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ABSTRACT

The brains of many organisms are capable of a wide variety of complex computations. This capability

must be undergirded by a more general purpose computational capacity. The exact nature of this

capacity, how it is distributed across the brains of organisms and how it arises throughout the course

of development is an open topic of scientific investigation.

Individual neurons are widely considered to be the fundamental computational units of brains.

Moreover, the finest scale at which large-scale recordings of brain activity can be performed is the

spiking activity of neurons and our ability to perform these recordings over large numbers of neurons

and with fine spatial resolution is increasing rapidly. This makes the spiking activity of individual

neurons a highly attractive data modality on which to study neural computation.

The framework of information dynamics has proven to be a successful approach towards interro-

gating the capacity for general purpose computation. It does this by revealing the atomic information

processing operations of information storage, transfer and modification. Unfortunately, the study of

information flows and other information processing operations from the spiking activity of neurons

has been severely hindered by the lack of effective tools for estimating these quantities on this data

modality. This thesis remedies this situation by presenting an estimator for information flows, as

measured by Transfer Entropy (TE), that operates in continuous time on event-based data such as

spike trains. Unlike the previous approach to the estimation of this quantity, which discretised the

process into time bins, this estimator operates on the raw inter-spike intervals. It is demonstrated to

be far superior to the previous discrete-time approach in terms of consistency, rate of convergence and

bias. Most importantly, unlike the discrete-time approach, which requires a hard tradeoff between

capturing fine temporal precision or history effects occurring over reasonable time intervals, this

estimator can capture history effects occurring over relatively large intervals without any loss of

temporal precision.

This estimator is applied to developing dissociated cultures of cortical rat neurons, therefore

providing the first high-fidelity study of information flows on spiking data. It is found that the

spatial structure of the flows locks in to a significant extent. at the point of their emergence and that

certain nodes occupy specialised computational roles as either transmitters, receivers or mediators of

information flow. Moreover, these roles are also found to lock in early.

In order to fully understand the structure of neural information flows, however, we are required

to go beyond pairwise interactions, and indeed multivariate information flows have become an

important tool in the inference of effective networks from neuroscience data. These are directed

networks where each node is connected to a minimal set of sources which maximally reduce the

uncertainty in its present state. However, the application of multivariate information flows to the

inference of effective networks from spiking data has been hampered by the above-mentioned issues
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with preexisting estimation techniques. Here, a greedy algorithm which iteratively builds a set of

parents for each target node using multivariate transfer entropies, and which has already been well

validated in the context of traditional discretely sampled time series, is adapted to use in conjunction

with the newly-developed estimator for event-based data. The combination of the greedy algorithm

and continuous-time estimator is then validated on simulated examples for which the ground truth is

known.

The new capabilities in the estimation of information flows and the inference of effective networks

on event-based data presented in this work represent a very substantial step forward in our ability to

perform these analyses on the ever growing set of high resolution, large scale recordings of interacting

neurons. As such, this work promises to enable substantial quantitative insights in the future regarding

how neurons interact, how they process information, and how this changes under different conditions

such as disease.
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CHAPTER 1

INTRODUCTION

1.1 Information Flow in Spiking Neural Networks

It is evident that brains possess the ability to perform advanced computations in a highly distributed

manner [1], [2]. This ability for computation requires an intrinsic information processing capacity (see

Section 2.2 for a formal definition of this capacity and related terms). However, there remain numerous

unanswered questions pertaining to the exact nature of this capacity. How is it distributed over neural

systems? Do different brain regions specialise in different information processing operations? At what

stage in development does it emerge? Are there specific patterns or relationships in its emergence?

It is worth asking at what scale this computational ability should be investigated. The computations

performed by brains are carried out by their neurons acting in a distributed, coordinated fashion [3],

[4]. These cells can communicate with each other through a number of mechanisms, including through

chemical signalling. However, it is widely acknowledged that the dominant form of communication

between neurons is through changes in the electrical potential on the membrane of the cells (that is,

changes in the difference in the electrical potential between the interior and exterior of the cell) [3],

[5]. Although recordings of neural systems are performed at a variety of spatial scales, the most fine-

grained recordings that are capable of recording from multiple neurons are measuring this membrane

potential (or some correlate of it) [6], [7]. As this data allows us to interrogate neural systems at

the level of the individual computational units, it is of great interest to the neuroscience community.

The membrane potentials of neurons are characterised by highly-pronounced near-instantaneous

spikes. Each spike is commonly referred to as an action potential [3]. It is generally accepted that the

primary method of electrical communication between neurons is through this spiking activity, where

the change in potential in the pre-synaptic neuron induces a change in potential in the post-synaptic

neuron after a short synaptic delay[3], [5].

As such, the initial processing of membrane potential recordings usually involves the extraction

of the times of these spikes [8]. This pre-processed data is usually referred to as a spike train. The

spike times captured in these spike trains are considered to represent the sensory information the

brain receives [9], [10], to encode the communication from one brain region to another [11], [12] as

well as capture the spontaneous dynamics of networks [13]. As spike trains contain this information

and do so at the finest spatial scale readily available, they represent an incredibly important data

modality within neuroscience, particularly for the inference of information flows in order to reveal

computations at this fine scale.
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Information dynamics [14], [15] is a framework grounded in Shannon’s information theory [16]–

[18], that has proven remarkably successful at revealing how, when and where information is intrin-

sically processed in the interactions of activity in complex systems. It does this by first considering

the uncertainty of the current state of a given system component. This uncertainty can be rigorously

defined and measured using the Shannon entropy [16]–[18]. We can then study the reductions in this

uncertainty that are provided by knowing the histories of various system components. Specifically,

the information storage of a given component is measured by the reduction in uncertainty provided

by knowledge of its own history [15]. Similarly, the information transfer from a source to a target,

as defined by the Transfer Entropy (TE) [19], is measured as the reduction in the uncertainty of the

target’s present state provided by the knowledge of the source’s history, conditioned on the target’s

own history. See Section 2.2 for formal definitions of these quantities. Information modification

can be measured by decomposing the information transfer into synergistic, unique and redundant

components [20], [21]. However, as its definition and measurement is still a topic of ongoing research,

it is not a focus of this thesis.

The information dynamics framework has already been successfully used to reveal the computa-

tional properties of a variety of systems. A number of studies [22]–[24] have focused on the changes

in information dynamics as networks move from ordered to chaotic dynamics through a critical

transition. This work concluded that there are computational advantages to the network dynamics

being situated at the critical transition by increasing the system’s capacity for information storage

and transfer. More specifically, they found that TE and active information storage were either both

maximised at or near this critical point or that an optimal tradeoff between these two quantities was

found in this region.

Other work [25], [26] has demonstrated that information dynamics measures can be used as a

useful early warning of changes in the regime of network dynamics. These measures were shown to

be a good indicator of cascading failures in energy networks [25]. In oscillator networks [26], it was

found that the TE was able to indicate synchrony substantially earlier than domain-specific measures,

such as the order parameter. They were also able to elucidate some of the computational mechanisms

[23] involved in the approach of the network towards synchronization.

