
Citation: Foody, G.M. Global and

Local Assessment of Image

Classification Quality on an Overall

and Per-Class Basis without Ground

Reference Data. Remote Sens. 2022, 14,

5380. https://doi.org/

10.3390/rs14215380

Academic Editor: Salah Bourennane

Received: 24 September 2022

Accepted: 21 October 2022

Published: 27 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Global and Local Assessment of Image Classification Quality on
an Overall and Per-Class Basis without Ground Reference Data
Giles M. Foody

School of Geography, University of Nottingham, Nottingham NG7 2RD, UK; giles.foody@nottingham.ac.uk

Abstract: Ground reference data are typically required to evaluate the quality of a supervised image
classification analysis used to produce a thematic map from remotely sensed data. Acquiring a
suitable ground data set for a rigorous assessment of classification quality can be a major challenge.
An alternative approach to quality assessment is to use a model-based method such as can be achieved
with a latent class analysis. Previous research has shown that the latter can provide estimates of
class areal extent for a non-site specific accuracy assessment and yield estimates of producer’s
accuracy which are commonly used in site-specific accuracy assessment. Here, the potential for
quality assessment via a latent class analysis is extended to show that an estimate of a complete
confusion matrix can be predicted which allows a suite of standard accuracy measures to be generated
to indicate global quality on an overall and per-class basis. In addition, information on classification
uncertainty may be used to illustrate classification quality on a per-pixel basis and hence provide local
information to highlight spatial variations in classification quality. Classifications of imagery from
airborne and satellite-borne sensors were used to illustrate the potential of the latent class analysis
with results compared against those arising from the use of a conventional ground data set.

Keywords: supervised classification; accuracy; uncertainty; ground data

1. Introduction

Ground reference data often play an important role in analyses of remotely sensed im-
agery. In a standard supervised image classification used in thematic mapping applications,
for example, ground data are required normally to train and to test the analysis. Ideally, a
ground data set needs to have attributes of quantity and quality as well as properties such
as timeliness (i.e., be acquired at a time point close to that of image acquisition) that can be
challenging to satisfy. A suitable ground data set can be expensive to acquire, especially if
from authoritative field survey. Indeed the expense of traditional field survey is one of the
main reasons for using remote sensing as a source of environmental information [1]. Be-
cause high quality ground data sets are expensive and challenging to form, means to reduce
the training and testing data requirements for image classification have been explored.

The ground data requirements for training a supervised classification analysis can be
reduced in a variety of ways. For example, approaches that have been adopted include the
use of semi-supervised methods, active learning, historic training sets, pre-trained models
with a transfer learning methods, spectral signature libraries, intelligent sample selection, use
of data augmentation techniques and of data acquired by crowdsourcing [2–8]. Critically,
however, numerous studies have shown the potential to reduce the training data requirements
for accurate supervised image classification.

Ground data are required in the testing stage of a supervised image classification to
evaluate the quality of the resulting thematic map and to inform analyses based upon it.
The quality of an image classification is typically indicated by an assessment of classification
accuracy and/or uncertainty in the labelling of cases in a testing set. Although accuracy
and uncertainty are different concepts, with accuracy focused on the degree of error and
uncertainty on the confidence of the class labelling, they both provide useful information

Remote Sens. 2022, 14, 5380. https://doi.org/10.3390/rs14215380 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14215380
https://doi.org/10.3390/rs14215380
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6464-3054
https://doi.org/10.3390/rs14215380
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14215380?type=check_update&version=1


Remote Sens. 2022, 14, 5380 2 of 15

to evaluate the quality of a thematic map derived from a classification analysis [9,10].
Attention is typically focused on accuracy assessment and the standard approach is a global
accuracy assessment based on design-based inference for which recommendations for good
practice exist [11]. A core component of the advice is the use of ground data acquired
following an appropriate probability sample design. This can be a challenge to satisfy but
given the importance of an accuracy assessment it has been suggested that a third of a
mapping project’s budget should be allocated to accuracy assessment to enable a rigorous
analysis [12]. A map without an accuracy assessment is an untested hypothesis, just one
possible representation of the theme that is of ill-defined quality [12]. While the sampling
design imposes a constraint that need not apply to training data there are ways to reduce
the testing set requirements. The design of the accuracy assessment can, for example,
include actions to meet specific mapping objectives and cost constraints [13].

