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Abstract
Long-distance, high latency teleoperation tasks are difficult, highly stressful for teleoperators, and prone to over-corrections, 
which can lead to loss of control. At higher latencies, or when teleoperating at higher vehicle speed, the situation becomes 
progressively worse. To explore potential solutions, this research work investigates two 2D visual feedback-based assistive 
interfaces (sliding-only and sliding-and-zooming windows) that apply simple but effective video transformations to enhance 
teleoperation. A teleoperation simulator that can replicate teleoperation scenarios affected by high and adjustable latency has 
been developed to explore the effectiveness of the proposed assistive interfaces. Three image comparison metrics have been 
used to fine-tune and optimise the proposed interfaces. An operator survey was conducted to evaluate and compare perfor-
mance with and without the assistance. The survey has shown that a 900ms latency increases task completion time by up to 
205% for an on-road and 147% for an off-road driving track. Further, the overcorrection-induced oscillations increase by up 
to 718% with this level of latency. The survey has shown the sliding-only video transformation reduces the task completion 
time by up to 25.53%, and the sliding-and-zooming transformation reduces the task completion time by up to 21.82%. The 
sliding-only interface reduces the oscillation count by up to 66.28%, and the sliding-and-zooming interface reduces it by 
up to 75.58%. The qualitative feedback from the participants also shows that both types of assistive interfaces offer better 
visual situational awareness, comfort, and controllability, and significantly reduce the impact of latency and intermittency 
on the teleoperation task.

Keywords Teleoperation · Robotic vehicle · Video transformation · Latency · Control · Enhancement techniques

1 Introduction

From the conceptual development to the current state, tech-
nology related to teleoperation has improved significantly 
over the last century [1]. Necessity and usability in surveil-
lance, human exploration, safer transportation, mining, 

environmental observation, agriculture, medical surgery or 
even space exploration have inspired and boosted the moti-
vation for robotic teleoperation technology [2]. The word 
teleoperation comes from the Greek term ‘tele’ which means 
“at a distance” or “far off”. Therefore, teleoperation natu-
rally implies the act of distant operation [3]. Teleoperation 
of robots, manipulators and robotic vehicles is a genre of 
teleoperation where an operator acts as a master, acquires 
information of the remote environment and establishes com-
munication with the robotic entity over a communication 
channel, provides orders and supervisory suggestions, and 
the desired task is executed by the robotic entity according 
to the control and feedback from the human operator [4].

In the modern concept of teleoperation, the level of con-
trol of the human operator can differ according to the vary-
ing levels of artificial intelligence and autonomy associated 
with the robotic entity [5]. For facilitating varying levels of 
control through teleoperation, several techniques have been 
proposed namely, adjustable autonomy [6], collaborative 
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control [7], mixed-initiative control [8], and sliding auton-
omy [9] amongst others. Although these techniques attempt 
to enhance teleoperation through ensuring appropriate con-
trol, they are all impacted by communication constraints 
and delay. In this study, we are focusing on exploring 
methods for enhancing teleoperation of unmanned ground 
vehicles (UGVs) by reducing the impact of delay on the 
teleoperation system.

1.1  Background

Delay in teleoperation, also known as latency, lag or com-
mand delay, occurs due to the data transmission time through 
the communication medium [10]. In robotic teleoperation, 
latency refers to the delay between the operators’ control 
input and its impact on the visual feedback from the robotic 
environment [11]. Latency or delay in teleoperation, espe-
cially in teleoperation of ground robotic vehicles is not only 
difficult to handle, but also stressful, and overburdens the 
human operator with high cognitive workloads [12]. Latency 
decreases teleoperation performance [11] by reducing accu-
racy and increasing completion time of the teleoperation 
tasks [13]. A teleoperator’s perception starts to be affected 
by latency from as little as 10-20 milliseconds (ms) [14]. Tel-
eoperation reaction time increases by up to 64% if the latency 
increases to 225 ms [10]. Several studies such as [13] and 
[15] reported compromise in pursuit tracking performance 
of the teleoperator when the latency crosses 300 ms. Jitter 
or variable latency have an even more detrimental impact 
on teleoperation. While teleoperating field robotic vehicles 
such as unmanned ground vehicles (UGVs), unmanned aerial 
vehicles UAVs and remotely operated vehicles (ROVs) at a 
reasonable ground speed, latency causes the operator to exe-
cute repeated commands and overcorrect the steering. This 
overcorrection causes undesirable oscillation and potential 
loss of control [11, 16]. Oscillation and overcorrection make 
obstacle avoidance difficult and can cause damage both to 
the robot and the remote environment. Moreover, latency has 
been reported to cause motion sickness to the operator [11].

Not only is the inconvenience created by latency affect-
ing teleoperation, but the teleoperation enhancement research 
itself is also impacted by the bottleneck created by logisti-
cal and data deficiency issues. Conventional teleoperation 
enhancement research requires expensive robots and robotic 
vehicles along with other control, visual and communica-
tion equipment. Moreover, outdoor experimentation is prone 
to hazards. Recent advancements in digital imaging tech-
nologies [2], high performance computation facilities [17], 
human-machine interfaces [18], and computer vision, and 
artificial intelligence technologies [19, 20] have opened up 
the possibilities of better teleoperation experiences. How-
ever, there is a significant shortage of proper visual and con-
trol input data sets required for teleoperation research with 

these new techniques. All of the above factors motivated us 
to design a new teleoperation simulator in order to explore 
possible methods to reduce the impact of delays in the control 
loop and thus enhance teleoperation.

1.2  Literature Review

Teleoperation is the perception of being present inside or 
within a simulated or physically distant environment [21]. 
Based on the mode of robot mobility and the type of remote 
environment, teleoperation can be categorised into four differ-
ent types: stationary manipulator teleoperation, ground robotic 
vehicle teleoperation, aerial robotic vehicle teleoperation and 
underwater robotic vehicle teleoperation . All these types of 
teleoperation are influenced by camera viewpoint or field-of-
view (FOV), depth perception, orientation, speed or motion 
of the vehicles, and quality of the transmitted video including 
frame rate and latency [11]. Considering the presence of all of 
the mentioned challenges in ground vehicle teleoperation, our 
initial research focus is on enhancing teleoperation of ground 
robotic vehicles. There could be four different teleoperation 
modes for ground robotic vehicles: direct control, multimodal, 
supervisory, and novel [22]. Our research is focused on the 
direct teleoperation control mode for a single ground vehi-
cle teleoperation system where the human operators rely on 
video feedback from the robotic platform and provide control 
feedback through conventional controllers such as a steering 
wheel, and brake and acceleration pedals [23].

For enhancing teleoperation, a significant amount of 
research work has been conducted by the research community 
over more than half a century to solve fundamental control 
problems that arise over the communication link [24]. The 
enhancement techniques can be categorised as visual and 
non-visual enhancement techniques. Visual enhancement 
techniques can be further divided into 2D and 3D enhance-
ment techniques. Exocentric view, automatic view adjustment, 
stereoscopic vision, virtual environment, vision-based object 
tracking and predictive systems are included in visual feed-
back enhancement techniques for teleoperation enhancement. 
In this paper, we will provide a background for 2D predictive 
feedback based enhancement techniques as we aim to reduce 
the impact of latency with an assistive predictive interface. 
Our core original idea is to design an interface to mimic a 
real-time visual feed for teleoperation based on predicting the 
anticipated future state. The state-of-the-art predictive tech-
niques are summarised in Table 1 and discussed below.

1.2.1  Current 2D Predictive Display‑Based Enhancement 
Techniques

Increased perceptional awareness of the environment 
enhances control over teleoperated mobile vehicles. How-
ever, communication delay between the teleoperator and 
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the robotic platform is inevitable and degrades performance 
significantly. In challenging environments, longer delays or 
higher levels of jitter (time variance of delay) can even make 
teleoperation effectively impossible [29]. One prospective 
way to reduce the impact of teleoperation delay is by predict-
ing the evolution of the state variable for the period of delay 
[30, 31]. Delays in the control loop motivated the devel-
opment of predictive displays from the 1990s. The earlier 
approaches such as [32–35] tried to implement the concept 
of predictive displays that allows the operator to view the 
response of the system before it actually happens and hence 
avoid possible collisions. Witus et al. [36] implemented the 
state prediction of the UGV as a form of iconography for 
both AR and VR. However, these approaches were mostly 
prediction based on non-video-based feedback and do not 
provide an intuitive control interface, and are not suited for 
higher speed operation.

Some approaches have tried to solve problems that have 
arisen due to communication delays by predicting robot pose 
or states from 2D video feedback. Wang et al. [28] inves-
tigated input delays and nonlinearities for a teleoperation 
scenario and proposed a solution that relied on truncated 
prediction of Lipschitz nonlinear multi-agent systems. Their 
approach considered system state integral terms by tenta-
tively applying the Krasovskii functional method. Ha et al. 
[27] used a propagation stage prediction technique for tel-
eoperating a set of non-holonomic mobile robots. Their 2D 
predictive display showed the current and future poses of all 
the mobile robots. Their prediction horizon was up to two 
metres. However, the average speed of the mobile robots was 
only about 0.15m/s which was low.

