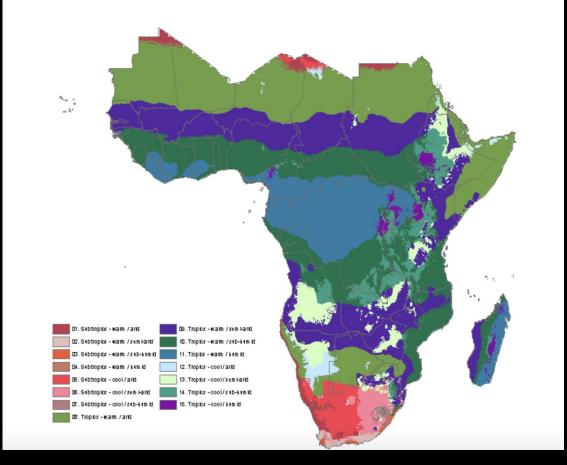
Livestock Genetics – ILRI cattle, chicken, small ruminants

Milk yield (kg/lactation)


A Validated Genome Wide Association Study to Breed Cattle Adapted to an Environment Altered by Climate Change

Ben J. Hayes¹*, Phil J. Bowman¹, Amanda J. Chamberlain¹, Keith Savin¹, Curt P. van Tassell², Tad S. Sonstegard², Mike E. Goddard^{1,3}

Purpose: Within-breed selection of cattle adapted to predicted changes in the environment by studying the sensitivity of milk production to environmental conditions (feeding level and temperature humidity).


But what about between breeds

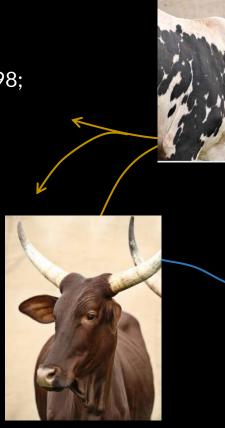
AEZ (16-class)

Agro-Ecological Zones for sub-Saharan Africa based on FAO/IIASA methodology (HarvestChoice/IFPRI 2010) Source: HarvestChoice/IFPRI 2009

African main agro-ecologies (HarvestChoice/IFPRI 2010)

Cattle distribution (Felius 1995)

• There are at least 150 recognized indigenous African cattle 'breeds', a fifth of world's cattle breeds; 300 million heads (Rege and Bester 1998; Dessie and Okeyo, 2019)


White Fulani

Fogera

Ethiopian Boran

Tuli

Red Fulani

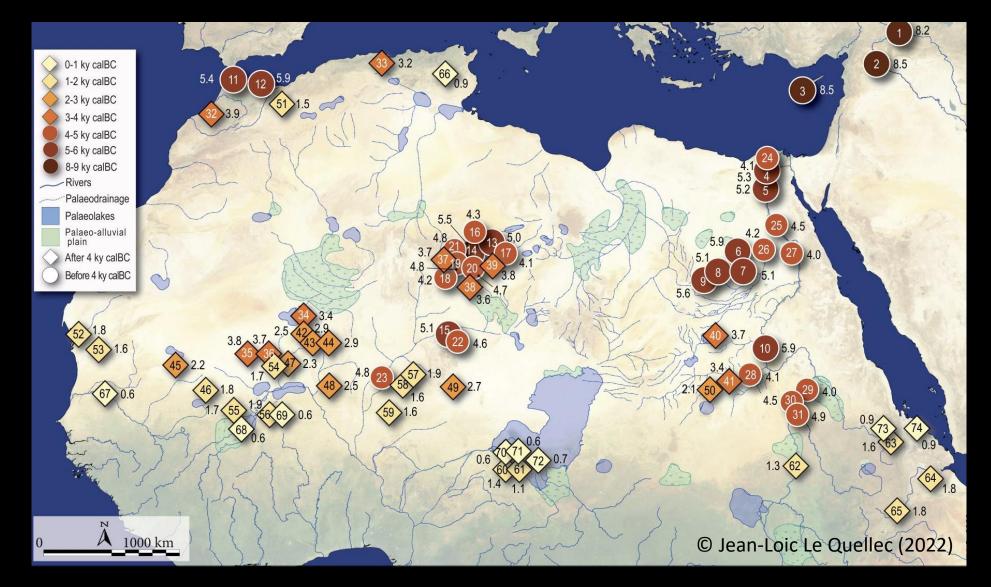
Nganda

N'Dama

Mursi

-1500 ya

Example of African cattle adaptation


	N'Dama	Tolerance to trypanosomosis and cattle ticks
Humpless Shorthorns	Savanna Muturu	Sexual dimorphism on body size, well-fleshed body
	Sheko	Tolerance to trypanosomosis
Large East African Zebu	Barka	Active disposition
	Karamajong zebu	Adapted to a very dry climate
	Kenyan Boran	Walking ability, highly adapted to harsh conditions, herd instinct, mothering ability, longevity, large sex dimorphism
	Orma Boran	Tolerance to trypanosomosis
	Turkana	survive on very poor pasture and scarce water, walking ability
Small East African Zebu	Angoni	Adapted to browsing during dry season, variable coat color and size of horns
	Arsi	Poor milkers, extremely active and often very aggressive
	Jem-Jem	Well adapted to the wet and cold climate
	Mongolla	Expected tolerance to trypanosomosis, well fleshed
	Nuba Mountain Zebu	Dwarf, tolerance to trypanosomosis
	Ogaden	Good dairy and beef characteristics
	Ugogo Grey	Adapted to browsing during dry season
West African Zebu	Azaouak	Very well adapted to drought
	Red Fulani	Nervous and intractable temperament, poor milkers
	Sudanese Fulani	Good walking ability
	White Fulani	Good dairy and beef characteristics
	Yola	Expected tolerance to trypanosomosis, highly variable conformation
East African Sanga	Bahima*	Susceptible to rinderpest and trypanosomosis
	Raya-Azebo	Good draught power
South African Sanga	Afrikaner	Walking and grazing ability, good mothering ability, longevity
	Barotse	Docile temperament making it a good work animal
	Landim*	Well adapted to hot, humid weather as well as dry periods, very resistant to Foot and Mouth Disease
	Mashona	High fertility, strong maternal instinct, docile disposition
	Nguni	High fertility, early sexual maturity, good foraging and walking ability, good mothering ability
	Tswana	Tolerance to ticks, resistance to the endemic heartwater
	Tuli	High fertility, good mothering ability, low calf mortality
Zenga	Alur	Thought to have trypanotolerance

African Indigenous Cattle: Unique Genetic Resources in a Rapidly Changing World

O. Mwai , O. Hanotte, Y-J Kwon, S. Cho (2015) Asian Asian - Autralasian Journal of Animal Sciences

Etc.....