Given the success of information dynamics at revealing these computational structures [27], in

such a variety of systems, it is natural to query whether it could be similarly exploited to uncover

the computational properties of biological neural systems, particularly from spike-train data. Indeed,

information dynamics, in particular the information flow as measured by TE, has already been widely

applied to neuroscientific data. Among these applications include the interrogation of the complex,

dynamic, structure of information transfer revealed by calcium imaging [28], fMRI [29], [30], MEG

[31] and EEG [32]–[35], the role of reduced information storage in autism spectrum disorders [36],

brain-heart information flows [37], the relationship between changes in storage and transfer in gain-

mediated phase transitions [38], changes in information modification in developing neural networks

[39], and the role of information storage in representing visual stimuli [40].

One particular application, for which there has been a surge of recent interest, is the inference

of connectivity from neuroscience data [41]–[43] from sources such as EEG [35], fMRI [30], calcium

imaging [28] and electrode arrays [44]. These networks usually fall into one of two categories: functional
or effective. In functional networks [45], [46], an edge is placed between two given system components
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based on some pairwise measure of their statistical dependence. In effective networks [47], [48], by

contrast, the goal is to find a minimal set of parents that can explain the activity of a target component.

Information flow, as measured by TE, has become an important measure for inferring these networks

[32], [49], [50]. Moreover, the use of multivariate TE, when paired with a greedy inference algorithm,

has been thoroughly validated for use with standard estimators applied to regularly-sampled time

series [49]. There are numerous advantages to this approach, including that it can capture nonlinear

effects, unlike the commonly used correlation measures such as the Pearson correlation. Moreover,

given its grounding within the information dynamics framework, networks inferred using TE are

capable of illuminating the computational signature [38] of the neural system. This grounding in

information theory also provides a natural interpretation of the resulting networks. Specifically, for

every incoming edge for a given target node, the source nodes of these incoming edges represent the

set of nodes whose states’ maximally reduce the uncertainty of the given target node’s state updates.

1.2 Challenges and Objectives

Given the importance of spike train data and the demonstrated utility of both the information dynamics

framework and network inference, as described in Section 1.1, the application of these techniques to

this data type holds great promise. Indeed, there have been a number of previous studies which have

used TE to interrogate spike trains [39], [44], [51]–[58]. These studies primarily focused on inferring

directed functional networks, finding that they exhibit a highly non-random structure [55], including

rich-club topologies [54]. Other work [39], [58] has focussed on how the components of information

can be decomposed into unique, redundant and synergystic components, as well as how some flows

can be localised on certain time scales [44]. See Section 2.7.2 for more detail on this previous work.

However, despite the valuable insights provided by this existing literature, the application of TE to

this data modality have been hindered by the available estimation techniques. Previous applications

of TE to spike train data have made use of a discrete-time estimator. This estimator operates by

dividing the process into bins of width ∆t. Each bin is then given a binary value corresponding to

whether or not there was any spiking activity in that bin (it could also be assigned a natural number

corresponding to the number of spikes that occurred in the bin). A simple plugin estimator (see

Section 2.3.1) is then applied to this discretised data. This estimation strategy does, however, suffer

from a number of drawbacks which have impeded such work:

1. As time discretisation is a lossy transformation, the resulting estimator is not consistent. That is,

in general it does not converge to the true value of the TE in the limit of infinite data (see Section

3.2.2 ).

2. The estimated TE values exhibit a strong dependence on the size of bin chosen [44].

3. Any estimator is going to suffer from the curse of dimensionality. This greatly limits the

number of bins that can be used in the history embeddings which aim to capture the statistical

relationship between process histories and current state. This implies that the only way that the

discrete-time estimator can capture history effects occurring over larger time scales is to increase

the bin size. However, this will decrease the estimator’s ability to capture effects occurring over

fine time scales [44].
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4. Relating to point 3, as effective use of the discrete-time estimator requires the use of many

bins in the history embeddings, it has trouble handling multiple conditional processes as

the dimensionality rises too rapidly as additional processes are added. This limits its use in

the context of the inference of effective networks, as this requires considering information

contributions collectively or conditionally from multiple processes [49].

5. The discrete-time estimator converges very slowly with the amount of available data (see Section

3.2.2 ).

6. The discrete-time estimator is usually paired with a time-shift method for surrogate generation

in order to test for statistically significant non-zero TE values. Examples can be found where this

method yields incredibly high false-positive rates (see Section 3.2.3 ).

The first goal of this thesis is to overcome these problems that have been present in previous

studies. A promising approach for doing so lies in the recently-developed continuous-time framework

for information dynamics [59], [60]. This framework might facilitate the development of an estimator

which will allow us to estimate TE, without sacrificing time precision, whilst still being capable

of capturing history effects that occur over long periods of time. The core desired features of this

estimator are:

1. No loss of time precision.

2. Consistency — it must converge to the true value of the TE in the limit of infinite data.

3. The ability to represent reasonably long histories efficiently, that is, with few dimensions.

4. An associated surrogate generation scheme which will allow for accurate testing for non-zero

TE.

This thesis also sets out to apply such an estimator to spike-train recordings from biological data

and thus reveal neural information flows at high fidelity for the first time (“high-fidelity” describes

how we will be performing estimation with fine temporal precision and capturing long-range history

effects). Moreover, all previous applications of TE to neuroscience data have studied recordings from

mature animals or cultures. This thesis sets out to fill this gap in the research literature by studying

the changes in the information dynamics of a developing neural cell culture.

Developing an estimator for TE which is able to represent history embeddings efficiently will

make it possible to use TE for the inference of effective networks from spiking data, using the greedy

algorithm already validated on regularly-sampled time series, as discussed above [49]. We therefore

intend to validate this capability with the new estimator that we develop and therefore open the door

to the inference of effective connectivity using information flows for this data modality.

1.3 Contributions of this Thesis

This thesis develops a novel estimator for TE on event-based data (such as spike trains) that operates

in continuous time (without time binning), then applies this estimator to data from neural recordings

in order to understand how patterns of information flow emerge during neural development, and
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validates its use in the inference of effective networks. As such, the core contribution of this thesis is

the first study of information flows on spike trains with high fidelity. The overall contribution is split

across the three articles that I contributed during my candidature.

The first article, presented in Chapter 3, Estimating transfer entropy in continuous time between
neural spike trains or other event-based data [61], presents a novel estimator for TE on event-based

data which operates in continuous time. This estimator is demonstrated to able to circumvent the

challenges presented by the discrete-time estimator that were discussed in Section 1.2 and further

satisfies the desired properties listed in there. A vital property of this new estimator is that, unlike

the discrete-time estimator, it is provably consistent. Moreover, as it operates in continuous time,

it does not suffer from any loss of time precision and its results are not dependent on the choice

of a bin width. Fundamental to its operation is that it makes use of inter-spike intervals (the time

between successive spikes) to represent history embeddings. This allows it to represent reasonably

long histories, with few dimensions and no loss of time precision, thus opening the door to its use in

the inference of effective networks. Validation experiments were performed which demonstrated that

it has substantially lower bias than the discrete-time approach and converged orders of magnitude

faster. This paper also presents an adaptation of a recently-proposed local permutation test [62] for

conditional mutual information for use in conjunction with the presented estimator. This method of

generating surrogates was validated to generate surrogates which conformed to the null hypothesis

of zero TE. Further, it was demonstrated on simulated data that, in some cases, it was capable of

achieving far lower false-positive rates for conditionally independent processes than the traditional

approach of time-shifted surrogates.

