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ABSTRACT

We propose an approach to modeling large-scale multi-agent dynamical systems allowing interactions among more than just pairs of agents
using the theory of mean field games and the notion of hypergraphons, which are obtained as limits of large hypergraphs. To the best of our
knowledge, ours is the first work on mean field games on hypergraphs. Together with an extension to a multi-layer setup, we obtain limiting
descriptions for large systems of non-linear, weakly interacting dynamical agents. On the theoretical side, we prove the well-foundedness
of the resulting hypergraphon mean field game, showing both existence and approximate Nash properties. On the applied side, we extend
numerical and learning algorithms to compute the hypergraphon mean field equilibria. To verify our approach empirically, we consider
a social rumor spreading model, where we give agents intrinsic motivation to spread rumors to unaware agents, and an epidemic control
problem.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0093758

Recent developments in the field of complex systems have shown
that real-world multi-agent systems are often not restricted to
pairwise interactions, bringing to light the need for tractable
models allowing higher-order interactions. At the same time,
the complexity of analysis of large-scale multi-agent systems on
graphs remains an issue even without considering higher-order
interactions. An increasingly popular and tractable approach of
analysis is the theory of mean field games. We combine mean field
games with higher-order structure by means of hypergraphons, a
limiting description of very large hypergraphs. To motivate our
model, we build a theoretical foundation for the limiting sys-
tem, showing that the limiting system has a solution and that it
approximates finite, sufficiently large systems well. This allows
us to analyze otherwise intractable, large hypergraph games with
theoretical guarantees, which we verify using two examples of
rumor spreading and epidemics control.

I. INTRODUCTION

In recent years, there has been a surge of interest in large-
scale multi-agent dynamical systems on higher-order networks
due to their great generality and practical importance, e.g., in

epidemiology,1 opinion dynamics,2,3 network synchronization,4,5

neuroscience,6 and more. We refer interested readers to the excel-
lent review articles.7–9 In addition to providing a more realistic
description of the underlying processes, such large-scale systems
with higher-order interactions pose interesting control problems for
the reinforcement learning and control communities.10–12 To this
end, a big challenge has been to find tractable solutions.13,14

An increasingly popular and recent approach to the tractabil-
ity issue has been to use the framework of learning in mean field
games (MFGs)15–23 and their cooperative counterpart commonly
known as mean field control (MFC).24–30 It is important to note that
here, learning refers to the classical learning—i.e., iterative computa-
tion—of equilibria in game theory, as opposed to, e.g., reinforcement
learning; see also, e.g., the discussion in Laurière et al.31 Here are
also some extensive reviews on mean field games.32–36 Popularized
by Huang et al.37 and Lasry and Lions38 in the context of differ-
ential games, mean field games and related approximations have
since found application in a plethora of fields, such as transportation
and traffic control,39–41 large-scale batch processing and scheduling
systems,42–44 peer-to-peer streaming systems,45 malware epidemics,46

crowd dynamics and evacuation of buildings,47–49 as well as many
other applications in economics50 and engineering.51 Tractably find-
ing competitive equilibria and decentralized, cooperative optimal

Chaos 32, 113129 (2022); doi: 10.1063/5.0093758 32, 113129-1

© Author(s) 2022

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0093758
https://doi.org/10.1063/5.0093758
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0093758
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0093758&domain=pdf&date_stamp=2022-11-10
http://orcid.org/0000-0002-2605-0386
http://orcid.org/0000-0003-1803-0470
http://orcid.org/0000-0002-8305-9379
mailto:heinz.koeppl@tu-darmstadt.de
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0093758


Chaos ARTICLE scitation.org/journal/cha

control solutions has been the focus of many recent works.52–58 Since
then, mean field systems have also been extended to dynamical sys-
tems on graphs, typically using the theory of large graph limits
called graphons.59,60 The graphon mean field systems can be con-
sidered either as the limit of systems with weakly interacting node
state processes,57,61 or alternatively as the result of a double limit
procedure where each node constitutes a large population, or “clus-
ter” of agents, each of which interacts with each other via inter-
and intra-cluster coupling. First, infinitely many nodes are consid-
ered according to the graphon, and then infinitely many agents are
considered per node (see, e.g., Caines and Huang62,63).

In this work, we will consider the former. The goal of our work
is the synthesis of dynamical systems on hypergraphs with compet-
itive or selfish agents. Existing analysis of hypergraph mean field
systems typically remains restricted to special dynamics such as epi-
demiological equations64–66 or opinion dynamics67 on sparse graphs.
In contrast, our work deals with general, agent-controlled non-
linear dynamics and equilibrium solutions. We build upon prior
results for discrete-time, graph-based mean field systems57,61,68 and
extend them to incorporate higher-order hypergraphs as well as
multiple layers.

Our contribution can be summarized as follows: (i) To the
best of our knowledge, ours is the first general mean field game-
theoretical framework for non-linear dynamics on multi-layer
hypergraphs. Multi-layer networks69 have proven extremely useful
in many application areas, including infectious disease epidemiol-
ogy, where different layers could be used to describe community,
household, and hospital settings.70 (ii) We prove the existence and
the approximation properties of the proposed mean field equilibria.
(iii) We propose and empirically verify algorithms for solving such
hypergraphon mean field systems and thereby obtain a tractable
approach to solving and analyzing otherwise intractable Nash equi-
libria on multi-layer hypergraph games. The proposed framework is
of great generality, extending the recently established graphon mean
field games and thereby also standard mean field games (via fully
connected graphs).

After introducing some graph-theoretical preliminaries, in
Sec. II, we will begin by formulating the motivating mathemati-
cal dynamical model and game on hypergraphs, as well as its more
tractable mean field analog. Then, in Sec. III, we will show the exis-
tence of solutions for the mean field problem as well as quantify its
approximation qualities of the finite hypergraph game, building a
mathematical foundation for hypergraphon mean field games. Last,
in Sec. IV, we will evaluate our model numerically for an illustra-
tive rumor spreading game, verifying our theoretical approximation
results and the obtained equilibrium behavior. All of the proofs can
be found in Appendixes A and B.

Notation. On a discrete space A, define the spaces of all
(Borel) probability measures P(A) and all sub-probability mea-
sures B(A), equipped with the L1 norm. Define the unit interval
I := [0, 1] and its N equal-length subintervals IN

1 , . . . , IN
N such that

⊔N
i=1 IN

i = I for any integer N, where
⊔

denotes disjoint union
and each IN

i includes its rightmost point i/N. Denote the expecta-
tion and variance of random variables X by E[X], V[X]. Define
the indicator function 1A(x) mapping to 1 whenever x ∈ A and 0
otherwise. For any integer k, define [k] := {1, . . . , k}. Let r(A, m)

denote the set of all distinct non-empty subsets of any set A with

at most m elements and denote the set of all distinct non-empty,
proper subsets by r<(A) := r(A, |A| − 1) as well as the set of all
distinct non-empty subsets by r(A) := r(A, |A|). To keep the nota-
tion simple, in the following, we write r<[k] := r<([k]), r[k] := r([k])
and identify, e.g., r<[k] with [|r<[k]|] := {1, . . . , |r<[k]|} whenever
helpful. Denote the set of permutations of a set A as Sym(A).
Define the space of bounded, r<[k]-dimensional, symmetric functions

Symind
< [k] induced by permutations of the underlying set [k], i.e.,

any bounded function f : Ir<[k] → R is in Symind
< [k] whenever f is

invariant to all permutations σ ∈ Sym([k]), f(x1, . . . , xk, x11, x12, . . .)
= f(xσ(1), . . . , xσ(k), xσ(1)σ (1), xσ(1)σ (2), . . .). Analogously, we define

spaces of such functions Symind
≤ [k] and Symind[k] over r[k] and [k],

respectively.

II. MATHEMATICAL MODEL

Before we formulate the stochastic dynamic hypergraph game
and its limiting analog in Secs. II A and II B, we discuss some graph-
theoretical preliminaries. A (undirected) hypergraph is defined as
a pair H = (V, E) of a set of vertices V and a set of hyperedges
E ⊆ 2V \ {∅}. In contrast to edges in graphs, here hyperedges may
connect an arbitrary number of vertices instead of only two. If there
is no scope of confusion, we will call hyperedges of a hypergraph
just edges. Denote by V[H] and E[H] the vertex set and edge set of
a hypergraph H. The maximum cardinality of all edges of a hyper-
graph H is called its rank. A k-uniform hypergraph is defined as a
hypergraph where all edges have cardinality k. A multi-layer hyper-
graph H = (V, E1, . . . , ED) with D layers is obtained by allowing for
multiple edge sets E1, . . . , ED ⊆ 2V \ {∅}, and we analogously write
Ed[H] for the dth set of edges of a multi-layer hypergraph H. We
define the dth sub-hypergraph Hd of a multi-layer hypergraph H as
the hypergraph with vertex set V[H] and edge set E[Hd] = Ed[H].

Consider any (non-uniform) hypergraph H with bounded rank
kmax. Observe the isomorphism between multi-layer uniform hyper-
graphs and such H by splitting hyperedges of each cardinality
k ≤ kmax into their own layer. Since this procedure can be repeated
for each layer of a multi-layer hypergraph, any multi-layer hyper-
graph is, therefore, equivalent to a correspondingly defined multi-
layer uniform hypergraph. Hence, from here on, it suffices to define
and consider [k1, . . . , kD]-uniform hypergraphs H as D-layer hyper-
graphs, where each layer d = 1, . . . , D is given by a kd-uniform
hypergraph with kd ≤ kmax (see also Fig. 1 for a visualization). For
instance, in social networks, each layer could model, e.g., the k-
cliques of acquaintances formed at work, friendship at school, or
family relations.

