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How does IPM 3.0 look like (and why do we need it in 
Africa)? 
Manuele Tamò1, Isabelle Glitho2, Ghislain Tepa-Yotto1 and  
Rangaswamy Muniappan3   

The concept of Integrated Pest Management (IPM) was 
introduced sixty years ago to curb the overuse of agricultural 
pesticides, whereby its simplest version (IPM 1.0) was aiming at 
reducing the frequency of applications. Gradually, agro- 
ecological principles, such as biological control and habitat 
management, were included in IPM 2.0. However, throughout 
this time, smallholder farmers did not improve their decision- 
making skills and continue to use hazardous pesticides as their 
first control option. We are therefore proposing a new paradigm 
— IPM 3.0 — anchored on 3 pillars: 1) real-time farmer access to 
decision-making, 2) pest-management options relying on 
science-driven and nature-based approaches, and 3) the 
integration of genomic approaches, biopesticides, and habitat- 
management practices. We are convinced that this new 
paradigm based on technological advances, involvement of 
youth, gender-responsiveness, and climate resilience will be a 
game changer. However, this can only become effective through 
redeployment of public funding and stronger policy support. 
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Introduction 
We would like to start with some practical considerations 
demonstrating why our integrated pest-management 

concept should be labeled ‘IPM 3.0’. The past sixty years 
of Integrated Pest Management (IPM) have been well- 
described and characterized in detail [1••] with the fol
lowing simplified historical perspective of IPM. Accord
ingly, the label IPM 1.0 is attributed to the initial efforts 
in the 1960s and 1970s for drastically reducing the in
discriminate use of pesticides by introducing the notion of 
threshold-based intervention derived from scouting. For 
low-literacy farmers in most developing countries, this 
was a novel and knowledge-intensive concept, which 
eventually required the introduction of educational-sup
port systems such as the farmer field school (FFS). FFS 
became a useful approach to teach farmers basic concepts 
of agro-ecological principles throughout the cropping 
season though chemical pesticides remained the mainstay 
of pest-control interventions [2] 

During the last 20 years, in the attempt to further mini
mize the application of chemical pesticides, the IPM 
approach was broadened by increasing the range of 
nature-based solutions — often limited to biological 
control — with improved agro-ecological interventions 
such as planting companion flower banks and other eco
logical engineering measures to increase the presence and 
efficacy of biological control agents [3••]. To popularize 
these fairly complex management approaches involving 
multitrophic interactions, sometimes across landscapes, 
the same authors developed successful mass-media cam
paigns using rural radios and TV shows. These efforts 
were pioneered in Vietnam, and in some instances, pes
ticide applications in rice (Oryza sativa) were reduced by 
up to 60% [4]. Around the same time, the first versions of 
the ‘push–pull’ concept were developed for maize (Zea 
mays) in Kenya to exploit plant volatiles attracting pests to 
nonhosts at the field border, as well as repelling them by 
companion plants inside the field [5]. This new, improved 
version of IPM is considered an important upgrade of the 
previous IPM 1.0 approach and can hence be tagged as 
IPM 2.0, although this label had already been used in 
2013 in conjunction with plant pathology on a special 
occasion, the 10th Conference of European Foundation 
for Plant Pathology [6]. We further consider the agro- 
ecological crop-protection concept proposed by [1••] as 
one of the most advanced forms of IPM 2.0. 

If just a fraction of smallholder farmers in tropical Africa 
would implement IPM 2.0 in their fields, we would 
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certainly eliminate a lot of unnecessary pesticide appli
cations. However, this is still insufficient, particularly in 
view of the challenges facing the next generations of 
farmers who have to manage pests in a sustainable, cli
mate-resilient, and biodiversity-supporting manner. 
Hence, the IPM 3.0 concept we are proposing here goes 
a step further 1) by adding a more proactive farmer 
empowerment and educational component, both for pest 
diagnosis and control, 2) by insisting on investigating the 
real causes of a pest problem instead of contenting to 
treat the observed symptoms in reactive mode, and 3) by 
integrating all compatible innovations to provide sy
nergistic pest prevention and control interventions, 
while keeping chemical pesticides as the option of last 
resort to save a harvest that would otherwise be totally 
compromised. This enhanced version of IPM based on 
the above three pillars, illustrated in Figures 1–4, pro
vides practical recommendations that can be im
plemented with little additional resources. 