To address the multi-second delay for space rovers 
Matheson et al. [12] described a simple, however some-
what effective technique. While the moving vehicle moves 
forward in a single direction, a zoom in to the images can 
give a future prediction to the trajectory. By cropping, 
zooming and projecting the image they were able to reduce 
the impact of the high latency of 3 s and halved the time of 
task completion. However, this technique is not applica-
ble for parallax movement. A further improvement of the 
approach by Matheson et al. [12] has been implemented 

recently by Dybvik et al. [25]. In addition to the zooming 
method, positional and scale transformation was imple-
mented for a better predictive display, but this was only 
applied to vehicles operating at low ground speeds.

Simulation of some predictive frameworks that do not 
include predictive displays as an operator aid, only algo-
rithm-based predictions, includes the work by Zheng et al. 
[37] who described a model of predictor framework for 
UGVs and Zhang and Li [38] who attempted to design a 
predictor model based on the Clohessy-Wiltshire relative 
dynamic equation.

All of the above 2D predictive enhancement techniques 
provide either first-order state prediction of the robotic 
system or future pose estimation only. They offer a very 
limited horizon for prediction and can only be applied to 
stationary or slow-moving robotic vehicles. As these sys-
tems are designed as specific robot-in-the-loop systems, 
they are not easily transferable to other robot types. More-
over, these teleportation systems and enhancement tech-
niques cannot be easily integrated into modern AI-based 
systems and techniques, nor have they been designed to 
collect data that can be used to train deep learning or AI-
based enhancement tools. Therefore, in a time when AI 
and neural networks are being used to very effectively 
solve problems across a wide range of scientific research 
domains, a system that can simulate teleoperation with 
controllable latency, and can be used to generate syn-
thetic images and control data for investigating AI-based 
enhancement techniques is of significant value. Further, 
an effective technique is required that can enhance teleop-
eration for long-distance and high-latency teleoperation 
scenarios. The research presented in this paper proposes 
methods to fill these identified research gaps.

1.3  Contribution of the Paper

In this paper, we describe a system that has the capability 
to resolve the data availability issue for AI-based teleopera-
tion enhancement research, while also proposing a method 
to enhance teleoperation based on low cost equipment 
and easily implementable techniques. We have developed 

Table 1  Summary of 2D predictive feedback-based teleoperation enhancement techniques

Author, Year & Ref. Technique Medium Robot type

2D predictive feedback
Dybvik et al. (2021) [25] Positional and scale transformation to the video display Wired Wheeled ROV
Wilde et al. (2020) [26] Predictive flight path using velocity telemetry, camera feed and control inceptor 

deflection
WiFi UAV

Ha et al. (2018) [27] Future state and collision prediction for a multi mobile robot leader follower system - Wheeled ROV
Wang et al. (2016) [28] Truncated prediction of states for nonlinear multi-agent teleoperation Any medium -
Matheson et al. (2013) [12] Projected field of view by cropping and zooming Wireless Space Rover
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a teleoperation simulation model that is capable of simu-
lating teleoperation with controllable latency without the 
use of a real robotic vehicle. For teleoperation enhance-
ment, to explore the effectiveness of video prediction based 
enhancement techniques, we have initially investigated 
straightforward video transformation techniques, which are 
easy to replicate and integrate into a real-time teleopera-
tion system. To evaluate the performance of the model and 
enhancement approach, and to fine-tune it, we have used 
pixel matching based image quality measuring metrics 
including Peak Signal to Noise Ratio (PSNR) [39] and the 
structural difference matching metric Structural Similarity 
Index Measure (SSIM) [40]. However, to properly assess the 
level of enhancement achieved for a teleoperation scenario, 
the operator experience is what really matters. Therefore, 
we have conducted a human operator survey to determine 
whether our video transformation-based assistive interfaces 
are genuinely impacting the teleoperation experience in a 
positive way. The stages of the research and our contribu-
tions are highlighted using the flow chart in Fig. 1.

To the best of our knowledge, there have been no 
previous approaches that have implemented a low cost 
teleoperation simulator, that is capable of simulating 
controllable latency for ground vehicle teleoperation 
scenarios, and can be used to generate large amounts of 
synthetic image, video, and control input data for AI and 
deep learning based teleoperation enhancement research. 
Including this, the main contributions of this paper are 
as follows. 

1. Designing a Simulink-based human-in-the-loop ground 
vehicle teleoperation simulation platform with control-
lable latency that can simulate remote ground vehicle 
operation at high speeds, while generating synthetic 
image, video, and control input data for teleoperation 
enhancement research.

2. Formulating an algorithm that accounts for the con-
trol input signals (acceleration, deceleration, steering), 
and simulated vehicle speed to enhance teleoperation 
through image/video transformation.

3. Applying pixel and structural similarity-based image 
analysis techniques for ground vehicle teleoperation 
simulator optimisation (image analysis techniques have 
rarely been used for teleoperation evaluation, and have 
never been used for UGV simulator performance meas-
urement and optimisation).

4. Performing a human operator survey to investigate the 
impacts of high latency on ground vehicle teleopera-
tion and evaluate the effectiveness of the video trans-
formation-based enhancement technique to enhance 
teleoperation.

5. Providing an in-depth discussion of the qualitative and 
quantitative aspects of the survey outcomes and teleop-
eration performance evaluations and the implications of 
these for future teleoperation enhancement research.

The rest of the paper is structured as follows. Section 2 
describes in detail the system we designed for teleoperation 
simulation and the interfaces we developed for teleoperation 
enhancement. Section 3 illustrates the model tuning tech-
niques and the evaluation methods used in this research. 
Section 4 presents the results and Section 5 discusses these, 
including the operator survey feedback. Conclusion can be 
found in Section 6.

2  Teleoperation Task Simulator Design 
with Integrated Predictive Interface

One of the major components of this research is to elimi-
nate the requirement for a real ground robotic vehicle in 
the teleoperation research chain. As illustrated in Fig. 2, 
one of the prime components of the simulator we designed 
is a virtual vehicle driving platform. Other major parts of 
the simulator are the control input equipment, visual feed-
back capture device and the latency control unit. These 
major components of the simulator are described below 
along with the detailed description of the algorithms 
of the predictive interface explored as an enhancement 
technique. Figure 2 presents the schematic diagram of 

Fig. 1  The overall process flow of the research. Stage-1 of the 
research involved the development of a novel simulator with the pro-
posed assistive interface (as described in Section-2); In stage-2, the 
model has been fine-tuned and optimised through image analysis (as 

described in Section-3.1); in the final stage a human operator based 
survey has been designed and carried out to verify the concept and 
quantify the effectiveness of the model (as described in Section-3.2)
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the teleoperation simulator with incorporated assistive 
interface.

2.1  Simulation Platform

To create a teleoperation platform for a virtual vehicle 
that can be used as a teleoperated ground vehicle we have 
chosen a commercial racing game called ‘Forza Horizon 
4’. It was developed by Microsoft Studios and released in 
October 2018. This racing game offers a driving experi-
ence in fictionalised regions of Great Britain. It facilitates 
both on-road and off-road driving experiences. Moreover, 
its near-photorealistic visual representation of the envi-
ronment coupled with reasonably realistic ground vehicle 
physics has made it as an excellent candidate to be used as 
a virtual environment to simulate our teleoperation task.

2.2  Control Input Equipment

To provide operator control inputs to the simulation 
platform, we have used a ‘Logitech G29 Driving Force 
Racing Wheel’ along with brake and acceleration ped-
als (Fig. 2(b)). The Logitech Wheel provides 900-degree 
lock-to-lock rotation similar to a real car steering wheel. 
The throttle, brake and clutch pedals are integrated into the 
unit’s separate floor pedal. The brake pedal is nonlinear and 
is capable of mimicking a pressure-sensitive brake system.

2.3  Visual Feedback Capture Device

Controllers connected to a simulation platform only provide 
a real-time road driving experience. To simulate a teleop-
erated environment, we require a visual feedback capture 

device that will receive visual feedback from the simula-
tion platform or game screen and feed it to a latency adding 
and controlling model. We have used a ‘Logitech C922’ pro 
stream webcam for this purpose. This webcam is capable of 
capturing videos in 1080p at 30 frames per second (fps) or 
720p at 60 fps with a 78-degree field of view. It can accom-
modate flickering lights from light sources, which is vital for 
our use case as we use the camera to capture the computer 
screen. To represent the typical scenario of teleoperation of a 
ground vehicle robot in a remote environment via low band-
width communication channels, the frame rate is limited to 
10 fps for the video feed, which is adequate for real-time 
driving at reasonable ground speeds.