To formulate the infinitely large mean field system, we define
the limiting description of sufficiently dense multilayer hyper-
graphs as the graphs intuitively become infinite in size, called
hypergraphons.71 Here, dense means a number of edges on the order
of O(N2), where N is the number of vertices, to which existing
hypergraphon theory remains limited to. However, we note that
an extension to more sparse models by fusing the theory of hyper-
graphons with Lp graphons72–74 could be part of future work. The
space of k-uniform hypergraphons Wk is now defined as the space of
all bounded and symmetric functions W ∈ Symind

< [k], W : Ir<[k] → I

that are measurable. We equip Symind
< [k] with the cut (semi-)norm
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FIG. 1. An example hypergraph H is transformed into a multi-layer uniform hypergraph. On the left, a hypergraph H with nodes V [H] = {1, . . . , 5} and hyperedges
E[H] = {{1, 4}, {1, 5}, {1, 3, 4}, {1, 2, 5}} is depicted. An equivalent representation of H as a [2, 3]-uniform hypergraph Hunif as well as its associated hypergraphons are
given, where the first and second layers each consist of edges {{1, 4}, {1, 5}} and three-hyperedges {{1, 3, 4}, {1, 2, 5}}, respectively. The associated (step-)hypergraphons
W [H1

unif ] and W [H2
unif ] are given as continuous versions of the (multi-dimensional) {0, 1}-valued adjacency matrices. Here, we depict only the first three coordinates for the

second layer step-hypergraphon W [H2
unif ], given by the constant 1 (black) or 0 (white). Note that while each edge corresponds to two entries in the adjacency matrix of the

two-uniform case, for the three-uniform case each hyperedge corresponds to six entries, resulting in the step graphon shown (bottom right).

‖·‖
�k−1 proposed by Zhao,75 defined by

‖W‖
�k−1 := sup

ui : I
r[k−1]→I,

ui∈Symind
≤ [k−1]

∣
∣
∣
∣
∣

∫

Ir<[k]
W(α)

k
∏

i=1

ui(αr([k]\{i})) dα

∣
∣
∣
∣
∣
, (1)

which (see, e.g., Lemma 8.10 of Ref. 59) coincides with the standard
graphon case for k = 2,

‖W‖� = sup
f,g : I→I

∣
∣
∣
∣

∫

I2
W(α, β)f(α)g(β) d(α, β)

∣
∣
∣
∣
. (2)

To analytically connect k-uniform hypergraphs to hyper-
graphons, we define the step-hypergraphons of any k-uniform
hypergraph H as

W[H](α) =
∑

m∈[N]k

1E[H](m) ·
∏

i∈[k]

1INmi
(αi). (3)

For motivation, note that for any sequence of graphs with con-
verging homomorphism densities, equivalently the step graphons
converge in the cut norm to the limiting graphon, and their lim-
iting homomorphism densities can be described by the limiting
graphon.59 Similarly, cut-norm convergence for the more general
uniform hypergraphs at least implies the convergence of hypergraph
homomorphism densities.75 Accordingly, we assume hypergraph
convergence in each layer of a given sequence of [k1, . . . , kD]-
uniform hypergraphs (HN)N∈N via the convergence of their step-
hypergraphons WN

d := W[Hd
N] to a limiting hypergraphon Wd

∈ Wkd
in the cut norm as visualized in Fig. 2, similar as in standard

graphon mean field systems.57,61

Assumption 1: The sequence of step-hypergraphons WN

:= (WN
d )

d∈[D] converges on each layer in cut norm ‖·‖� to some

hypergraphons W := (Wd)d∈[D] ∈ ×d∈[D]Wkd
, i.e.,

∥
∥WN

d − Wd

∥
∥

�
→ 0, ∀d ∈ [D]. (4)

A. Finite hypergraph game

In this subsection, we will formulate a dynamical model on
hypergraphs where each node is understood as an agent that is

FIG. 2. Visualization of the convergence of two-dimensional step graphons to the
uniform attachment graphonWunif(α1,α2) = 1 − max(α1,α2).
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influenced by the state distribution of all of its neighbors, accord-
ing to some time-varying dynamics. Furthermore, each agent is
expected to selfishly optimize its own objective, which gives rise to
Nash equilibria as the solution of interest.

Consider a [k1, . . . , kD]-uniform hypergraph and let T be
the time index set, either T = {0, 1, . . . , T − 1} or T = N0

:= {0, 1, 2, . . .}. We define N agents i ∈ [N] each endowed with local
states Xi

t and actions Ui
t from a finite state space X and finite action

space U, respectively. Here, X and U are assumed finite for tech-
nical reasons, though we believe that results could be extended to
more general spaces in the future. States have an initial distribu-
tion Xi

0 ∼ µ0 ∈ P(X). For all times t ∈ T and agents i ∈ [N], their
actions are random variables following the law

Ui
t ∼ π i

t (·|Xi
t), (5)

with policy (i.e., probability distribution over actions) π i ∈ 5

:= P(U)T×X, that, for each node i, depends on the ith state at time
t. Then, the states are random variables following the law

Xi
t+1 ∼ Pt(·|Xi

t, U
i
t, ν

N,i
t ), (6)

with transition kernels Pt : X × U × B(X) → P(X) that, for each
node i, depends on the ith state and action at time t, and ν

N,i
t .

Here, the ×D
d=1P(Xkd−1)-valued multi-layer empirical neighbor-

hood mean field ν
N,i
t is defined as

ν
N,i
t,d := 1

Nkd−1

∑

m∈[N]kd−1

1Ed[HN](m ∪ i)δ×j 6=iX
mj
t

, (7)

in its dth layer, consisting of the unnormalized state distributions
of an agent i’s neighbors on each layer. In other words, the state
dynamics of an agent depend only on the states of nodes in their
immediate neighborhood and can be influenced by the agent via its
actions Ui

t.
For example, in an epidemics spread scenario, the states of

each agent could model their infection status, while the actions of
an agent could be to take protective measures. As a result, each
agent will randomly become infected with probability depending on
how many neighboring agents are infected and whether the agent is
taking protective measures.

The cost functions Rt : X × U × B(X) → R with discount fac-
tor γ ∈ (0, 1) or in the finite horizon case γ ∈ (0, 1] define the
objective function for the ith agent,

JN
i (π 1, . . . , πN) := E

[

∑

t∈T

γ tRt(X
i
t, U

i
t, ν

N,i
t )

]

, (8)

which can also describe, e.g., random rewards Ri
t that are con-

ditionally independent given Xi
t, U

i
t, ν

N,i
t by the law of total

expectation and taking the conditional expectation, Rt(X
i
t, U

i
t, ν

N,i
t )

≡ E
[

Ri
t

∣
∣ Xi

t, U
i
t, ν

N,i
t

]

.
Our goal is now to find Nash equilibria, i.e., stable policies

where no agent can singlehandedly deviate and improve their own
objective. Note that finding Nash equilibria in games such as the
above is difficult, since (a) even existence of Nash equilibria under
the above, decentralized information structure of policies is hard to
show, and (b) computation of the Nash equilibria fails due to both

curse of dimensionality under full observability and general com-
plexity of computing Nash equilibria76 (see also Saldi et al.68 and the
discussion therein).

Thus, in the finite game, we are interested in finding the follow-
ing weaker notion of approximate equilibria,17,57 where a negligible
fraction of agents that remain insignificant to all other agents may
remain suboptimal.

Definition 1: An (ε, p)-Nash equilibrium for ε, p > 0 is
defined as a tuple of policies

(

π 1, . . . , πN
)

∈ 5N such that for any
i ∈ JN, we have

JN
i

(

π 1, . . . , πN
)

≥ sup
π∈5

JN
i

(

π 1, . . . , π i−1, π , π i+1, . . . , πN
)

− ε (9)

for some set JN ⊆ [N] of at least
⌊

(1 − p)N
⌋

agents.
While it may seem excessive to reduce to approximate opti-

mality limited to a fraction of the agents, it is always possible
under Assumption 1 for a finite number of agents to deviate arbi-
trarily from the limiting system description. Therefore, under our
assumptions, it is only possible to obtain an approximate equilib-
rium solution for almost all agents via the mean field formulation.
Although we could make stronger assumptions on the mode of con-
vergence for hypergraphons, such a concept of convergence would
be difficult to motivate from a graph theoretical perspective. There-
fore, we restrict ourselves to the cut-norm convergence75 and the
above solution concept.

B. Hypergraphon mean field game

Next, we will formally let N → ∞ and obtain a more tractable,
reduced model consisting of any single representative agent and the
distribution of agent states, the so-called mean field.

To analyze the case N → ∞, however, we first introduce
some preliminary definitions. We define the space of mean fields
M ⊆ P(X)T×I such that µ ∈ M whenever α 7→ µα

t (x) is measur-
able for all t ∈ T, x ∈ X. Intuitively, a mean field is the distribution
of states each of the infinitely many agents in I is in. Analogously,
the space of policies 5 ⊆ 5I is given by policies π ∈ 5I where
α 7→ πα

t (u | x) is measurable for any t ∈ T, x ∈ X, u ∈ U. Intu-
itively, π ∈ 5I defines the behavior for each agent α ∈ I. For any
f : X × I → R and state marginal ensemble µ ∈ P(X)I, define

µ(f) :=
∫

I

∑

x∈X

f(x, α)µα(x) dα.

In the limit of N → ∞, assuming that all agents follow a pol-
icy 5 ⊆ 5I, we obtain infinitely many agents α ∈ I, for each of
whom we define the limiting hypergraphon mean field dynamics
analogously to the finite hypergraph game.

The agent states have the initial distribution Xα
0 ∼ µ0 ∈ P(X).

