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ARTICLE OPEN

Nutrition during the early life cycle

Relationship between dietary intake and erythrocyte PUFA
in adolescents from a Western Australian cohort
Fuzhen Wan 1, Feng Pan 1, Trevor A. Mori 2, Therese A. O’Sullivan3, Lawrence J. Beilin 2 and Wendy H. Oddy 1✉

© The Author(s) 2022

BACKGROUND: Population-based studies show that the intake of omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids
(PUFA) are associated with a range of health conditions. Therefore, the reliability of food frequency questionnaires (FFQ) as rapid
and easily accessible screening tools for PUFA intake deserve investigation.
OBJECTIVE: We aimed to assess the relationship between erythrocyte fatty acids and fatty acid intake collected using the
Commonwealth Scientific and Industrial Research Organisation (CSIRO) food frequency questionnaire in an adolescent cohort.
DESIGN: A cross-sectional study using data from 1155 young adolescents participating in the 14-year follow-up of the Raine Study.
Bland–Altman plots were used to determine the agreement between dietary intake and erythrocyte levels of each fatty acid.
RESULTS: The main dietary source of n-3 long-chain (LC) PUFA was ‘fresh fish’ (53% of total n-3 LC-PUFA). Docosahexaenoic acid
(DHA) showed the strongest correlation between erythrocyte and diet assessment (r= 0.274; p < 0.001), whilst linoleic acid (LA)
(r= 0.103; p < 0.001) and arachidonic acid (AA) (r=−0.06; p= 0.042) showed weaker correlations, with limits of agreement
relatively narrow. Bland–Altman plots showed a dose-dependent bias between the FFQ fatty acid data and corresponding
erythrocyte data.
CONCLUSIONS: For the major n-3 and n-6 PUFA, dietary intakes derived from the FFQ showed weaker correlations and poorer
agreement with erythrocyte levels, and the deviation between the two increased with higher intake levels.

European Journal of Clinical Nutrition; https://doi.org/10.1038/s41430-022-01219-x

INTRODUCTION
Dietary polyunsaturated fatty acids (PUFA) are essential for
human health and play an important role in many biochemical
activities, including but not limited to cell membrane fluidity,
signal transition and energy provision within the body [1, 2].
PUFA can be classified as n-3 or n-6 according to the position of
the first double bond, i.e. three carbons away from the terminal
methyl group or six carbons away from the terminal methyl
group. Mammalian cells can synthesise most of the fats required
from dietary intake. However, the term ‘essential’ is applied to
two PUFA, n-3 alpha-linolenic acid (ALA, 18:3n-3) and n-6 linoleic
acid (LA, 18:2n-6), which must be consumed from the diet as the
body cannot make these from other fatty acid precursors. Long-
chain omega-3 PUFA, such as eicosapentaenoic acid (EPA, 20:5n-
3) and docosahexaenoic acid (DHA, 22:6n-3), can be synthesised
from ALA; long-chain omega-6 PUFA, such as arachidonic acid
(AA, 20:4n-6), can be synthesised from LA. Both ALA and LA play
different roles in physiological systems and pathological pro-
cesses. Modern Western diets typically have a high n-6: n-3 PUFA
ratio of 15–16:1, with some research suggesting the ratio may
have health implications [3, 4].
Assessing the intake of PUFA in different populations and

validating it with biomarkers is important in order to understand

the relationship between fat intake and health outcomes. The
biological status of PUFA fatty acids can be measured in several
sample types including red blood cells, whole blood plasma,
platelets, white blood cells and plasma lipid classes. PUFA have
different metabolic kinetics in different samples, with free PUFA
metabolised in plasma as quickly as a few hours but retained in
erythrocytes for weeks to months. Therefore, erythrocytes may be
the biomarker of choice for long-term PUFA bio-status in clinical
practice and research. Currently, validation studies based on
erythrocyte fatty acids and dietary intake from FFQ are
inadequate with most coming from adult populations using
small clinical trials [5–7]. A limited number of studies have
assessed and validated dietary intake of PUFA in adolescents
[8–11], with most studies having small sample sizes (n= 70–400).
Erythrocytes turn over every few months [12, 13] and do not have
enzymes for fatty acid metabolism [14]. To our knowledge,
erythrocyte fatty acid composition has not been used to validate
fatty acid intakes from the Commonwealth Scientific and
Industrial Research Organisation (CSIRO) food frequency ques-
tionnaire (FFQ) [15] in a young adolescent population. This FFQ
was previously validated against other food intake measurement
methods such as weighed food records [16–19] and is a tool that
has been widely used in Australia.
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Our study aimed to use 14 years of follow-up data from the
Raine Study to (1) assess dietary intake and food sources of n-3
and n-6 PUFA in a Western Australian adolescent population
and (2) measure the relationship between dietary intake of
PUFA as determined by the CSIRO FFQ and erythrocyte fatty
acid composition.