North – African sites with early presence of African cattle

https://twitter.com/Physiologos/status/1564712371884621824/photo/1

MOLECULAR ECOLOGY

2000

Geographic distribution and frequency of a taurine *Bos taurus* and an indicine *Bos indicus Y* specific allele amongst sub-Saharan African cattle breeds

O. Hanotte 💌, C. L. Tawah, D. G. Bradley, M. Okomo, Y. Verjee, J. Ochieng, J. E. O. Rege

Bradley et al. PNAS 1996 Bofiglio et al. PloSOne 2012

REPORTS

34. M. Ebihara, unpublished data.

35. We thank K. Shiraishi, H. Takeda, T. Hiroi, K. Keil, and T. Mikouchi for discussion, K. Hayano for technical assistance, and the Musée National D'Histoire Naturelle (Paris) for providing the sample of Juvinas. We acknowledge support by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Culture, Sports, Science and Technology, Japan, Nos. 12740300 (A.Y.), 1144017 (ME.), and 11640487 (K.N.), and NSF grant EAR9815338 (R.N.C.). 27 December 2001; accepted 6 March 2002

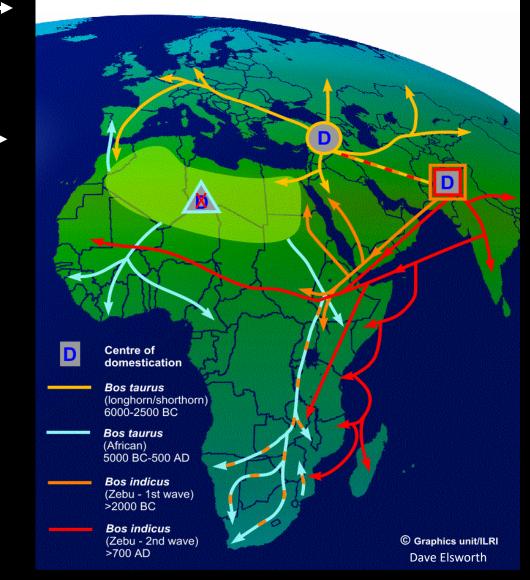
Science 2002

African Pastoralism: Genetic Imprints of Origins and Migrations

Olivier Hanotte,^{1*} Daniel G. Bradley,² Joel W. Ochieng,¹ Yasmin Verjee,¹ Emmeline W. Hill,² J. Edward O. Rege³

The genetic history of African cattle pastoralism is controversial and poorly understood. We reveal the genetic signatures of its origins, secondary movements, and differentiation through the study of 15 microsatellite loci in 50 indigenous cattle breeds spanning the present cattle distribution in Africa. The earliest cattle originated within the African continent, but Near East and European genetic influences are also identified. The initial expansion of African Bos taurus was likely from a single region of origin. It reached the southern part of the continent by following an eastern route rather than a western one. The B. indicus genetic influence shows a major entry point through the Horn and the East Coast of Africa and two modes of introgression into the continent.

Cattle pastoralism is widespread in Africa today and still forms the basis of life for millions across the continent. Two hypotheses for the origins of African domesticated cattle are currently debated. The North African subspecies of wild cattle or aurochs *Bos primigenius* (1) may have undergone an indigenous African domestication around 10,000 vears ago, possibly in the northeast of

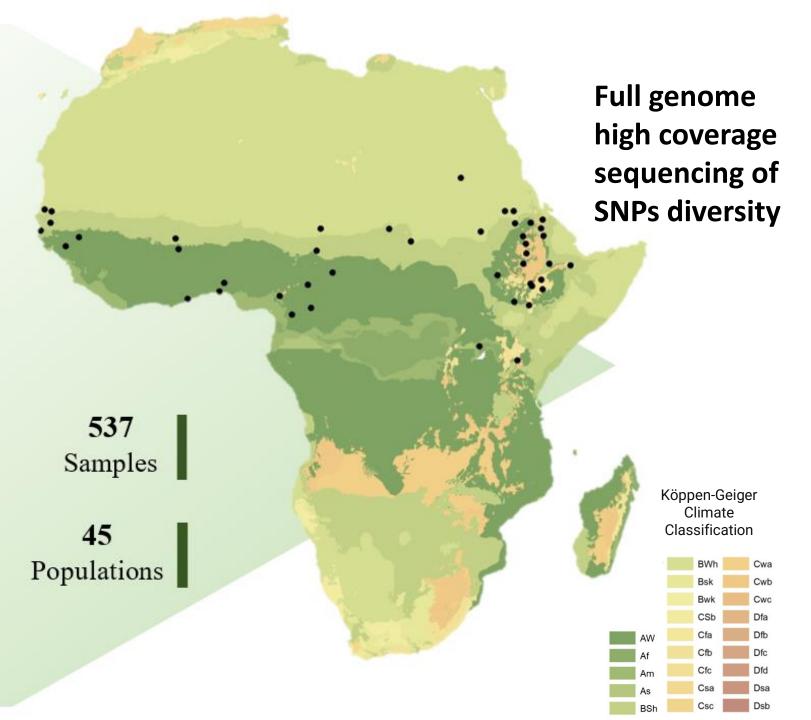

earliest evidence for humped cattle on the continent, provided by Egyptian tomb paintings of the XIIth Dynasty, do not appear until the second millennium BC (11, 12), which suggests that the Egyptian civilization may have played a role in the introduction of zebu into the continent. Today, most modern breeds have an appreciable zebu ancestry (7, 8), which attests to a major secondary intro-

Origin and migration routes of domestic cattle in Africa

One Y micro

D loop mtDNA

15 microsatellite loci


Sumaya Kambal

OWSD – ILRI PhD fellow

Breed	#Samples	Country
Abergelle	11	Ethiopia
Afar	9	Ethiopia
Arado	11	Ethiopia
Arsi	10	Ethiopia
Bagaria	10	Ethiopia
Bale	10	Ethiopia
Begait	20	Ethiopia
ET-Boran	40	Ethiopia
Choke	9	Ethiopia
Erob	8	Ethiopia
Fogera	9	Ethiopia
Goffa	9	Ethiopia
Нопто	11	Ethiopia
Mursi	10	Ethiopia
Ogaden	9	Ethiopia
Raya	11	Ethiopia
Semien	10	Ethiopia
Sheko	9	Ethiopia
KE-Boran	16	Kenva
Aryashai	10	Sudan
Butana	36	Sudan
Gash	8	Sudan
Kenana	30	Sudan
Baggara	19	Sudan
Fulani	10	Sudan
Toupouri	15	Chad
Kuri	10	Chad
Gudali	1	Cameroon
Red Fulani	1	Cameroon
White Fulani	1	Cameroon
Kapsiki	1	Cameroon
Namchi	1	Cameroon
Zebu Gobra	12	Senegal
Zebu Maure	7	Senegal
Djakkore	11	Senegal
N'Dama	12	Senegal
Gourounsi	10	Burkina Faso
Baoule	16	Burkina Faso
Ankole	10	Uganda
Ghana Shorthorn	10	Ghana
F-Muturu	13	Nigeria
S-Muturu	10	Nigeria
N'Dama	17	Nigeria
N'Dama	13	Gambia
N'Dama	21	Guinea

53745SamplesPopulations

African taurine (AFT)

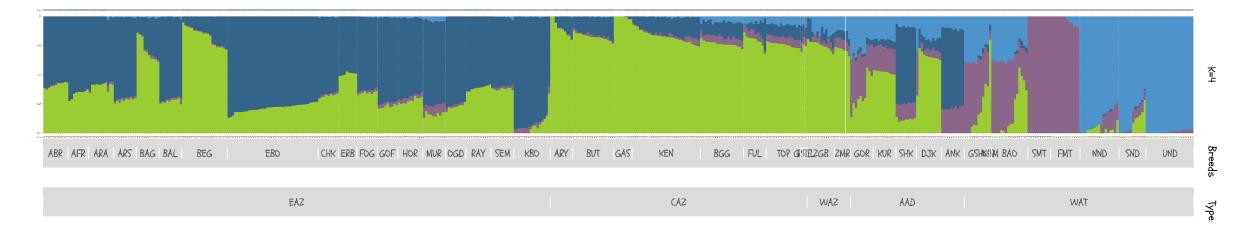
Breed	Abbrev.	#IND	Country
Ghana Shorthorn	GSH	10	Ghana
Kapsiki	KAP	1	Cameroon
Namchi	NAM	1	Cameroon
Baoule	BAO	16	Burkina Faso
S-Muturu	SMT	10	Nigeria
F-Muturu	FMT	13	Nigeria
N'Dama	GND	13	Gambia
N'Dama	NND	17	Nigeria
N'Dama	SND	12	Senegal
N'Dama	UND	21	Guinea

African admixed (AAD)							
Breed	Abbrev.	#IND	Country				
Gourounsi	GOR	10	Burkina Faso				
Kuri	KUR	10	Chad				
Sheko	SHK	9	Ethiopia				
Djakkore	DJK	11	Senegal				
Ankole	ANK	10	Uganda				