For all times t ∈ T and agents α ∈ I, their actions will be random
variables following the law

Uα
t ∼ πα

t (·|Xα
t ), (10)

under the policy πα ∈ 5, while their states follow the law

Xα
t+1 ∼ Pt(·|Xα

t , Uα
t , να

t ), (11)

with the limiting, now deterministic neighborhood mean field
να

t ∈ ×D
d=1P(Xkd−1). Informally, by a law of large numbers, we have
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replaced the distribution of finitely many neighbor states by the lim-
iting mean field distribution να

t . The dth component of this mean
field is given by

να
t,d :=

∫

I
r<[kd]\{1}

Wd(α, β)

kd−1
∏

j=1

µ
βj

t (·) dβ , (12)

where for readability, (·) denotes separate coordinates of the input
(the order does not matter due to symmetry). In other words, the
d-layer neighborhood mean field distributions are functions

(x1, . . . , xkd−1) 7→
∫

I
r<[kd]\{1}

Wd(α, β)

kd−1
∏

j=1

µ
βj

t (xj) dβ (13)

that give the probability of random neighbors of a shared hyperedge
on layer d to be in states (x1, . . . , xkd−1) ∈ Xkd−1.

Note that the same, shared α ∈ I is used for all D layers, i.e.,
all layer neighborhood distributions of agents jointly converge to
the limiting descriptions να

t . This makes sense, since by Assump-
tion 1, we assume that the agents are already ordered such that
the corresponding step-hypergraphons converge to the limiting
hypergraphon in cut norm on all layers jointly.

Finally, the objective will be given by

Jµα (πα) := E

[

∑

t∈T

γ tRt(X
α
t , Uα

t , να
t )

]

, (14)

which leads to the mean field counterpart of Nash equilibria. Infor-
mally, a mean field (Nash) equilibrium is given by a “consistent”
tuple of policy and mean field, such that the policy is optimal under
the mean field and the mean field is generated by the policy. As a
result, if all agents follow the policy, they will be optimal under the
generated mean field, leading to a Nash equilibrium.

More formally, we define the maps 8 : M → 25 mapping from
fixed mean field µ ∈ M to all optimal policies π ∈ 5 : ∀α ∈ I :
πα ∈ argmaxπ̃ Jµα (π̃) and similarly 9 : 5 → M mapping from pol-
icy π ∈ 5 to its induced mean field µ ∈ M such that for all
α ∈ I, t ∈ T we have the initial distribution µα

0 = µ0 and mean field
evolution,

µα
t+1 =

∫

X

∫

U

P(x, u, να
t )πα

t (du | x)µα
t (dx). (15)

Definition 2: A Hypergraphon Mean Field Equilibrium
(HMFE) is a pair (π , µ) ∈ 5 × M such that π ∈ 8(µ) and
µ = 9(π).

Importantly, the mean field game will be motivated rigorously
in the following, and its computational complexity is independent
of the number of agents. Instead, the complexity of the problem will
scale with the size of agent state and action spaces X, U and the con-
sidered time horizon in case of a finite horizon cost function, since
we will solve for equilibria by repeatedly (i) computing optimal poli-
cies for discrete Markov decision processes77 πα ∈ argmaxπ̃ Jµα (π̃)

and (ii) solving the mean field evolution equation (15). In particular,
mean field equilibria are guaranteed to exist, and the correspond-
ing equilibrium policy will provide an equilibrium for large finite
systems.

To obtain meaningful results, we need a standard continuity
assumption (e.g., Ref. 61), since otherwise weak interaction is not
guaranteed: Without continuity, a change of behavior in only one of
many agents could otherwise cause arbitrarily large changes in the
dynamics or rewards.

Assumption 2: Let Rt, Pt, W each be Lipschitz continuous with
Lipschitz constants LR, LP, LW > 0.

Remark 1: For all but Theorem 1, we may alternatively let W
be Lipschitz on finitely many disjoint hyperrectangles, i.e., let there
be disjoint intervals {I1, . . . , IQ}, ∪iIi = I such that ∀i ∈ {1, . . . , Q},
∀α, α̃ ∈ Ii, ∀d ∈ [D], ∀β ∈ Ir<[kd]\{1}, we have

|Wd(α, β) − Wd(α̃, β)| ≤ LW |α − α̃| . (16)

Remark 2: Note that our model is quite general: In particular,
it is also possible to model dynamics and rewards dependent on the
state-action distributions instead of only state distributions, replacing
δ×j 6=iX

mj
t

by δ×j 6=i(X
mj
t ,U

mj
t )

in (7). This can be done by reformulating any

problem as follows. Assume a problem with state and action spaces
X, U and dependence of rewards and transitions on joint state-action
distributions. We can rewrite the problem as a new problem with new
state space X ∪ (X × U), where in the new problem, each two decision
epochs t, t + 1 correspond to a single original decision epoch, where in

the first step t ,we transition deterministically from X
mj

t to
(

X
mj

t , U
mj

t

)

for the taken action U
mj

t , while in the second step t + 1, we transition
and compute rewards according to the original system, ignoring any
second actions taken. Choosing the square root of the discount fac-
tor and normalizing rewards will give a problem in our form that is
equivalent to the original problem.

III. THEORETICAL RESULTS

In this section, we rigorously motivate the mean field formula-
tion by providing existence and approximation results of an HMFE.
Essentially, HMFEs are guaranteed to exist and will give approxi-
mate Nash equilibria in finite hypergraph games with many agents.
The reader interested primarily in applications may skip this section.

We lift the empirical distributions and policies to the contin-
uous domain I, i.e., for any (π 1, . . . , πN) ∈ 5N, we define the step
policy πN ∈ 5 and the step empirical measures µN ∈ M by

πN,α
t :=

∑

i∈[N]

1INi
(α) · π i

t , ∀(α, t) ∈ I × T, (17)

µN,α
t :=

∑

i∈[N]

1INi
(α) · δ

X
j
t
, ∀(α, t) ∈ I × T. (18)

Proofs for the results to follow can be found in Appendixes A and B
and are at least structurally similar to proofs in Cui and Koeppl,57

though they contain a number of additional considerations that we
highlight in Appendixes A and B.

A. Existence of equilibria

First, we show that there exists an HMFE. We do this by rewrit-
ing the problem in a more convenient form as done in Cui and
Koeppl.57 Consider an equivalent, more standard mean field game
with states (αt, X̃t), i.e., we integrate the graphon indices α into the
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state. The newfound states follow the initial distribution X̃0 ∼ µ0,
α0 ∼ Unif(I). Then, the actions and original state transitions follow
as before, while the αt part of the state remains fixed at all times, i.e.,

Ũt ∼ π̃t(·|X̃t, αt),

X̃t+1 ∼ Pt(·|X̃t, Ũt, ν̃t), αt+1 = αt,
(19)

where we used the standard (non-graphical) mean field µ̃t

∈ P(X × I) (cf. Saldi et al.68) and let

ν̃t,d =
∫

I
r<[kd]\{1}

Wd(αt, β)

kd−1
∏

j=1

µ̃t(·, βj) dβ . (20)

Using existing results for mean field games,68 we obtain the existence
of a potentially non-unique HMFE.

Theorem 1: Under Assumption 2, there exists a HMFE
(π , µ) ∈ 5 × M.

For uniqueness results, we refer to existing results such as the
classical monotonicity condition.38,55 However, using existing theory
will not analyze the finite hypergraph structure and instead directly
uses the limiting hypergraphons. In the following, we, thus, show
also that the finite hypergraph games are indeed approximated well.

B. Approximation properties

Next, we will show that the finite hypergraph game and its
dynamics are well approximated by the hypergraphon mean field
game, which implies that the HMFE solution of the hypergraphon
mean field game will give us the desired (ε, p)-Nash equilibrium in
large finite hypergraph games.

To begin, we define and obtain finite N-agent system
equilibria from an HMFE via the policy sharing map IdN(π)

:=
(

π 1, . . . , πN
)

∈ 5N, i.e., IdN is defined such that each agent will
act according to its position α on the hypergraphon,

π i
t (u | x) := π

i
N

t (u | x), ∀(i, t, x, u) ∈ [N] × T × X × U. (21)

Now consider (i, π̂)-deviated policy tuples where the ith agent
deviates from an equilibrium policy tuple to its own policy π̂ , i.e.,
policy tuples (π 1, . . . , π i−1, π̂ , π i+1, . . . , πN). Note that this includes
the deviation-free case as a special case. In order to obtain a (ε, p)-
Nash equilibrium, we must show that for almost all i and policies
π̂ , the (i, π̂)-deviated policy tuple will be approximately described
by the interaction with the limiting hypergraphon mean field. For
this purpose, the first step is to show the convergence of agent state
distributions to the mean field.

Define for any n ∈ N the evaluation of measurable functions
f : Xn × In → R under any n-dimensional product measures ⊗nµ

∈ P(Xn)I
n

as

µ(f) :=
∫

In

∑

x∈Xn

f(x, β)
∏

i∈[n]

µβi(xi) dβ , (22)

where ⊗nµ denotes the n-fold product of the measure µ, i.e., the
n-dimensional distribution over agent states.

Then, our first main result is the convergence of the finite-
dimensional agent state marginals to the limiting deterministic
mean field, given sufficient regularity of the applied policy. For

this purpose, we introduce and optimize over a class 5Lip of
Lipschitz-continuous policies up to at most Dπ discontinuities, i.e.,
π ∈ 5Lip whenever α 7→ πα

t at any time t has at most Dπ discon-
tinuities. Note, however, that we could in principle approximate
non-Lipschitz policies by classes of Lipschitz-continuous policies.