The second article, presented in Chapter 4, Early lock-in of structured and specialised information
flows during neural development [63], applies this estimator to recordings from developing cultures of

dissociated cortical rat neurons [64]. As such, it is the first high-fidelity study of information flows in

spike-train data. Moreover, as this paper estimates the information flow at various different points in

the development of the cultures, it is the first work to track changes in information flows longitudinally

during neural development. It was found in this work that the information flow structure exhibits a

marked early lock-in phenomenon, whereby the information flow of the mature network is highly

correlated with the flows early in development. It was also revealed that nodes that burst in the

middle of the burst propagation occupy a unique computational role as the mediators of information

flow, confirming prior speculation about the role of these nodes.

A unique benefit of the high-fidelity estimator presented in the first article is its highly-efficient

representation of history embeddings. This allows for successful estimation, even in the case of

large conditioning sets, therefore opening up the possibility of performing the inference of effective

networks. The third article, presented in Chapter 5, Inferring networks of spiking neurons using a
continuous-time estimator of TE, validates the use of the continuous-time estimator when used in

conjunction with a (slightly modified) existing approach to effective network inference using TE [49],

[65]. It is the first article to demonstrate the use of TE in the inference of effective networks from

spike trains. This article validates the presented approach on simulated networks of spiking neurons

for which the ground truth structural connectivity is known. The continuous-time TE approach is

demonstrated to have excellent precision and recall for networks in a wide variety of dynamical

regimes. It achieves this performance on relatively large networks consisting of 50 nodes and 5 sources
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per target.

This new-found ability to estimate TE on spike trains with high-fidelity opens up exciting research

opportunities. As discussed in Chapter 6, this partially involves the application of the estimator to

recordings of spiking neurons collected using more modern techniques. Such techniques can allow for

the collection of continuous long-term recordings, which allows for spike sorting [66]. Alternative

techniques allow for recordings to be performed at incredibly high spatial resolution [67]. Applying

the new estimator to such large scale, high resolution recordings will deliver a much higher fidelity

understanding of the nature of neural information flows, and how they relate to higher level function,

disease, and neural computation.
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CHAPTER 2

BACKGROUND

The first three sections of this chapter provide an overview of some fundamental background knowl-

edge that is necessary for what follows in the remainder of the thesis. As this thesis requires a working

knowledge of information theory, Section 2.1 provides an introduction to the necessary quantities in

this field. Section 2.2 then builds on these fundamentals by introducing the core quantities within

the information dynamics framework that will be used in this thesis, including TE as a measure of

information flow. As a key focus of this thesis is the derivation and application of a novel information-

theoretic estimator, Section 2.3 provides a thorough background on the k-nearest-neighbours class of

information-theoretic estimators before Section 2.4 explains the common methods of surrogate genera-

tion that are paired with these estimators in order to test for values that are statistically significant

against a null hypothesis of zero directed relationship.

The remaining sections aim to provide more general background knowledge in order to assist the

reader in situating this work within the wider literature. As Chapter 4 infers functional networks and

Chapter 5 infers effective networks from spike-train data, Section 2.5 provides some context on the

difference between these two types of network inference in the neuroscientific context. Section 2.6

then describes how information theory more generally has been applied to spike train data, before

Section 2.7.1 and Section 2.7.2 discuss aspects of the application of TE to this data type. Finally,

Section 2.7.3 briefly describes developments deriving a continuous-time framework for information

dynamics, which will be used in the derivation of the TE estimator for spiking data presented in this

thesis.

2.1 Information Theory

2.1.1 Fundamental Quantities

This section introduces the core information-theoretic quantities that will be relevant to this thesis.

Table 2.1 contains a glossary of notation for quick reference.

2.1.1.1 Entropy

The fundamental quantity of information theory, as developed by Claude Shannon [5], is the entropy

[1], [2]. The entropy of a discrete random variable X with n outcomes and probability distribution p is
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Symbol Description Reference

Hp(X) The entropy of the random variable X, dis-
tributed according to p(X)

[1], [2]

Hp(X |Y) The conditional entropy of the random variable
X, conditioned on Y, distributed according to
p(X, Y)

[1], [2]

Hp,q(X) The cross entropy between the distributions
p(X) and q(X)

[1], [2]

I(X; Y) The mutual information between the random
variables X and Y, distributed according to
p(X, Y)

[1], [2]

I(X; Y | Z) The conditional mutual information between
the random variables X and Y, given Z, dis-
tributed according to p(X, Y, Z)

[1], [2]

DKL(p || q) The Kullback–Leibler (KL) divergence between
the distributions p(X) and q(X)

[1], [2]

ṠX The Active Information Storage (AIS) rate of the
random process X

[3]

ṪY→X The Transfer Entropy (TE) rate from the source
process Y to the target process X.

[4]

ṪY→X | Z The conditional Transfer Entropy rate from the
source process Y to the target process X, condi-
tioned on the third process Z.

[4]

Table 2.1: List of notation used in this section.

defined as:

Hp(X) ≡ −
n

∑
i=1

p(xi) log p(xi). (2.1)

Entropy is a measure of the uncertainty in a variable. If we consider flipping a coin, for instance, if the

coin is fully biased (guaranteed to give either heads or tails) then the entropy will be zero. There is no

uncertainty. Conversely, the entropy will be maximised if the coin is completely unbiased (there is a

0.5 chance of heads or tails). This is the case where we are most uncertain about the outcome of the

coin flip.

Entropy is usually measured in either bits or nats. The former corresponds to using a base two

logarithm in (2.1) and the latter corresponds to using the natural logarithm. In our coin flipping

example, the maximum entropy, occurring when the coin is completely unbiased, is 1 bit.

2.1.1.2 Conditional Entropy

We can also define a conditional entropy, which measures the uncertainty in a variable X given that

we know the outcome of another variable Y. If X has n outcomes and Y has m then the conditional
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entropy is:

Hp(X |Y) ≡ −
n,m

∑
i=1,j=1

p(xi, yj) log p(xi | yj). (2.2)

2.1.1.3 Mutual Information

The conditional entropy allows us to then define the central quantity of information theory, the mutual

information I, as the reduction in uncertainty in a variable X that comes from knowing a second

variable Y. It is, therefore, the difference between the entropy of X and the conditional entropy of X
given Y:

I(X; Y) ≡ Hp(X)− Hp(X |Y)

=
n,m

∑
i=1,j=1

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
. (2.3)

Mutual information is a measure of dependence between X and Y. It is zero if and only if X and

Y are independent. Unlike other correlation measures, such as the usual Pearson correlation [6], it

is capable of capturing any nonlinear relationship between X and Y. It is also symmetric, that is

I(X; Y) = I(Y; X).

2.1.1.4 Conditional Mutual Information

We can also consider the conditional mutual information, which is the reduction in uncertainty in a

variable X that comes from knowing a second variable Y, given that we know the outcome of a third

variable Z. This can be defined as the difference in the information provided by the joint variable

(Y, Z) and the variable Z on its own:

I(X; Y | Z) ≡I(X; Y, Z)− I(X; Z)

=
n,m,l

∑
i=1,j=1,k=1

p(xi, yj, zj) log
p(xi, yj | zk)

p(xi | zk)p(yj | zk)
. (2.4)

2.1.1.5 Cross Entropy

This thesis makes use of the Kullback-Leibler divergence [1], [2] in a number of places, and so we will

introduce it in the next subsection. Doing so will, however, require us to first define the cross entropy.