METHODS
Population
This study is a cross-sectional analysis of data collected during the
14-year follow up of the Raine Study (2003–2006). The Raine Study is a
prospective pregnancy cohort, with 2900 pregnant women attending the
public antenatal clinic at King Edward Memorial Hospital or nearby
private practices between 16 and 20 weeks gestation. The women were
recruited between May 1989 and November 1991 (Gen1), and a total of
2868 babies (Gen2) were eligible for follow up from birth [20]. Follow up
assessments of the offspring (Gen2) cohort have been conducted
approximately every 3 years, with all participants providing informed
written consent. Ethics approval was granted from the Human Research
Ethics Committees at King Edward Memorial Hospital, Princess Margaret
Hospital for Children and the University of Western Australia, in Perth,
Western Australia.

Dietary intake data
Designed to provide respondents with an analysis of their daily dietary
intake, the CSIRO FFQ collects information on the frequency of
consumption of 212 food items, mixed dishes and beverages [21]. The
FFQ was internally validated for application to the target population by
applying a less biased instrument (3-day food records as the ‘gold
standard’) and calibrating the FFQ data against it [22]. The FFQ assessed
daily dietary intake over the previous 12 months. It consists of two types of
questions: a food list where respondents record how often they consume
each food item and a question on the amount of servings they usually
consume. It was modified to include the favourite drinks and snacks of
adolescents and to exclude alcohol. The frequency of consumption options
included: never, rarely, number of times per month, number of times per
week and number of times per day.
Given the age of the respondent (14 years ± 11 months) and the

potential difficulty or lack of interest in completing the FFQ [23], we asked
the primary caregiver to complete the FFQ in consultation with the
adolescent. Details were requested on cooking methods, types of oil used
and whether food was low-fat, fresh, frozen or canned. Respondents were
also asked to record any other foods that were regularly consumed but
not included in the FFQ. Separate questions were asked about the
frequency of specific fruit and vegetable intake during summer and
winter. The frequency of food consumption in summer and winter was
used to measure seasonal differences. In addition to this, as fish is the
major source of long-chain (LC) PUFA (EPA Docosapentaenoic acid (DPA,
22:5n-3) and DHA) in the diet, respondents were asked to name the type
of fish they ate most often, allowing for a more detailed measurement of
fish n-3 intake. All FFQs were checked by a research nurse, and questions
were clarified with the adolescents. Data from the FFQs were analysed by
CSIRO (Australia) using Australian food composition data (Food Standards
Australia New Zealand, 1995).

Erythrocyte biomarker data
Blood samples were taken by a trained phlebotomist after an overnight
fast. Erythrocytes were isolated from whole blood, washed with isotonic
saline (0.9%), frozen, thawed then lysed in hypotonic 0.01-m Tris EDTA
buffer, pH 7.4. A membrane pellet was obtained by ultracentrifugation
(50,000 × g for 30 min) from which lipids were extracted and trans
methylated according to the method of Lepage and Roy [24]. Fatty
acids were measured by gas chromatography as previously described
[25]. Briefly, erythrocyte lipids were extracted and analysed using an
Agilent Technologies model 7890A gas chromatograph (Santa Clara,
CA). The column was a Supelco SP-2560 (100 m × 0.25 mm ID × 0.20 mm;
Bellefonte, PA) with a temperature programme as follows: 180 °C
(1.75 min), then 5 °C/min to 200 °C (held 1.75 min), then 10 °C/min
to 240 °C (held 4.5 min) using hydrogen as carrier gas at a split
ratio of 30:1. Peaks were identified by comparison with a known
standard mixture.