Commonly, most attention is focused on a global assessment of the quality of the
thematic map generated by the classification analysis. The latter assessment normally
involves the production of an accuracy statement to accompany the map. The central
feature of the accuracy statement is typically a summary statistic of overall map quality (e.g.,
percentage correctly classified cases ideally with confidence intervals at a specified level
of significance). Often this reporting may be supplemented with accuracy information for
individual classes and the provision of a confusion matrix from which a range of measures
of classification quality can be calculated. Thus, for example estimates of accuracy on a per-
class basis from the user’s and producer’s perspective may be provided [14]. These latter
accuracy indicators are again global, relating to the entire map. However, a global accuracy
statement will not convey information on how accuracy varies in space. Classification
accuracy may vary geographically, with differences, for example, associated with local
variations in the fragmentation of the landscape and image acquisition viewing geometry
within the mapped area. Errors are, however, often concentrated spatially especially near
inter-class boundaries [15–18]. Thus, there is sometimes a desire for local information
recognising that classification quality can be variable in space [19–23].

Approaches to mapping accuracy locally may, for example, interpolate key mea-
sures between ground data sites or constrain the region providing ground data for esti-
mation [9,20,24–27]. Such approaches, however, may require very considerable ground
reference data if the measures are to be of value, especially if to be generated for numerous
small sub-regions of the mapped area. An alternative approach to gaining local information
on classification quality is to focus on the uncertainty of class allocations. For example, local
estimates of classification quality such as per-pixel measures of class labelling uncertainty
generated in the analysis may be mapped. Thus, maps of variables such as the posterior
probabilities of class membership generated in a conventional maximum likelihood clas-
sification can be produced [17,23]. This approach provides a wall-to-wall illustration of
classification quality without any ground data for testing purposes.

Often classification quality assessments are undertaken sub-optimally which limits
their value. For example, the use of a small testing set in an accuracy assessment may
be associated with uncertain estimates (e.g., wide confidence intervals) and use of a non-
probability sample greatly limits interpretability. None-the-less ways to reduce the costs
and acquire ground data exist. As in the training stage, it may, for example, be possible to
use crowdsourced data. An alternative approach which could greatly reduce or potentially
remove the need for ground reference data is to adopt a method based on model-based
inference [28]. Model based approaches have not been widely used in remote sensing but
the potential for both non-site- and site-specific accuracy assessment through a latent class
analysis has been highlighted [29].

With a latent class model, the outputs of a set of image classifications are used to make
model based estimates of quality measures for each of the input classifications. This is,
therefore, a means to intrinsic quality assessment with the quality measures generated
directly from the input data themselves. In [29] the focus was on making estimates of the
extent of each class in the region mapped, which can be used in non-site specific accuracy
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assessment, and of the producer’s accuracy, which provides a per-class measure that is
widely estimated in conventional site-specific accuracy assessments. Critically, the two
measures, class extent and producer’s accuracy, are parameters of the latent class model
and are estimated without ground reference data. Here, the aim is to revisit and extend the
exploration of the potential of latent class analysis for accuracy assessment. Specifically, this
paper seeks to illustrate two key issues. First, that a matrix of conditional probabilities of
class membership may be obtained. This matrix shows the pattern of class allocations, cor-
rect and errors, for all classes and thus, provides, in essence, information on class allocations
similar to a conventional confusion matrix. From this matrix, a range of global measures
of accuracy may be calculated on both a per-class and overall basis without any ground
reference data. Second, the latent class analysis allows both global and local assessments
of classification quality to be undertaken. The latent class analysis can yield estimates of
key class allocation probabilities that allow quality to be estimated on a per-pixel basis and
enable a wall-to-wall representation of classification quality. Thus, it will be argued that the
latent class analysis can provide both local and global assessments of classification quality
on both an overall and per-class basis without any ground reference data.

2. Methods

Two remotely sensed data sets acquired for the region around the village of Feltwell in
the UK were used. These data have been used and reported on in earlier work (e.g., [4,30])
and hence here only key details are provided. The study area comprised mainly flat land
that has been divided up into large agricultural fields and has been used as a test site
for a range of remote sensing missions for many years. The remotely sensed data used
were acquired by the SPOT HRV [31] and an airborne thematic mapper (ATM) in June
and July 1986 respectively. A key attraction of these data sets was the availability of high
quality ground data acquired near the time of image acquisitions which showed the crop
type planted in most fields in the study area to allow conventional quality assessments to
compare against the results from the latent class analyses; the ground data were used only
to generate a conventional quality assessment for comparative purposes.