Suppose that we now have one variable X, with n outcomes, and two probability distributions p and

q defined on X. The cross entropy of q with respect to p is then:

Hp,q(X) ≡ −
n

∑
i=1

p(xi) log q(xi). (2.5)

Note that this measure is not symmetric: Hp,q(X) is not usually equal to Hq,p(X). One possible way of

interpreting cross entropy is as the average uncertainty we perceive about X, if we believe that it is

distributed as q, whereas it is actually distributed as p.
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2.1.1.6 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence [1], [2] is a measure of how different two probability distributions

are from one another. If we have a variable X, again with n outcomes, and two probability distributions

p and q defined on X. The KL divergence is defined as:

DKL(p || q) ≡ Hp,q(X)− Hp(X)

=
n

∑
i=1

p(xi) log
p(xi)

q(xi)
. (2.6)

This measure is not symmetric and so is not a distance metric. Relating this back to the above

interpretation of cross entropy, we can think of the KL divergence as how much our uncertainty about

X is increased if we believe that it is distributed as q, as opposed to the correct distribution p. It is

worth noting that the mutual information defined in Section 2.1.1.3 is the KL divergence between the

joint distribution p(X, Y) and the product of the marginal distributions p(X)p(Y).

2.1.2 Defining Quantities for Continuous Variables

The previous section discussed and defined the various information-theoretic quantities in terms

of discrete variables. This was done for ease of exposition. However, in many cases, including in

much of this thesis, we are interested in variables that can take on continuous values. It is necessary,

therefore, to provide and briefly discuss the definition of the relevant information-theoretic quantities

on continuous-valued variables. We will begin with the definitions of the differential entropy and cross

entropy, before using these quantities to define the continuous KL-divergence and mutual information.

2.1.2.1 Differential Entropy and Cross Entropy

For a continuous random variable X, with probability density function p(x), the differential entropy

[1], [2] is defined as:

Hp(X) ≡− Ep [log p(x)]

=−
∫ ∞

−∞
p(x) log p(x)dx. (2.7)

Note that, unlike the entropy, the differential entropy can be negative. It is also possible to find density

functions p for which the differential entropy is not finite.

If we have two continuous random variables X and Y, with a joint probability density function

p(x, y) we can then also easily define the differential conditional entropy:

Hp(X |Y) ≡− Ep [log p(x | y)]

=−
∫ ∞

−∞
p(x, y) log p(x | y)dx. (2.8)
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If we have two density functions p and q, then the cross entropy of q with respect to p is defined as:

Hp,q(X) ≡− Ep [log q(x)]

=−
∫ ∞

−∞
p(x) log q(x)dx. (2.9)

2.1.2.2 Other Quantities

Once we have defined the differential entropy and cross entropy, we can define other quantities in

terms of them. This is similar to how we defined the various information theoretic quantities for

discrete variables in terms of the discrete entropy and cross entropy. Along these lines, the mutual

information is then:

Ip(X; Y) ≡ Hp(X)− Hp(X |Y)

=Ep

[
log

p(x, y)
p(x)p(y)

]

=
∫ ∞

−∞
p(x, y) log

p(x, y)
p(x)p(y)

dxdy. (2.10)

(2.11)

Similarly, if we have a continuous-valued random variable X and two probability distributions p
and q, the KL divergence can be defined as:

DKL(p || q) ≡Hp,q(X)− Hp(X)

=Ep

[
log

p(x)
q(x)

]

=
∫ ∞

−∞
p(x) log

p(x)
q(x)

dx. (2.12)

(2.13)

Note that, although the differential entropy and cross entropy can be negative, the KL divergence

defined on continuous variables is guaranteed to be greater than or equal to zero. As the mutual

information is a KL divergence, it has this same property. This implies that it has a consistent

interpretation for continuous variables, as the information held commonly between two variables. This

is as opposed to the differential entropies themselves, which can be negative. As such, differentiable

entropies should only be viewed as relative quantities which can be compared with other differential

entropies.

2.2 Information Dynamics

Now that we have introduced the various important information-theoretic quantities, we can discuss

how they are applied to time-series data within the framework of information dynamics. A common

intuition in the study of complex systems is that such systems perform computation or information
processing [7]. In order for economies to react to new demands [8] or organisms to respond to their
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environment [9], some sort of computation is required. Moreover, the literature in complex systems is

replete with references to computational operations such as the storage or transmission of information

[10]. Information dynamics [11]–[13] is an emerging set of techniques for quantifying this intuition. It

provides rigorous measures for the computational primitives which a complex system performing

computation is composed of. These measures can then be applied to such systems in order to

reveal their computational dynamics. They have already been applied to a diverse range of systems,

including: brain imaging data [14]–[16], schooling behaviour in fish [17], random boolean networks

[18] and cellular automata [11].

Information dynamics models the state of a system component X as being computed from its past

as well as the past of covarying components. It characterises the computation performed by X by

its predictive capacity, ĊX, which is the reduction in uncertainty in the state of X gained by knowing

its history as well as the history of its covariates. Without loss of generality, we can assume a single

covarying component Y and write:

ĊX ≡ 1
∆t I (Xt ; X<t, Y<t) (2.14)

Here, I refers to the mutual information (see Section 2.1.1.3). Y<t and X<t are history embedding

vectors of the source and target process. Usually, they will consist of the k and l preceding values of the

time series, that is x<t = [xt−k, xt−k+1, . . . , xt−1] and y<t = [yt−l , yt−l+1, . . . , yt−1]. ∆t is the sampling

interval of the time series. We normalise by it so that we have a quantity that is independent of the

choice of sampling rate [19].

The reduction in uncertainty about the current state of X can be decomposed into the uncertainty

reduction stemming solely from the knowledge of the history of X and the uncertainty reduction from

the history of Y, given that the history of X is known [20]. That is:

ĊX = 1
∆t I (Xt ; X<t) +

1
∆t I (Xt ; Y<t|X<t) (2.15)

The two terms on the right of (2.15) are given the names active information storage (ṠX) and transfer
entropy (ṪY→X), respectively.

Active information storage [3], is a measure of the information stored by an individual system

component. It is defined as the mutual information between the current state of a component and its

history.

ṠX ≡ 1
∆t I (Xt ; X<t) (2.16)

=
1

∆t

N

∑
t=1

p(xt, x<t) log2

(
p(xt|x<t)

p(xt)

)
(2.17)

On the other hand, transfer entropy [4] is a measure of information flow between system compo-

nents. It is defined as the conditional mutual information between the history of the source and the

current state of the target, where the conditioning is done on the history of the target.

ṪY→X ≡ 1
∆t I (Xt ; Y<t|X<t) (2.18)

=
1

∆t

N

∑
t=1

p(xt, y<t, x<t) log2

(
p(xt|y<t, x<t)

p(xt|x<t)

)
(2.19)
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It is possible to use the chain rule for mutual information to decompose the TE into terms from

each of the individual source embedding components. If y<t = {yt−l , yt−l+1, . . . , yt−1}, then we have:

ṪY→X = 1
∆t I (Xt ; Yt−1|X<t) +

1
∆t I (Xt ; Yt−2|X<t, Yt−1) + . . . + 1

∆t I (Xt ; Yt−l |X<t, Yt−l+1:t−1) (2.20)

The first term contains the information flow from the most recent source embedding element, the

second contains the flow from the second element, conditioned on the first and so forth. Each term

can, therefore, be considered a conditional TE. We can define the conditional TE more generally in

terms of other processes Z. This gives:

ṪY→X | Z ≡ 1
∆t I (Xt ; Y<t|X<t, Z<t) (2.21)

=
1

∆t

N

∑
t=1

p(xt, y<t, x<t, z<t) log2

(
p(xt|y<t, x<t, z<t)

p(xt|x<t, z<t)

)
(2.22)

2.3 Estimation of Information-Theoretic Quantities

The information-theoretic quantities that have been discussed so far have all been defined in terms of

probability distributions. However, if we want to use these quantities to study real-world systems

using empirical data, we will not generally have access to the underlying probability distributions.