Pillar #1: what does it take to empower 
smallholder farmers to make their own 
decisions in sustainable pest management? 
In most of tropical Africa, farmers’ decision to spray their 
crops is still either calendar-based or triggered by visual 
and conspicuous pest-attack symptoms. This practice 
has led to indiscriminate use of synthetic pesticides, 
with their adverse side effects on human, animal, and 
environmental health [7••]. In recent years, this trend 
has been exacerbated by the perceived impacts of cli
mate disturbances, whereby farmers increase the use of 
pesticides as an adaptive response to mitigate pest-in
duced yield losses [8•]. 

During previous versions of IPM, attempts to curb this 
trend have relied on several farmer- training approaches, 
of which FFS has been widely practiced in tropical 
Africa. The FFS approach teaches farmers basic princi
ples of agro-ecosystem analysis, with the ultimate goal to 
make the farmer recognize pests and their damage 
symptoms in the field and understand when the damage 
threshold is attained in order to intervene. However, 
FFS requires a season-long attendance by farmers and 
trainers organized in small groups, which is resource- 
intensive and can only reach a small percentage of 
farmers [9]. Today, most farmers continue to face 1) the 
widespread lack of appropriate tools to enable them to 
take informed decisions, 2) limited access to alternatives 
to harmful pesticides, compounded by 3) the limited 
availability of personal protective equipment. 

Another frequent obstacle to farmer empowerment in 
decision-making is the lack of proper identification of 
pest organisms, particularly the damage-inducing life 
stages. The invasion of the fall armyworm (Spodoptera 
frugiperda) into Africa provides one of the most flagrant 

examples. This pest species was totally new to maize 
farmers, with no other indigenous insect pest producing 
a similar damage pattern. So, maize farmers became 
aware of the pest attack only when they saw heavy da
mage. At that point, either the crop yield was already 
compromised or, depending on agro-ecological/climatic 
conditions, the plant was able to outgrow the attack and 
recover with minimal yield loss [10]. In both cases, 
pesticide applications were too late to produce an effect 
on yield: they were just an unnecessary cost and burden 
to the environment. It is evident that farmers were not 
aware of the early stages (egg masses and young instars) 
that started the infestation, an observation that provides 
an entry point for farmer education/empowerment [11] 

Recent research advances provide accurate insect-pest 
diagnostics by using artificial intelligence [12••,13••,14] 
in conjunction with automatic monitoring tools [15•] and 
nanosensors (such as gas nanosensors for pheromone 
detection, Figure 1b) [16•]. These tools assist farmers in 
properly diagnosing pest problems on their own farms 
and are the appropriate innovations in a forward-looking 
IPM 3.0. Once these powerful tools are made accessible 
to smallholder farmers taking advantage of increasing 
use of smartphones and availability of Internet in rural 
areas, they will be operationalized at the farm level and 
provide a high level of accuracy in pest identification. 

In the meantime, smallholder farmers should not be left 
unaided when confronted with the risk of new invasive 
pests (on top of the current ones), while at the same time 
being unable to discern control recommendations given 
by peer farmers or unskilled pesticide resellers who 