2.4  Latency Controller and Delayed Feed Display

It is inevitable for teleoperation to be affected by some 
degree of latency. For any long-distance teleoperation sce-
nario, the impact is even more noticeable. Therefore, one 
of the major components of a teleoperation simulator is the 
capability of inducing and controlling remote visual feed 
delay. The simulator should be able to accept and compile 
control inputs (i.e., steering wheel rotation, brake, accelera-
tion, etc.) along with displaying and saving them for later 
analytical purposes. It should also be able to receive and 
compile video feedback either from the simulation plat-
form or from the visual feedback capture device, process 
the video signal, and save, and display the result. Most 
importantly, the simulator must be able to add latency to 
the visual feedback so that the operators feel the impact 
when the simulation is running.

To offer all of the above-mentioned characteristics to 
the simulator, we have developed a Simulink® model. To 
capture the video feed from the Logitech C922 camera and 

Fig. 2  System diagram of the proposed teleoperation simulator
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bring the image frames of the video feed to the Simulink® 
model, we have used the ‘From Video Device’ block sets. 
This block is capable of queuing all the incoming frames in 
a first-in, first-out (FIFO) buffer and delivering one image 
frame for each simulation time step. We have configured the 
block to have only one output port that works as a gateway 
for the RGB frames to the rest of the model.

As mentioned earlier, for driving a vehicle in the Forza 
Horizon 4 gaming platform, a Logitech G29 controller unit 
is used. To capture and bring the induced signals such as 
wheel rotation, brake and acceleration pedal press and their 
intensity in real-time we have used a ‘Joystick Input’ block. 
This block provides interaction of control signals between 
the virtual world and the Simulink® model. The joystick 
input block feeds all the signals from the controller unit 
as a single axes signal. The signal is demultiplexed to split 
it into separate signals from the steering wheel, brake and 
acceleration pedals.

Our model is capable of controlling latency to the video 
feed at any desired level from a minimum of 300 ms (base 
Simulink® delay). For our experiment we have set the total 
latency to 900 ms. Any amount of latency can be added to 
the video feed using additional Simulink ‘Unit Delay’blocks. 
This is a simple input-output block and equivalent to the z−1 
discrete-time operator that holds its input by one iteration. 
We chose to keep the latency to below 1 second as the partic-
ipants repeatedly failed to keep control of the ground vehicle 
during teleoperation sessions for latencies higher than one 
second during the human survey stage of this research, mak-
ing comparisons between enhanced and unenhanced opera-
tion difficult. To visualise the delayed feed to the operator 
we have used the Video Display block from Simulink®. This 
block is capable of displaying high definition video.

Our model is simple, yet capable of accurately simu-
lating the teleoperation of a ground vehicle. It is capable 
of easily inducing and controlling latency. Therefore, this 
model can be used to experiment with the impacts of vari-
able latency on teleoperators. It can also be used to develop 
and test techniques to enhance teleoperation. This simple 
teleoperation platform is capable of saving control input 
signals and video feeds. These control input signals and 
videos can be used to develop and evaluate video transfor-
mation, AI, and deep neural network-based teleoperation 
enhancement techniques, which are planned future steps 
for this research. To the best of the authors’ knowledge, 
there is no UGV teleoperation simulation platform that 
uses a virtual robotic ground vehicle, but provides a high 
quality representation of a real-world scenario, facilitates 
high-speed teleoperation, and saves the video feed along 
with the control signals for further experimentation. Note, 
an assumption has been made in the development of this 
teleoperation simulation platform that visual feedback delay 
and control input delay are effectively equivalent from the 

perspective of the operator, and so to maintain platform 
simplicity, only visual feedback delay is implemented. A 
validation of this assumption is provided in Appendix.

2.5  Predictive Interface Development

A teleoperator driving a ground vehicle through the delayed feed 
of our simulation platform will experience a similar impact from 
latency to a real-world UGV teleoperation scenario with the same 
amount of latency. We hypothesise that if the real-time effect of 
a teleoperator’s control actions can be predicted and imposed on 
the delayed video feed, i.e. if the delayed feed can be transformed 
to show the impacts of the control input in real-time, the teleop-
eration experience can be enhanced, and the driveability of the 
vehicle significantly improved, even at relatively high ground 
speeds and for latencies as high as one second in a real-world 
on- or off-road environment. To test the hypothesis, we need to 
transform the delayed feed according to the change in position of 
the vehicle resulting from turning due to rotation of the steering 
wheel. We also need to transform the acceleration or decelera-
tion of the vehicle resulting from inputs to the brake or accelera-
tor pedals. In our simulator model, we have integrated assistive 
interfaces that achieve both of these goals through simple video 
transformation as discussed in this subsection.

2.5.1  Video Transformation Based on Steering Wheel 
Rotation

For driving and teleoperation of a ground vehicle, the whole 
of the peripheral vision of the driver (for our use case, the 
whole of the scene captured by the remote camera) is not 
strictly required. Therefore, as an initial video transforma-
tion approach, 30% of the whole image frames are cropped 
out. The width and height of the modified frames are deter-
mined as follows:

Figure 3 shows both the whole image frame and the cropped 
feed that is presented to the teleoperator. The red arrows 
show the objects visible in the whole scene that are absent 
in the cropped feed, but that do not meaningfully impact 
the situational awareness of the teleoperator or the control 
decisions they would make. This may not apply to objects 
in very close proximity to the vehicle, but in a high latency 
teleoperation environment it is likely to be too late for con-
trol action to avoid a collision if objects reach that close to 
the vehicle in any case.

(1)Modified frame width = Original frame width × 0.70

(2)Modified frame height = Original frame height × 0.70

(3)
x = (Original frame width −Modified frame width) ÷ �

Journal of Intelligent & Robotic Systems (2022) 106:4848   Page 6 of 27



1 3

Due to latency, the teleoperator is experiencing a delay in 
the reflection of their control inputs in the visual feed. As 
the cropped feed is 70% of the full transmitted scene, we 
have the option to slide our cropped window anywhere in 
the full- frame based on the movement of the control input 
signals in real-time to create a perception of the real-time 
reflection of the operator’s control input. To determine the 
exact location of the initial cropped 70% window, it is suf-
ficient to know the top left pixel location of the window. 
We set the x and y coordinates of the top left pixel location 
according to Eqs. 3 and 4. We have kept the � value as 2 and 
the � value as 6 so that the initial cropped window remains 
in a central location along the width and the teleoperator 
can receive optimal situational information about the remote 
environment. To mimic the real-time direction change of 
the vehicle in the gaming platform through steering wheel 
rotation, the cropped window is moved either to the left or 
to the right in accordance with the direction of rotation of 
the steering wheel by the operator based on Eq. 5. In this 
equation, the wheel is the wheel rotation signal that ranges 
between −1 ≤ wheel ≤ 1 . The value of the Speed depends 
on the UGV speed and c is a hyperparameter we used to 
fine-tune the predicted field-of-view of the cropped window 
by adjusting its movement. In our Simulink-based simula-
tor, the assisted feed is generated and passed to the video 
display block by our custom simulator function block that 
runs Algorithm 1.

(4)
y = (Original frame height −Modified frame height) ÷ �

(5)
xassisted = x + x × c ×Wheel Rotation ×ℝ

(

log10(1 + Speed)
)

The assisted feed is a function of the delayed image feed, 
steering wheel rotation by the teleoperator and the speed of 
the simulated vehicle. As the simulation platform is a com-
mercial video game and there is no way to directly access a 
signal representing the speed, we have acquired the speed 
of the vehicle from the captured feed by implementing an 
optical character recognition (OCR) [41] technique. After 
segmenting the portion of the screen that displays the speed 
of the vehicle, grayscale conversion and filtering have been 
applied prior to the OCR to increase the accuracy and reduce 
the error of the OCR function. We have named the window 
of the visual feed generated through this video transforma-
tion algorithm as the ‘Sliding-only (SO)’ window through-
out the rest of the paper.

2.5.2  Video Transformation Based on Acceleration 
and Deceleration

In a standard forward-moving vehicle, from the driver’s per-
spective, all the external objects approach the driver at vary-
ing speed according to the speed of the vehicle. However, in 
a latency impacted teleoperation scenario, the objects in a 
distant location in the delayed feed are always further away 
than the same object in the actual environment. To compen-
sate for this disparity, if the delayed frames are scaled up 
or zoomed-in in accordance to the speed of the vehicle, it 
would offer the teleoperators’ a predicted future view of the 
objects in front of the vehicle. Figure 4 shows how the sim-
ple transformation operation of zooming-in to the delayed 
feed achieves the desired outcome of effectively predicting 
the future location of objects in a teleoperation scenario.

To achieve the zoomed-in effect we have warped the 
delayed frames using the Simulink® ‘Warp’ block with a 

Fig. 3  The cropped feed (right) provides an operator with sufficient situational awareness to teleoperate a car in both on- and off-road scenarios
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zoomed transformation factor. The zoom factor was achieved 
using Eq. 6. In this equation, � is an adjustable hyper-param-
eter we used to fine-tune the amount of zooming our model 
applies for better teleoperation enhancement.