Additional participant data
Questionnaires completed by the participants determined lifestyle and
sociodemographic factors. A trained research assistant weighed and
measured participants in light clothing for height and weight using a
calibrated stadiometer and electronic scales as previously described [26].
Body mass index was calculated as weight (Kg) /height (m2). The primary
caregivers of the participants were asked to report their annual family
income (in Australian dollars) at the 14-year follow-up (2003–2006) and
were categorised as: <$30,000, $30,001–50,000, $50,001–78,000, and >
$78,000. The proportion with Caucasian mother data were collected at
study recruitment 16–20 weeks gestation.

Statistical analysis
Statistical analysis was conducted using STATA version 16 for Windows
(Stata Statistical Software: College Station, Tx, USA). A p value of <0.05 was
determined to be significant for the results. Means, standard deviations
(SD) or percentages were calculated for demographic data and character-
istics of the study population.
We used the Shapiro–Wilk test as the normality test in this study. The

FFQ and erythrocyte data were assessed for normality and, as most of
the data were not normally distributed, non-parametric tests were used.
The raw PUFA intake was adjusted for energy using the energy density
method (i.e. using PUFA intake by dividing each individual’s total energy
intake and multiplying by 9.4 MJ/day (approximately the median total
energy intake in cohort) and energy-adjusted data is still not normal after
this adjustment). Dietary contributions to n-3, n-6 and n-3 LC-PUFA were
calculated by summing the contributions of certain specific food and
beverage groupings, of which there were 20 food groups in total and
expressed as median daily intake and a percentage of total intake for each
PUFA category (calculated at the individual level). Spearman’s rank
correlation coefficients (r) were used to compare the correlation between
energy-adjusted FFQ fatty acid and erythrocyte fatty acid. Energy-adjusted
FFQ PUFA was categorised into quintiles and then cross-tabulated with the
quintiles of the respective PUFA erythrocyte proportions. Quantile cross-
validation was used to transform the dataset into hierarchically categorised
data. Inconsistency and agreement in quintile rankings were assessed by
calculating the percentage of participants classified as being in the same
quintile, the same or adjacent quintile and the opposite quintile
(The definition of the opposite quantile is defined as a situation where
the grouping is in the highest quartile of one method and the lowest
quartile of another method). In addition, Cohen’s weighted kappa statistic
(κ) and 95% CI were calculated for quintiles of energy-adjusted FFQ PUFA
intake and erythrocyte PUFA proportions as they accounted for
consistency by chance. Correlations (r) and concordance (κ) were rated
as poor (<0.2), fair (0.2–0.59) or moderate (0.6–0.7) [27].
Agreement between the two methods was assessed using the

Bland–Altman plot [28] method, which shows the average difference
between two measures for each participant, along with ±1.96 SD of the
difference. It shows how far apart the measurements between dietary
intake and erythrocyte measures are, where a narrower range between
these points represents a greater agreement and a wider range represents
poorer agreement.

RESULTS
A total of 2424 adolescents were eligible to participate in the
14-year follow-up (excluding those who had withdrawn, deferred,
or deceased). Of 1864 who participated in the follow-up, 70%
(n= 1302) provided a blood sample, and 88% (n= 1632)
completed the FFQ. This study includes the 62% (n= 1155) of
participants who had both complete dietary intake data and
erythrocyte biomarker data.

FFQ and erythrocyte PUFA
Table 1 summarises the anthropometry and macro-nutrient
intake characteristics of the 1155 participants of which 52%
(n= 603) were male. The mean energy intake was 9.69 (SD 3.04)
MJ/day. Fat intake (91.8 g/day) contributed 34.8% to total energy
intake. FFQ intakes and erythrocyte ratios (as a percentage of
total fat) are shown in Table 2, along with data for PUFA
subtypes. The majority of PUFA were consumed as n-6 PUFA
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with LA predominating; the majority of n-3 PUFA intake was in
the form of ALA. Daily intake of DHA was 76 mg/day, with 25% of
children <37.2 mg/day.