Köppen-Geiger Climate Classification

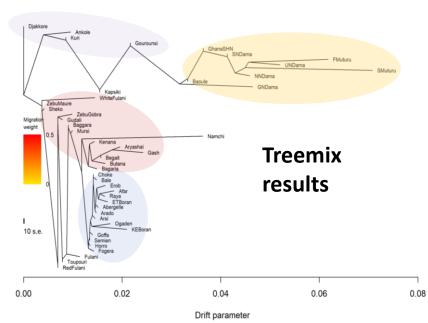

AW	BWh	Cwa
Af	Bsk	Cwb
Am	Bwk	Cwc
As	CSb	Dfa
BSh	Cfa	Dfb
	Cfb	Dfc
	Cfc	Dfd
	Csa	Dsa
	Csc	Dsb

Centre and West African zebu (CAZ)

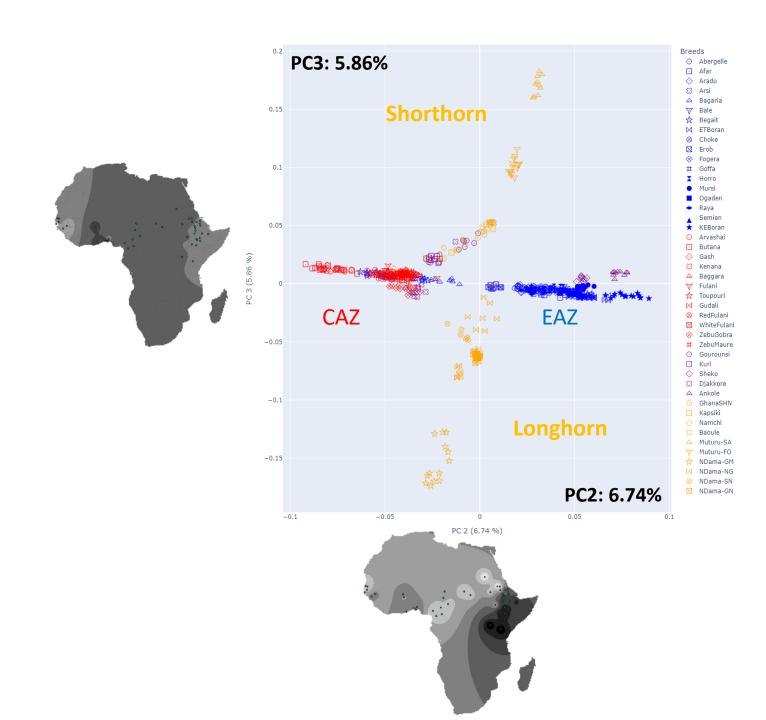

Breed	Abbrev.	#IND	Country
Aryashai	ARY	10	Sudan
Butana	BUT	36	Sudan
Gash	GAS	8	Sudan
Kenana	KEN	30	Sudan
Baggara	BAG	19	Sudan
Fulani	FUL	10	Sudan
Toupouri	TOP	15	Chad
Gudali	GUD	1	Cameroon
Red Fulani	RFL	1	Cameroon
White Fulani	WFL	1	Cameroon
Zebu Gobra	ZGB	12	Senegal
Zebu Maure	ZMR	7	Senegal

East African zebu (EAZ)

Breed	Abbrev.	#IND	Country
Abergelle	ABR	11	Ethiopia
Afar	AFR	9	Ethiopia
Arado	ARD	11	Ethiopia
Arsi	ARS	10	Ethiopia
Bagaria	BAG	10	Ethiopia
Bale	BAL	10	Ethiopia
Begait	BEG	20	Ethiopia
ET-Boran	EBO	40	Ethiopia
Choke	СНК	9	Ethiopia
Erob	ERB	8	Ethiopia
Fogera	FOG	9	Ethiopia
Goffa	GOF	9	Ethiopia
Horro	HOR	11	Ethiopia
Mursi	MUR	10	Ethiopia
Ogaden	OGD	9	Ethiopia
Raya	RAY	11	Ethiopia
Semien	SEM	10	Ethiopia
KE-Boran	KBO	16	Kenya

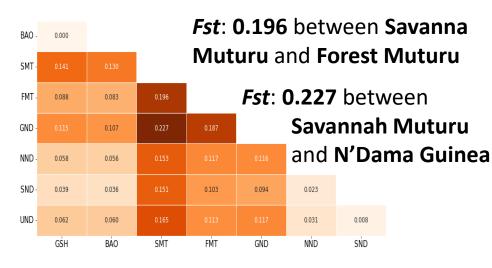


Population Admixture – K = 4

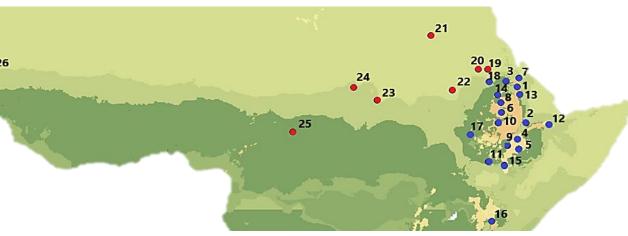


Zebu ancestries decreased as we move from **East** to the **West**

Small shared **Muturu** and **N'Dama** taurine ancestry background (**shorthorn/longhorn**) within zebu (**EAZ** and **CAZ**)



Centre and West African zebu (CAZ) East African zebu (EAZ)


PC2 (6.74%) separate CAZ from EAZ

African taurine (AFT)

PC3 (5.86%) separate longhorn taurine (N'dama) from shorthorn taurine (Muturu)

											2	26					
	AFR -	0.011															-
0.035 -	ARD -	0.000	0.009									-					
0.030 -	ARS -	0.003	0.012	0.002								4	2				
0.050	BAL -	0.005	0.015	0.005	0.002										1		- All
0.025 -	СНК -	0.002	0.013	0.001	0.000	0.003											
	ERB -	0.003	0.014	0.003	0.006	0.010	0.006										
0.020 -	FOG -	0.003	0.013	0.003	0.002	0.006	0.002	0.007									
	GOF -	0.005	0.013	0.004	0.002	0.005	0.003	0.009	0.004								
0.015 -	HOR -	0.003	0.013	0.003	0.001	0.005	0.001	0.007	0.002	0.002					•	Low	gen
	MUR -	0.012	0.022	0.013	0.008	0.012	0.010	0.018	0.010	0.004	0.007						
0.010 -	OGD -	0.010	0.014	0.009	0.006	0.013	0.009	0.012	0.010	0.007	0.009	0.014				EAZ	and
	RAY -	0.003	0.009	0.001	0.005	0.007	0.004	0.005	0.006	0.007	0.006	0.016	0.010				
0.005 -	SEM -	0.001	0.013	0.002	0.003	0.004	0.001	0.006	0.002	0.005	0.003	0.012	0.012	0.005			•
	EBO -	0.011	0.016	0.010	0.009	0.009	0.008	0.014	0.012	0.009	0.012	0.017	0.014	0.011	0.010		
	KBO -	0.031	0.037	0.030	0.029	0.031	0.030	0.036	0.032	0.028	0.030	0.032	0.030	0.033	0.031	0.028	
	BAG -	0.013	0.024	0.013	0.016	0.018	0.015	0.014	0.015	0.017	0.016	0.024	0.022	0.015	0.013	0.021	0.042
	BEG -	0.013	0.023	0.013	0.016	0.019	0.016	0.013	0.016	0.019	0.018	0.026	0.023	0.016	0.014	0.022	0.043
	ARY -	0.021	0.029	0.020	0.023	0.027	0.023	0.018	0.022	0.025	0.025	0.033	0.027	0.023	0.022	0.074	0.051
	GAS -	0.037	0.045	0.035	0.038	0.042	0.038	0.034	0.037	0.041	0.040	0.049	0.042	0.038	0.038	0.048	0.067
	BUT -		0.023	0.013	0.017	0.019	0.016	0.013	0.016	0.019	0.018	0.026	0.024	0.017	0.014	0.022	0.043
	KEN - BGG -		0.022	0.012	0.016	0.018	0.014	0.012	0.015	0.017	0.017	0.024	0.022	0.016	0.013	0.022	0.041
	FUL -		0.030	0.020	0.022	0.026	0.022	0.020	0.021	0.022	0.022	0.026	0.021	0.023	0.020	0.025	0.040
	TOP -		0.029	0.016	0.019	0.022	0.018	0.019	0.019	0.020	0.018	0.022	0.027	0.021	0.016	0.026	0.044
	ZGB -	0.032	0.043	0.031	0.033	0.037	0.034	0.035	0.034	0.035	0.033	0.037	0.041	0.035	0.031	0.040	0.058
	ZMR -	0.023	0.035	0.022	0.024	0.027	0.024	0.026	0.024	0.024	0.022	0.023	0.029	0.027	0.023	0.040	0.049
		ABR	AĖR	ARD	AŔS	BÁL	снк	ERB	FÓG	GÓF	HÓR	MÚR	OĠD	RÁY	SĖM	EBO	кво