Instead, we have access to samples drawn from these distributions. We then need to estimate the

quantities from the samples. This section will discuss techniques for doing this. We will begin with

the simpler case of discrete data in Section 2.3.1, before introducing the problem of performing this

same task on continuous data in Section 2.3.2. Sections 2.3.3 through 2.3.7 will then introduce and

discuss the very popular class of k-nearest-neighbour estimators of information theoretic quantities

for continuous data.

The various information-theoretic quantities introduced in Section 2.1.1 are all functionals T(p) of

probability distribution p (or functionals of two probability distributions). The aim of estimation is to

construct estimators T̂(X) which estimate the true underlying value of T(p) from the samples drawn

from p, denoted by X.

The nature of estimation means that our estimates T̂(X) may have a bias with respect to the true

value T(p), and a variance, as a function of the size of the data being provided to the estimator. The

bias is a measure of the degree to which the estimator systematically deviates from the true value of

the quantity being estimated, for finite data size. It is expressed as

bias(T̂(X)) = E
[

T̂(X)
]
− T(p). (2.23)

The variance of an estimator is a measure of the degree to which it provides different estimates for

distinct, finite, samples from the same process. It is expressed as

variance(T̂(X)) = E
[

T̂(X)2
]
− E

[
T̂(X)

]2
. (2.24)

Another important property is consistency, which refers to whether, in the limit of infinite data points,

the estimator converges to the true value. That is, if n is the number of data points, then an estimator
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is consistent if and only if

lim
n→∞

T̂(X) = T(p). (2.25)

Bias, variance and consistency are important metrics to be considered when evaluating the efficacy

of an estimator and we will make frequent reference to them in this thesis.

2.3.1 Discrete Data

Estimation of information-theoretic quantities on discrete data can be done using the straightforward

plugin estimator [4], [21]. A more general definition of this estimator, from which each specific

estimator can easily be derived, is that if our quantity is a functional T(p) of the probability distribution

p, then the plugin estimator is:

T̂plugin = T
(

p̂freq(xi)
)

. (2.26)

p̂freq is the frequency-based estimator of the probability mass function. That is, p̂freq(xi) =
ni
N , where ni

is the number of occurrences of xi and N is the number of samples. In cases where we have a quantity

defined in terms of two distributions p and q (such as cross entropy and KL-divergence), (2.26) can be

extended in a straightforward manner:

T̂plugin = T
(

p̂freq(xi), q̂freq(xi)
)

. (2.27)

We can then substitute in the specific functionals from Section 2.1.1 in order to get our required

estimator of each quantity. As an example, the plugin estimator for mutual information (Section 2.1.1.3)

is:

Îplugin(X ; Y) =
n

∑
i=1

p̂freq(xi, yi) log
p̂freq(xi, yi)

p̂freq(xi) p̂freq(yi)
. (2.28)

2.3.2 Continuous Data

The simplest way to estimate information-theoretic quantities for continuous data is to discretise the

data [4]. That is, we define ‘bins’ over the domain of the variable and treat all values occurring in a

given bin as having the same single discrete value. We can then use the plugin estimators discussed in

the previous section. This approach does, however, have a number of problems, most significantly

that the resulting estimators are not usually consistent — they are not guaranteed to converge to the

true underlying value in the limit of infinite data. In fact, they often converge to a value very far from

the true value. See Section 3.2.2 for examples of this behaviour and also refer to [4], [19], [22].

There are a number of different approaches to performing estimation without discretisation. There

has, for instance, been much recent progress on parametric information-theoretic estimators [23].

However, such estimators will always inject modelling assumptions into the estimation process. Even

in the case that large, general, parametric models are used — as in [24] — there are no known methods

of determining whether such a model is capturing all dependencies present within the data.

In comparison, nonparametric estimators make less explicit model assumptions regarding the

probability distributions. Early approaches included the use of kernels for the estimation of the

probability densities [25], however this has the disadvantage of operating at a fixed kernel ‘resolution’.

An improvement was achieved by the successful, widely applied, class of nonparametric estimators
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making use of k-nearest-neighbour statistics [26]–[29], which dynamically adjust their resolution

given the local density of points. Crucially, there are consistency proofs [28], [30] for kNN estimators,

meaning that these methods are known to converge to the true values in the limit of infinite data

size. These estimators operate by decomposing the information quantity of interest into a sum of

differential entropy terms H∗. Each entropy term is subsequently implicitly or explicitly estimated by

estimating the probability densities p(xi) at all the points in the sample by finding the distances to the

kth nearest-neighbours of the points xi. The average of the logarithms of these densities is found and is

adjusted by bias correction terms. In some instances, most notably the Kraskov-Stögbauer-Grassberger

(KSG) estimator for mutual information [27], many of the terms in each entropy estimate cancel and

so each entropy is only implicitly estimated. There are consistency proofs for many of the estimators

within this class [26], [28], [31], and they have been shown to have favourable bias properties [30].

These bias and consistency properties are highly desirable. It is for these reasons that this class

of estimator has become ubiquitous within the application of information theory to empirical data

[26]–[29]. Moreover, this has resulted in a wide literature discussing features of these estimators as

well as potential improvements [28], [30]. It was, therefore, decided that the novel estimator for TE

on event-based data, operating on the continuous-valued ISIs (or inter-event times), presented in

Chapter 3 would be of this class. As such, the remainder of this section will focus solely on k-nearest-

neighbour estimators. We will begin by presenting the use of this technique for the estimation of

differential entropy, and then build up the other estimators as combinations of this core estimator.

2.3.3 The Kozachenko-Leonenko Estimator of Differential Entropy

Following [26], assume that we want to estimate the differential entropy of the distribution µ(x) for

x ∈ Rd. µ is unknown, but we have a set SX of NX points drawn from µ. If we want to use these points

to estimate the differential entropy H we need to construct estimates of the form

Ĥ(SX) = − 1
NX

NX

∑
i=1

̂ln µ(xi) (2.29)

where ̂ln µ(xi) is an estimate of the logarithm of the true density. We do this by finding the k nearest-

neighbours of xi under some norm L. We can then use the distance to this kth neighbour in order to

estimate the probability density at xi as well as its logarithm. Let ϵ (k, xi, SX) be the distance to the

kth nearest-neighbour of xi in the set SX under the norm L. Further, let pµ
i be the probability mass of

the ϵ-ball surrounding xi. We make the assumption that µ(xi) is constant within the ϵ-ball to arrive at

pµ
i = k

NX−1 = cd,Lϵ (k, xi, SX)
d µ(xi) where cd,L is the volume of the d-dimensional unit ball under the

norm L. This relationship can be used to construct a simple estimator of the differential entropy:

Ĥ(SX) = − 1
NX

NX

∑
i=1

ln
k

(NX − 1) cd,Lϵ (k, xi, SX)
d . (2.30)

We then add a bias-correction term ln k − ψ(k). ψ(x) = Γ−1(x)dΓ(x)/dx is the digamma function and

Γ(x) the gamma function. This yields ĤKL, the Kozachenko-Leonenko 1 [26] estimator of differential

1One should be vigilant of the potential confusion that can stem from Kozachenko-Leonenko and Kullback-Leibler
sharing the same abbreviation.
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entropy:

ĤKL(SX) =− ψ(k) + ln(NX − 1) + ln cd,L +
d

NX

NX

∑
i=1

ln ϵ (k, xi, SX) . (2.31)

This estimator has been shown to be consistent [26], [32].