Figure 1  
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Simplified representation of pillar#1 for IPM 3.0. The farmer uses a 
digital advisory on her smartphone to acquire essential information 
about the plant health status of her crops (ranging from manual input to 
artificial intelligence) (1a) and linked to external environmental monitors 
such as UAVs and nanosensors for additional real-time data 
capture (1b).   
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often offer for sale unsafe and inefficient synthetic pes
ticides [17]. Some progress in educating and empow
ering farmers to take the appropriate decisions has 
already been achieved by simple apps such as the 
Farmer Interface Application (FIA) developed by a 
consortium headed by the International Institute of 
Tropical Agriculture IITA (Cotonou, Benin) together 
with the Norwegian Institute of Bioeconomy Research 
NIBIO (Ås, Norway) with funding from the Norwegian 
Agency for Development Cooperation NORAD (Oslo, 
Norway). This app was validated for S. frugiperda, and 
advanced versions are now being fine-tuned for cowpea 
(Vigna unguiculata) pests. The current version of FIA 
assists farmers in recognizing early stages of the pest and 
scouts the field in a random manner guided by Global 
Positioning System GPS coordinates in order to de
termine an intervention threshold [18]. 

By incorporating animation videos to guide low-literacy 
users through the different functions of the app, and at 
the same time make use of voice recognition and com
mands (for now in French, but new versions in two main 

local languages in West Africa are about to be released 
soon), simple digital advisories such as FIA are designed 
to address the needs of all gender and social groups: they 
thus reduce inequalities instead of further exacerbating 
them. This is particularly relevant in parts of sub- 
Saharan Africa where women are still coping with cul
tural barriers that prevent them from, for instance, sitting 
down with men for training sessions by extension ser
vices [19•]. 

Pillar #2: pest- and disease-management 
approaches anchored in science-based 
ecological control 
Once IPM 3.0 becomes operational and equips small
holder farmers with powerful and user-friendly diag
nostic and scouting tools together with pest- 
management advisories, its success will still depend on 
the quality of the available solutions. Regardless of the 
improved diagnostic power, farmers will carry on treating 
the symptoms of a problem in their own fields while the 
true cause might be somewhere else. Often, an organism 
develops into a pest simply because of ecological 

Figure 2  
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Simplified representation of pillar#2 for IPM 3.0. R4D studies investigate the biodiversity of pests and related natural enemies (2a), complemented by 
population genetic studies (2b) and by the assessment of the diversity and efficiency of natural enemies such as entomopathogenic organisms and 
parasitic wasps (2c).   

Figure 3  
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Simplified representation of pillar#3 for IPM 3.0. Technological innovations ready for integration into the IPM 3.0 framework: novel genomic tools such 
as CRISPR–Cas9 (3a) biopesticides exemplified by locally produced neem-powder sachets in Niger (3b), enhanced habitat-management approaches 
such as the icipe push–pull approach.   
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imbalances, climate change, or merely because of its 
invasive nature. 

One of the most recent examples illustrating how such a 
puzzle was cracked, thanks to long years of international 
collaboration across continents, is that of the legume pod 
borer Maruca vitrata. In Africa, this pest has been tacitly 
regarded as indigenous, and after years of unsuccessful 
efforts in finding resistance in cowpea, a transgenic ap
proach using the Cry1Ab Bt gene was eventually able to 
provide efficient control [20]. However, concurrent bio
diversity studies revealed substantially different guilds 
of hymenopterous parasitoids in Africa and tropical Asia. 
The lack of specific parasitoids in West Africa was par
ticularly intriguing [21], indicating a potential for redis
tribution of biological control agents [22]. Meanwhile, 
population genetic studies indicated tropical Asia as the 
most plausible origin of the pest, thereby calling for an 
experimental assessment of the Asian biological control 
candidates in the African context [23]. In-depth biolo
gical studies were then undertaken to assess the host- 
specificity and maternal factors determining the poten
tial of various biological control candidates, and parti
cularly the braconids Liragathis javana and Phanerotoma 
syleptae [24]. These two hymenopteran parasitoids have 
been released experimentally in various countries in 
West Africa, leading to reductions of the pest population 
by up to 86% at pilot-release areas [25]. They are 