Dietary sources of PUFA intake
The average daily intake and the percentage contribution to n-6
and n-3 PUFA and n-3 LC-PUFA intake according to food group are
shown in Table 3. The highest intake of n-6 PUFA came from ‘butter,
margarine’ and ‘cereals, breads’, which together accounted for 40%
of the n-6 PUFA intake. Other important sources were ‘crisps, snack
foods, nuts, seeds’ and ‘savoury dishes, soup, stews’, ‘chicken and
fish (excluded fresh fish)’. The main dietary source of n-3 LC-PUFA
was ‘fresh fish’ (53% of LC-PUFA), with most other food groups
providing nil to minimal amounts. N-3 PUFA was mainly derived
from ‘butter, margarine’ and ‘savoury dishes, soup, stews’.

Validation analysis
The results of Spearman’s correlation are shown in Table 4. Overall,
energy-adjusted FFQ intake of LA, DPA and DHA showed a
significant correlation with their respective erythrocyte levels. The
strongest correlation was between the two measures of DHA
(r= 0.316, p < 0.001). Regarding the correlation between the
different types of PUFA, dietary LA was not correlated with
erythrocyte AA concentrations. For the n-3 PUFA, there was a
weak positive correlation between dietary ALA and erythrocyte
EPA. There was also a weak positive correlation between dietary
EPA and DHA erythrocyte levels.
Cross-classification analysis of quintiles of FFQ and erythrocyte

PUFA subtypes showed that 50–61% of adolescents were
classified into the same or adjacent quintiles with the highest
concordance for DHA (Table 5). In contrast, 4–9% of participants
were misclassified into the opposite quintile. Kappa statistics
(Table 5) showed poor agreement (κ < 0.2) between their
respective dietary and plasma measurements for all n-6 and n-3
PUFA. The highest agreement was found between FFQ and
erythrocyte DHA (κ= 0.174, p < 0.001).
The Bland–Altman plots for each of the fatty acids, comparing

the agreement between the dietary fatty acid and the
erythrocyte percentages, are shown in Fig. 1. For all fatty acids,
the Bland–Altman plot suggests poor agreement between the
results determined by the two methods (FFQ% vs. erythrocyte%).

Table 1. Characteristics of participants at the 14 year follow-up of the Raine Study.

Mean ± SD or n (%) All (n= 1155) Male (n= 603) Female (n= 552) p

Height (cm) 164.5 ± 7.8 166.4 ± 8.7 162.3 ± 6.0 <0.001

Weight (kg) 57.9 ± 12.9 58.6 ± 13.9 57.3 ± 13.9 0.092

BMI (kg/m2) 21.3 ± 4.1 21.0 ± 4.1 21.7 ± 4.1 <0.001a

Maternal race (%) 88.8 90.1 87.7 0.170a

Annual family income n= 1137 n= 593 n= 544 0.026a

<35,000 270 124 146

35,000–70,000 415 220 195

>70,000 452 249 203

Dietary variables

Energy (MJ/day) 9.69 ± 3.04 10.5 ± 3.04 8.81 ± 2.83 <0.001a

Total fat (g/day) 91.8 ± 33.7 99.7 ± 34.0 83.1 ± 31.2 <0.001a

Total fat (% energy) 34.8 ± 5.1 34.9 ± 5.2 34.7 ± 5.1 0.280

Carbohydrate (g/day) 277 ± 90.7 299 ± 90.1 254 ± 85.4 <0.001a

Carbohydrate (% energy) 45.9 ± 5.1 45.7 ± 5.0 46.1 ± 5.2 0.150

Protein (g/day) 96.4 ± 30.7 105 ± 30.3 87.4 ± 28.5 <0.001a

Protein (% energy) 17.1 ± 2.6 17.1 ± 2.5 17.0 ± 2.7 0.269

A limit of three significant figures for all diet data. p values for t-tests or Mann–Whitney test. Proportion with Caucasian mother data were collected at study
recruitment 16–20 weeks gestation.
BMI body mass index.
aMeans tested by Mann–Whitney test.

Table 2. Mean (SD) and IQR values for intake per day and percentage
of total fat and erythrocyte fatty acid (n= 1155).