As the logarithmic scale compresses the range, our zoom 
factor prevents the transformed video feed from being 

(6)zoom = ℝ(log10(10 + Speed × �))

Algorithm 1   Algorithm to 
transform the video feed as a 
predictive sliding-only window 
to reflect the operator control 
inputs in real-time

Fig. 4  A zooming-in transformation (b) of the delayed feed (c) provides the predicted future location of the objects (such as the car, tree, road 
sign, road driver mark, etc.) in the assisted feed that is closer to the ground truth (a)
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zoomed-in too much for any speed of the vehicle and 
creates a parity between the teleoperator’s expectation 
and the transformed feed. To prevent the zoom factor 
to ever be zero, a constant of 10 has been added to the 
speed factor. After a fair amount of initial testing, we set 
the value of � to 0.4 to generate a video feed that offers 
a reasonably accurate level of future prediction relative 
to the ground truth while not making the field of view 
too narrow to lose the necessary situational awareness. 
The warp block is capable of applying either an affine 
or a projective transformation to an image frame. We 
have taken advantage of the projective transformation. 
For our zoom-in effect transformation, we have used 
bilinear interpolation while warping the delayed frames. 
In bilinear interpolation, the new pixel value after trans-
formation is the weighted average of the four nearest 
pixel values. Along with the predicted future location of 
the environment, the zoom in and out effect based on the 
speed of the vehicle offers an immediate visual impact 
on the delayed feed based on the acceleration and decel-
eration by the teleoperator. As the teleoperator feels the 
real-time effect of pressing the acceleration and brake 
pedal in the delayed feed, it helps to enhance the tel-
eoperation. We have incorporated the zooming-in effect 
on top of the sliding-only transformation and called the 
generated feed window, ‘the sliding with zooming (SZ)’ 
window throughout the rest of the paper. After incorpo-
rating the acceleration and deceleration based zooming 
effect our assisted feed transformation was generated 
using Algorithm 2.

3  Evaluation Methodology

3.1  Model Tuning Through Image Analysis

Pixel based image analysis is not common in the lit-
erature for robotic teleoperation enhancement research. 
Although pixel analysis and comparison is not an ideal 
way to measure the accuracy of a simulator like the 
one presented in this work, such techniques may offer 
some insight into the capability of the simulator and 
its enhancement techniques, and allow quantitative 
assessment of the quality of the video frame prediction. 
Moreover, such quantitative assessment can be used for 
tuning the performance of the assistive windows prior to 
the human operator based evaluation. To perform pixel 
analysis and comparison we have experimented with 
peak signal to noise ratio (PSNR) [39], the structural 
similarity index measure (SSIM) [42], and multi-scale 
SSIM [43].

3.1.1  Image Processing for Pixel Analysis

Before pixel analysis and comparison, we have pre-
processed the recorded video feed of the ground truth 
(gaming video feed from the simulating platform), the 
raw delayed feed, and the sliding transformation-based 
assisted delayed feed. All these visual windows were 
recorded simultaneously using open broadcaster soft-
ware (OBS) as a single video recording to avoid any 
disparity among them. We have converted the recorded 

Algorithm 2  Algorithm to 
transform the video feed as a 
predictive sliding-with-zooming 
window to reflect the operator 
control inputs in real-time
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video of a teleoperation event into individual frames. 
After converting them into frames, the three windows 
have been separated and converted to grayscale as the 
colour of the remote environment is less of a significant 
factor for a teleoperator. We have normalised the indi-
vidual frames of the segregated windows to eliminate 
variations in brightness resulting from the recording of 
the screen by the capture device. During the normalisa-
tion process, we have used the Sobel-Feldman operator 
[44] to look for edges in the frames and return a numeric 
matrix that has been converted to grayscale normalised 
frames. The normalised non-assisted delayed and the 
assisted predicted frames are then compared with the 
respective ground truth frames using PSNR, SSIM, and 
multi-SSIM evaluation and comparison metrics. Figure 5 
shows the different stages of the frame pre-processing 
prior to pixel analysis and comparison.

3.1.2  Comparison with PSNR

The peak signal to noise ratio (PSNR) [39] expresses the 
ratio of the maximum strength of a signal and the strength 
or power of the noise corrupting the signal. PSNR is widely 
used in image processing research, mainly to measure the 
image quality after a compression or transformation task 
relative to the original image. PSNR performs a pixel-by-
pixel comparison using Eq. 7.

Here, the MAX is the maximum value of the pixel and 
the MSE is the mean squared error. A higher PSNR value 
indicates the transformation is closer to the original image 
frame. For our experimentation, for a teleoperation event, 
we have compared the assisted (sliding-only) window and 
non-assisted (delayed window) respectively to the ground 

(7)PSNR = 20 × log10(MAX) − 10 × log10(MSE)

Fig. 5  Example of a teleoperation session: (a) Single frame of the 
recorded video using OBS, separated sections of the ground truth (b), 
non-assisted (c), and assisted (d) feed, and frames for ground truth 

(e), non-assisted (f), and assisted (g) feeds normalised with Sobel-
Feldman operator
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truth or the cropped gaming window to calculate the respec-
tive PSNR value and additionally plotted the difference of 
their PSNR values to demonstrate the comparison as shown 
in Fig. 7.

3.1.3  Comparison with SSIM

PSNR only considers the values of the pixels and estimates 
absolute errors. For our use case, the structural difference 
between the ground truth and delayed feed is more signifi-
cant than the absolute pixel level differences. The assisted 
delayed feed is intended to provide a prediction of the future 
frames via video transformation. Therefore, it is expected 
that there will be more structural similarity between the 
assisted windows and the ground truth than that with the 
non-assisted window. To compare the structural differences 
we have experimented with the structural similarity index 
measure (SSIM) to compare the visual feed. SSIM considers 
the structural information changes along with the change of 
contrast and luminance to measure the image degradation. 
If the measure of two different windows x and y having the 
same size of N ∗ N , The SSIM for these two windows would 
be [43],

Here, �x is the average of x, �y is the average of y, �2
x
 is the 

variance of x, �2
y
 is the variance of y, �xy is the covariance of 

x and y, and c1-c2 are the variables to stabilise the division. 
The variance and covariance part of the SSIM algorithm 
accounts for the structural change among images.

While comparing the SSIM of two different image frames 
with a ground truth image frame, the higher the SSIM, the 
closer the frame is to ground truth. For a teleoperation 
instance, we have measured and compared the SSIM values 
for our assisted and non assisted feeds. The SSIM compari-
son and their difference graph are shown in Fig. 8. To visu-
ally show the structural difference, maps can be produced 
comparing the assisted and non-assisted frames with the 
respective ground truth frames ( see Fig. 9).

3.1.4  Comparison with Multi‑scale SSIM

In addition to PSNR and SSIM, we have also experimented 
with the multiscale-SSIM (MS-SSIM). The literature [43, 
45–47] suggests MS-SSIM is more robust and performs bet-
ter for both images and video data. MS-SSIM uses the same 
SSIM algorithm, however, conducts the operation over multi-
ple scales using a process of multiple sub-sampling stages. In 
the MS-SSIM process, the system downsamples the images 
by a factor of 2 before passing them through a low-pass filter. 
We have compared the same processed video frames using 

(8)SSIM(x, y) =
(2�x�y + c1)(2�xy + c2)

(�2
x
+ �2

y
+ c1)(�

2
x
+ �2

y
+ c2)

MS-SSIM that was fed to the SSIM and this comparison is 
shown in Fig. 10. This shows a clearer difference between the 
assisted and non-assisted frames and so was used for the rest 
of the work to quantify the quality of the prediction.

3.2  Model Verification Through Human 
Operator‑Based Survey

We have conducted a human-operator-based survey to attain 
further evaluation and validation of the model. Appropriate 
approval has been granted by the Human Ethics Commit-
tee (HREC) of Edith Cowan University (ECU) prior to any 
operator data collection. In the survey, we have considered 
both the quantitative objective measures of the performance 
and the qualitative subjective measures of the operators’ per-
sonal experience with the assisted and non-assisted delayed 
feeds. The detailed information regarding this survey is pre-
sented in this section.

3.2.1  Participants

For validation of our model with the assisted teleoperation 
interfaces, participants were invited to volunteer to partici-
pate. The majority of the participants are postgraduate stu-
dents from different disciplines in the School of Science 
and the School of Engineering at Edith Cowan University. 
A total of 10 participants took part in the experiment. The 
median age of the participants is 32 years. All participants 
have a driver’s license and are regular domestic drivers. We 
have also collected information on the participants’ famili-
arity with racing games, prior experience of using a driv-
ing simulator or console, and any previous experience of 
operating a robotic vehicle such as driving or teleoperation 
of drones or remote control cars. Based on their previous 
experience and familiarity, participants can rate themselves 
to a maximum of 15 and a minimum of zero. Based on this 
familiarity index, we found that our participants are nor-
mally distributed where their mean familiarity index is 6.6. 
This implies that if the assistive visual interfaces enhance the 
teleoperation for these participants, they will enhance tel-
eoperation for even novice teleoperators who have little pre-
vious experience of teleoperating ground vehicles. Figure 6 
represents the data distribution of the participants based on 
their familiarity with the teleoperation task. Before taking 
part in the experiment, the participants were asked about 
whether they are under the effect of alcohol or any medica-
tion that could affect a standard teleoperation experience.