currently being released in biological control campaigns 
in Benin, Burkina Faso, Ghana, Niger, and Nigeria. The 
example of M. vitrata highlights the importance of 
challenging the pest status of organisms that seem to 
have only poorly adapted natural enemies in a given 
agro-ecology. A similar case study is that of biological 
control efforts against the diamondback moth Plutella 
xylostella. Host plant and parasitoid-diversity studies in 
South Africa revealed that P. xylostella might originate 
from this area [26], and this information has been used in 
several attempts to introduce biological control agents to 
other regions. This example has been reviewed in detail  
[27,28] and has provided the basis for the establishment 
and successful control of P. xylostella, for example, in 
eastern and southeastern Kenya (Kitui, Mwingi/Yatta, 
and Loitokitok areas) [29]. Both examples, however, 
clearly indicate that biological control alone will not 
provide a silver-bullet solution, and that it will need to 
be integrated with other compatible measures as illu
strated in the next section. 

Pillar #3: the integration of advanced genomic 
approaches, efficient biopesticides, and 
enhanced habitat-management practices 
Over the past few years, the quest for sustainable pest- 
control solutions has seen the development of impactful 
innovations such as novel genomic tools, biopesticides, 
and ecological engineering. However, efforts to integrate 

Figure 4  
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Integration of the three pillars into the digital advisory to produce pest-management recommendations. The information generated by the 3 pillars is 
integrated into the digital advisory, who provides the farmer with plant health recommendations (a). If preventive control is deemed insufficient to keep 
the pest under a damage threshold, the advisory will formulate recommendation to apply a range of efficient biopesticides (b), and keeping chemical 
control as the solution of last resort.   
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these individual components into operational IPM 
schemes have not always been successful. 

The last two decades of genomic approaches in breeding 
for insect-pest resistance have been mostly characterized 
by successes and failures in staying ahead of the race with 
pest organisms becoming resistant to Bt-gene constructs. 
However, more recent advances using the CRISPR–Cas9 
technology present new avenues for improving crop resi
lience to pest attacks [30]. Thereby, the aim of this ap
proach is not solely to improve plant resistance to biotic 
stresses, but also, for example, to modify plant signaling to 
attract natural enemies, specific parasitoids, as well as 
generalist predators [31]. Once these tactics get main
streamed and properly integrated into a functional IPM 
framework as proposed by [32•], they will certainly con
tribute to optimizing biological control outcomes and re
duce the application of unsuitable pesticides. 

In Eastern and Southern Africa, potent biopesticides 
have been developed by the International Centre of 
Insect Physiology and Ecology (icipe, Nairobi, Kenya) 
and are now getting into the hands of farmers, thanks to 
joint endeavors with an emerging private sector [33•]. 
The integrability of biopesticides in an IPM framework 
is defined by their degree of selectivity toward nontarget 
organisms, but generally they have much fewer negative 
impacts on beneficial insects (including pollinators) than 
synthetic pesticides [34]. In West Africa, biopesticides 
gained momentum some 30 years back with the devel
opment of Green Muscle (based on the en
tomopathogenic fungus Metarhizium acridum) against 
locusts and grasshoppers, however, this effort could not 
be sustained owing to the lack of innovative private in
itiatives to support their production and commercializa
tion [35]. More recently in Niger, women cooperatives 
have initiated the commercial production of a ready-to- 
use biopesticide made of locally available neem-seed 
powder, which is packed into a small tissue bag, soaked 
in water overnight, with the resulting solution sprayed 
the next day on a range of crops. What is innovative here 
is not the product per se, but the way it is produced and 
commercialized, which allows to bypass the lack of up
take by the more formal private sector. 