0.013

0.019

0.011

0.006

0.011

0.021

0.017

BÁG

0.010

0.016

0.008

0.009

0.013

0.024

0.018

0.023

BEG

0.007

0.016

0.018

0.019

0.021

ARY

GAS

- Low genetic differentiation (*Fst* <= 0.01) within almost all EAZ and CAZ populations
 - Moderate genetic differentiation (*Fst* = 0.02 to 0.04) between EAZ and CAZ populations

0.006

0.010

0.021

0.015

0.021

ΒÚΤ

0.010

0.020

0.014

0.018

KĖN

0.009

0.003

0.021

0.005

BĠG

0.010

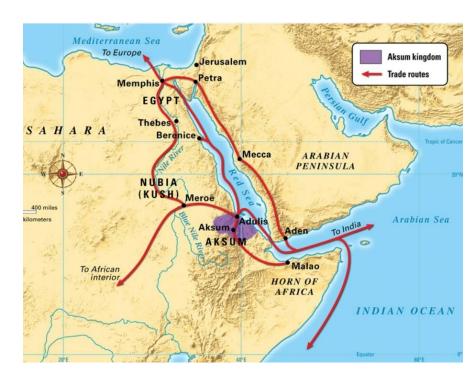
0.012

FÚL

0.023

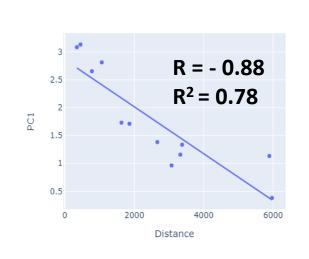
0.009

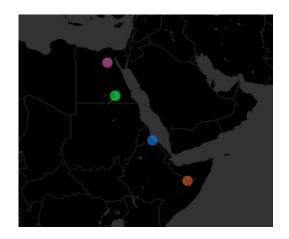
ΤÓΡ

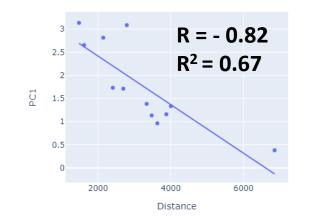

0.05

0.018

ZĠB


0.02	0.03	0.04	0.05	0.06	0.07	0.01	0.02	0.03	0.04


Entry points of the Zebu ancestral population on the African continent – Red Sea port Adulis (?)


Adulis (Eritrea)

The Horn of Africa

Eastern Sahara (Nabta Playa)

 $R = 0.68 R^{2} = 0.46$

PERSPECTIVES

ECOLOGY

Time to Tap Africa's Livestock Genomes

Olivier Hanotte,¹ Tadelle Dessie,² Steve Kemp³

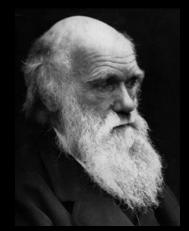
I fyou travel across rural Africa looking for livestock such as cows, pigs, and goats, rather than scenic or wildlife wonders, you will be struck by the extraordinary diversity of its indigenous breeds (1). But the visual wonders of coat color or horn shape are only the tip of the iceberg. Looking deeper, a world of Darwinian adaptations—from the ability to tolerate parasites to robust milk productionGenetic studies are revealing the origins of today's African livestock. It is a complex history that includes human-driven migration, dispersion, crossbreeding, and trading (2). Africa's proximity to the major livestock domestication centers in the Near East, as well as oceanic currents and weather patterns linking the East African coast to South and Southeast Asia, have offered multiple oppor-

25 JUNE 2010 VOL 328 SCIENCE

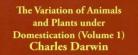
Published by AAAS

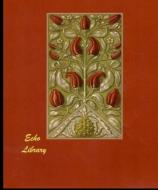
tunities for livestock introductions. Human migrations, such as the spread of Bantuspeaking people from their stronghold in western and Central Africa to the southern part of the continent, and the Islamization of eastern and northern Africa, further favored dispersion of livestock. Last but not least, European influences added a layer of livestock genetic diversity from the north.

Throughout its history, this diversity has been shaped by subtle combinations of We need to better understand and exploit the genetic diversity of Africa's indigenous livestock breeds—before they fade away


www.sciencemag.org

2010


to pressure to increase short-term product ity, fueled by changing demography and r ing demand for livestock products. The res is a livestock sector increasingly depended on external inputs such as veterinary intervetion and feed. This trend threatens to exclu a majority of rural farmers from livesto production and raises questions about lor term sustainability. Perhaps more seriously also drives an irreversible loss of the uniq adaptations of indigenous livestock, reduci options for future productivity improvement that could benefit local farmers.


Fortunately, the fields of genetics a genomics (3-5) offer a new start for the stainable improvement of African livesto productivity. Landscape genomics ling genome-wide information to geo-environmental resource analysis to identify potentially valuable genetic material. Typical researchers will perform a genome-wide secon a number of animals from populations ling in different habitats or across an ecolo cal cline (from dry to wet areas, for instance Regions where livestock face selection prosure from environmental conditions, such

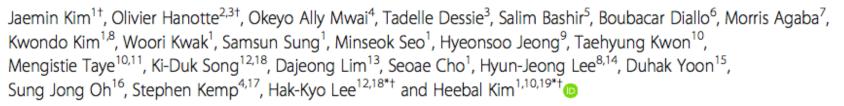
"I have often speculated on the probable cause through which each separate district in Great Britain came to possess in former times its own peculiar breed of cattle....."

"... I conclude that, although slight differences in the nature of the climate, food, etc., as well as changed habits of life, aided by correlation of growth, and the occasional appearance from unknown causes of considerable deviations of structure, have all probably played their parts; yet the occasional preservation in each district of those individual animals which were more valued by each owner has perhaps been even more effective in the production of the several British breeds..."

1868

Kim et al. Genome Biology (2017) 18:34 DOI 10.1186/s13059-017-1153-y

Genome Biology


2017

RESEARCH

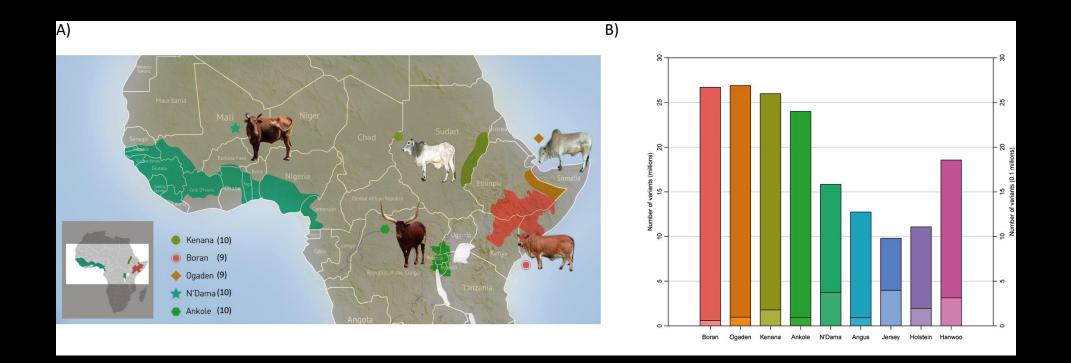
Open Access

The genome landscape of indigenous African cattle

Abstract

Background: The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems.

