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2. Abstract  
The accessory genes of prokaryote and eukaryote pangenomes accumulate by 
horizontal gene transfer, differential gene loss, and the effects of selection and drift.  
We have developed Coinfinder, a software program that assesses whether sets of 
homologous genes (gene families) in pangenomes associate or dissociate with each 
other (i.e. are “coincident”) more often than would be expected by chance. Coinfinder 
employs a user-supplied phylogenetic tree in order to assess the lineage-dependence 
(i.e. the phylogenetic distribution) of each accessory gene, allowing Coinfinder to focus 
on coincident gene pairs whose joint presence is not simply because they happened 
to appear in the same clade, but rather that they tend to appear together more often 
than expected across the phylogeny. Coinfinder is implemented in C++, Python3, and 
R and is freely available under the GPU license from 
https://github.com/fwhelan/coinfinder. 

3. Impact statement 
Coinfinder identifies genes that co-occur (associate) or avoid (dissociate) with each 
other across the accessory genomes of a pangenome of interest. Genes that 
associate or dissociate more often than expected by chance, suggests that those 
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genes have a connection (attraction or repulsion) that is interesting to explore.  
Identification of these groups of genes will further the field’s understanding of the 
importance of accessory genes. Coinfinder is a freely available, open-source software 
which can identify gene patterns locally on a personal computer in a matter of hours. 
 

4. Data summary 
1. Coinfinder is freely available at https://github.com/fwhelan/coinfinder. 
 
2. A list of the Identifiers of the genomes used within as well as all input/output files 
are available at https://github.com/fwhelan/coinfinder-manuscript. 
 
The authors confirm all supporting data, code and protocols have been 
provided within the article or through supplementary data files. 
 

5. Introduction 
Pangenomes consist of core genes, common across all strains of a species, and 
accessory genes that are present in some but not all strains (1). Accessory genes by 
definition are not essential to the existence of a species, therefore it remains 
somewhat unclear why accessory genes exist, and what influences the content of 
these accessory genomes. It is likely that some genes co-occur, or associate, because 
they positively influence each other's fitness in a particular, or set of, host genomes. 
Similarly, we expect some genes to avoid, or dissociate with one another because 
their co-occurrence produces a negative fitness effect. We expect that genes whose 
products function together in a biochemical pathway, or that can combine to form a 
useful heteromeric protein complex, will appear together in the same genome more 
often than their observed frequency in the dataset would predict. For example, MYD88 
consistently co-occurs with the genetic components of the MYD88-dependent TLR-
signalling pathway in vertebrate species (2). In contrast, genes that produce a toxic 
by-product when they are expressed in the same cell, or that perform the same 
function and therefore induce functional redundancy, are expected to appear together 
less often than their observed frequency in the dataset would predict. This is seen, for 
example, with siderophore biosynthetic gene clusters in Salinispora spp. where an 
isolate either has one iron-chelating siderophore or a different non-homologous 
system, but never both (3). As a first step towards understanding these kinds of gene-
to-gene interactions in the accessory pangenome, it is useful to identify genes that 
appear together or that avoid one another significantly more often than would be 
expected by chance. 
 
Previously established methodology can identify various forms of co-occurrence 
patterns in prokaryotes. For example, many tools (e.g. (4)(5)(6)) and tool comparisons 
(7) are available for the identification of species-species co-occurrence patterns in 
microbial communities. For example, the program SparCC identifies correlations in 
compositional data, including species presence-absence patterns within microbial 
communities (8). Other tools, such as NetShift (9), find differences in species 
association networks of microbial communities across datasets (e.g. healthy versus 
diseased states). Similarly, methods have been established to identify associations 
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between genotypic and phenotypic traits in pangenomes (i.e. gene-trait co-
occurrence). Usually called pangenome genome-wide association studies (pan-
GWAS), tools such as bugwas (10) and Scoary (11) compare components of the 
pangenome to a user-provided list of phenotypic traits. New methods such as 
SpydrPick (12) identify Single Nucleotide Polymorphisms (SNP)-SNP co-occurrence 
patterns by comparing SNPs in multiple sequence alignments of proteins in microbial 
population genomic datasets. 
 