Theorem 2: Consider a policy π ∈ 5Lip with associated
mean field µ = 9(π). Let (π 1, . . . , πN) = IdN(π), π̂ ∈ 5, t ∈ T.
Under the policy tuple (π 1, . . . , π i−1, π̂ , π i+1, . . . , πN) ∈ 5N and
Assumption 1, we have for all finite dimensionalities n ∈ N and all
measurable functions f : Xn × In → R uniformly bounded by fixed
Mf > 0, that

E
[∣
∣⊗nµN

t (f) − ⊗nµt(f)
∣
∣
]

→ 0, (23)

uniformly over all possible deviations. Furthermore, the rate of con-
vergence follows the hypergraphon convergence rate in Assumption 1

up to O(1/
√

N).
As a special case, by considering n = 1 and f = 1{x} for any

x ∈ X, we find convergence in L1 of the empirical distribution of
agent states 1

N

∑

i∈[N] δXi
t
to the limiting mean field

∫

I
µα

t dα.
Our second main result is the (uniform) convergence of the

system for almost any agent i ∈ [N] with deviating policy π̂ ∈ 5 to
the system where the interaction with other agents is replaced by
the interaction with the limiting deterministic mean field. Hence,
we introduce new random variables for the single deviating agent,

beginning with initial distribution X̂
i
N
0 ∼ µ0. The action variables

follow the deviating policy

Û
i
N
t ∼ π̂t

(

·|X̂
i
N
t

)

, (24)

with the state transition laws

X̂
i
N
t+1 ∼ Pt

(

·|X̂
i
N
t , Û

i
N
t , ν

i
N

t

)

, (25)

i.e., we assume that all other agents act according to their corre-
sponding equilibrium policy IdN(π), such that the neighborhood
state distributions of most agents can be replaced by the limiting

term ν
i
N

t with little error in large hypergraphs.
Theorem 3: Consider a policy π ∈ 5Lip with associated

mean field µ = 9(π). Let (π 1, . . . , πN) = IdN(π), π̂ ∈ 5, t ∈ T.
Under the policy tuple (π 1, . . . , π i−1, π̂ , π i+1, . . . , πN) ∈ 5N and
Assumptions 1 and 2, for any uniformly bounded family of functions
G from X to R and any ε, p > 0, t ∈ T, there exists N′ ∈ N such that
for all N > N′,

sup
g∈G

∣
∣
∣
∣
E
[

g(Xi
t)
]

− E

[

g

(

X̂
i
N
t

)]∣
∣
∣
∣
< ε (26)

uniformly over π̂ ∈ 5, i ∈ JN for some JN ⊆ [N], |JN| ≥
⌊

(1 − p)N
⌋

.
Further, for any uniformly Lipschitz, uniformly bounded family

of measurable functions H from X × B(X) to R and any ε, p > 0,
t ∈ T, there exists N′ ∈ N such that for all N > N′,

sup
h∈H

∣
∣
∣
∣
E
[

h
(

Xi
t, ν

N,i
t

)]

− E

[

h

(

X̂
i
N
t , ν

i
N

t

)]∣
∣
∣
∣
< ε (27)

uniformly over π̂ ∈ 5, i ∈ JN for some JN ⊆ [N] with |JN|
≥
⌊

(1 − p)N
⌋

.
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As a corollary, we will have a good approximation of the finite
hypergraph game objective through the hypergraphon mean field
objective, and correspondingly the approximate Nash property of
hypergraphon mean field equilibria, motivating the hypergraphon
mean field game framework.

Corollary 1: Consider a policy π ∈ 5Lip with associated mean
field µ = 9(π). Let (π 1, . . . , πN) = IdN(π), π̂ ∈ 5, t ∈ T. Under
the policy tuple (π 1, . . . , π i−1, π̂ , π i+1, . . . , πN) ∈ 5N and Assump-
tions 1 and 2, there exists N′ ∈ N such that for all N > N′, we have

∣
∣
∣JN

i

(

π 1, . . . , π i−1, π̂ , π i+1, . . . , πN
)

− J
µ
i
N

(π̂)

∣
∣
∣ < ε (28)

uniformly over π̂ ∈ 5, i ∈ JN for some JN ⊆ [N] with |JN|
≥
⌊

(1 − p)N
⌋

.
Corollary 2: Consider an HMFE (π , µ) ∈ 5Lip × M. Under

Assumptions 1 and 2, for any ε, p > 0 there exists N′ such that
for all N > N′, the policy (π 1, . . . , πN) = IdN(π) is an (ε, p)-Nash
equilibrium.

Therefore, we find that a solution of the mean field system is
a good equilibrium solution of sufficiently large finite hypergraph
games.

The assumption of a class 5Lip of Lipschitz-continuous policies
up to finitely many discontinuities may seem restrictive. How-
ever—similar to Theorem 5 of Ref. 57—we may discretize and
partition I in order to solve hypergraphon mean field games to an
arbitrary degree of exactness, preserving the good approximation
properties on large hypergraph games.

IV. NUMERICAL EXPERIMENTS

In this section, we shall introduce an exemplary numerical
problem of rumor spreading and show associated numerical solu-
tions to demonstrate the hypergraphon mean field framework,
verifying the theoretical results.

In order to learn an HMFE in our model, we shall adopt the
well-founded discretization method proposed in Cui and Koeppl57

analogous to the technique used in the proof of Theorem 1 to
convert the graphon mean field game into a classical mean field
game and thereby allow application of any existing mean field game
algorithms such as fixed point iteration to solve for an equilib-
rium. In other words, we will split I into subintervals IN

1 , . . . , IN
N, for

each of which we will pick a representing α ∈ IN
i . This α together

with an agent’s original state in X will constitute the new state. In
Appendix B, we perform additional experiments for another numer-
ical problem of epidemics control, where existing algorithms fail,
pointing out potential future work.

A. Hypergraphons

In our experiments, we shall sample finite hypergraphs directly
from given limiting hypergraphons, which should ensure that we
obtain hypergraph sequences that fulfill Assumption 1 analogous to

the standard graphon case at rate O

(

1√
log N

)

(see Lemma 10.16 of

Ref. 59). To sample a k-uniform hypergraph with N nodes from a k-
uniform hypergraphon W, we sample |r<[k]| uniformly distributed
values from the unit interval {αj : αj ∼ Unif([0, 1])}

j∈r<[k]. Then, we
add any hyperedge B ⊆ [N] with probability W(αr<(B)).

For the sake of illustration, unless otherwise noted, we will
in the following consider two-layer hypergraphons, where the first
layer is a two-uniform hypergraph (standard graph), while the sec-
ond layer shall be a three-uniform hypergraph. For the first layer, we
consider the uniform attachment graphon,

Wunif(α1, α2) = 1 − max(α1, α2),

the ranked attachment graphon

Wrank(α1, α2) = 1 − α1α2

and the flat (or p-ER) random graphon

Wflat := p = 0.5.

In particular, the uniform attachment graphon is the limit of a ran-
dom graph sequence where we iteratively add a new node N and
then connect all unconnected nodes with probability 1

N
. Similarly,

for the ranked attachment graphon, at each iteration n, we first add
a new (nth) node. Before adding the node, the nodes 1, . . . , n − 1
exist from prior iterations. The new node n is connected to all pre-
vious nodes i = 1, . . . , n − 1 with probability 1 − i

n
. Then, all other

nodes that are not yet connected with each other will connect with
probability 2

n
(see also Chap. 11 of Ref. 59 and Fig. 3).

For the second, three-uniform layer, we similarly consider the
hypergraphon resulting from converting all triangles in a standard
p-ER graph into hyperedges,75

Ŵind(α) := 1I3×[0,p]3(α)

as well as the uniform attachment hypergraphon

Ŵunif(α) = 1 − max(α1, α2, α3)

and its inverted version

Ŵinv−unif(α) = 1 − max(1 − α1, 1 − α2, 1 − α3),

resulting from a similar construction as in the standard case.

B. Rumor spreading dynamics

In this section, we will describe some simple social dynamics
and epidemics problems to illustrate potential applications of hyper-
graphon mean field games. Here, each layer could model different
types of interpersonal relationships. In our particular example of
two-uniform and three-uniform layers, the latter can model small

FIG. 3. Visualization of example graphons in the two-dimensional case. Left:
Uniform attachment graphon; Middle: Ranked attachment graphon; Right: 0.5-ER
graphon.

Chaos 32, 113129 (2022); doi: 10.1063/5.0093758 32, 113129-7

© Author(s) 2022

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

cliques of friends, while the former could model general acquain-
tanceship. We do note that social networks are typically more sparse,
possessing significantly less edges than on the order of O(N2). How-
ever, our model is a first step toward rigorous limiting hypergraph
models and in the future could be extended by using other graph
limit theories such as Lp graphons72–74 by extending their theory
toward hypergraphons. We further imagine that similar approaches
could be used, e.g., in economics50 or engineering applications.51

In the classical Maki–Thompson model,78,79 spread of rumors
is modeled via three node states: ignorant, spreader, and stifler.
Ignorants are unaware of the rumor, while spreaders attempt to
spread the rumor. When spreaders attempt to spread to nodes that
are already aware of the rumor too often, they stop spreading and
become a stifler. In this work, instead of a priori assuming the above
behavior, we will give agents an intrinsic motivation to spread or
stifle rumors, giving rise to the Rumor problem. We shall consider
ignorant (I) and aware (A) nodes. The behavior of aware nodes
is then motivated by the gain and loss of social standing resulting
from spreading rumors to ignorant and aware nodes, respectively.
The possible actions U := {S̄, S} of nodes are to actively spread the
rumor (S) or to refrain from doing so (S̄). The probability of an
ignorant node becoming aware of the rumor at any decision epoch is
then simply given by a linear combination of all layer neighborhood
densities of aware, spreading nodes.