Results: We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/ or pathways controlling anemia and feeding behavior in the trypanotolerant N'Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds.


Conclusions: Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent.

Keywords: African cattle, Genome, Adaptation, Diversity

The genome landscape of indigenous African cattle J. Kim, O. Hanotte *et al.* (2017) Genome Biology

Gene	CHR ^a	Max XP-EHH ^b	XP-EHH P value ^c	XP-CLR	Association	Candidate SNP position	Selected breed
HCRTR1	2		-	597.3	Circadian rhythm, feeding behavior		N'Dama
STOM	8			525.0	Anemia	112665146 (p.Met48Val)	N'Dama
SLC40A1	2	3.32	0.0002	831.1	Anemia	17	N'Dama
SBDS	25	2.91	0.0024	(**)	Anemia	1.7	N'Dama
EPB42	10	-		511.1	Anemia	38523031 (p.Arg503His)	N'Dama
RPS26	6		-	562.8	Anemia		N'Dama
KIT	6	1.80	0.0050		Coat color		Ankole
MITE	22	1.90	0.0032		Coat color		Ankole
PDGFRA	6	2.56	0.0001	319.3	Coat color	S	Ankole
FGF18	20	*		182.3	Horn development		Ankole
MC1R	18	2		295.0	Coat color		Ankole
SOD1	1	2	120	333.31	Thermoregulation	3116044	B. indicus
		2	-	186.33		(p.lle95Phe)	African
PRLH	3	1.49	0.0014	-	Thermoregulation	117646610	B. indicus
		1.17	0.0039	-		(p.Arg76His)	African
BOLA	23	1.19	0.003	110.13	Tick resistance	7	African

 Table 1
 Summary of major candidate regions identified from XP-EHH and XP-CLR in each breed comparison (see Additional files 2 and 3 for summary values of all candidate genes)

Dash (--) indicates non-significant results

^aChromosome

^bMaximum (positive) XP-EHH score of all SNPs within a window

^cRank-based empirical *P* value of genomic region

Kim, Hanotte et al. Genome Biology 2017

ARTICLE

Received 13 Aug 2014 | Accepted 13 Nov 2014 | Published 18 Dec 2014

DOI: 10.1038/ncomms6861

Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle

Mathew D. Littlejohn^{1,2,*}, Kristen M. Henty^{2,*}, Kathryn Tiplady¹, Thomas Johnson¹, Chad Harland¹, Thomas Lopdell¹, Richard G. Sherlock¹, Wanbo Li³, Steven D. Lukefahr⁴, Bruce C. Shanks⁵, Dorian J. Garrick⁶, Russell G. Snell², Richard J. Spelman¹ & Stephen R. Davis¹

Lactation, hair development and homeothermy are characteristic evolutionary features that define mammals from other vertebrate species. Here we describe the discovery of two autosomal dominant mutations with antagonistic, pleiotropic effects on all three of these biological processes, mediated through the prolactin signalling pathway. Most conspicuously, mutations in prolactin (*PRL*) and its receptor (*PRLR*) have an impact on thermoregulation and hair morphology phenotypes, giving prominence to this pathway outside of its classical roles in lactation.

PRL - Senepol PRLR - Senepol PRLH – African Zebu

OPEN

nature.com/ng

nature genetics

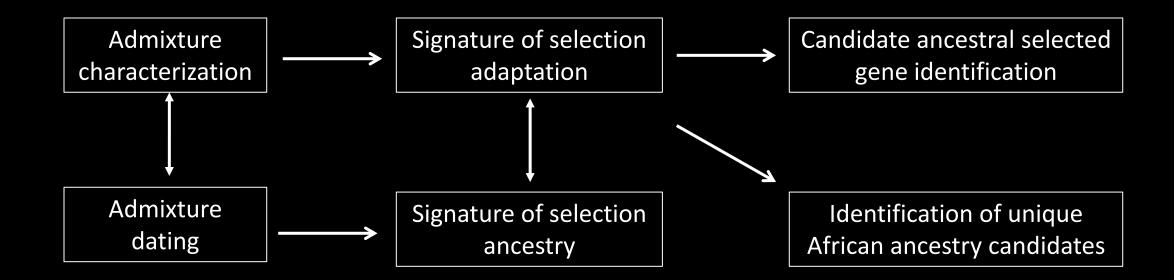
October 2020 Vol. 52 No. 10

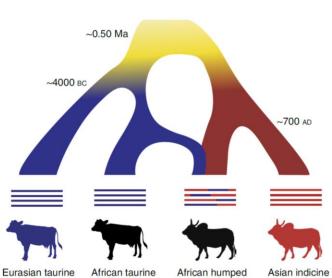
African cattle genomes Chromosome contact domains Genetic control of metabolites in tomato genetics 2020

ARTICLES https://doi.org/10.1038/s41588-020-0694-2

Check for updates

The mosaic genome of indigenous African cattle as a unique genetic resource for African pastoralism


Kwondo Kim[®]^{1,2}, Taehyung Kwon[®]¹, Tadelle Dessie³, DongAhn Yoo⁴, Okeyo Ally Mwai⁵, Jisung Jang⁴, Samsun Sung², SaetByeol Lee², Bashir Salim[®]⁶, Jaehoon Jung¹, Heesu Jeong⁴, Getinet Mekuriaw Tarekegn^{7,8}, Abdulfatai Tijjani[®]^{3,9}, Dajeong Lim¹⁰, Seoae Cho², Sung Jong Oh¹¹, Hak-Kyo Lee¹², Jaemin Kim¹³, Choongwon Jeong[®]¹⁴, Stephen Kemp^{5,9}, Olivier Hanotte[®]^{3,9,15} and Heebal Kim[®]^{1,2,4} ⊠



Cattle pastoralism plays a central role in human livelihood in Africa. However, the genetic history of its success remains unknown. Here, through whole-genome sequence analysis of 172 indigenous African cattle from 16 breeds representative of the main cattle groups, we identify a major taurine × indicine cattle admixture event dated to circa 750–1,050 yr ago, which has shaped the genome of today's cattle in the Horn of Africa. We identify 16 loci linked to African environmental adaptations across crossbred animals showing an excess of taurine or indicine ancestry. These include immune-, heat-tolerance- and reproduction-related genes. Moreover, we identify one highly divergent locus in African taurine cattle, which is putatively linked to trypanotolerance and present in crossbred cattle living in trypanosomosis-infested areas. Our findings indicate that a combination of past taurine and recent indicine admixture-derived genetic resources is at the root of the present success of African pastoralism.