A few approaches have focussed on gene-gene co-occurrence. Pantagruel (13) uses 
gene- and species-trees to identify genes which have similar patterns of gain and loss 
in a pangenome to define co-evolved gene modules. Similarly, CoPAP (14) searches 
for correlated patterns of gene gain and loss across a species tree to find co-
evolutionary interactions of Clustered Orthologous Groups (COGs). While 
conceptually similar to Coinfinder, these methodologies are based on phyletic 
patterns; further, the dissociation of genes isn't considered by either method. The most 
similar method to Coinfinder in concept is the identification of correlogs and anti-
correlogs, genes which favour or dis-favour co-occurrence within a genome, by Kim 
and Price (15). However, this method was not packaged into publicly available 
software and was not coupled with the pangenome concept, instead focusing on global 
patterns of gene associations across the bacterial Domain. 
 
Here, we present Coinfinder, a command line software program that identifies 
coincident (associating or dissociating) genes across a set of input genomes. 
Coinfinder can run in any Unix environment using a user-specified number of 
processing cores. Coinfinder can be used to investigate the structure of strain- or 
species-pangenomes and is not restricted to prokaryote or eukaryote genomic input. 

6. Theory and Implementation 
6.1 Input 
Coinfinder accepts genome content data in one of two formats: (a) the 
gene_presence_absence.csv output from Roary (16); or (b) as a tab-delimited list of 
the genes present in each strain. If option (b) is used, genes should be clustered into 
orthologous groups/gene clusters prior to using Coinfinder (for example, using BLAST 
(17) and a clustering algorithm, such as MCL (18)(19). Additionally, Coinfinder 
requires a Newick-formatted phylogeny of the genomes in the dataset. We suggest 
that this phylogeny can be constructed using the core genes from the input genomes 
as produced using programs such as Roary, or using ribosomal RNA genes, or a 
similar approach (20). 
 
6.2 Identifying coincident genes 
For each set of genes in the input genomes, Coinfinder examines the 
presence/absence pattern of the gene pair to determine if they represent a coincident 
relationship; i.e. if gene i and gene j are observed together or apart in the input 
genomes more often than would be expected by chance. 
 
As a pre-processing step, the input gene set is culled for high- and low-abundance 
genes. Genes present in every genome (i.e. core genes) are removed as they cannot 
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statistically associate or dissociate (i.e. be coincident with) another gene more or less 
often than expected. Similarly, genes whose presence is constrained to a small 
number of genomes will not produce significant associations, therefore low-
abundance genes can be removed from the input at a user-determined cutoff. 
Coinfinder's default is to remove any gene present in less than 5% of the input 
genomes. 
 
Coinfinder has two modes for identifying coincident relationships: association and 
dissociation. When testing for gene associations, Coinfinder evaluates whether gene 
i and gene j of a given gene pair are observed together in the input genomes more 
often than would be expected by chance. More formally, for a set of genomes N, we 
define the probability of observing gene i as: 

Pi = Ni / N 
where Ni is the number of occurrences of gene i in the dataset. The expected rate of 
association, EA, of gene i with gene j, is then defined as: 

EA(ij) = Pi * Pj * N 
and the observed rate of association, OA, as: 

OA(ij) = Nij 
where Nij is the number of times gene i and gene j are present within the same 
genome. 
 
When testing gene dissociation, Coinfinder evaluates whether gene i and gene j of a 
given gene pair are observed separately in the input genomes more often than would 
be expected by chance. Formally, the expected rate of dissociation, ED, is defined as: 

ED(ij) = [Pi(1-Pj) + Pj(1-Pi)]*N 
and the observed rate of dissociation, OD, as: 

OD(ij) = Ni + Nj - 2Nij 
In each mode, Coinfinder's default behaviour is to use a Bonferroni-corrected binomial 
exact test statistic (adapted from https://github.com/chrchang/stats) of the expected 
and observed rates to evaluate whether each gene pair are significantly coincident 
with each other. 
 
Coincident genes that share an evolutionary history are more likely to have indirect 
correlations with each other. For example, if two genes are found to associate and 
each is observed only within a particular clade, the most parsimonious explanation for 
the observation is that the last common ancestor of the clade obtained both genes at 
the same evolutionary step. These two genes may, or may not, have a functional 
relationship with one another, and are of potential interest. However, non-
monophyletic – or lineage-independent – genes that are dispersed throughout a 
phylogeny and are found to be significantly coincident are more likely to have a direct 
relationship with each other – their patchy phylogenetic distribution, combined with 
their statistically significant rate of association is prima facie evidence that they interact 
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in some way. Thus, Coinfinder focuses on identifying coincident relationships between 
lineage-independent accessory genes. To do this, Coinfinder uses a previously 
established phylogenetic measure of binary traits (D, as coded into the R function 
phylo.d; (21)) to determine the lineage-dependence of each coincident gene. D is a 
measure of phylogenetic signal strength of a binary trait, which quantifies the amount 
of dispersion of the trait – here, the presence of a gene – over a phylogenetic tree (21). 