Fatty acids (total and
subtypes)

Mean SD Median IQR

FFQ data

n-3 PUFA, g/day 1.29 0.63 1.16 0.88–1.56

ALA, g/day 1.04 0.58 0.89 0.67–1.23

EPA, mg/day 70.9 37.6 64.9 44.2–89.7

DPA mg/day 101 52.7 93.2 62.5–128

DHA, mg/day 76.0 57.5 63.3 37.2–98.5

n-6 PUFA, g/day 11.8 6.12 10.3 7.26–15.4

LA g/day 11.5 6.09 10.0 6.97–15.1

AA mg/day 172 81.6 160 114–215

Erythrocyte data, %

n-3 PUFA 8.52 1.22 8.57 7.86–9.22

ALA 0.62 0.21 0.59 0.53–0.66

EPA 0.69 0.19 0.69 0.58–0.80

DPA 2.39 0.40 2.39 2.17–2.62

DHA 4.20 0.96 4.20 3.64–4.76

n-6 PUFA 33.1 2.57 33.7 32.3–34.7

LA 9.96 1.03 9.92 9.32–10.6

AA 13.3 1.96 13.7 12.8–14.5

All the variables are not normally distributed.
AA arachidonic acid, 20:4n-6, ALA α-linolenic acid, 18:3n-3, DHA docosahex-
aenoic acid, 22:6n-3, DPA docosapentaenoic acid, 22:5n-3, EPA eicosapen-
taenoic acid, 20:5n-3, IQR interquartile range, LA linoleic acid, 18:2n-6, n-3
PUFA Omega 3 polyunsaturated fatty acids, n-6 PUFA Omega 6
polyunsaturated fatty acids, SD standard deviation.
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Further, the observed slope suggests there was evidence of
proportional bias, indicating that the bias between methods did
not agree equally through the range of measurements. In all
cases, the degree of difference between methods increased as
values increased. In addition, erythrocyte DHA% and EPA% levels
were consistently higher than these % levels as measured from
dietary intake.

Gender comparisons
We have conducted subgroup analyses by gender and obtained
similar results to Table 2. There were significant gender differences
in ALA, n-6 PUFA and AA from erythrocyte data (Supplementary
Table 1). As with Table 3, the fresh fish food group contributing the
majority of the n-3 LC PUFA diet data for both males and females
(Supplementary Tables 2 and 3). Correlation analysis between
energy-adjusted dietary data and erythrocyte data showed sig-
nificant gender differences: LA was positively associated in males
and DPA negatively associated in females (Supplementary Tables 4
and 5). Male and female subgroups showed similar results in the
cross-classification analyses and Bland–Altman plots (Supplementary
Tables 6 and 7).

DISCUSSION
In this study, we examined the weak positive correlation between
dietary PUFA from the CSIRO FFQ and their corresponding
erythrocyte concentrations. Among all dietary PUFA subgroups,
dietary DHA and erythrocyte DHA concentrations had the highest
correlation and the highest level of agreement. N-6 PUFA, the
PUFA consumed in the largest proportion, resulted in a dietary n-
6:n-3 ratio of ~9.1:1. Bland–Altman plots showed that as dietary
intake increased and decreased, erythrocyte measurements
changed accordingly, although the strength of correlation for
each measured fatty acid differed.
In this study, the daily intakes of n-6 and n-3 PUFA and their