African population

Eurasian taurine African taurine Reference population

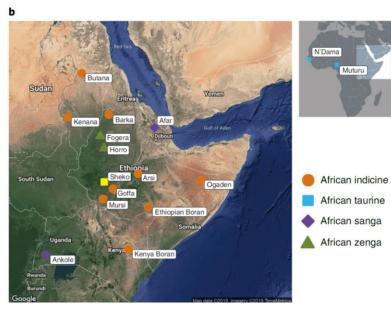
а

African indicine (AFI)

Arsi

Butana

Reference population



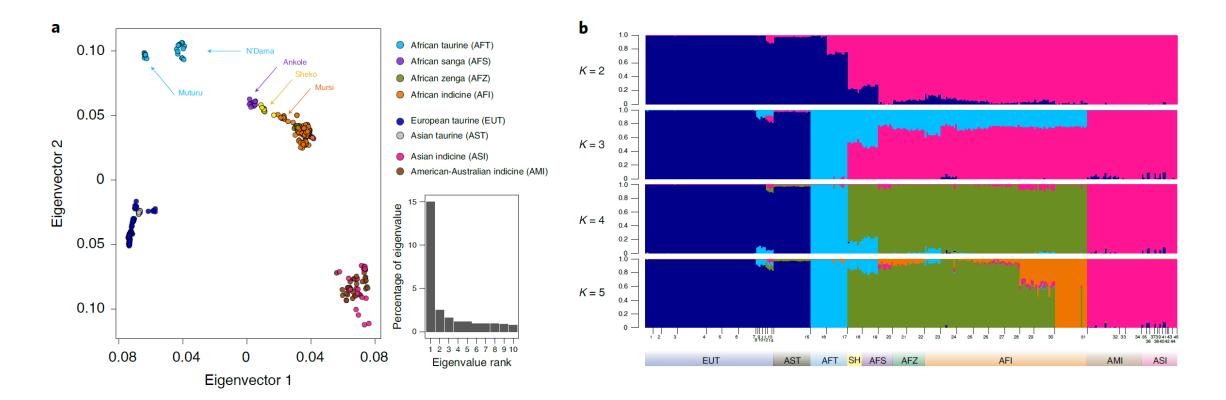
Goffa

Kenya Boran

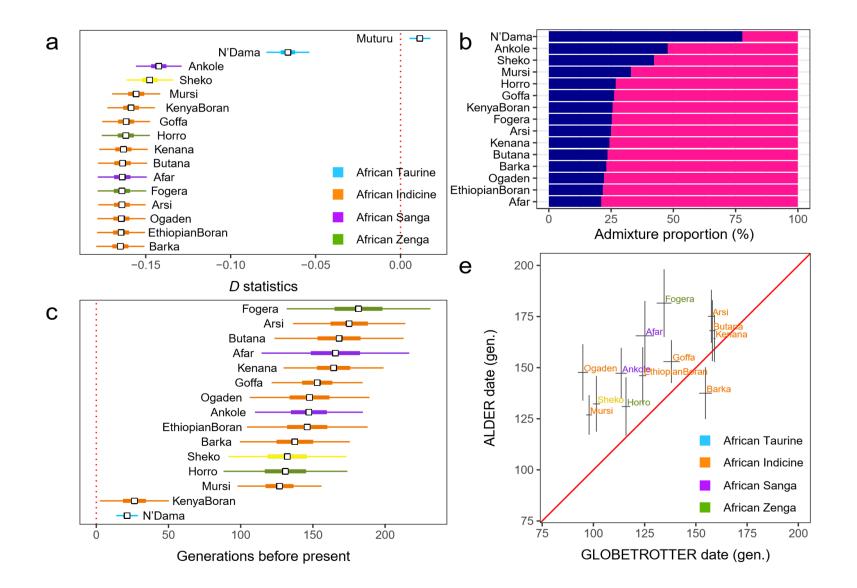
African sanga (AFS)

African zenga (AFZ)

Horro


Ankole

African taurine (AFT)



Whole-genome sequence analysis of 45 cattle breeds (16 indigenous African population, 172 animals), 35 billion reads or **3.5 terabytes of sequences**

Population structure and admixture of indigenous African cattle

Whole-genome sequence analysis of 45 cattle breeds (16 indigenous African populations), 16 indigenous, 35 billion reads or 3.5 terabytes of sequences

Admixture dating: Main taurine x indicine admixture events in East African cattle date back to around 150 generation ago (127 – 181), exception being Kenyan Boran and N'Dama, assuming a generation time of 5-7 years, it corresponds to 750 – 1050 years ago.

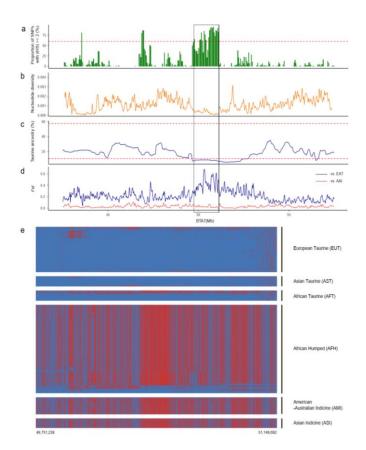
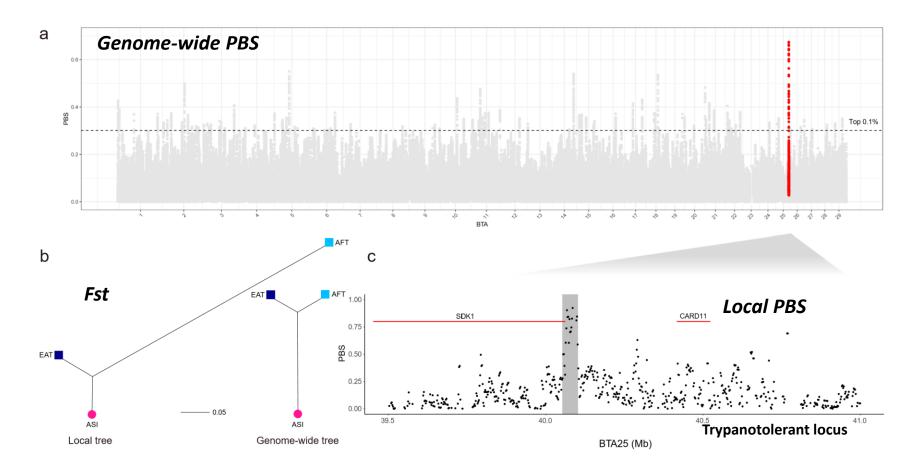

Signatures of selection analysis and signatures of selection ancestry

 Table 1 | Common AFH candidate regions identified in the *iHS* and local ancestry (taurine or indicine) inference (LOTER, top 0.5% windows) analysis

	ws/ analysis						
BTAª	Region (Mb)	No. of windows	Proportion of SNPs with <i>iHS</i> ≥2 (%)	Ancestry (%)	F _{st}	Genes identified	Previous studies
Region	is with an excess of	indicine ance	stry				
3	120.30-120.40	2	67.74	93.02	0.3390	PASK, PPP1R7, SNED1, MTERF4	Kim et al. ³¹
3	120.45-120.55	2	63.33	92.86	0.2913	SEPTIN2, FARP2, HDLBP	Makina et al.99
3	120.60-120.65	1	79.35	92.62	0.2875	FARP2, STK25, BOK	Makina et al.99
3	120.70-120.80	2	83.36	92.62	0.2553	ING5, D2HGDH, THAP4, ATG4B, DTYMK	Kim et al. ³¹ Makina et al. ⁹⁹
3	120.85-120.90	1	79.25	92.62	0.3182	RTP5	Makina et al.99
7	49.75-49.80	1	65.74	92.62	0.3817	КДМЗВ	Gautier et al. ¹⁰⁰
7	50.05-50.25	4	67.90	91.28	0.4179	CTNNA1, LRRTM2, ENSBTAG00000004415	Kim et al. ³¹ Gautier et al. ¹⁰⁰
7	50.30-50.45	3	75.17	91.28	0.6321	SIL1	Kim et al. ³¹ Gautier et al. ¹⁰⁰
7	50.55-51.15	12	86.06	92.05	0.4861	PSD2, NRG2, DNAJC18, ECSCR, SMIM33, STING1, CXXC5, UBE2D2, MATR3, PAIP2, SLC23A1, MZB1, PROB1, SPATA24	Bahbahani et al. ³⁰ Kim et al. ³¹ Bahbahani et al. ⁷⁶ Gautier et al. ¹⁰⁰
13	56.95-57.00	1	82.80	93.58	0.3090	-	-
13	57.05-57.10	1	73.94	93.76	0.2685	EDN3	-
13	57.15-57.65	10	81.95	92.69	0.3114	PRELID3B, ATPSF1E, TUBB1, CTSZ, NELFCD, ZNF831, GNAS	Kim et al. ³¹ Bahbahani et al. ⁷⁶
19	39.65-39.85	4	67.07	92.44	0.2982	STAC2, FBXL20, MED1, PLXDC1, CACNB1, RPL19, ENSBTAG00000008368, ENSBTAG00000050597	Bahbahani et al. ³⁰ Gautier et al. ¹⁰⁰
Region	is with an excess of	taurine ances	try				
10	92.15-92.25	2	72.23	59.98	0.3211	CEP128, ENSBTAG00000047322	-
11	14.40-14.45	1	67.08	61.19	0.4337	-	-
11	14.65-14.85	4	78.31	61.34	0.2870	MEMO1, DPY30, SPAST, SLC30A6, NLRC4, ENSBTAG00000048521, ENSBTAG00000049576	-