The ATM sensor used acquired data in 11 spectral wavebands. A feature selection
analysis indicated that a high degree of class separability could be acquired using only the
data acquired in three bands: these were the 0.60–0.63 µm, 0.69–0.75 µm and 1.55–1.75 µm
wavebands. Focusing on only the data acquired in these three bands also helped reduce
the training data requirements for the six classes that dominated the test site: sugar beet
(S), wheat (W), barley (B), carrot (C), potato (P) and grass (G). In an earlier study [30], the
ATM data set had been classified using four popular classifiers: a discriminant analysis, a
decision tree, a multi-layer perceptron neural network using a backpropagation learning
algorithm and a support vector machine with a radial basis function kernel. The new work
presented here uses the confusion matrices, generated with a testing set of 320 classified
pixels acquired with a simple random sample design, to describe the accuracy of the
classifications (reported in Figure 3 of [30]).

The SPOT HRV image (Figure 1) was used mainly to illustrate the ability to generate
local information on classification quality. A small image extract (Figure 1b) was used
which contains mainly three classes: sugar beet, wheat and barley. The three crop classes in
the image extract were highly separable spectrally. However, with 20 m pixels it would
be expected that classification error could occur near the boundaries of classes. At these
locations mixed pixels may occur and the classifiers used (described below) would, as
conventional hard classifiers, act to force a single class label to each pixel. Thus, while pure
pixels of the classes, such as found in the central regions of the field, would be expected to
be highly separable there is scope for error near boundaries separating fields planted to
different classes.
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Figure 1. False colour composite SPOT HRV imagery. (a) regional setting and context around the
village of Feltwell, UK. The white box illustrates the extract used to illustrate the potential of latent
class analysis for provision of local information on classification quality and (b) the extract used with
class labels (B, S and W) annotated; the location labelled O is discussed in the text. Image copyright
CNES (2020), reproduced by GMF under licence from SPOT Image.

At the time of the SPOT HRV image acquisition the sugar beet crop would provide
only a low amount of ground cover and thus the fields planted to this class would have a
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spectral response dominated by the background soil and hence have a blue colouration in
the false colour composite (Figure 1). While all three classes are spectrally separable in the
image, the low ground cover makes the sugar beet class spectrally very dissimilar to the
two other crop types. Mixing that involves the sugar beet class might, therefore, result in
uncertainty in class membership. Uncertainty in class allocation was, therefore, expected to
occur most at inter-class boundaries and especially if the boundary separated sugar beet
from another class.

Training data for the three crops were obtained from fields in the region surrounding
the image extract. Four classifications were generated by applying minimum distance to
means and maximum likelihood classifiers twice, once using just the data in SPOT HRV
band 3 and then secondly using the data acquired in all three SPOT HRV wavebands. Note,
the focus in this paper is not on producing highly accurate classifications but generating a
set that could be used in a latent class analysis.

Latent class modelling has been widely used in other disciplines as a means to estimate
the accuracy of a classification when a gold-standard reference data set is unavailable,
e.g., [32,33]. In the context of assessing the quality of an image classification, the latent class
analysis is focused on the set of class labels for all pixels in the image obtained from the
application of a set of different image classifiers. The labels from the set of classifications
were used to form a multi-dimensional contingency table that summarized the allocations
made and the analysis sought to explain them with a latent variable [34]. Because it is
easy to generate multiple classifications of an image, something that is often undertaken
if using a consensus approach to classification, it should normally be simple to generate
the classification inputs required for a latent class analysis. Indeed the addition of further
classifications has the attractive feature of increasing the degrees of freedom in the analysis
which helps estimation of parameters from the model [35]. However, this could also result
in many cells in the contingency table being empty which can complicate the estimation and
interpretation of model fit [36,37]. There is an extensive literature on latent class modelling,
e.g., [32–41] and here only key details are provided for brevity.