3.2.2  Experimental Setup and Task

For our experiment, all the participants were asked to attend 
the teleoperation session individually, not in a group. This 
has ensured the participants do not have any prior knowledge 

Journal of Intelligent & Robotic Systems (2022) 106:48 Page 11 of 27    48



1 3

about the experimental setup or the procedure. Once the 
participants entered the experiment venue, they were shown 
the simulator and briefed so that they entirely understood 
the task they were to complete. The participants were pro-
vided with a chair in front of the monitors that work as the 
interfaces through which the visual feedback of the remote 
environment is received. Out of two, one of the monitors 
provides the real-time 60 fps full high definition (FHD) 
1080p gaming feed that offers a near-photorealistic real-
world visual impression and works as the ground truth, and 
the other one represents the delayed feeds from the simulat-
ing platform. Once the participants had been briefed, they 
were provided access to the control devices (steering wheel 
and acceleration and brake pedals).

All the participants were given the task to drive a car as 
a teleoperated ground vehicle through the Forza Horizon 4 
gaming environment using the commercial steering wheel 
and acceleration and brake pedals shown in the system dia-
gram of Fig. 2. Before starting to collect data, the partici-
pants were allowed to practise driving on the different tracks 
to get used to the system. The data collection started only 
when the participants felt comfortable and willing to start 
the experiment.

3.2.3  Manipulating Variables

While designing the human operators’ performance based 
evaluation procedure for the video transformation based 
enhancement technique, the primary manipulating variables 
we have considered are the level of difficulty of the remote 
environment, the amount of latency added to the teleopera-
tion loop, the quality of the situational awareness provided 
through the visual feed to the operator, and the additional 
assistance offered through our enhancement techniques. For 
our research, the participants were asked to drive the vehicle 
on two different tracks: one on-road and one off-road, four 
times each. The on-road track is approximately 2 km and 
the off-road track is approximately 1.5 km. The participants 

drove the vehicle in each track using 4 different visual feeds: 
the ground truth FHD feed, the non-assisted delayed feed, the 
assisted feed with sliding-only window, and the assisted feed 
with sliding and zooming effect window. However, except 
for the ground truth feed, the participants were not made 
aware of the capability and features of each of the video feed 
windows. Except for the ground truth, for all the sessions the 
amount of latency inserted into the delayed feeds was the 
same (900 ms). All the participants were directed to start and 
end the sessions in a track from the same starting and ending 
points to maintain the same direction through the same path 
to avoid the bias of opposite directional difficulty. Further, 
in the sessions where the participants drove based on the 
delayed feeds, the monitor displaying the real-time ground 
truth feed was not visible to them.

3.2.4  Quantitative Performance Measurement

We have prepared a quantitative objective performance meas-
urement metric to measure the participants’ performance 
during the teleoperation sessions. Measurement of the task 
completion time and teleoperation performance scores are 
common parameters when experimenting with different 
forms of teleoperation experience [37, 38, 48, 49]. As a scor-
ing mechanism, we have considered the number of times the 
participants lose control and the teleoperated vehicle goes 
out of the defined track and the number of times the vehicle 
oscillates due to overcorrection on the track. The higher the 
counts, the poorer the performance for any session by the 
operator. We have also counted the time taken to complete a 
single session on a selected track, as well as calculating the 
average speed of the vehicle on a teleoperation session and 
using it as a performance measurement parameter. Increasing 
latency tends to reduce the driving speed of the vehicle for 
a given operator, therefore, the lower the average speed, the 
poorer the performance of the operation was considered for 
a particular session. The above parameters are considered to 
provide us with enough evidence to measure the objective 
performance of a teleoperator for both the assistive and non-
assistive video feed-based teleoperation sessions.

3.2.5  Qualitative Performance Measurement

Additional to the quantitative performance measurement 
we have asked all the participants to rate their experience 
after every session to measure the qualitative aspect of the 
system and the effectiveness of the transformed visual feed-
back windows. The authors believe the outcome of the par-
ticipants’ survey would reinforce the outcome of the quan-
titative objective performance measurement and prove the 
robustness of the model based on the participants’ experi-
ence. The participants were asked to rate six different aspects 
of their experience on a scale of 0 to 5, where 0 implies the 

Fig. 6  Survey participants’ familiarity index and their distribution
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lowest, hardest, or negative experiences, and 5 implies easi-
est, most comfortable, or most positive experiences. In this 
survey, the participants were asked to provide feedback on 
the visibility of the remote environment through the user 
interface, the impact of latency and intermittency while tel-
eoperating, controllability of the vehicle during the session, 
level of comfort in the speed they managed to drive and the 
environmental challenge of the track they were driving the 
vehicle on. The authors believe the answers to the survey 
questions provide insight into the impact of communication 
latency and intermittency on situational awareness while 
teleoperating a ground vehicle. The operator assessed expe-
rience of controllability can also be cross-examined relative 
to the overcorrection-induced oscillations and out-of-track 
incidents experienced by the participants. The survey also 
intends to draw a relation between the level of challenging 
environment and teleoperation experience.

4  Results

4.1  Pixel‑Based Image Analysis Outcome

The principle evaluation of the performance of our simulator 
and video transformation-based enhancement technique has 
been performed through the human operator survey. How-
ever, we have used the pixel-based image analysis techniques 
such as PSNR, SSIM, and multi-SSIM for the purposes of 
fine-tuning our video transformation algorithm prior to the 
operator survey. Table 2 presents the PSNR, SSIM, and 
multi-SSIM values of the extracted frames of two windows 
from a recorded video of a random teleoperation session: one 
with the assisted feed, which is the delayed feed transformed 
using our video transformation algorithm, and another that 
is simply the delayed feed without any transformation to 
assist the operator. From table 2 we can see that for all three 
parameters, the mean values for the assisted feed are higher 
than the non-assisted feed. For the non-assisted feed, the 
mean PSNR, SSIM, and multi-SSIM values are 20.12, 0.48, 
and 1.59. These values improved to 20.30, 0.49, and 0.62 
respectively for the assisted feed. The PSNR, SSIM, and 

multi-SSIM values for the assisted and non-assisted feeds 
are plotted in Figs. 7, 8, and 10. The mean values and the 
graphs indicate that according to the pixel and structural 
similarity indices the transformed assisted feed is closer to 
the ground truth than the delayed non-assisted feed. Figure 9 
shows the SSIM difference maps of an assisted frame and 
a non-assisted frame with their ground truth frames. More 
black and grey areas in a map mean a higher difference in 
the frame compared to the ground truth.

4.2  Human Operator‑Based Survey Results

4.2.1  Quantitative Performance Measurement

Table 3 presents a summary of the quantitative outcome of 
the human operator performances for both the on-road and 
off-road scenarios. The average time taken for participants 
to complete a 2 km long on-road track looking into the real-
time high definition (HD) visual feedback was 171.1 s with 
an average speed of 46.25 km/h. For the 1.5 km long off-
road track the participants spent an average of 125.8 s with 
an average speed of 44.20 km/h. This implies that the par-
ticipants faced similar levels of challenge for both on-road 
and off-road tracks and were able to drive at almost the same 
speed when using the real-time (non-delayed) visual feed-
back. We have considered these values with HD real-time 
visual feed as the ground truth for our analysis.

During the driving sessions when the latency has been 
applied and no assistive technique is in place, the average 
time to complete a 2 km on-road track increased by 205.67% 
(i.e. 523 - 171.1 s). For the 1.5 km long off-road sessions it 
increased by 147.14% (310.9 s). Compared to the ground 
truth the average speed had a 69.71% drop (to 14 km/h) and 
for off-road, it had a 59.47% drop (to 17.91 km/h). For the 
off-road, the decrease is a little less, this may have been due 
to the fact that the on-road sessions included AI controlled 
traffic creating more unpredictability on the track. From the 
above numbers, we can make a general statement that for a 
900 ms delay the task completion time increases by around 
150-200% for a ground vehicle teleoperation scenario with 
reasonable ground speed. When the participants used the 
sliding-only window-based visual feedback, their perfor-
mance increased by an appreciable amount. The average 
time to complete the 2 km on-road track was 389.5 s which 
is 25.53% less than the delayed-only feed performance. For 
the off-road track, the required time was reduced by 8.14% 
relative to the non-assisted feed. Similarly, the average speed 
increased by 36.37% and 8.75% for on-road and off-road 
tracks respectively. Based on the task completion time and 
average speed metrics, the assisted display with sliding and 
zooming combined also performed better than the delayed 
feed only and further enhanced the teleoperation experience. 