*B. taurus autosomes. The proportion (%) of SNPs (|jHS|>2) and ancestries are averaged values over windows. The F_{st} values are pairwise values between reference populations (EAT and AAI) averaged over windows. Dashes (-) indicate that no genes have been annotated within the region or have not overlapped with candidate selection signals in African cattle from previous studies.

Identification of > 30 selective loci with an excess of taurine or indicine ancestry underlying environmental adaptations, including heat tolerance and water reabsorption An example of candidate selective loci on BTA7 with an excess of indicine (zebu) ancestry

MATR3, MZB1, STING1 (TMEM173): Immune related genes e.g. STING1 essential for DNA-mediated type I IFN production and host defense against DNA viral pathogens

Unique selection signatures in African taurine following their separation from the common ancestor with Eurasian taurine

(a) Genome-wide distribution of PBS values with 50 kb window and 2 kb step. The dashed line indicates top 0.1% PBS value. (b) F_{st} -based phylogeny among AFT, EAT and AAI. The branch lengths are proportional to F_{st} values. (c) PBS values around the peak with the highest PBS value. The PBS values were calculated with 5 kb window and 2 kb step.

CARD11: protein essential for the signalling of T and B cells in innate and adaptive immunity, differentially expressed between trypanotolerant N'Dama and trypanosusceptible Kenya Boran (Noyes *et al.* 2011)

Genomics 114 (2022) 110423

Contents lists available at ScienceDirect

Genomics

journal homepage: www.elsevier.com/locate/ygeno

Original Article

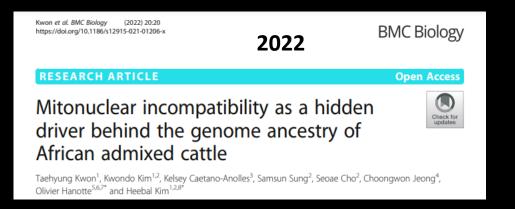
Genomic signatures for drylands adaptation at gene-rich regions in African zebu cattle

Abdulfatai Tijjani ^{a,b,c,*}, Bashir Salim ^d, Marcos Vinicius Barbosa da Silva ^e, Hamza A. Eltahir ^f, Taha H. Musa ^g, Karen Marshall ^{h,i}, Olivier Hanotte ^{a,b,c,1,*}, Hassan H. Musa ^{f,j,*,1}

This work is part of the project "agricultural growth, capacity building for scientific preservation of livestock breeds in Sudan". The project was supported by a Korea-Africa Economic Cooperation Trust Fund grant through the African Development Bank (Grant No: KOAFEC-TF-2013).

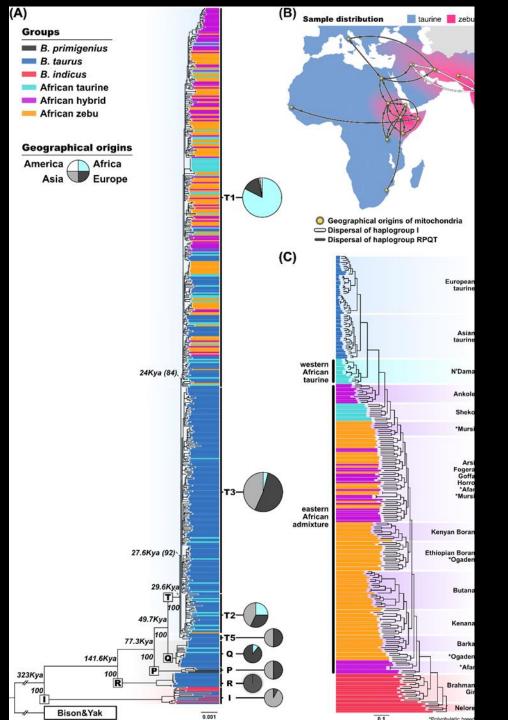
ARTICLE INFO

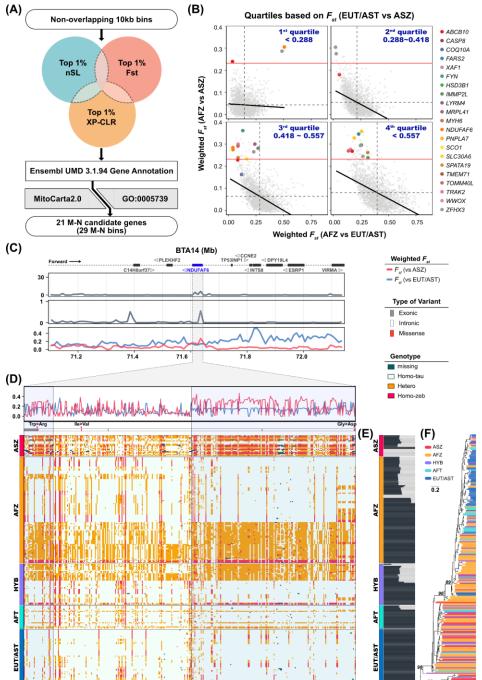
Keywords: Adaptive genetic differentiation Insulin signalling Fat metabolism Desert adaptation African zebu Sudanese zebu


ABSTRACT

Background: Indigenous Sudanese cattle are mainly indicine/zebu (humped) type. They thrive in the harshest dryland environments characterised by high temperatures, long seasonal dry periods, nutritional shortages, and vector disease challenges. Here, we sequenced 60 indigenous Sudanese cattle from six indigenous breeds and analysed the data using three genomic scan approaches to unravel cattle adaptation to the African dryland region.

Results: We identified a set of gene-rich selective sweep regions, detected mostly on chromosomes 5, 7 and 19, shared across African and Gir zebu. These include genes involved in immune response, body size and conformation, and heat stress response. We also identified selective sweep regions unique to Sudanese zebu. Of these, a 250 kb selective sweep on chromosome 16 spans seven genes, including *PLCH2*, *PEX10*, *PRKCZ*, and *SKI*, which are involved in alternative adaptive metabolic strategies of insulin signalling, glucose homeostasis, and fat metabolism.

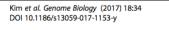

Conclusions: Our results suggest that environmental adaptation may involve recent and ancient selection at generich regions, which might be under a common regulatory genetic control, in zebu cattle.


Zebu male-mediated introgression consequence

Results: By analyzing 494 mitochondrial and 235 nuclear genome sequences, we first confirmed the genotype discrepancy between mitochondrial and nuclear genome in African admixed cattle: the absence of *B. indicus* mitochondria and the predominant *B. indicus* autosomal ancestry. We applied approximate Bayesian computation (ABC) to assess the posterior probabilities of two selection hypotheses given this observation. The results of ABC indicated that the model assuming both male-biased *B. indicus* introgression and selection induced by mitonuclear incompatibility explains the current genomic discrepancy most accurately. Subsequently, we identified selection signatures at autosomal loci interacting with mitochondria that are responsible for integrity of the cellular respiration system. By contrast with *B. indicus*-enriched genome ancestry of African admixed cattle, local ancestries at these selection signatures were enriched with *B. taurus* alleles, concurring with the key expectation of selection induced by mitonuclear induced by mitonuclear incompatibility.