The latent class analysis requires that a set of at least three image classifications are
available as indicators of the unobserved (latent) variable and its classes [38,39]. In the
analysis, the observed associations among the set of classification outputs generated is taken
to be explainable by a latent variable that represents the thematic classes of interest [35,39].
The patterns of class labelling observed for the image pixels classified multiple times by the
set of classifiers adopted may be used to form a latent class model from which the accuracy
of each individual classification may be estimated without the use of ground reference data.
The basis of the latent class model for an image data set that has been subjected to four
different classification analyses (classifiers A, B, C and D allocating cases to class sets a, b, c,
and d respectively), which is the situation for the analyses presented below, is:

πABCDX
abcdx = πX

x π
A|X
ax π

B|X
bx π

C|X
cx π

D|X
dx (1)

where πABCDX
abcdx is the probability that a randomly selected case will lie in the a, b, c, d,

x cell of the multi-dimensional contingency table, X is the latent variable that has a set
of x classes [34,36,40]. The first term or parameter to the right of the equals sign in the
latent class model presented in Equation (1), πX

x , is the latent class probability which is
the probability of a case belonging to class x of the latent variable X. The remaining terms
are conditional probabilities that show the probability of a case in class x of the latent
variable X belonging to a class as indicated by the relevant input classification. When
the latent class and the class allocated by a classification are the same the conditional
probability is the producer’s accuracy for that class in the relevant classification. Earlier
work in [29] focused on just these two parameters estimated from a latent class analysis
(the latent class probability and producer’s accuracy). Here, however, the key focus is on
the other conditional probabilities, those for which the classified class label and latent class
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label differ. These conditional probabilities convey useful information on the pattern of
mis-classification.

Information on classification quality may also be generated for each pixel and this
may be used to visualize the spatial pattern of classification quality. The set of class
allocations made by the classifications together with the parameters of the latent class
model allows quantification of the posterior probability of belonging to a class [36,41] using
Bayes theorem [36]. This allows each pixel in the image to be allocated to the class with
which it displayed the highest posterior probability of membership [36,41]. Critically, this
also provides a means to illustrate classification quality on a per-pixel basis. The posterior
probabilities may be mapped to illustrate the spatial variation in classification uncertainty.
So, beyond the content of [29] it will be stressed that local and global assessments may be
undertaken on both overall and per-class basis without ground reference data.

The basic latent class model assumes the input classifications are conditionally inde-
pendent. This model can, however, be adjusted if conditional dependence is observed
which is important to avoid biased estimates of key model parameters [42–44]. Here, the
latent class modelling was undertaken using the LEM software (obtained from: https:
//jeroenvermunt.nl/#software, last accessed on 22 October 2022), with model fit as-
sessed with the L2 statistic and conditional dependence was assessed using CONDEP
(obtained from: https://www.john-uebersax.com/stat/condep.htm, last accessed on 22
October 2022).

3. Results

As reported in [29], the basic latent class model used appeared to fit with the classifi-
cations from the ATM data set, with L2 = 72.3 and no significant conditional dependence
observed. The latent classes produced were associated with the crop classes on the basis of
prior knowledge of the site, especially class abundance [29]. The latent class and conditional
probabilities were output from the analysis for each of the four classifiers applied to the
data (Table 1).

Table 1. Probabilities output from the latent class analysis of the ATM data set. (a) latent class
probabilities (i.e., πX

x ), (b) conditional probabilities from the discriminant analysis, (c) conditional
probabilities from the decision tree, (d) conditional probabilities from the neural network and
(e) conditional probabilities from the support vector machine. Note that class membership in the
latent variable is shown in columns and the elements on the main diagonal in (b–e) represents the
producer’s accuracy.

Class Latent Class

(a) S W B C P G

0.2994 0.2850 0.1750 0.1063 0.0750 0.0594

(b) S W B C P G

S 0.9289 0.0110 0 0 0 0
W 0.0189 0.9890 0.1607 0.0294 0 0
B 0 0 0.8393 0 0 0
C 0 0 0 0.8824 0 0.0526
P 0.0522 0 0 0.0882 1.0000 0.1579
G 0 0 0 0 0 0.7895

Σ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(c) S W B C P G

https://jeroenvermunt.nl/#software
https://jeroenvermunt.nl/#software
https://www.john-uebersax.com/stat/condep.htm
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Table 1. Cont.