 
6.3 Output 
Coinfinder visualizes the results of its analysis in two ways. First, Coinfinder produces 
a network in which each node is a gene family and each edge is a statement of 
significant gene association (corrected for lineage effects) or significant gene 
dissociation. The size of a node is proportional to the gene's D value. Second, 
Coinfinder generates a presence-absence heatmap, indicating the presence of 
coincident genes in the context of the input phylogeny. The genes in the heatmap are 
ordered by D value (from most lineage-independent to least) and are coloured 
according to coincident patterns. 
 
Coinfinder produces a number of output files, with the default prefix of coincident_, as 
described in Table 1. Examples of the network and heatmap outputs of Coinfinder are 
shown in Figure 1. 
 

7. Results 
As an example, Coinfinder was executed using 534 Streptococcus pneumoniae 
genomes as input, a subset of the Global Pneumococcal Sequencing Project (GPS; 
https://www.pneumogen.net/gps/) whose open reading frames (ORFs) were identified 
using Prokka (22) and clustered into orthologous gene families using Roary (16). 
Coinfinder took 7.2 minutes (using 20 cores; see Table 2 for more runtime details) to 
examine the relationships between 2,813 gene families across 534 genomes 
(3,957,891 pairwise tests in total). Coinfinder identified 104,944 associating gene pairs 
which clustered into 32 connected components or sets of genes that associate with 
each other. Similarly, Coinfinder took 7.5 minutes using 20 cores to identify 98,461 
dissociate gene relationships within this dataset. The network and heatmap outputs of 
Coinfinder from this example set are shown in Figure 1. 
 
Of the gene associations and dissociations that Coinfinder identified, many 
recapitulate what we know biologically. As an example, we focus on a V-ATPase 
present in S. pneumoniae. While the V-ATPase in S. pneumoniae has been 
understudied, it has been well-documented in S. pyogenes and sister taxon 
Enterococcus hirae (23) (24). In E. hirae the V-ATPase consists of 10-11 proteins 
organized into the ntp operon: ntpFIKECGABD(H)J (24). In S. pneumoniae, the V-
ATPase complex is predicted to contain 9 proteins (KEGG pathway spx_M00159; 
(24)). In the annotation of S. pneumoniae that we performed here, only 6 genes of the 
ntp operon were annotated successfully: ntpA, ntpB, ntpC, ntpD, ntpG, and ntpK. 
Coinfinder identified consistent co-occurrence relationships between these 6 genes, 
forming a clique (i.e. a complete subgraph of gene associations; Figure 2a). However, 
these 6 genes also co-occurred with other genes in the dataset; we extended our 
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analyses to determine whether any other genes consistently co-occurred with all 6 
genes of this operon. In doing so, we identified 3 genes – atpE, and two unnamed 
genes – with homology to ntpE, ntpI, and ntpG/H, respectively, that consistently co-
occur with the rest of the ntp operon (Figure 2a). An additional 51 genes formed 
cliques with the genes of the ntp operon. Of the 51 genes, 3 encode neuraminadase 
genes from nan gene clusters (Figure 2b-c). Another 3 genes co-occurring with the 
V-ATPase complex belong to the dpnMAB operon which encode the DpnII system 
implicated in DNA transformation (among other functions) (25) and an additional 3 are 
homologous to transposase IS66-related domains, perhaps suggesting how this 
operon has been horizontally transferred in this species (Figure 2b-c). Additionally, 4 
of these proteins contained a putative cell wall binding repeat (“CW_binding_1”) which 
has been implicated in choline binding (26). Choline-binding proteins (CBPs) contain 
a choline-binding module/domain which allows them to bind to the cell wall of S. 
pneumoniae, functioning as essential elements of cell division, as well as strong 
determinants of virulence (26) (27). It is unknown why 4 CBPs co-occur with the V-
ATPase complex; in eukaryotes, it has been shown that acetylcholine can be 
transmitted via the V-ATPase complex of vacuoles (28) but the result has not been 
generalized to prokaryotic cell membranes. A further 11 genes are of uncharacterised 
function. This example shows the power of Coinfinder in (a) identifying gene 
associations between proteins in a known protein complex; (b) being able to overcome 
poor gene annotations by looking for patterns in gene co-occurrence and gene 
association networks; and (c) being able to extrapolate those results to other genes 
with known protein interactions. 
 