University of Seoul – ILRI - University of Nottingham

Table	3	Selection	scan	results	for	21	candidate genes	
lable	-	JUCCION	scan	results	101	2	canalate genes	


Gene symbol	Window (chr:start-end)	normalized XP-CLR	normalized nSL	weighted F _{st}	Functional description	
LYRM4	23:49320001- 49330000	9.29	0.64	0.18	To bind cysteine desulfurase and help free inorganic sulfur for Fe/S clusters	
COQ10A	5:57390001- 57400000	6.31	0	0.31	Required for the function of coenzyme ${\ensuremath{\mathbb Q}}$ in the respiratory chain	
TOMM40L	3:8290001- 8300000	8.26	0	0.29	To participate in the import of precursors into mitochondria as potential channel-forming protein	
FARS2	23:49010001- 49020000	5.54	0.65	0.16	To transfer phenylalanine to tRNA and to participate in mitochondria for mitochondrial protein translation	A
MRPL41	11:105590001- 105600000	8.98	0	0.35	To participate in protein synthesis within the mitochondrion as ribosomal protein	S
SCO1	19:30290001- 30300000	7.01	0	0.26	To incorporate two Cytochrome c oxidase subunits	5
ABCB10	28:490001- 500000	7.00	0.73	0.23	To participate in transports of molecules across cellular membrane	а
NDUFAF6	14:71630001- 71640000	5.95	0.55	0.27	To regulate of biogenesis of subunit ND1 that is crucial for assembly of the mitochondrial respiratory chain complex 1	ir
MMP2L	4:57730001- 57740000	5.18	0	0.28	To process signal peptide sequences used to direct mitochondrial proteins to the mitochondria	
SPATA19	29:33750001- 33760000	8.36	0.077	0.23	Possibly to participate in spermiogenesis	n
HSD3B1	3:23810001- 23820000	6.16	0	0.27	To catalyze the oxidative conversion of steroid precursors for the production of steroid hormones	S
TRAK2	2:90350001- 90360000	31.40	0.49	0.3	Possibly to regulate endosome-to-lysosome trafficking of membrane cargo	5
NWOX	18:5720001- 5730000	4.96	0.10	0.27	To act as a tumor suppressor and to induce apoptosis	n
SLC30A6	11:14780001- 14790000	0	0.69	0.27	To regulate cytoplasmic level of zinc	V
ИҮН6	10:21350001- 21360000	4.58	0	0.24	To participate in muscle contraction	b
CASP8	2:90290001- 90300000	5.52	0.036	0.24	To induce in apoptosis	
FYN	9:39140001- 39150000	4.02	0.27	0.36	To control cell growth and survival as tyrosine kinase	iı
TMEM71	14:9630001- 9640000	6.12	0	0.24	Putative transmembrane protein	ir
PNPLA7	11:105600001- 105610000	15.13	0	0.36	To regulate adipocyte differentiation	
XAF1	19:25750001- 25760000	9.76	0.24	0.29	To regulate apoptosis by binds to the inhibitor of apoptosis protein family	
ZFHX3	18:38410001- 38420000	5.58	0	0.29	To regulate myogenic and neuronal differentiation.	

ABC simulation of admixture, indicates that mito-nuclear selection needed along with malebiased *Bos indicus* introgression.

Mito-nuclear selection signatures enriched with *Bos taurus* ancestry in African *Bos indicus* cattle genome, the key expectation of the mito-nuclear incompatibility hypothesis.

Taehyung Kwon et al. (2022)

See also Ward et al. 2022 iScience. https://doi.org/10.1016/j.isci.2022.104672

Genome Biology

Open Access

(CrossMark

nature genetics

2020

ARTICLES https://doi.org/10.1038/s41588-020-0694-2

Check for updates

RESEARCH

The genome landscape of indigenous African cattle

2017

The mosaic genome of indigenous African cattle as a unique genetic resource for African pastoralism

• **RESILIENCE**

• PRODUCTIVITY

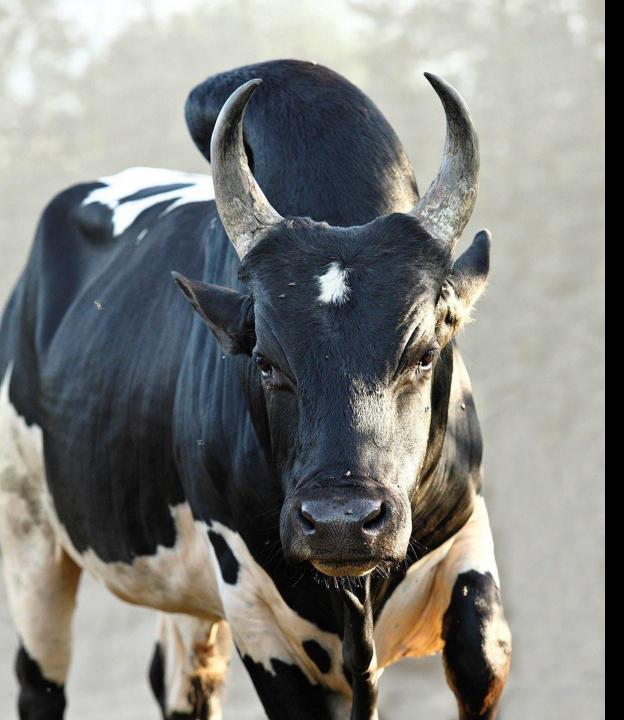
• SUSTAINABILITY

Kwon et al. BMC Biology (2022) 20:20 https://doi.org/10.1186/s12915-021-01206-x

BMC Biology

RESEARCH ARTICLE

Open Access


Check for updates

Mitonuclear incompatibility as a hidden driver behind the genome ancestry of African admixed cattle

Taehyung Kwon¹, Kwondo Kim^{1,2}, Kelsey Caetano-Anolles³, Samsun Sung², Seoae Cho², Choongwon Jeong⁴, Olivier Hanotte^{5,6,7*} and Heebal Kim^{1,2,8*}

2022

In conclusion, despite the environmental complexity of the African continent, and cattle domestication outside its geographic area, we currently find domestic cattle across all African agro-ecologies. The results presented here support that taurine x indicine admixture events followed by taurine and indicine ancestry selection across the genome is at the root of the success of African cattle pastoralism. These findings are far-reaching in today's context of improving livestock productivity to respond to the needs of the growing human populations, with further crossbreeding of indigenous African cattle with exotic cattle recommended as one of the pathways for the continent's food security, A complete characterization at the genome level of African cattle unique adaptations will open the door to sustainable cressbreeding programs combining local environmental adaptation and increased exotic productivity.

The future of African cattle production is in ancient indigenous hybrids (composite)

https://www.ilri.org/publications/story-cattle-africa-why-diversity-matters

Acknowledgment (funding)

One CGIAR SAPLING Research Program on Livestock, International Livestock Research Institute (ILRI), RDA Korea and University of Seoul (South Korea), Republic of China Government support to ILRI – CAAS joint laboratory (Beijing), University of Nottingham (UK), Bill and Melinda Gates Foundation, UK aid from UK Foreign Commonwealth and Development office both under the auspices of the Centre for Tropical Livestock Genetics and Health (CTLGH) established jointly by the University of Edinburgh, SRUC (Scotland's Rural College).

The findings and conclusions contained within this presentation are those of the authors and do not necessarily reflect the positions or policies of any of these institutions.

We are recruiting two Post-doctoral positions: Statistical Geneticist (poultry) and Bioinformatician (livestock) <u>o.hanotte@cgiar.org</u>; <u>t.dessie@cgiar.org</u>