The third major technological breakthrough comes from 
renewed efforts to improve the push–pull approach, 
which were spurred by the invasion of S. frugiperda in 
East Africa. A first upgrade of the original version was 
described as climate-smart push–pull by including new 
and drought-resilient varieties of companion plants [36]. 
This concept was subsequently validated with success to 
manage S. frugiperda soon after its appearance in Kenya  
[37], then tested for its potential for integration in con
servation agriculture [38] and fine-tuned for enhanced 
scaling and adoption by farmers [39••]. Meanwhile, the 
mechanisms underlying the regulation of S. frugiperda by 

companion plants have been reported in detail by [40]. 
The push–pull approach was also investigated for its 
contribution to improving soil ecosystem services 
through their positive effects on soil organic matter [41]. 
Hence, we can infer that the push–pull concept could be 
a model for integrating other compatible IPM compo
nents as described above. Meanwhile, the IPM frame
work has been expanded to consider both positive and 
negative interactions between pest-control approaches 
and pollinators in a systematic way, becoming a new 
paradigm of Integrated Pest and Pollinator Management 
(IPPM). It has been defined as a framework for co
management of ecosystem functions driven by pests, 
natural enemies, and pollinators [42••]. While push–pull 
works mainly at the field level, IPPM considers ele
ments of landscape management, aligned with an IPM 
3.0 vision, whose ultimate goal would be to design and 
deploy IPM solutions for whole landscapes [43]. 

Perspectives 
Is IPM 3.0 the right solution to curb the pesticide 
treadmill in Africa? 
Past efforts to involve farmers in decision-making for 
pest management have only yielded marginal successes, 
mostly at pilot sites [1••]. Since farmers’ buy-in for IPM 
3.0 is essential, we put particular emphasis on farmer 
education and empowerment as the first and most im
portant pillar for our improved IPM strategy. We have 
enough evidence that smarter insect-pest management 
can entirely rely on nature-based solutions if deployed 
correctly and in the right context (as described above in 
pillars #2 and #3), reducing or avoiding the need for the 
use of synthetic pesticides [44•]. 

How do we transition from current practices to IPM 3.0 
We strongly believe our vision for IPM based on tech
nological advances, involvement of youth, gender-re
sponsiveness, and climate resilience will be a game 
changer. The existing agricultural research and exten
sion capacities alone, particularly with the current public 
funding levels in Africa, however, will not be able to 
achieve this transformation on their own. We therefore 
urge a shift in public funding to focus on the need for 
increased investments in plant health research instead of 
insisting in quick wins that can easily be achieved by, for 
example, scaling projects. Who — and with what kind of 
means — is going to fill the research pipeline to produce 
the needed plant health innovations for successful IPM 
implementation in Africa, to deliver impact in the next 
10 years and beyond? We should learn from lessons 
elsewhere, how to create virtuous feedback loops for a 
diversified agriculture, instead of falling into pernicious 
feedback loops as described by [45]. For all this to be 
achieved, a much stronger policy support as proposed by  
[44•] will be critical. A first essential policy intervention 
would be the establishment and operationalization of a 
regional early warning network to deter and intercept 
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invasive and emerging pests, whose data infrastructure 
will be coupled with information gathered through in
novations proposed in pillar #1. This will allow to in
tegrate horizon scanning and advanced diagnostics 
approaches for fine-tuning customized pest-management 
recommendation at landscape and regional scales. 

The successful implementation of IPM 3.0 relies on the 
increased availability and uptake of alternatives to syn
thetic insecticides such as biopesticides. Therefore, we 
strongly advocate for an enabling policy framework that 
should include, among others, clear regulatory directives 
facilitating the registration and use of biopesticides and 
harmonizing the process at the regional level to avoid the 
hassle of having to register the same product in each 
country. These measures should be flanked by the strict 
enforcement of current rules regulating the use of che
mical pesticide. Additional efforts should be made at 
national and regional levels to adhere to minimum pes
ticide-residue levels, by providing the necessary infra
structure for their routine verification through accredited 
laboratories. This will both satisfy the increasing urban 
consumer demand for healthy and safe agricultural pro
ducts, while also providing additional incentives for the 
on-farm use of biopesticides. However, we do recognize 
these policy changes might take time as they would re
quire prior individual country engagement and en
dorsement. 
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