subtypes (n-3, n-6, LA, AA, ALA, EPA, DPA and DHA) were
comparable to those reported in other paediatric populations in
Western countries [10, 29–34]. The main food groups contributing
to n-3 and n-6 PUFA intakes were very similar between our study
and a study of a younger UK school-age population (4–10 years)
[29]. In our study, ‘butter, margarine’, ‘cereals and bread’ products
contributed the most to n-6 PUFA intake, which is consistent with
reports from a 7-year-old UK cohort of 8242 children [29]. The
main food source of DHA being fresh fish was also consistent with
previous studies [29, 35, 36]. Our study suggests that the intake of
DHA in this study population is below the dose recommended by
Australian guidelines. According to the recommendations of the
Institute of Studies on Fatty Acids and Lipids (ISSFAL), a minimum
intake of 200mg of DHA per day during pregnancy and lactation
is recommended [37]. 2021, the National Health and Medical
Research Council approved an update to the Australian Preg-
nancy Care Guidelines, with the recommended measurement of
DHA rising to 800 mg per day. This updated recommendation is
significantly higher than the 2006 Australian and New Zealand
Nutrient Reference Values of 110–115 mg/day for EPA, DHA and
DPA. In our study, the ratio of n-6: n-3 PUFA is 9.1:1. This ratio
reflects the high proportion of LA food sources in modern
Western dietary patterns, including butter, margarine and LA-rich
vegetable oils (widely used in processed grain products such as
baked and fried foods and snacks). At the same time, fewer food
sources with high n-3 PUFA content worsen the ratio of PUFA
balance. However, the American Heart Association supports an
energy intake of at least 5 to 10% of n-6 PUFA and does not
recommend reducing omega-6 PUFA intake on top of this [38].
Therefore, changes in dietary habits to improve PUFA balance by
increasing n-3 PUFA intake is necessary, especially for younger
age groups, given the long-term cardiovascular and metabolic
benefits [39, 40].Ta
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Our findings are in accordance with previous reports that have
shown PUFA intake from FFQ and their respective biomarkers
exhibited poor-to-moderate correlations [29, 41–44]. Our study
shows that DHA has the highest correlation between dietary
intake and erythrocyte levels, albeit lower than that found in
other studies (r= 0.34–0.61) [14, 29, 45–47]. A small cohort
(female n= 33, male n= 20) of Australian university staff and
students showed a DHA correlation coefficient of r= 0.39
between erythrocyte and FFQ data [47]. In Switzerland [46],
152 healthy male and female participants aged between 18 and
59 years showed a strong correlation between the two measures
of DHA levels (r= 0.605), However, 9% of the participants were
recorded as being using supplements. A large cohort study with
long-term follow-up showed that the correlation between the
two measures of DHA levels fluctuated between r= 0.41 and
0.56 across three follow-ups in a US population of female
registered nurses between the ages of 30–55 years [14]. In
another UK cohort of school-aged children who also used plasma
DHA levels as an indicator, the authors found that DHA remained
the most strongly correlated of all fatty acids in both dietary and
plasma data (r= 0.34, p < 0.001) [29]. Despite the different FFQs
used in these studies above, and even the use of erythrocyte
fatty acids in some and plasma fatty acids in others, all showed
better correlations for DHA levels compared to other fats. This
suggests that FFQ data may be a good tool for measuring DHA
levels in the body.
Our data show a weak correlation between FFQ and

erythrocyte ALA, EPA and AA. The correlation between fatty
acids in human tissues and the intake measured by FFQ is
unlikely to be a perfect match, considering that some fatty acids
can act as metabolic precursors for other fatty acids. Studies of
ALA metabolism in healthy young populations have shown that
young women have a greater ability to generate n-3 LC-PUFA
from ALA, with ~21% of dietary ALA converted to EPA and 9% to
DHA [48], compared to ~8% of dietary ALA converted to EPA
and 0–4% to DHA in men [49]. This conversion depends on
factors such as gender, pregnancy and diet [50, 51]. For
example, vegetarians tend to be more efficient converters than
non-vegetarians. In addition, because erythrocytes have a
metabolic lifespan of ~120 days, it is thought that erythrocyte
membrane fatty acids reflect fatty acid metabolism levels over a
longer time span than plasma fatty acids [52], whereas the FFQ
assesses usual intake over the past 12 months. The difference in
timeframe could result in some seasonal variation in dietary
intake that is not reflected in the shorter-term measurement of
erythrocyte fatty acids.