Class Latent Class

S 0.9269 0.0987 0.0391 0 0 0
W 0.0522 0.8773 0 0 0 0
B 0.0104 0.0131 0.9430 0 0 0
C 0 0 0 1.0000 0 0
P 0.0104 0 0 0 1.0000 0
G 0 0.0110 0.0179 0 0 1.0000

Σ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(d) S W B C P G

S 0.9707 0 0 0 0 0
W 0 0.9759 0.0358 0.0588 0 0
B 0.0189 0.0241 0.9464 0 0 0
C 0 0 0 0.9412 0 0
P 0.0104 0 0 0 1.0000 0.0526
G 0 0 0.0179 0 0 0.9474

Σ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(e) S W B C P G

S 0.9478 0 0.0213 0 0 0
W 0.0522 1.0000 0.0144 0 0 0
B 0 0 0.9643 0 0 0
C 0 0 0 1.0000 0 0
P 0 0 0 0 1.0000 0.0526
G 0 0 0 0 0 0.9474

Σ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

The output of the latent class model for the ATM data provides information on the
land cover classes and their spectral separbility. The probabilities output from the latent
class model applied to the ATM data are summarised in Table 1. The probability that a
case is a member of a particular latent class, the first term in Equation (1), indicates the
abundance or areal extent of the class and the other terms of Equation (1) represent the
conditional probabilities. The latent class probability and conditional probability equating
to the producer’s accuracy were reported in [29]. For example, the second term in Equation
(1) would be the producer’s accuracy for classifier A when the class label in a is the same as
that in x. Here, the key focus is on the other conditional probabilities of class membership
output from the latent class analysis. These latter probabilities indicate the pattern of class
allocation, critically providing information on misclassifications that can aid the evaluation
of the quality of a classification and inform other analyses. For example, Table 1b shows
the conditional probabilities of class membership generated from the latent class analysis
with regard to the classification by the discriminant analysis. This matrix shows patterns
of misclassification with non-zero entries in elements off the main diagonal indicating the
magnitude of misclassification. For example, in Table 1b it is evident that some cases the
latent class analysis associated with the sugar beet (S) class have some confusion with
the wheat (W) and potato (P) classes. Specifically P(W|S) = 0.0189 and P(P|S) = 0.0522.
Importantly, the conditional probabilities generated from the latent class analysis are close
to those obtained with the use of the ground reference data in the available testing set
(Table 2). To aid assessment the difference between the individual conditional probabilities
are shown in Table 3. Thus not only does the latent class analysis provide information
on class abundance that can be used in non-site specific accuracy assessment and the
producers’s accuracy for each class it provides information on the pattern of class allocation,
critically highlighting misclassifications amongst the classes.
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Table 2. Probabilities of class membership obtained with ground reference data; actual class of
membership in columns. Values calculated as conditional to actual class of membership. (a) prob-
ability of class occurrence, (b) conditional probabilities from the discriminant analysis, (c) condi-
tional probabilities from the decision tree, (d) conditional probabilities from the neural network and
(e) conditional probabilities from the support vector machine. As in Table 1, the main diagonal in
(b–e) represents the producer’s accuracy.

Class Actual Class

(a) S W B C P G

0.3031 0.3000 0.1594 0.1031 0.0813 0.0531

(b) S W B C P G

S 0.8969 0.0313 0 0 0 0
W 0.0309 0.9375 0.1176 0.0303 0.0769 0
B 0 0.0208 0.8824 0 0 0
C 0 0.0104 0 0.8788 0 0.0588
P 0.0722 0 0 0.0909 0.8846 0.1176
G 0 0 0 0 0.0385 0.8235

Σ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(c) S W B C P G

S 0.9175 0.0833 0.0588 0 0 0
W 0.0412 0.8229 0 0 0.0769 0
B 0.0103 0.0625 0.9412 0 0 0
C 0 0.0104 0 1.0000 0 0
P 0.0206 0 0 0 0.8846 0
G 0.0103 0.0208 0 0 0.0385 1.0000

Σ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(d) S W B C P G

S 0.9278 0.0313 0 0 0 0
W 0.0309 0.8750 0.0392 0.0606 0.0769 0
B 0.0103 0.0729 0.9608 0 0 0
C 0 0.0104 0 0.9394 0 0
P 0.0309 0 0 0 0.8846 0
G 0 0.0104 0 0 0.0385 1.0000

Σ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(e) S W B C P G

S 0.9175 0.0208 0.0196 0 0 0
W 0.0619 0.9167 0.0196 0 0.0769 0
B 0 0.0521 0.9608 0 0 0
C 0 0.0104 0 1.0000 0 0
P 0.0103 0 0 0 0.9231 0
G 0.0103 0 0 0 0 1.0000