Since transition dynamics will depend on the spreading actions
of neighbors, following Remark 2 we define instead the extended
state space X = {I, A} ∪ ({I, A} × U). We then assume the dynam-
ics are given at all times by

P((x, u) | x, u, ·) = 1, P(A | (A, ·), ·, ν) = 1,

P(A | (I, ·), ·, ν) = 1 − P(I | (I, ·), ·, ν)

= min



1,
∑

d∈[D]

τdνd





∑

i∈[kd]

1{(A ,S)}(·i)









for all x ∈ {I, A}, u ∈ U and similarly the rewards

R((A, S), ·, ν) =
∑

d∈[D]

νd





∑

i∈[kd]

rd1{I}×U(·i) − cd1{A}×U(·i)



 ,

with R ≡ 0 otherwise. In other words, any aware and spreading
agent obtains a reward in each layer that is proportional to the prob-
ability of a neighbor of any hyperedge sampled uniformly at random
out of all connected hyperedges to be ignorant. In our experiments,
we use τ1 = 0.3, τ2 = 0.5, rd = 0.5, cd = 0.8, µ0(A) = 0.01, and
T = {0, 1, . . . , 49}.

C. Numerical results

In our experiments, we restrict ourselves to finite time horizons
with γ = 1, 50 discretization points, and use backward induction
with exact forward propagation to compute exact solutions. Note
that a simple fixed point iteration by repeatedly computing an arbi-
trary optimal deterministic policy and its corresponding mean field
converges to an equilibrium in the Rumor problem. In general, how-
ever, fixed point iteration (as well as more advanced state-of-the-art
techniques) may fail to converge [see, e.g., the susceptible-infected-
susceptible (SIS) problem in Appendix B].

In Fig. 4, we can observe that the behavior for the rumor prob-
lem is as expected. At the equilibrium, agents will continue to spread
rumors until the number of aware agents reaches a critical point at
which the penalty for spreading to aware agents is larger than the
reward for spreading to ignorant agents. The agents with higher
connectivity are more likely to be aware of the rumor. Particu-
larly in the uniform attachment hypergraphon case, the threshold
is reached at different times, since the neighborhoods of different
α reach awareness at different rates depending on their connectiv-
ity. Here, a number of nodes with very low degrees will continue
spreading the rumors. In Appendix B, we show additional results
for inverted 3-uniform hypergraphons, which give similar results
to the ones seen here. Furthermore, as can be seen in Fig. 5, the L1

FIG. 4. Analysis of equilibrium behavior for the rumor problem. Top: The threshold policy allows spreading of rumors. It can be seen that agents spread the rumor up until

a point in time where too many other agents know of the rumor. As expected, agents are more likely to hear of the rumor if they have more neighbors. (a) (Wrank, Ŵunif);

(b) (Wunif , Ŵunif); (c) (Wer, Ŵind).
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FIG. 5. Comparison between the fraction of aware nodes in the finite and mean

field system under the equilibrium policy for (Wrank, Ŵinv−unif) from Fig. 8(a) in
Appendix B, averaged over 50 stochastic simulations. The shaded region depicts
the 95% confidence interval at each N. It can be seen that the state distributions
are increasingly well approximated by the mean field.

error between the empirical distribution and the limiting mean field
system (as vectors over time),

1µ = E

[

∑

x∈X

∑

t∈T

∣
∣
∣
∣
∣

1

N

∑

i∈[N]

δXi
t
(x) −

∫

I

µα
t (x) dα

∣
∣
∣
∣
∣

]

(29)

goes to zero as the number of agents increases, showing that the
finite hypergraph game is well approximated by the hypergraphon
mean field game for sufficiently large systems, though the error
remains somewhat large due to the high variance from our sparse
initialization µ0(I) = 0.01. Here, we estimated the error 1µ for
each N over 50 realizations. Due to the O(N2) complexity of simula-
tion and computational constraints, our experiments remain limited
to the demonstrated number of agents. We repeat the experiment
in Fig. 6 with a more dense initialization µ0(A) = 0.1 to reduce
the aforementioned high contribution of variance from random
initializations. Here, we observe that the resulting convergence is
significantly faster.

Last, in Fig. 7, we demonstrate some interesting non-linear
behavior for a two-layer setting where both layers consist of three-
uniform hypergraphs. Here, for the first layer, we use the block
hypergraphon

Ŵblock(α) := 1[0,0.5]3×[0,p]3(α) + 1(0.5,1]3×[0,p]3(α)

for p = 0.5, while for the second layer, we again use the inverted
uniform attachment hypergraphon. In other words, we have a struc-
ture of two blocks on the first layer, while the second layer is more

FIG. 6. Comparison between the fraction of aware nodes in the finite and mean

field system under the equilibrium policy for (Wrank, Ŵinv−unif) as in Fig. 5, but with
higher initial awareness. It can be seen that convergence is much faster, since the
effect of random sparse initialization is avoided.

FIG. 7. Analysis of equilibrium behavior for the rumor problem with two-layer

three-uniform hypergraphs (Ŵblock, Ŵunif). We observe that the rumor originates
in nodes with α > 0.5, but nodes with α ≤ 0.5 eventually catch up due to their
increased connectivity. (a) The equilibrium threshold policy. (b) Mean field for
each α.

globally connected. Furthermore, we will initialize the rumor in the
second block where α > 0.5, i.e., µα

0 (A) = 1(0.5,1](α). As we can see
in Fig. 7, in the beginning, the rumor spreads in the second block
α > 0.5 where it originated from. After a while, however, the rumor
begins to spread faster in the first block α ≤ 0.5, since nodes with
low α are significantly more interconnected on the second layer.

Overall, we can see that multi-layer hypergraphon mean field
games allow for more complex behavior and modeling of connec-
tions than a single-layer graphon approach.

V. CONCLUSION

In this work, we introduced a model for dynamical systems on
hypergraphs that can describe agents with weak interaction via the
graph structure. The model allows for a rigorous and simple mean
field description that has a complexity independent of the number of
agents. We verify our approach both theoretically and empirically on
a rumor spreading example. By introducing game-theoretical ideas,
we, thus, obtain a framework for solving otherwise intractable large-
scale games on hypergraphs in a tractable manner.

We hope our work forms the basis for several future works,
e.g., extensions to directed or weighted hypergraphs in order to
generalize to arbitrary network motifs,80 adaptive networks,81 coop-
erative control, or consideration of edge states in addition to the
vertex states we have considered in this work. Furthermore, it may
be of interest to consider graph models with more adjustable clus-
tering parameters. An extension of our rumor model and theory
to continuous-time models could be fruitful. Finally, so far our
work remains restricted to dense graphs and deterministic limiting
graphons, while in practice, this is not always the case (e.g., prefer-
ential attachment graphs82). Here, Lp graphons72–74 could provide a
description for less dense cases, which are of great practical inter-
est. We also hope that our work inspires future applications in
inherently (hyper-)graphical scenarios.
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APPENDIX A: PROOFS

1. Proof of Theorem 1

Proof. Under our assumptions, we can verify Assumption 1 of
Ref. 68 for the equivalent standard mean field game given by (19)
as in Cui and Koeppl.57 By Theorem 3.3 of Ref. 68, there exists a
mean field equilibrium (π̃ , µ̃) for (19). The policy µ̃ is α-a.e. opti-
mal under the mean field µ̃ by Theorem 3.6 of Ref. 68. For all other
α, there trivially exists an optimal action, i.e., we can change π̃ such
that it is optimal for all α. Since the change is on a null set of I,
(π̃ , µ̃) remains a mean field equilibrium. Define the hypergraphon
mean field policy π by πα

t (u | x) = π̃t(u | x, α), then π is opti-
mal under the hypergraphon mean field µ where µ = 9(π), since
µα

t = µ̃t(·, α) for almost every α. Finally, both π and µ are measur-
able. Therefore, we have proven existence of the HMFE (π , µ). �

2. Proof of Theorem 2

In this section, we provide the full proof of Theorem 2. In con-
trast to prior work, such as Cui and Koeppl,57, we (i) extend existing
mean field convergence results to n-fold products of the state distri-
butions; and (ii) replace the state distributions by their symmetrized
version, in order to obtain convergence results under the general-
ized cut norm (1). Propagating these changes forward, the rest of the
proof is (somewhat) readily generalized and given in the following.

To begin, we introduce some notation to improve readability.
Define the D-dimensional neighborhood mean fields ν

α,µ
W with dth

component

ν
α,µ
W,d :=

∫

I
r<[kd]\{1}

Wd(α, β)

kd−1
∏

j=1

µβj(·) dβ

for all µ ∈ P(X)I, W := (W1, . . . , WD) ∈ ×D
d=1Wkd

as well as the
transition operator P

t,π ,µ
W : P(X)I → P(X)I such that

(

µ′P
t,π ,µ
W

)α =
∑

x∈X

µ′α(x)
∑

u∈U

πα(u | x)Pt

(

·
∣
∣ x, u, να,µ

W

)

for all µ′ ∈ P(X)I, π ∈ P(U)X, such that, e.g.,

µt+1 = µtP
t,π t ,µt
W .