The results of this study illustrate a dose-dependent bias in
the FFQ fatty acid data and the corresponding erythrocyte data.
The Bland–Altman plots for ALA and LA suggest a ‘biphasic’
relationship between the biases of the two measures, which
means one measure overestimates the other when the
magnitude of the measure is large but conversely under-
estimates the other when the magnitude of the measure is small
[53]. Based on the linear regression equation in Bland–Altman
plots, we found that the intercept between EPA and DHA is
much closer to zero. This means that the bias between the two
measurements is monophasic, that is, it only occurs when the
magnitude of the measurement is large. This suggests the FFQ
tool is likely to have less measurement bias in identifying
consumers with low intakes than those with high intakes, similar
to the conclusions obtained using quartile cross-classification
analysis. A study of FFQ and RBC data from Switzerland [46]
found that the FFQ placed participants in the same or adjacent
quartiles with an accuracy of between 70 and 87% for different
fatty acids, with DHA having the highest accuracy, followed by
EPA. In our results, cross-classification analysis resulted in the
best performance for DHA, although Kappa statistics showed
poor agreement.
Our study has some strengths, including a large amount of

dietary and biomarker data, making this one of the largest studies
of this type in adolescents. In Australia, most studies that
investigated FFQ and erythrocyte fatty acids had sample sizes of
less than 60 [10, 47]. We used a specifically designed and validated
FFQ for the parent to complete in this age group, allowing us to
better record usual dietary intake that is particularly beneficial
when collecting information on foods such as fish and seafood as
we have a complete fish database that records the amount of EPA
and DHA in fish consumed [15].
Our study was limited by the time frame of the assessments,

with the 12 month time period represented by the FFQ longer
than the 3 month time period represented by the erythrocyte
data. There is also a limitation that our study did not capture
information on the consumption of dietary fatty acid supplements
and therefore this study may not be representative of the
population if consuming dietary fatty acid supplements.
Potential areas for future research include examining whether

external factors such as other dietary factors, along with other
modifiable lifestyle factors such as alcohol and smoking,
influence the strength of the associations between fatty acid
intake and erythrocyte biomarkers. In addition, this study tested
the valid parameters of the FFQ data against the erythrocyte
data; however, reproducibility was not tested. It would also be

Table 5. Energy-adjusted dietary PUFA intakes classified into quintiles compared with quintiles of erythrocyte PUFA proportions with corresponding
Cohen’s κ coefficients (n= 1155).

FFQ and
erythrocyte PUFA

Same
quintile (%)

Same or adjacent
quintile (%)

Opposite
quintile (%)

Cohen’s Kappa (κ)

Cohen’s κ 95% CI p value

n-3 PUFA 23.81 50.06 7.36 0.061 0.020–0.102 0.004

ALA 20.35 54.81 8.57 0.004 −0.036–0.044 0.846

EPA 22.34 53.07 7.10 0.022 −0.019–0.062 0.296

DPA 17.40 49.96 7.79 −0.054 −0.092–−0.015 0.007

DHA 27.97 62.51 3.46 0.198 0.158–0.239 <0.001

n-6 PUFA 21.21 52.73 8.14 0.021 −0.019–0.061 0.311

LA 22.08 55.15 6.75 0.063 0.023–0.103 0.002

AA 21.39 50.65 8.40 0.002 −0.038–0.042 0.924

Cohen’s Kappa analysis using the weighted Kappa statistic (κ).
AA arachidonic acid, ALA α-linolenic acid, DHA docosahexaenoic acid, DPA docosapentaenoic acid, EPA eicosapentaenoic acid, LA linoleic acid, n-3 PUFA Omega
3 polyunsaturated fatty acids, n-6 PUFA Omega 6 polyunsaturated fatty acids.
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interesting to investigate whether this association persists or
changes with age.

CONCLUSIONS
In conclusion, poor to fair correlations were found between the
FFQ and erythrocyte data for DPA, DHA and LA. The Bland–Altman

plots suggest poor agreement and a dose-dependent bias
between the two measures.

DATA AVAILABILITY
The data that support the findings of this study are available from the Raine Study
(https://rainestudy.org.au/) but restrictions apply to the availability of these data,

Fig. 1 Bland–Altman plot, showing 95% limits of agreement for ALA, LA, EPA and DHA in population. EPA Eicosapentaenoic acid, ALA
α-Linolenic acid, DHA Docosahexaenoic acid, LA Linoleic acid, FFQ Food Frequency Questionnaire.
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which were used under license for the current study, and so are not publicly
available. Data are however available from the authors upon reasonable request and
with permission of the Raine Study (https://rainestudy.org.au/).
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