2.3.4 The KSG Estimator of Differential Mutual Information

A widely-employed and successful approach to estimating other information-theoretic quantities is to

decompose them into their constituent entropy terms and then implicitly or explicitly estimate each

of these using the Kozachenko-Leonenko estimator [27], [31]. Applying this to mutual information,

suppose we have an unknown joint probability density µ(x, y), and a set of samples SXY (with

sXY,i = (xi, yi)). We can then construct the following simple estimator of mutual information:

Ĥsimple(SXY) = ĤKL(SX) + ĤKL(SY)− ĤKL(SXY). (2.32)

It has been generally observed that, when constructing estimators for information-theoretic quanti-

ties by combining nearest-neighbour estimators for entropy terms, the bias can be reduced by sharing

k-nearest-neighbour distances across the estimators [27], [30], [31]. In the context of estimating the

mutual information, this is done by first performing a kjoint nearest-neighbour search in the joint

sample space SXY around each point pair (xi, yi), finding a distance ε i. We then find the number of

samples kX,i that fall within the distance ε i of xi and the number of samples kY,i that fall within the

distance ε i of yi (unlike k, kX,i and kY,i include the point itself). The use of this same distance across all

searches means that, if we expand (2.32) according to the definition of ĤKL in (2.31), many of the terms

(including all distances) will cancel. If we do this, we arrive at the Kraskov-Stögbauer-Grassberger

estimator of mutual information:

ÎKSG(SXY) = ψ(k) + ψ(N)− ⟨ψ(kX) + ψ(kY)⟩ (2.33)

Kraskov et. al. also present a second version of this estimator where the distances in the marginal

spaces are trimmed to the furthermost point that fell within ε i [27].

2.3.5 KL Divergence Estimators

As the KL divergence is one of the fundamental information-theoretic quantities (Section 2.1.1.6), it is

important to consider how to go about estimate it. Moreover, in the construction of the TE estimator

for event-based data presented in this thesis, we have to estimate two KL divergence terms (see

Section 3.4.1 ). As KL divergence involves an entropy and a cross entropy term, if we would like to

estimate it by combining entropy estimators, then we need to adapt the entropy estimator discussed

in Section 2.3.3 in order to be able to handle cross entropies.

2.3.5.1 Estimating Cross Entropy

Following [32], we would like to estimate the cross entropy between two (unknown) probability

distributions µ(x) and β(x). Although we do not have access to the probability distributions, suppose

that, we have a set SX of NX points drawn from µ and a set SY of NY points drawn from β. Using
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similar arguments to above (Section 2.3.3), we use ϵ (k, xi, SY) /2 to denote the distance from the

ith element of X to its kth nearest neighbour in SY. We then make the assumption that β(xi) is

constant within the ϵ-ball, and we have pβ
i = k

NY
= cd,Lϵ (k, xi, SY)

d β(xi). We can then construct a

straightforward estimator of the cross entropy

Ĥβ(SX, SY) = − 1
NX

NX

∑
i=1

ln
k

NYcd,Lϵ (k, xi, SY)
d . (2.34)

Again, we add the bias-correction term ln k − ψ(k) to arrive at an estimator of the cross entropy.

Ĥβ,KL(SX, SY) =− ψ(k) + ln NY + ln cd,L +
d

NX

NX

∑
i=1

ln ϵ (k, xi, SY) . (2.35)

This estimator has been shown to be consistent [32].

It is worth briefly noting the core difference between estimating entropy and cross entropy using

kNN estimators. An entropy estimator takes a set SX and, for each xi ∈ SX, performs a k nearest-

neighbour search in the same set SX. An estimator of cross entropy takes two sets, SX and SY and, for

each xi ∈ SX, performs a k nearest-neighbour search in the other set SY (since it is the samples of Y

that are used to estimate the probability density function evaluated inside the integral of the cross

entropy).

2.3.5.2 Combining Entropy and Cross Entropy Estimators

Suppose we have two unknown probability densities µ(x) and β(x) along with a set SX of NX points

drawn from µ and a set SY of NY points drawn from β. We can then combine the Kozachenko-Leonenko

estimators for entropy and cross entropy in order to arrive at an estimator for the KL-divergence [31].

D̂KL(SX, SY) =Ĥβ,KL(SX, SY)− ĤKL(SX)

= ln NY − ln(NX − 1) +
d

NX

NX

∑
i=1

[ln ϵ (k, xi, SY)− ln ϵ (k, xi, SX)] .
(2.36)

Wang et. al. [31] showed that this estimator is consistent. As with the Kraskov estimator for mutual

information (Section 2.3.4), the bias of this estimator can be reduced by sharing the same distance

across the nearest-neighbour searches. In the mutual information case, we are guaranteed that the

distance to the kth point in the joint space will always be greater than or equal to this distance in each

of the marginal spaces. This then provides us with the distance to kth nearest neighbour in the joint

space as the natural choice for what the shared distance will be. For KL-divergence, however, there is

no such natural choice of distance. Instead, we perform our k nearest-neighbour search in each space

as before and choose the largest of the two resulting distances. We then have to perform a distance

search in the space which had the smaller distance, in order to find the number of points that fall

within the shared distance. This results in the following estimator [31]:

D̂KL(SX, SY) =Ĥβ,KL(SX, SY)− ĤKL(SX)

= ln NY − ln(NX − 1) +
d

NX

NX

∑
i=1

[ψ(kX,i)− ψ(kY,i)] ,
(2.37)
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where kX,i is the number of points found in SX within the shared distance of xi and kY,i is the number

of points found in SY within the shared distance of xi. One of kX,i or kY,i will always be equal to the

value of k used for the initial searches. This estimator was shown to be consistent and have lower bias

than the estimator which operates without distance sharing [31].

2.3.6 Estimating Conditional Mutual Information

In order to estimate conditional mutual information [33], [34], we proceed as we did for mutual

information (Section 2.3.4), by first decomposing the mutual information into its constituent entropy

terms, applying the Kozachenko-Leonenko [26] (Section 2.3.3) and then reducing bias by sharing

distances. For the first step, we arrive at:

ÎKSG, cond(SXYZ) =ĤKL(SXZ) + ĤKL(SYZ)− ĤKL(SXYZ)− ĤKL(SZ) (2.38)

We then set the distance to the k nearest neighbour found in the joint space (SXYZ) as the search

distance with which to perform nearest-neighbour searches in the other sets. This yields the estimator:

ÎKSG, cond(SXYZ) = ψ(k)− ⟨ψ(kX,Z) + ψ(kY,Z)− ψ(kZ)⟩, (2.39)

Where kX,Z,i, kY,Z,i and kY,i are the numbers of points found within the distance ε i of the point (xi, yi, zi)

within the associated spaces (including points on the boundary of this ε-ball), and ε i is the distance to

the kth nearest neighbour of this point in the joint space.