Proof. In the following, consider arbitrary measurable func-
tions f : X × I → [−Mf, Mf], Mf > 0 and the telescoping sum

E
[∣
∣⊗nµN

t (f) − ⊗nµt(f)
∣
∣
]

≤
n−1
∑

i=0

E
[∣
∣⊗n−iµN

t ⊗ ⊗iµt(f) − ⊗n−i−1µN
t ⊗ ⊗i+1µt(f)

∣
∣
]

=
n−1
∑

i=0

E
[∣
∣⊗n−i−1µN

t ⊗
(

µN
t − µt

)

⊗ ⊗iµt(f)(f)
∣
∣
]

=
n−1
∑

i=0

E





∣
∣
∣
∣
∣
∣

∫

I

∑

xi∈X

∫

I[n]\{i}

∑

x̃∈X[n]\{i}

f(x, (α, β))

·
n−i−1
∏

j=1

µN,βj(x̃j)

n
∏

j=n−i+1

µβj(x̃j) dβ

·
[

µN,α(xi) − µα(xi)
]

dα

∣
∣
∣
∣
∣
∣





=
n−1
∑

i=0

E





∣
∣
∣
∣
∣
∣

∫

I

∑

xi∈X

g(xi, α)
[

µN,α(xi) − µα(xi)
]

dα

∣
∣
∣
∣
∣
∣



 ,

where we defined g : X × I → [−Mf, Mf] as

g(x, α) :=
∫

I[n]\{i}

∑

x−i∈X[n]\{i}

f((x, x−i), (α, β))

·
n−i−1
∏

j=1

µN,βj(xj)

n
∏

j=n−i+1

µβj(xj) dβ .

Since g is a measurable function bounded by Mf, due to the pre-
quel it suffices at any time t ∈ T to prove (23) for n = 1, which will
imply the statement for all n ∈ N.
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The proof is by induction over t for n = 1. At t = 0,

E
[∣
∣µN

0 (f) − µ0(f)
∣
∣
]

= E

[∣
∣
∣
∣
∣

∫

I

∑

x∈X

µ
N,α
0 (x) f(x, α) −

∑

x∈X

µα
0 (x) f(x, α) dα

∣
∣
∣
∣
∣

]

= E

[∣
∣
∣
∣
∣

∑

i∈[N]

(
∫

INi

f(Xi
0, α) dα − E

[
∫

INi

f(Xi
0, α) dα

])∣
∣
∣
∣
∣

]

≤
(

V

[

∑

i∈[N]

∫

INi

f(Xi
0, α) dα

]) 1
2

=
(

∑

i∈[N]

V

[
∫

INi

f(Xi
0, α) dα

]) 1
2

≤ 4Mf√
N

by i.i.d. Xi
0 ∼ µ0 = µα

0 and V

[
∫

INi
f(Xi

0, α) dα

]

≤
(

4Mf

N

)2
.

Assume that (23) holds at t ∈ T. Then, at time t + 1, we have

E
[∣
∣µN

t+1(f) − µt+1(f)
∣
∣
]

≤ E

[∣
∣
∣
∣
µN

t+1(f) − µN
t P

t,πN
t ,µN

t

WN (f)

∣
∣
∣
∣

]

+ E

[∣
∣
∣
∣
µN

t P
t,πN

t ,µN
t

WN (f) − µN
t P

t,πN
t ,µN

t
W (f)

∣
∣
∣
∣

]

+ E

[∣
∣
∣
∣
µN

t P
t,πN

t ,µN
t

W (f) − µN
t P

t,π t ,µ
N
t

W (f)

∣
∣
∣
∣

]

+ E

[∣
∣
∣
∣
µN

t P
t,π t ,µ

N
t

W (f) − µN
t P

t,π t ,µt
W (f)

∣
∣
∣
∣

]

+ E

[∣
∣
∣µ

N
t P

t,π t ,µt
W (f) − µt+1(f)

∣
∣
∣

]

and in the following, we will analyze each term.
For the first term, observe first that by definition,

∫

I
r<[kd]\{1}

WN
d (α, β)

kd−1
∏

j=1

µ
N,βj

t (·) dβ

= 1

Nkd−1

∑

m∈[N]kd−1

1Ed[HN](m ∪ i)δ×j 6=iX
mj
t

,

and, therefore,

µN
t P

t,πN
t ,µN

t

WN (f) = E

[
∫

INi

f(Xi
t+1, α) dα

∣
∣
∣
∣
∣

Xt

]

such that we again obtain

E

[∣
∣
∣
∣
µN

t+1(f) − µN
t P

t,πN
t ,µN

t

WN (f)

∣
∣
∣
∣

]

= E

[∣
∣
∣
∣
∣

∑

i∈[N]

(

g(Xi
t+1) − E

[

g(Xi
t+1)

∣
∣ Xt

])

∣
∣
∣
∣
∣

]

≤



E





(

∑

i∈[N]

(

g(Xi
t+1) − E

[

g(Xi
t+1)

∣
∣ Xt

])

)2








1
2

=
(

∑

i∈[N]

E

[
(

g(Xi
t+1) − E

[

g(Xi
t+1)

∣
∣ Xt

])2
]
) 1

2

≤ 4Mf√
N

,

where g(x) :=
∫

INi
f(x, α) dα, |g| ≤ Mf

N
, by using the law of total

expectation and conditional independence of {Xi
t+1}i∈[N] given

Xt := {Xi
t}i∈[N].

For the second term, first note that we can replace the distri-
butional terms by their symmetrized version: For any k ∈ N, any
W ∈ Symind

< [k] and any step empirical measure or mean field
µ ∈ P(X)I, we have by symmetry that the associated neighborhood
probabilities are invariant to all permutations σ ∈ Sym([k − 1]) of
states Xk−1, i.e., for any x ∈ Xk−1, α ∈ I

∫

Ir<[k]\{1}
W(α, β)

k−1
∏

i=1

µβi(xi)) dβ

= 1

(k − 1)!

∑

σ∈Sym([k−1])

∫

Ir<[k]\{1}
W(α, β)

k−1
∏

i=1

µβi(xσ(i))) dβ

=
∫

Ir<[k]\{1}
W(α, β)

1

(k − 1)!

∑

σ∈Sym([k−1])

k−1
∏

i=1

µβi(xσ(i)))

︸ ︷︷ ︸

u1∈Symind
≤ [k−1]

dβ ,

and, hence, Assumption 1 implies that

∫

I

∣
∣
∣
∣

∫

Ir<[k]\{1}
W(α, β)u1

(

β[k]\{1}]
)

dβ

∣
∣
∣
∣

dα

≤
∫

I[k]

∣
∣
∣
∣

∫

Ir<[k]\[k]
W(α, β)u1

(

α[k]\{1}]
)

dβ

∣
∣
∣
∣

dα

≤ sup
u1 : I

r[k−1]→I,

u1∈Symind
≤ [k−1]

∫

I[k]

∣
∣
∣
∣

∫

Ir<[k]\[k]
W(α, β) dβu1

(

α[k]\{1}]
)
∣
∣
∣
∣

dα

= sup
u1 : I

r[k−1]→I,

u1∈Symind
≤ [k−1]

∫

I[k]

∫

Ir<[k]\[k]
W(α, β) dβu1

(

α[k]\{1}]
)

dα

≤ ‖W‖
�k−1 → 0
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for any x ∈ Xk−1, α ∈ I by letting u1(αr<([k]\{i})) := 1
(k−1)!

∑

σ∈Sym([k−1])

∏k−1
i=1 µβi(xσ(i))) in (1). Therefore,

E

[∣
∣
∣
∣
µN

t P
t,πN

t ,µN
t

WN (f) − µN
t P

t,πNt,µN
t

W (f)

∣
∣
∣
∣

]

= E

[∣
∣
∣
∣
∣

∫

I

∑

x∈X

µN,α
t (x)

∑

u∈U

πN,α
t (u | x)

∑

x′∈X

f(x′, α)

·
[

Pt

(

x′ | x, u, ν
α,µN

t

WN

)

− Pt

(

x′ | x, u, ν
α,µN

t
W

)]

dα

∣
∣
∣
∣
∣

]

≤ |X|MfLP E

[∫

I

∥
∥
∥
∥
ν

α,µN
t

WN − ν
α,µN

t
W

∥
∥
∥
∥

dα

]

≤ |X|MfLP E





∫

I

∑

d∈[D]

∑

x∈X
kd−1

∣
∣
∣
∣
∣
∣

∫

I
r<[kd]\{1}





kd−1
∏

j=1

µN,βj(xj)





·
[

WN
d (α, β) − Wd(α, β)

]

dβ

∣
∣
∣
∣
∣
∣

dα





≤ |X|MfLP|X|
∑

d∈[D]

‖WN
d − Wd‖�

kd−1 → 0

by Assumption 1, and at rate O(1/
√

N) if (4) converges at rate
O(1/

√
N).

For the third term, we have

E

[∣
∣
∣
∣
µN

t P
t,πN

t ,µN
t

W (f) − µN
t P

t,π t ,µ
N
t

W (f)

∣
∣
∣
∣

]

= E

[∣
∣
∣
∣
∣

∫

I

∑

x∈X

µN,α
t (x)

∑

u∈U

[

πN,α
t (u | x) − πα

t (u | x)
]

·
∑

x′∈X

Pt

(

x′ | x, u, ν
α,µN

t
W

)

f(x′, α) dα

∣
∣
∣
∣
∣

]

≤ Mf E

[∫

I

∣
∣πN,α

t (u | x) − πα
t (u | x)

∣
∣ dα

]

= Mf E





∑

j∈[N]\{i}

∫

INj

∣
∣
∣
∣
π

dNαe
N

t (u | x) − πα
t (u | x)

∣
∣
∣
∣

dα





+ Mf E

[
∫

INi

∣
∣π̂t(u | x) − πα

t (u | x)
∣
∣ dα

]

≤ Mf ·
Lπ

N
+ Mf ·

2|Dπ |
N

+ Mf ·
2

N

by π ∈ 5Lip with Lipschitz constant Lπ and up to Dπ discontinuities,
where we bound the integrands by 2.