Table 2  Pixel based comparison of a random sample teleoperation 
simulation session

Parameter Value

PSNR for assisted feed 20.30
PSNR for non-assisted feed 20.12
SSIM for assisted feed 0.49
SSIM for non-assisted feed 0.48
Multi-SSIM for assisted feed 0.62
Multi-SSIM for non-assisted feed 0.59
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With the sliding and zooming transformation, the on-road 
average time requirement was 408.9 s and the off-road time 
requirement was 285.6 s. These completion times were 
21.82% and 11.74% less than the non-assisted delayed feed 
respectively. The average speed also increased by 28.75% 
and 13.53% for the on-road and off-road tracks respectively.

The other two crucial parameters of the performance 
evaluation are the count of oscillations and out-of-track 
incidents during the teleoperation sessions. As the count 
of oscillations can be a somewhat subjective judgement, 
we have considered the oscillations only when the vehicle 
crossed the road edges partially due to the impact of over-
correction and ignored any oscillations where the impact 

Fig. 7  Performance comparison of assisted and non-assisted feeds for a teleoperation session: (a) comparison of PSNR values for assisted (red) 
and non-assisted (blue) frames (b) curve showing the differences of PSNR values to visualise the comparison easily (best seen in colour)
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of overcorrection was minor and did not affect the vehicle 
enough for it to cross the road or terrain edge. From Table 3, 
the total number of oscillations that occurred during all the 
sessions that use the ground truth visual feedback was 17 
which is an average of 1.7 times (count) for each partici-
pant for the on-road track. For the off-road, the total for the 
ground truth was 11 which is 1.1 times per participant. When 
latency was added, the number of oscillations increased to 

an average of 8.6 counts per person and a total of 86 counts 
for the on-road and a total of 90 counts for the off-road track. 
When the participants were aided with our sliding-only win-
dow feedback, the oscillation counts dropped significantly. 
For the on-road track the number of oscillations dropped 
66.28% to 29 counts and for the off-road track, the number 
dropped 41.11% to 53 counts. For the sliding with zooming 
feed the outcome is even more encouraging. The number of 

Fig. 8  For a teleoperation session: (a) comparison of SSIM values for assisted (red) and non-assisted (blue) frames, and (b) curve showing the 
differences of SSIM values to visualise the comparison easily (best seen in colour)
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oscillations dropped further to a total of 21 counts for the 
on-road track, which is a 75.58% drop, and to 43 counts for 
the off-road track, which is a 52.2% drop.

A similar outcome has been observed for the out-of-track 
incidents as well. When the participants lost control and the 
vehicles fully crossed the edge to a point that the whole vehicle 
is out of the road or terrain, we have considered those incidents 
as out-of-track. For the FHD real-time visual feed, the total 
number of out-of-track incidents was expected to be lower. For 

the on-road track there was only one incident where the vehicle 
went out of the track. For the off-road track, there were no out-
of-track incidents for the real-time FHD video feed. However, 
for the raw delayed feed the number climbed considerably for 
both the on-road and off-road tracks. For the on-road, the num-
ber of out-of-track incidents was 37 and for the off-road track, 
it was 35 in total. When driving with the assisted visual feeds 
the number dropped drastically. Using the sliding-only window 
the out-of-track incidents dropped to only 5 for the on-road and 

Fig. 9  SSIM maps ((a) difference map of assisted frame and ground 
truth frame; (b) difference map of non-assisted frame and ground 
truth frame ) for a single assisted (d) and non-assisted (e) frames with 

the respective ground truth (c) frame. The more black the map is (b), 
more the difference compared to the ground truth

Table 3  Quantitative survey outcome

Parameter Ground 
truth (GT)

Without assis-
tance (WA)

Sliding only (SO) Sliding and 
zooming (SZ)

Relative 
change 
GT-WA

Relative 
change 
SO-WA

Relative 
change 
SZ-WA

On-Road
Average time (s) 171.1 523 389.5 408.9 205.67% -25.53% -21.82%
Average speed (km/h) 46.25 14.01 19.10 18.04 -69.71% 36.37% 28.75%
Total oscillation (count) 17 86 29 21 405.88% -66.28% -75.58%
Total out of track (count) 1 37 5 8 3600% -86.49% -78.0%
Off-Road
Average time (s) 125.8 310.9 285.6 274.4 147.14% -8.14% -11.74%
Average speed (km/h) 44.20 17.91 19.48 20.34 -59.47% 8.75% 13.53%
Total oscillation (count) 11 90 53 43 718.18% -41.11% -52.22%
Total out of track (count) 0 35 7 7 - -80.0% -80.0%
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7 for the off-road track. Using the sliding and zooming feed, the 
decrease is similar, with only 8 incidents for the on-road and 
7 for the off-road track. Thus, out-of-track incidents dropped 
around 80% for both the on-road and off-road tracks using both 
the sliding-only and sliding with zooming windows.

4.2.2  Qualitative Performance Measurement

To get feedback about the qualitative aspect of the differ-
ent visual feeds and the participants’ experience, all the 

Fig. 10  For a teleoperation session (a) comparison of MS-SSIM values for assisted (red) and non-assisted (blue) frames (b) Curve showing the 
differences of MS-SSIM values to visualise the comparison easily (best seen in colour)
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participants were asked to rate every session regarding the 
visual quality, speed and comfort, impact of latency, inter-
mittency, and the controllability of the vehicle. During the 
experimental teleoperation sessions, the participants were 
unaware of the quantitative parameters that were used to 
measure the performance of their driving sessions. There-
fore, their feedback is free from the biases of the quanti-
tative parameters. Table 4 presents the summary of the 
participants’ feedback on the different qualitative aspects. 
The participants rate the experience with the ground truth 
HD real-time feed as the best with a total score for the 
convenience of 20.2 for on-road and 24.2 for off-road out 
of a maximum possible of 30. This high score is expected 
for non-delayed teleoperation through the HD video feed. 
However, our point of interest is the comparison of the 
qualitative scores between the delayed feeds: without 
assistance, sliding-only, and sliding with zooming.

For the on-road track, according to the participants’ 
feedback, the visibility of the driving track (2.6), and the 
controllability of the vehicle (3) are better for the sliding 
only assisted window. The participants found it easier to 
maneuver at a higher speed while using the sliding and 
zooming assisted window (2.7). The impact of latency was 
also deemed milder (2.3; a higher score means lower impact) 
while using this assisted window. The participants faced less 
cognitive challenge while teleoperating using the assisted 
windows (mean score of 2.70 for sliding and zooming and 
2.60 for sliding only). According to the total qualitative 
score, the participants found both the sliding-only assisted 
window (15.3) and sliding and zooming assisted window 
(14.6) better than the non-assisted window (13.4).

The participants found it easier to perform teleoperation 
in the off-road track environment using the assisted windows 
similar to the on-road track. For all the aspects, visibility, 
controllability, cognitive challenge, impacts of latency, and 
intermittency, for both the sliding only, and sliding and 
zooming assisted windows are preferable to the operators 
compared to the non-assisted window. The total qualitative 
score given by the operators is 16.1 for the assisted windows, 
whereas, the score is 12.2 for the non-assisted window.

5  Discussion

5.1  Pixel‑Based Analysis

The comparison of PSNR (Fig. 7(a)) is somewhat difficult to 
interpret as the PSNR values are very close for image frames 
from both the assisted and non-assisted windows. Figure 7 
(b) helps to interpret and visualise the difference (PSNR for 
assisted frames - PSNR for non-assisted frames) in a clearer 
way. For most of the image frames, the difference is posi-
tive. This implies, for pixel-wise comparison, the assisted 
delayed feed is closer to the ground truth than the non-
assisted delayed feed. While experimenting with PSNR, we 
found that when the speed of the vehicle increases the PSNR 
for the assisted feed increases in comparison to the non-
assisted feed as the algorithm we developed used speed as a 
factor. We also found out that increasing the turning angle 
increases the PSNR for the assisted window. The assisted 
feed slides left or right in real-time according to the turn-
ing of the vehicle resulting from the turning of the steering 

Table 4  Summary of 
Qualitative survey outcomes (In 
a scale of 0 to 5)

Parameter Ground truth Without 
assistance

Sliding only Slid-
ing and 
zooming

On-Road
Mean feedback on visibility 4.5 2.5 2.6 2.3
Mean comfort on driving speed 3.6 2.1 2.2 2.7
Mean impact of latency (lower is high impact) 4.2 2 2.2 2.3
Mean impact of intermittency (lower is high impact) 4.2 2 2.7 2.2
Controllability 3.7 2.5 3 2.4
Mean challenge felt (lower is higher challenge) 3.90 2.30 2.60 2.70
Total qualitative score 20.2 13.4 15.3 14.6
Off-Road
Mean feedback on visibility 4.5 2.39 3.01 2.9
Mean comfort on driving speed 3.8 1.7 2.6 2.5
Mean impact of latency (lower is high impact) 4.1 1.6 1.8 2.5
Mean impact of intermittency (lower is high impact) 4.5 1.9 2.9 2.1
Controllability 4 1.8 2.9 3
Mean challenge felt (lower is higher challenge) 3.3 2.7 2.8 2.9
Total qualitative score 24.2 12.2 16.1 16.1
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wheel. This proves that the assisted feed works to provide 
a closer prediction to a future frame from a delayed feed.