Σ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

With information on class abundance, the conditional probabilities of class member-
ship generated from the latent class analysis (Table 1) may be used to generate a prediction
of the main content of a full confusion matrix. Thus, the probabilities of the latent class
occurrence (Table 1a) may be used with the conditional probabilities generated for each
classification analysis (Table 1b–e) to essentially build an estimate of a confusion matrix
for each classification which is the basis of numerous measures of classification accuracy.
Thus, for example, it has been estimated that 29.94% of the study area is composed of class
S (Table 1a). Having the conditional probabilities of membership to each class given mem-
bership of class S would allow the formation of a column of a confusion matrix. This can be
illustrated simply by assuming a testing sample of 320 cases to allow comparison against
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the actual confusion matrices, published in [30], based on a testing set of that size acquired
by simple random sampling. As the sugar beet class has been estimated to occupy 29.94%
of the test site, the column for that class would be expected to contain 95.81 cases; fractional
cases would not occur in reality but maintained for illustrative purposes. Focusing on the
classification by the discriminant analysis as an example (Table 1b), of those cases, based on
the conditional probabilities of class membership (Table 1b), 89.00 would be labelled sugar
beet, 1.81 labelled wheat and 5.00 labelled as potato. Repeating such an analysis for each
class allows the prediction of the columns of a confusion matrix generated entirely from
the latent class analysis and without the aid of any ground reference data (Table 4); the
reference data set were used to assess the quality of the estimates obtained from the latent
class analysis. For comparative purposes the actual confusion matrices generated with
the 320 testing cases, and published in [30], are shown in Table 5. It is evident that there
are differences, which is expected as there are, for instance, differences in the class area
estimates from the latent class analysis (Table 1a) and that generated from the ground data
(Table 2a), but they are small (Table 3a). Critically, however, an estimate of a full confusion
matrix that, while imperfect, illustrates the general pattern of misallocation was obtained
from the latent class analysis.

Table 3. Difference between the latent class and actual value determined with ground data (calculated
as latent estimate—actual). (a) probability of class occurrence, (b) conditional probabilities from the
discriminant analysis, (c) conditional probabilities from the decision tree, (d) conditional probabilities
from the neural network and (e) conditional probabilities from the support vector machine.

Class Class

(a) S W B C P G

−0.0037 −0.0150 0.0156 0.0032 −0.0063 0.0063

(b) S W B C P G

S 0.0320 −0.0203 0 0 0 0
W −0.0120 0.0515 0.0431 −0.0009 −0.0769 0
B 0 −0.0208 −0.0431 0 0 0
C 0 −0.0104 0 0.0036 0 −0.0062
P −0.0200 0 0 −0.0027 0.1154 0.0403
G 0 0 0 0 −0.0385 −0.0340

(c) S W B C P G

S 0.0094 0.0154 −0.0197 0 0 0
W 0.0110 0.0544 0 0 −0.0769 0
B 0.0001 −0.0494 0.0018 0 0 0
C 0 −0.0104 0 0 0 0
P −0.0102 0 0 0 0.1154 0
G −0.0103 −0.0098 0.0179 0 −0.0385 0

(d) S W B C P G

S 0.0429 −0.0313 0 0 0 0
W −0.0309 0.1009 −0.0034 −0.0018 −0.0769 0
B 0.0086 −0.0488 −0.0144 0 0 0
C 0 −0.0104 0 0.0018 0 0
P −0.0205 0 0 0 0.1154 0.0526
G 0 −0.0104 0.0179 0 −0.0385 −0.0526

(e) S W B C P G

S 0.0303 −0.0208 0.0017 0 0 0
W −0.0097 0.0833 −0.0052 0 −0.0769 0
B 0 −0.0521 0.0035 0 0 0
C 0 −0.0104 0 0 0 0
P −0.0103 0 0 0 0.0769 0.0526
G −0.0103 0 0 0 0 −0.0526
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Table 4. Confusion matrices predicted from the outputs from the latent class analysis. (a) for the
discriminant analysis, (b) for the decision tree, (c) for the neural network and (d) for the support
vector machine.