For the fourth term, we find that

E

[∣
∣
∣
∣
µN

t P
t,π t ,µ

N
t

W (f) − µN
t P

t,π t ,µt
W (f)

∣
∣
∣
∣

]

= E

[∣
∣
∣
∣
∣

∫

I

∑

x∈X

µN,α
t (x)

∑

u∈U

πα
t (u | x)

∑

x′∈X

f(x′, α)

·
[

Pt

(

x′ | x, u, ν
α,µN

t
W

)

− Pt

(

x′ | x, u, να,µt
W

)
]

dα

∣
∣
∣
∣
∣

]

≤ |X|MfLP E

[∫

I

∥
∥
∥
∥
ν

α,µN
t

W − ν
α,µt
W

∥
∥
∥
∥

dα

]

≤ |X|MfLP E





∫

I

∑

d∈[D]

∑

x∈X
kd−1

∣
∣
∣
∣
∣
∣

∫

I
r<[kd]\{1}

Wd(α, β)

·





kd−1
∏

j=1

µN,βj(xj) −
kd−1
∏

j=1

µβj(xj)



 dβ

∣
∣
∣
∣
∣
∣

dα





= |X|MfLP

∫

I

∑

d∈[D]

∑

x∈X
kd−1

E





∣
∣
∣
∣
∣
∣

∫

I
[kd]\{1}

∫

Wd(α, β , ζ ) dζ

·





kd−1
∏

j=1

µN,βj(xj) −
kd−1
∏

j=1

µβj(xj)



 dβ

∣
∣
∣
∣
∣
∣

dα





= |X|MfLP

∫

I

∑

d∈[D]

∑

x∈X
kd−1

E
[∣
∣⊗kd−1µN

t (f′x,α) − ⊗kd−1µt(f
′
x,α)
∣
∣
]

dα → 0

at the rate in the induction assumption, by applying the induction
assumption (23) for n = kd − 1 to the functions

f′x,α(x
′, β) =

∫

I
r<[kd]\[kd]

Wd(α, β , ζ ) dζ · 1{x}(x
′)

for any (x, α) ∈ Xkd−1 × I.
For the fifth term, we analogously obtain

E

[∣
∣
∣µ

N
t P

t,π t ,µt
W (f) − µtP

t,π t ,µt
W (f)

∣
∣
∣

]

= E

[∣
∣
∣
∣
∣

∫

I

∑

x∈X

[

µN,α
t (x) − µα

t (x)
]∑

u∈U

πα
t (u | x)

·
∑

x′∈X

Pt

(

x′ | x, u, να,µt
W

)

f(x′, α) dα

∣
∣
∣
∣
∣

]

= E
[∣
∣µN

t (f′) − µt(f
′)
∣
∣
]

→ 0

at the rate in the induction assumption, by applying the induction
assumption (23) to

f′(x, α) =
∑

u∈U

πα
t (u | x)

∑

x′∈X

Pt

(

x′ | x, u, να,µt
W

)

f(x′, α).

This concludes the proof by induction. �
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3. Proof of Theorem 3

The proof of Theorem 3 mirrors the proof in Ref. 57 apart from
propagating the multidimensional convergence results forward,
and we give the entire proof for completeness and convenience.
Again, we introduce some notation to improve readability. For any
α ∈ I, d ∈ [D], define maps να

d : P(X)I → P(X) and να
N,d : P(X)I

→ P(X) as

να
d (µ) :=

∫

I
r<[kd]\{1}

Wd(α, β)

kd−1
∏

j=1

µβj(·) dβ ,

να
N,d(µ) :=

∫

I
r<[kd]\{1}

WN
d (α, β)

kd−1
∏

j=1

µβj(·) dβ ,

with D-dimensional shorthands

να(µ) := (να
d (µ))d∈[D],

να
N(µ) := (να

N,d(µ))
d∈[D]

,

such that by definition να
t = να(µt) and ν

N,i
t = ν

i
N

N (µN
t ).

Proof. To begin, we prove (26) =⇒ (27) at any fixed time t.
Define the uniform bound Mh and uniform Lipschitz constant Lh of
functions in H. For any h ∈ H, we have

∣
∣
∣
∣
E

[

h(Xi
t, ν

i
N

N (µN
t ))

]

− E

[

h(X̂
i
N
t , ν

i
N (µt))

]∣
∣
∣
∣

=
∣
∣
∣
∣
E

[

h(Xi
t, ν

i
N

N (µN
t ))

]

− E

[

h(Xi
t, ν

i
N

N (µt))

]∣
∣
∣
∣

+
∣
∣
∣
∣
E

[

h(Xi
t, ν

i
N

N (µt))

]

− E

[

h(Xi
t, ν

i
N (µt))

]
∣
∣
∣
∣

+
∣
∣
∣
∣
E

[

h(Xi
t, ν

i
N (µt))

]

− E

[

h(X̂
i
N
t , ν

i
N (µt))

]∣
∣
∣
∣
,

which we will analyze as N → ∞.
For the first term, we obtain
∣
∣
∣
∣
E

[

h(Xi
t, ν

i
N

N (µN
t ))

]

− E

[

h(Xi
t, ν

i
N

N (µt))

]∣
∣
∣
∣

≤ E

[

E

[∣
∣
∣
∣
h(Xi

t, ν
i
N

N (µN
t )) − h(Xi

t, ν
i
N

N (µt))

∣
∣
∣
∣

∣
∣
∣
∣

Xi
t

]]

≤ Lh E

[∥
∥
∥
∥
ν

i
N

N (µN
t ) − ν

i
N

N (µt)

∥
∥
∥
∥

]

= Lh E





∑

d∈[D]

∑

x∈X
kd−1

∣
∣
∣
∣
∣
∣

∫

I
r<[kd]\{1}

WN
d (α, β)

·





kd−1
∏

j=1

µN,βj(xj) −
kd−1
∏

j=1

µβj(xj)



 dβ

∣
∣
∣
∣
∣
∣



 → 0

uniformly by applying Theorem 2 to the functions

f′N,i,x(x
′, β) =

∫

I
r<[kd]\[kd]

WN
d (

i

N
, β , ζ ) dζ · 1{x}(x

′).

For the second term, we analogously have

∣
∣
∣
∣
E

[

h(Xi
t, ν

i
N

N (µt))

]

− E

[

h(Xi
t, ν

i
N (µt))

]
∣
∣
∣
∣

≤ Lh‖ν
i
N

N (µt) − ν
i
N (µt)‖1

≤ Lh

∑

d∈[D]

∑

x∈X
kd−1

∣
∣
∣
∣
∣
∣

∫

I
r<[kd]\{1}





kd−1
∏

j=1

µβj(xj)





·
[

WN
d (

i

N
, β) − Wd(

i

N
, β)

]

dβ

∣
∣
∣
∣
∣
∣

≤ Lh

∑

d∈[D]

∑

x∈X
kd−1

∣
∣
∣
∣
∣
∣

∫

I
r<[kd]\{1}





kd−1
∏

j=1

µβj(xj)





·
[

WN
d (

i

N
, β) − N

∫

INi

Wd(α, β) dα

]

dβ

∣
∣
∣
∣
∣
∣

+ Lh

∑

d∈[D]

∑

x∈X
kd−1

∣
∣
∣
∣
∣
∣

∫

I
r<[kd]\{1}





kd−1
∏

j=1

µβj(xj)





·
[

N

∫

INi

Wd(α, β) dα − Wd(
i

N
, β)

]

dβ

∣
∣
∣
∣
∣
∣

,

where for the former (finite) sum, we have

∣
∣
∣
∣
∣
∣

∫

I
r<[kd]\{1}





kd−1
∏

j=1

µβj(xj)





·
[

WN
d (

i

N
, β) − N

∫

INi

Wd(α, β) dα

]

dβ

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

N

∫

INi

∫

I
r<[kd]\{1}





kd−1
∏

j=1

µβj(xj)





·
[

WN
d (α, β) − Wd(α, β)

]

dβ dα

∣
∣
∣
∣
∣
∣

≤ N

∫

INi

∣
∣
∣
∣
∣
∣

∫

I
r<[kd]\{1}





kd−1
∏

j=1

µβj(xj)





·
[

WN
d (α, β) − Wd(α, β)

]

dβ

∣
∣
∣
∣
∣
∣

dα

= : IN
i ,
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since by definition of the step-hypergraphon, WN
d ( i

N
, β) = WN

d

(α, β) over α ∈ IN
i . Therefore,

1

N

N
∑

i=1

IN
i =

∫

I
r<[kd]

[

WN
d (β) − Wd(β)

]
kd−1
∏

j=1

µβj(xj) dβ → 0

as in the proof of Theorem 2 by Assumption 1. Fix ε, p > 0. As N
becomes sufficiently large, there must exist JN

1 , |JN
1 | ≥

⌊

(1 − p)N
⌋

such that

IN
i < ε, ∀i ∈ J

N
1 .

We prove this by contradiction: Assume there does not exist such
JN

1 , then there exist at least
⌈

pN
⌉

agents where IN
i ≥ ε. Since IN

i

≥ 0, it follows that 1
N

∑N
i=1 IN

i ≥ 1
N

⌈

pN
⌉

ε ≥ εp, which contradicts

the convergence to zero of 1
N

∑N
i=1 IN

i . Repeating the argument for
each d ∈ [D], x ∈ Xkd−1 bounds the first sum.