2.3.7 TE Estimation

As TE is just a conditional mutual information (see equation (2.18)), it can be estimated using (2.40).

Rewriting this in terms of the variables used in the definition of TE [34], we have:

̂̇TY→X,KSG = ψ(k)− ⟨ψ(kX,X<t) + ψ(kY<t,X<t)− ψ(kX<t)⟩, (2.40)

2.4 Significance Testing

Often we are particularly interested in whether an estimated information-theoretic value is consistent

with zero or not. For instance, when inferring networks, a non-zero value is taken to signify the

existence of an edge. In the case of mutual information, a non-zero mutual information (Section 2.1.1.3)

indicates a statistical dependence between two variables. In the case of KL-divergence (Section 2.1.1.6),

a non-zero value indicates that the two distributions are not identical.

However, as discussed in Section 2.3, all estimators have some variance. That is, for finite data

we do not expect them to produce estimates that are exactly equal to the true underlying value. We

therefore require a method for determining whether the estimated value would be likely to occur,

even if the true underlying value was zero, thus enabling us to determine if the estimated quantity is

statistically different from zero.

As there are no results for the sampling distribution of many of the estimators we use, including

the k-nearest-neighbour estimators [35], we turn to permutation (surrogate) methods in order to
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provide an approximation for the distribution of estimates under the null hypothesis that the variables

from which we have sampled are (conditionally) independent and therefore that the value of the

quantity is zero. The idea behind these methods is to permute the data on which the estimation was

performed and then perform estimation on this permuted data for many different permutations. The

algorithm which we use should create surrogates which are identically distributed to the original data

if and only if the null hypothesis holds [36]. We can then use the estimated values on this permuted

data in order to approximate the distribution of estimates under the assumption of the null hypothesis

of the value being zero. We can also use these surrogate values to estimate the probability that the

estimated value, or one more extreme, would occur under the assumption of the null hypothesis (that

is, estimate a p value). We can then choose to reject the null hypothesis for a sufficiently low p value.

2.4.1 Shuffling Permutation for Mutual Information

An instructive example of a permutation that can be used for significance testing is simple shuffling of

the data, which can be applied to data on which mutual information is being estimated. As the mutual

information between X and Y is zero if and only X and Y are independent, testing for non-zero mutual

information is a test for statistical dependence. As such, we are testing against the null hypothesis that

X and Y are independent (X ⊥⊥ Y) or, equivalently, that the joint probability distribution of X and Y
factorises as p(X, Y) = p(X)p(Y). It is straightforward to construct surrogate pairs (x̌, y̌) that conform

to this null hypothesis. We start with the original pairs (x, y) and resample the y values across pairs.

This shuffling process will maintain the marginal distributions p(X) and p(Y), and the same number

of samples, but will destroy any relationship between X and Y, yielding the required factorisation for

the null hypothesis. If X and Y are already independent, then this shuffling will have no effect on the

joint distribution. Note that this may be problematic when there are serial or dynamic correlations in

time series samples. Using the Theiler window is known to correct for this with nearest-neighbour

information-theoretic estimators [37].

2.4.2 Local Permutation for Conditional Mutual Information

It is worthwhile asking how one would go about extending the shuffling method discussed in

Section 2.4.1 to conditional mutual information. For conditional mutual information, we are testing

whether X and Y are statistically dependent given Z. This is equivalent to asking whether the

factorisation p(X, Y | Z) = p(X | Z)p(Y | Z) holds.

Deriving a permutation algorithm for this situation is relatively straightforward in the case of

discrete data. We can simply look at each zi separately, and shuffle the y values among all the triplets

(x, y, z) that have z = zi.

Recent work by Runge [35] has derived a suitable permutation scheme for conditional mutual

information on continuous variables. The core step of this algorithm is to conduct a nearest-neighbour

search based on the conditional z values, finding a set of k points that have similar z values to a given

triplet. We can then exchange the y value of the given triplet with a randomly chosen y value in the

nearest-neighbour set.
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2.5 Connectivity Inference Using Information Theory

Network inference has become a popular tool for summarising high-dimensional time-series data in

an accessible and visual manner, particularly within neuroscience [38]. It aims to reduce the often

very large number of data points down to a single network representation. Each node in this network

usually corresponds to a variable in the original system, such as beamformed sources in MEG data

[15]. An edge between nodes indicates a statistical relationship between them.

As information theoretic quantities can measure the relationships between variables, they are well

suited to the task of network inference. In particular, mutual information (Section 2.1.1.3), and derived

quantities such as transfer entropy (Section 2.2), are measures of statistical dependence and so are

widely used for network inference.

2.5.1 Functional Networks

Broadly speaking, there are two approaches to performing network inference. The first of these

infers what are normally referred to as functional networks [38], [39]. These networks are inferred

by considering each pair of variables in isolation. As such, this approach will only capture the

pairwise relationships between variables. However, one advantage of using TE for the inference of

functional networks is that, unlike more common approaches such as simple Pearson correlation [38],

the functional networks will be directed. Moreover, TE can capture non-linear effects which are missed

by the Pearson correlation [4].

On an algorithmic level, the inference of functional networks using TE is fairly straightforward.

One simply considers every unique ordered pair of variables, with one member of this pair acting as

the target and the other as the source. The TE is then estimated between this source-target pair and, if

it is significantly different from zero, a directed edge is place connecting the source to the target.

2.5.2 Effective Networks

Often in multivariate systems, many if not all the variables will be highly correlated. This is particularly

true within neuroscience where synchrony is commonplace [40], [41]. When using a functional network

approach, this will result in an edge between nearly all nodes. This is not a result which reveals much

structure about the data (assuming that we are only interested in the presence of edges, rather than

their weights). In very many of these cases, however, even though a variable might have a pairwise

dependence with most or all other variables in the system, these dependencies might be removed

by conditioning on another variable in the system. Specifically, there will be some smaller subset of

variables which a given variable is statistically dependent on for which it is conditionally independent

of all other variables in the system.

This is the motivation behind the other main approach to network inference, namely the inference

of effective networks [42], [43]. For these networks, we only place an edge between a target node

and a source, if the source is part of some minimal set that captures all the dependence between the

target and the population. That is, in the case of TE-based network inference, we are looking for a

minimal set of parents (source variables) whose history can maximally reduce our uncertainty about

the current state of each target node.



CHAPTER 2: BACKGROUND 25

Different information-theoretic measures can be incorporated into each approach. For instance,

functional networks could be inferred using TE or mutual information, depending on whether we

wanted to only capture instantaneous effects, or whether we wanted to capture directional and

dynamic dependence. Effective networks, on the other hand, can be inferred using conditional mutual

information or multivariate TE.

Algorithmically, the inference of effective networks using TE is a fair bit more complicated than

the functional case. An approach which has proven effective for the inference of the minimal set of

parents is to iteratively add sources to each target in a greedy fashion [44]–[48]. Specifically, for each

target process, we select the source with the strongest information flow (without any conditioning).

We then select the next source as the component with the highest information flow when conditioned

on the first source and add this new source to the conditioning set. We continue adding sources to

the conditioning set in this fashion until we are unable to find a source with a statistically significant

non-zero information flow. The process then finishes with a pruning step, where it is verified that

each source still has a non-zero information flow when conditioned on all other sources in the set.