Class Actual Class

(a) S W B C P G Σ

S 89.00 1.00 0 0 0 0 90.00
W 1.81 90.20 9.00 1.00 0 0 102.01
B 0 0 47.00 0 0 0 47.00
C 0 0 0 30.02 0 1.00 31.02
P 5.00 0 0 3.00 24.00 3.00 35.00
G 0 0 0 0 0 15.01 15.01

Σ 95.81 91.20 56.00 34.02 24.00 19.01 320.03

(b) S W B C P G Σ

S 88.80 9.00 2.19 0 0 0 100.00
W 5.00 80.01 0 0 0 0 85.01
B 1.00 1.19 52.81 0 0 0 55.00
C 0 0 0 34.02 0 0 34.02
P 1.00 0 0 0 24.00 0 25.00
G 0 1.00 1.00 0 0 19.01 21.01

Σ 95.81 91.20 56.00 34.02 24.00 19.01 320.03

(c) S W B C P G Σ

S 93.00 0 0 0 0 0 93.00
W 0 89.00 2.00 2.00 0 0 93.01
B 1.81 2.20 53.00 0 0 0 57.01
C 0 0 0 32.02 0 0 32.02
P 1.00 0 0 0 24.00 1.00 26.00
G 0 0 1.00 0 0 18.01 19.01

Σ 95.81 91.20 56.00 34.02 24.00 19.01 320.03

(d) S W B C P G Σ

S 0.9278 0.0313 0 0 0 0
W 0.0309 0.8750 0.0392 0.0606 0.0769 0
B 0.0103 0.0729 0.9608 0 0 0
C 0 0.0104 0 0.9394 0 0
P 0.0309 0 0 0 0.8846 0
G 0 0.0104 0 0 0.0385 1.0000

Σ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(e) S W B C P G Σ

S 90.81 0 1.19 0 0 0 92.00
W 5.00 91.20 0.81 0 0 0 97.01
B 0 0 54.00 0 0 0 54.00
C 0 0 0 34.02 0 0 34.02
P 0 0 0 0 24.00 1.00 25.00
G 0 0 0 0 0 18.01 18.01

Σ 95.81 91.20 56.00 34.02 24.00 19.01 320.03

Four classifications of the SPOT HRV data were generated. A latent class analysis
assuming conditional independence of the input data, as used with the ATM data, was
applied to the four classifications of the SPOT HRV image. As many elements of the
multi-dimensional contingency table summarizing the class allocations made by the set
of classifiers were associated with zero values the assessment of fit is, however, difficult
but the model fitted the data with L2 = 1684.15. Additionally, a test for conditional de-
pendence indicated that was significant dependence between classifications generated by
the minimum distance and maximum likelihood classifications that only used the data
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acquired in SPOT HRV band 3. Informed by this analysis, a series of trials of other models
was undertaken. Here, attention focused on a model that includes conditional dependence
between the minimum distance and maximum likelihood classifications generated using
the same set of spectral wavebands. This model appeared to fit the data more closely
than the basic model with L2 = 730.22 although interpretation of the fit statistics is again
limited by the large number of elements in the multi-dimensional contingency table with
zero values.

Table 5. Confusion matrices generated with the ground reference data; actual class of membership
shown in the columns. (a) for the discriminant analysis, (b) for the decision tree, (c) for the neural
network and (d) for the support vector machine. Data from [30].

(a) S W B C P G Σ

S 87 3 0 0 0 0 90
W 3 90 6 1 2 0 102
B 0 2 45 0 0 0 47
C 0 1 0 29 0 1 31
P 7 0 0 3 23 2 35
G 0 0 0 0 1 14 15

Σ 97 96 51 33 26 17 320

(b) S W B C P G Σ

S 89 8 3 0 0 0 100
W 4 79 0 0 2 0 85
B 1 6 48 0 0 0 55
C 0 1 0 33 0 0 34
P 2 0 0 0 23 0 25
G 1 2 0 0 1 17 21

Σ 97 96 51 33 26 17 320

(c) S W B C P G Σ

S 90 3 0 0 0 0 93
W 3 84 2 2 2 0 93
B 1 7 49 0 0 0 57
C 0 1 0 31 0 0 32
P 3 0 0 0 23 0 26
G 0 1 0 0 1 17 19

Σ 97 96 51 33 26 17 320

(d) S W B C P G Σ

S 89 2 1 0 0 0 92
W 6 88 1 0 2 0 97
B 0 5 49 0 0 0 54
C 0 1 0 33 0 0 34
P 1 0 0 0 24 0 25
G 1 0 0 0 0 17 18

Σ 97 96 51 33 26 17 320

4. Discussion

A key outcome from the analyses of the ATM data set was the ability to obtain
information on classification accuracy and the pattern of mis-classification. The matrix
formed for each classifer (Table 4) has some similarity to a confusion matrix, although
representing an imperfect guide to reality. Critically, the matrices may be used to generate
a suite of global measures of classification quality on an overall and on a per-class basis
(e.g., [14]). For example, the confusion matrix would allow an estimate of the overall
proportion of correct allocations (i.e., overall accuracy) or per-class accuracy from the user’s
and producer’s perspectives to be generated. The latent class analysis, therefore, provides
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a means to generate an estimate of traditional global measures of classification accuracy, on
an overall and per-class basis without the use of a testing set of ground reference data.