Coinfinder uses parallel processing to compute pairwise tests of coincident 
relationships. The most time-consuming step is the determination of the lineage-
dependence of each gene; consequently, we have programmed this part to run in 
parallel for only those genes that are found in statistically significant coincident 
relationships. For the S. pneumoniae example, using the input set of 2,813 accessory 
gene families, the lineage-dependence calculation was only necessary on the 1,961 
genes deemed to be in coincident relationships. Using these data, the computation 
time varied from 6 to 31 minutes when using 32 to 2 CPUs, respectively (Table 2). 
 

8. Conclusions 
Coinfinder is an accurate and efficient tool for the identification of coincident gene 
relationships within pangenomes. Coinfinder is open-source software available from 
https://github.com/fwhelan/coinfinder. 
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12. Figures and tables 

 
Figure 1: Example of Coinfinder output. The network (A,C) and heatmap (B,D) 
outputs from Coinfinder executed on 534 Streptococcus pneumoniae genomes. A,C. 
The resultant gene association (A) and dissociation (C) networks. Each gene (node) 
is connected to (edge) another gene if they statistically associate/dissociate with each 
other in the pangenome. Nodes are coloured by connected component (i.e. coincident 
gene sets) and the colours correspond to those used in the heatmap outputs. The 
network file Coinfinder generates includes all node and edge colouring; Gephi (29) 
was used to apply the Fruchterman Reingold layout. B,D. A portion of the heatmaps 
of the presence/absence patterns of the associating (B) and dissociating (D) gene 
sets. Similar to the network, each set of coincident genes are co-coloured. Genes are 
displayed in relation to the input core gene phylogeny. Here the phylogeny tip and 
gene cluster labels have been removed from the output for clarity. Additionally, the 
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largest connected component in the network (wine colour) has been omitted from the 
heatmap for ease of display. 

 
Figure 2: Example of the association relationships Coinfinder can identify. A. A 
clique of genes in the ntp operon which was identified within the association network 
(Figure 1a). 6 of these genes were correctly labelled with their gene names via the 

A. B.
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Prokka/Roary pipeline; 1 gene was given an alternative gene name often used as a 
synonym in the literature; a further 2 genes were listed as “hypothetical proteins”. 
Collectively, the 9 genes that compose the V-ATPase/ntp operon form cliques with an 
additional 51 genes. These cliques are shown as a network (B) and as a presence-
absence heatmap (C). In the heatmap, unlabelled gene columns represent unnamed 
hypotheticals. 
 
 
 
Table 1: Description of Coinfinder output files. 
Suffix File description 
_pairs.tsv Tab-delimited list of significant coincident gene pairs 
_nodes.tsv Node list of all unique coincident genes and their D value 
_edges.tsv Edge list of significant gene-gene pairs and the associated p-

value 
_network.gexf GEXF (Graph Exchange XML Format) v1.2 formatted network 

file. Nodes are coloured by connected component (i.e. 
coincident gene set) and sized by D value; edge thickness is 
proportional to the p-value of the coincident relationship 
between any two connected genes 

_components.tsv Tab-delimited list of all connected components within the gene-
gene coincident network 

_heatmap[0-
X].pdf 

Heatmap images (R, ggplot2 (30), ggtree (31)) of the presence-
absence patterns of coincident components across input 
genomes. The heatmap is split across multiple files when 
needed for ease of visibility 

 
 
 
Table 2: Real computational time for Coinfinder executed on a 534 genome 
dataset consisting of 2,813 accessory genes using different numbers of CPUs 
(GenuineIntel; Intel Xeon Gold 6142 CPU @ 2.60GHz) 
Number of CPUs Real computer clock 

time 
2 31m16.265s 
4 17m56.973s 
8 11m15.469s 
16 7m44.942s 
32 6m16.218s 
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