While experimenting with the SSIM based analysis of the 
assisted and non-assisted frames, we found that the assisted 
feed provides slightly better SSIM values than the non-
assisted feed. Therefore curves in Fig. 8(a) are more or less 
similar to that of the PSNR comparison graph. However, the 
difference curve Fig. 8(b) of assisted and non-assisted SSIM 
values shows a graph having most of the values positive. 
This implies that the assisted feed is closer to the ground 
truth. Figure 9 shows the difference map of an assisted and 
non-assisted frame compared with the ground truth frame. 
More black and grey regions are shown on the non-assisted 
difference map. That also implies that the assisted video feed 
is closer to the ground truth.

While applying the MS-SSIM on the same image data 
that were used for comparing with SSIM, we see a much 
clearer and more significant difference between the MS-
SSIM values for assisted and non-assisted image frames 
(Fig. 10(a)). Figure 10 (b) shows the relative differences 
between the assisted and non-assisted feeds and the values 
are higher than that of SSIM, giving clearer differentiation. 
Therefore, we have used MS-SSIM to experiment with our 
video transformation algorithm and fine-tune the system to 
achieve the best performance for teleoperation enhancement. 
We have found that for Eq. 5, the value of c = 5.5 provides 
the maximum system performance in terms of MS-SSIM 
values. To the best of our knowledge, using pixel and struc-
tural similarity indices to evaluate and fine-tune a teleop-
eration simulator is a new approach in the teleoperation 
research domain.

5.2  Operator Survey‑Based Quantitative Analysis

We assume that the performance of the participants during 
the teleoperation sessions are entirely dependent upon the 
2D visual feedback they are provided with, as the operators 
have access to no other forms of feedback such as audio, 
text, signs, etc. Prior to starting data collection, the partici-
pants were offered sufficient practice sessions and time to get 
used to the system. While teleoperating through a delayed 
system, the operators may, over time, get more used to the 
latency and perform better in the later sessions. Also, for a 
longer set of teleoperation sessions, their performance may 
drop due to high cognitive workload, loss of human eye-
hand coordination, fatigue, and tiredness. To minimise the 
impacts of these external factors, we have randomly changed 
the order of the sessions using the non-assisted visual feed-
back, the assisted with sliding-only window, and the assisted 
with sliding and zooming window as the visual feedback. 
The operators were not informed about which of the feeds 
they were going to use during each session.

Figure 11(a) and (b) plot the required time and speed for all 
of the participants during on-road track sessions and Fig. 12(a) 
and (b) plot the same graphs for the off-road track for all the dif-
ferent visual feeds. The graphs demonstrate that the participants 
performed better in terms of task completion time and speed 
for both on-road and off-road tracks using the assisted visual 
feedback. While comparing the performance graphs between 
the sliding-only window and the sliding and zooming window, 
in the on-road track, four participants performed better with the 
sliding and zooming window and six participants performed 
better with the sliding-only window. However, in the off-road 
track, the overwhelming majority of the participants performed 
better in terms of speed and time with the sliding and zoom-
ing window. Our system collects the vehicle speed informa-
tion from the ground truth visual feedback and uses OCR to 
convert the digits that are displayed in a white colour on the 
screen. However, at times when the white speed digits overlap 
the white lane marks and borders of the road, the OCR gener-
ates irregular values that creates an irregular and unexpected 
zooming effect. Therefore, the sliding window with zooming 
feed had some irregular flickering incidents and this affected 
the completion time and speed. As the off-road track does not 
have any lane markings or road edge borders this issue did not 
occur and all participants performed better with the feed that 
included the zooming window.

Figure 11(c) and (d) plot counts of overcorrection related 
oscillations and out of track incidents for all the participants 
during the on-road track sessions and Fig. 12(c) and (d) plot 
the same graphs for the off-road track for all of the differ-
ent visual feeds. From these graphs and Table 3 it can be 
claimed that the assisted feeds definitely enhanced the tel-
eoperation by significantly reducing the effect of overcor-
rection and decreasing the number of oscillations and out-
of-track incidents for both the on-road and off-road tracks. 
Further, based on the oscillation graphs and figures from the 
table, it can be seen that the sliding-and-zooming window 
has enhanced teleoperation to a greater extent and would 
make the teleoperation task safer in a real-life, relatively 
high-speed ground vehicle teleoperation scenario.

5.3  Operator Survey‑Based Qualitative Analysis

From Table 4 we can see, the participants rated the sliding-
only window highest in terms of visibility of the remote 
environment through the transformed feed. All the delayed 
feeds of our system have the same pixel dimension and frame 
rate. However, the sliding-only window gives the operator 
an impression of shifts in point of view according to the 
turning of the steering wheel and the expected future direc-
tion of the ground vehicle. Therefore, along with enhanc-
ing the teleoperation experience, the operators’ expectation 
of the visual direction of the remote environment matched 
with the sliding window’s point of view. Although, for the 
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Fig. 11  Performance of each participant using different 2D visual interfaces on the 2 km on-road track: (a) time required to complete the track, (b) average 
speed of the vehicle during different sessions, (c) counts of oscillations due to overcorrection, (d) counts of out of track incident (best seen in colour)
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on-road track, participants rated the sliding with zooming 
feed lower, for the off-road track the participants rated this 
window almost as high as the sliding-only feed. The likely 
reason has already been described in the previous subsec-
tion- the OCR produces anomalous values when the white 
digits of the speedometer overlaps with the white road mark-
ings, resulting in the transformed feed flickering irregularly 
at times for on-road tracks. As a result, the visibility feed-
back from the participants is lower for the on-road track with 
the sliding with zoom window. However, for off-road tracks, 
the rating is better.

From Table 4 we observe, that for both, the on-road and 
off-road tracks, the participants felt more comfortable with the 
speed they were driving while teleoperating when looking into 
the remote environment through the sliding with zooming feed. 
As the participants’ average driving speed was higher with the 
sliding and zooming feed and also the participants were more 
comfortable using this feed, it can be claimed that the sliding 
and zooming transformation enhanced the teleoperation both 
in terms of the quantitative and the qualitative aspect of the 
driving experience. Moreover, according to the participants’ 
feedback, the impact of latency was lowest for the sliding and 
zooming feed and worst for the raw delayed feed without any 
assistance. Furthermore, for both the on-road and the off-road 
tracks, the participants found the remote environment less chal-
lenging when teleoperating based on the sliding and zooming 
feed. There is no additional element of intermittency that was 
added to the video transformation. However, to replicate a real 
teleoperation video feed we reduced the frame rate and resolu-
tion, which created some intermittency effects equally for all 
the delayed feeds. However, the impact of intermittency was felt 
to be lowest for the sliding-only feed. Although the participants 
rated the intermittency as being higher (low score means higher 
impact) for the sliding with zooming feed than for the sliding-
only feed, the score is still better than that of the raw delayed 
feed without any assistance. The OCR-induced speedometer-
related flickering negatively impacted the participants’ feedback 
on intermittency. According to the qualitative and quantitative 
aspects, especially for the off-road track teleoperation sessions, 
the participants overwhelmingly found the sliding with zoom-
ing feed makes the teleoperation easier than the sliding-only or 
the delayed non-assisted feed.

Besides the above discussions, none of the prior 2D 
predictive feedback based teleoperation enhancement 
approaches mentioned in Table 1 designed a universal simu-
lator with controllable latency that can be used to simulate 
ground vehicle teleoperation (easily transferable to other 
robotic vehicle types) with a varying range of speed, latency, 
frame-rate (intermittency), and environmental difficulty. 
Moreover, the capability of collecting and saving synchro-
nised image, video, and control signal data has made the sim-
ulator suitable for neural network and AI-based teleopera-
tion enhancement research. Some of the previous approaches 

used forms of simple image transformation e.g. [12, 25], 
however, our video transformation algorithm is much more 
complex, it accommodates high-speed maneuvers, adjusts 
based on vehicle speed, incorporates inputs from control 
signals such as steering, acceleration, and deceleration, and 
offers a predictive 2D visual feed. The results indicate that 
our video transformation-based enhancement techniques are 
effective and significantly reduce task completion time, over-
correction-related oscillations, and out-of-track incidents. 
Therefore, we are confident that our approach represents a 
novel and effective teleoperation enhancement system.