For the latter (finite) sum, we have
∣
∣
∣
∣
∣
∣

∫

I
r<[kd]\{1}





kd−1
∏

j=1

µβj(xj)





·
[

N

∫

INi

Wd(α, β) dα − Wd

(
i

N
, β

)
]

dβ

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

N

∫

INi

∫

I
r<[kd]\{1}





kd−1
∏

j=1

µβj(xj)





·
[

Wd(α, β) − Wd

(dNαe
N

, β

)]

dβ dα

∣
∣
∣
∣
∣
∣

≤ N

∫

INi

∫

I
r<[kd]\{1}

∣
∣
∣
∣
Wd(α, β) − Wd

(dNαe
N

, β

)∣
∣
∣
∣

dβ dα

≤ N
1

N
· LW

N
= LW

N
→ 0

by Assumption 2. Alternatively, under only block-wise Lipschitz W
as in (16), the same result is obtained by first separating out finitely
many i (at most Q − 1) for which Lipschitzness fails, trivially bound-
ing their terms by 2(Q−1)

N
. For all other i, there exists k ∈ {1, . . . , Q}

such that IN
i × Ij ⊆ Ik × Ij, i.e., the Lipschitz bound applies.

For the third term, again fix ε, p > 0. Then, by our initial
assumption of (26), for sufficiently large N, there exists a set JN

2 ,
|JN

2 | ≥
⌊

(1 − p)N
⌋

such that
∣
∣
∣
∣
E

[

h
(

Xi
t, ν

i
N (µt)

)]

− E

[

h

(

X̂
i
N
t , ν

i
N (µt)

)]∣
∣
∣
∣
< ε, ∀i ∈ J

N
2

independent of π̂ ∈ 5.
This completes the proof of (26) =⇒ (27) at any time t,

since by the prequel, the intersection of all correspondingly cho-
sen, finitely many sets JN

i for sufficiently large N has at least
N −

∑

i

⌈

piN
⌉

elements, which is always larger than N −
⌈

pN
⌉

for
any p > 0 by choosing pi sufficiently small.

Finally, we show (26) at all times t using the prequel by induc-

tion, which will imply (27). By definition for t = 0, X̂
i
N
t ∼ µ0 and

Xi
t ∼ µ0 imply

∣
∣
∣
∣
E
[

g(Xi
0)
]

− E

[

g

(

X̂
i
N
0

)]∣
∣
∣
∣
= 0.

For the induction step, define the uniform bound Mg of functions in
G. Observe that

∣
∣
∣
∣
E
[

g
(

Xi
t+1

)]

− E

[

g

(

X̂
i
N
t+1

)]∣
∣
∣
∣

=
∣
∣
∣
∣
E

[

lN,t

(

Xi
t, ν

i
N

N

(

µN
t

)
)]

− E

[

lN,t

(

X̂
i
N
t , ν

i
N (µt)

)]∣
∣
∣
∣

using the uniformly bounded and Lipschitz functions

lN,t(x, ν) :=
∑

u∈U

π̂t(u | x)
∑

x′∈X

Pt(x
′ | x, u, ν)g(x′),

with bound Mg and Lipschitz constant |X|MgLP. By induction
assumption (26) and (26) =⇒ (27), there exists N′ ∈ N such that
for all N > N′, we have

∣
∣
∣
∣
E

[

lN,t

(

Xi
t, ν

i
N

N

(

µN
t

)
)]

− E

[

lN,t

(

X̂
i
N
t , ν

i
N
(

µt

)
)]∣
∣
∣
∣
< ε

uniformly over π̂ ∈ 5, i ∈ JN for some JN ⊆ [N] with |JN|
≥
⌊

(1 − p)N
⌋

. This concludes the proof by induction. �

4. Proof of Corollary 1

Proof. The result follows more or less directly from Theorem 3.
Consider first the finite horizon case T = {0, 1, . . . , T − 1}. Define

Rπ̂
t (x, ν) :=

∑

u∈U

Rt(x, u, ν)π̂t(u | s),

with uniform bound MR and Lipschitz constant |U|LR. Therefore, by
choosing the maximum over all N′ for all finitely many times t ∈ T

via Theorem 3, there exists N′ ∈ N such that for all N > N′, we have

∣
∣
∣JN

i

(

π 1, . . . , π i−1, π̂ , π i+1, . . . , π̂
)

− J
µ
i
N

(π̂)

∣
∣
∣

≤
T−1
∑

t=0

∣
∣
∣
∣
E

[

R
π̂t
t

(

Xi
t, ν

i
N (µt)

)]

− E

[

R
π̂t
t

(

X̂
i
N
t , ν

i
N (µt)

)]∣
∣
∣
∣
< ε

uniformly over π̂ ∈ 5, i ∈ JN for some JN ⊆ [N] with |JN|
≥
⌊

(1 − p)N
⌋

.
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FIG. 8. Analysis of equilibrium behavior for the rumor problem on additional hypergraphon configurations. (a) (Wrank, Ŵinv−unif); (b) (Wunif , Ŵinv−unif).

For the infinite horizon problem T = N0, we first pick some

time T′ >
log ε(1−γ )

4MR
log γ

such that

T′−1
∑

t=0

γ t

∣
∣
∣
∣
E

[

rπ̂t

(

Xi
t, ν

i
N (µt)

)]

− E

[

rπ̂t

(

X̂
i
N
t , ν

i
N (µt)

)]∣
∣
∣
∣

+ γ T′
∞
∑

t=T′
γ t−T′

∣
∣
∣
∣
E

[

rπ̂t

(

Xi
t, ν

i
N (µt)

)]

− E

[

rπ̂t

(

X̂
i
N
t , ν

i
N (µt)

)]∣
∣
∣
∣

<

T′−1
∑

t=0

γ t

∣
∣
∣
∣
E

[

rπ̂t

(

Xi
t, ν

i
N (µt)

)]

− E

[

rπ̂t

(

X̂
i
N
t , ν

i
N (µt)

)]∣
∣
∣
∣
+ ε

2

and again apply Theorem 3 to the remaining finite sum. �

5. Proof of Corollary 2

Proof. The result follows directly from Corollary 1. Let ε > 0,
then by Corollary 1, there exists N′ ∈ N such that for all N > N′, we
have

max
π∈5

(

JN
i

(

π 1, . . . , π i−1, π , π i+1, . . . , πN
)

− JN
i

(

π 1, . . . , πN
))

≤ max
π∈5

(

JN
i

(

π 1, . . . , π i−1, π , π i+1, . . . , πN
)

− J
µ
i
N

(π)

)

+ max
π∈5

(

J
µ
i
N

(π) − J
µ
i
N

(

π
i
N

))

+
(

J
µ
i
N

(

π
i
N

)

− JN
i

(

π 1, . . . , πN
)
)

<
ε

2
+ 0 + ε

2
= ε

FIG. 9. The solution policy and corresponding mean field for graphons (Wunif , Ŵunif) from Fig. 10 at different iterations n. It can be observed that in the SIS problem, the
solution oscillates between taking precautions and not taking precautions. (a) n = 20; (b) n = 100; (c) n = 500; (d) n = 1500.
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uniformly over i ∈ JN for some JN ⊆ [N] with |JN| ≥
⌊

(1 − p)N
⌋

,
where by definition of equilibrium optimality, we obtained

max
π∈5

(

J
µ
i
N

(π) − J
µ
i
N

(

π
i
N

))

= 0.

This concludes the proof. �

APPENDIX B: ADDITIONAL EXPERIMENTS

In Fig. 8, we show additional results for the Rumor problem
and inverted three-uniform hypergraphons. There, we find almost
inverted results as in Fig. 4, indicating that the influence of con-
nections from the second layer are more important under the given
problem parameters. However, we note that surprisingly, the highest
awareness is reached for intermediate α.

As an additional example, in the timely SIS problem, we assume
that there exists an epidemic that spreads to neighboring nodes
according to the classical SIS dynamics (see, e.g., Ref. 83). Analo-
gously, we may consider extensions to arbitrary variations of the SIS
model, such as susceptible-infected-recovered (SIR) or susceptible-
exposed-infected-recovered (SEIR). Each healthy (or susceptible, S)
agent can take costly precautions (P) to avoid becoming infected
(I), or ignore (P̄) precautions at no further cost. Since being
infected itself is costly, an equilibrium solution must balance the
expected cost of infections against the cost of taking precautions.

Formally, we define the state space X = {S, I} and action space
U = {P̄, P} such that

P(I | S, P̄, ν) = min



1,
∑

d∈[D]

τdνd

(

1{I}
)



 ,

P(I | S, P, ·) = 0, P(S | I, ·, ·) = δ,

with infection rates τd > 0,
∑

d τd ≤ 1, recovery rate δ ∈ (0, 1),
and rewards R(x, u, ·) = cP1{P}(u) + cI1{I}(x) with infection and
precaution costs cP > 0, cI > 0. In our experiments, we will use
τd = 0.8, δ = 0.2, cP = 0.5, cI = 2, µ0(I) = 0.5, and
T = {0, 1, . . . , 49}.

Existing state-of-the-art approaches such as online mirror
descent (OMD)55(and similarly fictitious play, see, e.g., Ref. 19) as
depicted in Figs. 9 and 10 for ten discretization points did not con-
verge to an equilibrium in the considered 2000 iterations, though
we expect that the methods will converge when running for signifi-
cantly more iterations—e.g., 400 000 iterations as in Ref. 58—which
we could not verify here due to the computational complex-
ity. We expect that existing standard results using monotonicity
conditions38,55 can be extended to the hypergraphon case in order
to guarantee convergence of aforementioned learning algorithms.
However, this remains outside the scope of our work. In particu-
lar, for the ranked attachment graphon and hypergraphon, the final
behavior as seen in Fig. 9 remains with an average final exploitability
1J of above 0.25, which is defined as

1J(π) =
∫

I

sup
π∗∈5

J9(π)
α (π∗) − J9(π)

α (π) dα

and must be zero for an exact equilibrium.

FIG. 10. Average exploitability over iterations n of online mirror descent55 on the
SIS problem. It can be observed that for some configurations, the method fails to
converge to an equilibrium.
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