The potential to extract additional and critically local information on classification
quality was explored with the SPOT HRV data set. The outputs from the latent class model
applied to the four classifications of the SPOT HRV data provide a means to explore the
potential for local information on classification accuracy that is available on a wall-to-wall
basis. This was illustrated by focusing on locations that may be expected to be associated
with uncertainty in class membership in the image extract (Figure 1b).

Figure 2 shows the posterior probabilities generated from the latent class analysis of
the region. Note that most pixels have probability values close to 0 or 1. This situation
arises because the classes are spectrally separable and so pixels, especially those located
in the central or core area of fields, are typically associated very strongly with one class
and minimally with the others. A key exception to this situation is near field boundaries
where probabilities of an intermediate value were observed. In particular, probabilities
of intermediate value were, as expected, often observed with boundaries that separated a
field of sugar beet from another class. There is also a region with intermediate posterior
probabilities highlighted with an O in Figure 1b. Unfortunately the actual class membership
of this region is unknown but visual interpretation of the false colour image (Figure 2a)
suggests that while this region has low vegetation cover it has more than typically observed
for the sugar beet class. Hence, the region spectrally lies between sugar beet and the other
classes, resulting in the analysis yielding posterior probabilities with intermediate values.
Critically, the output from the latent class analysis is providing information on classification
quality for each pixel, indicating classification quality locally and on a wall-to-wall basis.
Consequently, the latent class analysis is providing both local and global information on
classification quality.

Finally, the results also illustrate a common challenge in quality assessments of image
classifications. Note, for instance, that the drainage dyke (Figure 1b) is, in effect, an
untrained class but is confidently allocated to one of the set of defined classes (Figure 2).
The effect of an underpinning assumption, namely that the set of classes is exhaustively
defined, should not be ignored. None-the-less, the latent class analysis appears to offer
considerable potential to aid analyses of classifications of remotely sensed data and further,
more rigorous, evaluation of the potential of the approach would be valuable. For example,
issues such as the number and variety of classifiers used, the effect of deviations from
model assumptions, the integration of limited ground data into the analysis and inclusion
of probabilities conditional on the matrix’s row as well as column values (i.e. making a
better estimate of a confusion matrix) may be topics worthy of exploration.
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Figure 2. Spatial information on class allocation quality generated from the latent class analysis.
(a) false colour SPOT HRV image of test site, (b) posterior probability to wheat, (c) posterior probabil-
ity to sugar beet and (d) posterior probability to barley. Image copyright CNES (2020), reproduced by
GMF under licence from SPOT Image.

5. Conclusions

Previous work [29] indicated the potential of latent class analysis for non-site and site-
specific accuracy assessment in the form of estimates of class areal extent and producer’s
accuracy. The focus had also been on only global assessments of classification accuracy.
Here, the potential of latent class modelling has been further assessed. The results reported
here show that the latent class model outputs can include a full set of class conditional
probabilities, which estimate a full confusion matrix from which numerous global measures
of accuracy can be produced. Thus, without ground data, it would be possible to generate
estimates of standard measures of global accuracy on an overall basis (e.g., overall accuracy
or percent correct) and on a per-class basis from both the user’s and producer’s perspectives.
It should be noted, however, that the confusion matrices derived were in close but not
perfect agreement to real confusion matrices generated using ground reference data.

In addition to the global information on classification accuracy, it is stressed that
information on classification quality was generated for each pixel. Thus, highly localised,
per-pixel, information on classification quality can be generated. This was illustrated
by focusing on the magnitude of the posterior probabilities of class membership near



Remote Sens. 2022, 14, 5380 14 of 15

boundary regions which are known to be a common source of error and uncertainty in
image classification analyses. Critically, the latent class analysis was able to provide both
local and global information on classification quality on both an overall and per-class
basis without use of a testing set. While the examples presented here have been based on
conventional per-pixel classifiers the method would be applicable to classifications based
on a different spatial unit (e.g., object or field). Further research to more fully and rigorously
evaluate the potential of latent class modelling in remote sensing applications, including
limitations, would be valuable.
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