6  Conclusion

This research work focuses on enhancing the experience 
and effectiveness of teleoperation, especially for long-dis-
tance, high-latency ground vehicles operating at a reason-
able ground speed both in on-road and off-road terrains, 
using only 2D visual feedback to achieve the entire situ-
ational awareness of the remote environment. This type of 
teleoperation task is potentially dangerous, and collection 
of real-world control and visual data is difficult and not 
without some level of risk. To avoid this, for this research 
a system has been developed that can be used to simulate 
high-speed ground vehicle teleoperation tasks with con-
figurable latency. This model can be used both for simula-
tion and testing, and for data collection that can be used for 
future AI-based teleoperation enhancement research. In this 
research, we have also designed and evaluated two video 
transformation-based assistive visual interfaces (sliding-only 
and sliding with zooming) to enhance the teleoperation. This 
research implemented pixel-based analysis techniques such 
as PSNR, SSIM, and Multi-SSIM to evaluate and fine-tune 
the video transformation-based assisted interfaces. Over-
all performance evaluation of the model and comparative 
analysis of the assistive interfaces has been performed via a 
human operator-based survey. The survey results indicated 
that for a ground vehicle teleoperated at a reasonable ground 
speed with a latency of 900 ms, task completion time was 
increased by up to 200%. A delay of 1200 ms was found to 
impact the teleoperation to the extent that the overcorrec-
tion and oscillations make a full track completion almost 
impossible due to frequent losses of control. The survey 
results also showed that using our sliding-only visual trans-
formation reduced task completion times by up to 25.53% 
and our sliding with zooming transformation-based tech-
niques completion time was reduced by up to 21.82%. In 
terms of overcorrection-related oscillation reduction, the 
sliding with zooming transformation performed better and 
reduced the over-correction and oscillation by a large margin 
of up to 75.58%. Therefore, the sliding window with zoom-
ing transformation has been shown to effectively enhance 
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Fig. 12  Performance of each participant using different 2D visual interfaces on the 1.5 km off-road track: (a) time required to complete the track, (b) aver-
age speed of the vehicle during different sessions, (c) counts of oscillations due to overcorrection, (d) counts of out of track incidents (best seen in colour)
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teleoperation by reducing both task completion time and 
overcorrection. This model is specifically suited for long-
distance, high-latency, high-speed teleoperation tasks. How-
ever, it can be tuned and be adopted to any other teleopera-
tion scenario. Furthermore, our designed simulator can be 
used to train operators to drive in higher latency situations. 
The simplified video transformation methods presented in 
this paper show significant potential to enhance teleopera-
tion in high latency environments.To further validate the use 
of synthetically generated video feeds for latency mitiga-
tion, testing will need to be conducted with larger numbers 
of operators. For this research, the number of participants 
included for the human operator survey was limited due to 
the significant amount of time required for each participant 
to complete all of the required experimental driving sessions 
(around 2 hours for each participant). Many future refine-
ments are possible to further improve the quality of the pre-
diction and the overall standard of visual feedback presented 
to an operator and further research work will be carried out 
to explore these additional enhancements. In addition to 
conventional techniques, AI and deep learning-based future 
frame prediction and synthetic future video feed generation 
is an arena we plan to explore in our future research into 
teleoperation enhancement.

Appendix: Incorporating Control Input Delay 
with Visual Latency

Latency into the simulation platform can be achieved either 
by adding delay to the visual feed or by delaying the control 
input to the simulation platform. The authors of the paper 

are confident that the impacts of either of these delay factors, 
or a combination of them, are perceived as the same from 
the perspective of a teleoperator. This appendix discusses 
the methods through which the control input delay can be 
achieved and the impacts on a teleoperator.

In the main sections of the paper, latency was achieved 
purely by delaying the visual feed. To achieve the visual 
delay, a single computer unit was used to connect the simu-
lating platform with controller devices, visual feed receiver 
camera, and the latency control and teleoperation enhance-
ment Simulink® model. However, to incorporate control 
input delay along with the visual delay, we have used another 
personal computer (PC) unit, referred to as PC-2 in the rest 
of this section. The system diagram of the modified teleop-
eration simulation system has been provided in Fig. 13. In 
this modified system, the controller devices (steering wheel, 
brake and acceleration pedals) are connected to the PC-2. The 
vehicle simulation platform (game engine), the visual feed 
receiver, and teleoperation enhancement model is hosted by 
the previously used PC, named PC-1 hereafter. The two com-
puters can be connected either by local area network (LAN), 
wide area network (WAN), or Internet connection. For our 
case, the computers were connected to the university LAN.

Aside from these new amendments, the rest of the system 
is as described in Section 3.

To add latency between the two computers we have used 
a third party software called Clumsy. Clumsy uses the Win-
dows Packet Divert library to stop, capture, lag, drop, or tam-
per with packets on a living network. Any amount of system 
to system latency is achievable using this tool. An example 
of varied latency between two computers using Clumsy is 
shown in Fig. 14. To connect and receive control input from 
PC-2 to PC-1 we have used another third party software 

Fig. 13  System diagram to incorporate both control and visual latency to the system. Here PC-1 hosts the simulation platform and the enhance-
ment model, and PC-2 connects to the controller devices
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Fig. 14  PC-to-PC packet delay 
(any amount) facilitated by the 
WinDivert based Clumsy tool

Table 5  Comparison of Control delay only and visual feed delay only 
teleoperation

Delay type Delay (ms) Time (s) Speed 
(km/h)

Oscil-
lation 
(Count)

Out of 
Track 
(count)

On-Road
Control 

Only
1032 499 14.42 18 3

Visual 
Only

900 523 14.01 10 4

Off-Road
Control 

Only
1032 342 15.8 16 1

Visual 
Only

900 310.9 17.91 9 3.5

Table 6  Comparison of teleoperation performance affected by com-
bined latency

Parameter Delay (ms) Without 
assistance

Sliding only Slid-
ing and 
zooming

On-Road
Time (s) 1200 499 428 422
Speed (km/h) 1200 14.42 16.8 17.1
Oscillation 1200 10 0 0
Out of Track 1200 2 1 0
Off-Road
Time (s) 1076 385 282 281
Speed (km/h) 1076 14.02 19.14 19.22
Oscillation 1076 11 0 0
Out of Track 1076 1 0 0
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called VirtualHere. Although USB devices usually need to 
be directly connected to a computer to be used, VirtualHere 
facilitates the transmission of USB signals over a LAN, WAN 
or Internet connection to a remote machine, allowing for vir-
tual connection of USB devices over a network.

To investigate the impact of control latency we have 
run teleoperation sessions on both on-road and off-road 
tracks. These are the same tracks used by the survey par-
ticipants. We have compared the outcomes with the non-
assisted delayed visual feed outcomes by the participants 
(From Table 3). The non-assisted delayed feed is affected by 
the visual delay only. The comparison is in Table 5 below. 
For both the on-road and off-road tracks, the average speed 
and time taken to complete one lap is very similar. A small 
amount of difference exists as the control only delay is a lit-
tle higher than that of the visual delay.

Table 5 demonstrates that a certain amount of latency or 
delay in the teleoperation control loop, regardless of its source, 
will have the same impact on the teleoperator. To reinforce 
this statement and to prove the robustness of our teleopera-
tion enhancement technique, we have conducted teleoperation 
runs on on-road and off-road tracks where the total delay in 
the loop consists of both control input delay and visual output 
delay. The outcome of the teleoperation sessions is provided in 
Table 6. For the on-road teleoperation session, the cumulative 
latency was 1200 ms where the control input latency was 560 
ms and the visual feed latency was 640 ms. Without any video 
transformation based assistance it took 499 s to complete the 
2 km track with an average speed of 14.42 km/h. Using our 
sliding window enhancement, the completion time reduced to 
428 s with an average speed of 16.8 km/h. Using the sliding and 
zooming window both the time and speed improved further. 
Incidents of oscillation and out of track events also improved 
substantially using our assisted windows.

For the off-road track, the figures correspond with the previ-
ous numbers. In this case, the total latency is 1076 ms where 
560 ms latency is induced from the controller to PC-2 and 516 
ms latency is induced by our Simulink® visual transformation 
model. Using the sliding window the completion time reduced 
from 385 s to 282 s. For sliding and zooming the time is further 
reduced. The oscillation and out of track events reduced to zero 
for both the sliding only and sliding with zooming windows. 
Table 6 reflects the same outcome to that obtained via the partic-
ipants’ survey. It reconfirms the findings of our research that our 
video transformation-based assisted windows enhance an opera-
tor’s performance for high latency ground-vehicle teleoperation. 
Based on these results, it can confidently be stated that whether 
the delay is present only in the visual feed, only in the control 
input, or a combination of the two (as would be the case in a 
real-world scenario) the impact is effectively the same from the 
operator perspective. This validates the platform that has been 
setup to evaluate the teleoperation enhancement techniques.
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