2.6 Application of Information Theory to Spiking Neural Networks

Before looking at how TE and the information dynamics framework has been applied to spike trains,

it is worth reviewing how information theory, more generally, has been applied to this domain as well

as how information-theoretic methods relate to other types of analysis commonly performed on spike

trains. There is a very large literature surrounding the application of information theory to other types

of neuroscience data, however, a review of this work is beyond the scope of this short literature review.

The reader is referred to the existing reviews of this subject matter [49]–[52].

Research on the application of information theory to spike trains is deeply intertwined with the

concepts of encoders and decoders [50], [53]. Given that authors in these studies make frequent

reference to ‘information transmission’ [54]–[56] (transfer entropy is often referred to as ‘information

transfer’), that our proposed method for estimating transfer entropy makes use of an encoder and that

certain methodologies used have significant similarities to our proposed approach, it is worth paying

particular attention to how these concepts are related.

In order to model the mechanism by which a neuron encodes information, an encoding function

is often fit to data. This could be a function which maps entire stimulus histories onto entire spike

trains. However, it is usually a function which maps only the stimulus history, or the stimulus history

and the spiking history of the neuron, onto an instantaneous spike rate [57]. Such a function is often

referred to as a tuning curve or response function. It could potentially take any form, but is frequently

a generalised linear model (GLM) [58]. It is worth noting that the estimates of λx|y, which will be

required for estimating the transfer entropy in continuous time using equation (2.42) are tuning curves

(see Chapter 3 for the full derivation and evaluation of this estimator). Once this function has been

estimated, calculating the likelihood of the spike train - P(r|s, θ) - given the stimulus s and tuning

curve θ is a simple matter. Specifically:

P(r|s, θ) =

(
N

∏
i=1

θ (s(ti))

)
e
∫ t

0 θ(s(t))dt (2.41)
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where the product is over the N spikes of the spike train.

A common task in computational neuroscience is the fitting of decoding functions [57]. These

functions map a segment of a spike train (which we will refer to as a ‘word’) to either a most likely

stimulus, or to a distribution of stimuli. There is a tight relationship between this decoder and the

mutual information between the response word (spike-train segment) and the stimulus (I(R ; S)). As

the mutual information is the reduction in uncertainty about S that arises from knowing R, it places a

bound on how effective the decoder can be. Indeed, if I(R ; S) = 0, the decoder will not be able to

perform better than random chance. Further, decoders are a commonly used method for providing a

lower bound on the mutual information I(R ; S) [50], [59]–[61]. For a given a decoder D, we know

that I(D(R) ; S) < I(R ; S) due to the data processing inequality. Estimating mutual information in

stimulus space can be substantially easier than in spike-train space, partially because the experimenter

can specify the stimulus so as to facilitate its calculation. Specifically, the experimenter can constrain

the variation in stimulus to only a few discrete states, rendering estimation task comparatively easy.

The relationship between encoders, decoders and mutual information is made clear when we

consider that a popular class of decoding algorithms use Bayesian inference [62]–[65]. That is, they

will first estimate a tuning curve, calculate the likelihood of the response P(r|s, θ) and then use Bayes’

rule to calculate the posterior probability P(s|r). The most likely stimulus can be calculated by finding

sp = argmaxs(P(s|r)). The results of this calculation, over all stimulus-response pairs, can be used

to estimate the quantity I(D(R) ; S), and thus place a lower bound on the mutual information [53],

[66]. In order to emphasise the similarities between mutual information and decoding, it is worth

quoting Quiroga and Panzeri [50] “The complementarities between decoding and information theory

are explicit when considering Bayesian decoders, because in this case both decoding and information

theory are just two different computations over the posterior probability P(s|r)”
It is worth highlighting the large similarities between this method of calculating mutual informa-

tion and the approach for calculating transfer entropy which is detailed in Chapter 3. The Bayesian

approach to mutual information estimation first estimates an encoding function θ for the spike train.

The likelihoods of response words r given this encoder and a stimulus s - P(r|s, θ) - are then easily

calculated. For each stimulus-response pair the most likely stimulus sp is predicted by finding the sp

that maximises the posterior probability, P(s|r). The mutual information is then the amount by which

the knowledge of sp reduces the uncertainty about s. The proposed approach for calculating transfer

entropy begins in the same manner by estimating the encoding function θ. However, it proceeds

to directly calculate the reduction in the uncertainty of the response that is provided by knowing

the stimulus and the encoding function. Further differences are that the encoding function is only

estimated implicitly and that this is done non-parametrically. By comparing distances to sampled

history embeddings, the estimator compares the probability of a given history being observed from

spiking or non-spiking points in time. This allows it to estimate the reduction in uncertainty provided

by the source history, however this could easily be adapted to estimate the history-dependent spike

rate. Indeed, this rate is being implicitly estimated.
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2.7 Information Dynamics on Spike Trains

2.7.1 Discrete-Time Estimation of TE on Spike Trains

Past applications of TE to spike trains [22], [67]–[80] (see Section 2.7.2 for discussion of the contributions

of this work), have made use of a discrete-time estimator of TE. In this estimation scheme, the time

series is divided into small bins of width ∆t. Each bin is then assigned a binary value which denotes

the presence or absence of spikes in the bin. Alternatively, each bin could be assigned a natural number

corresponding to the number of spikes that fell within the bin. A choice is made as to the number of

time bins, l and m, to include in the source and target history embeddings y<t and x<t. For each time

bin, we can then create a triplet of the current state xt, the target past x<t, and the source past y<t. We

can then apply a simple plugin estimator (Section 2.3.1) for conditional mutual information on discrete

data. More specifically, for a given combination x<t and y<t, the probability of the target’s value in the

current bin conditioned on these histories, p (xt | x<t, y<t), can be directly estimated by counting its

frequency of occurence. The probability of the target’s value in the current bin conditioned on only

the target history, p (xt | x<t), can be estimated in the same fashion. From these estimates the TE can

be calculated in a straightforward manner via its definition (equation (2.18)).

There are two large disadvantages to this approach [19]. As time discretisation is a lossy transforma-

tion, it will result in an inaccurate estimate of the TE. Thus, any estimator based on time discretisation

is not consistent (it is not guaranteed to converge to the true value of the TE in the limit of infinite data,

see Section 2.3). Secondly, whilst the loss of resolution of the discretization will reduce with decreasing

bin size ∆t, this requires larger dimensionality in the history embeddings to capture correlations over

similar time intervals. This increase in dimension will result in an exponential increase in the state

space size being sampled to estimate p (xt | x<t, y<t), and therefore the data requirements. In practice,

the problems of dimensionality are sufficiently severe that most authors tend to use very few bins in

their history embeddings. Indeed, nearly all previous applications of the discrete-time TE estimator

to spiking data from cell cultures used only a single bin in their history embeddings (the exceptions

being [74], which used 1 and 3 bins for the target and source, and [81], which used up to 5 bins). The

bin widths used in those studies were 40 µs [73], 50 µs [81], 0.3 ms [82], and 1 ms [74], [83], [84]. Some

studies chose to examine the TE values produced by multiple different bin widths, specifically: 0.6 ms

and 100 ms [85], 1.6 ms and 3.5 ms [70] and 10 different widths ranging from 1 ms to 750 ms [22].

In instances where a variety of bin widths were used, the rationale is clear in that the authors are

trying to interrogate the differences in information flows occurring on different time scales. It is of

more interest to investigate the rationale behind single bin widths that were used. In some cases, no

rationale is given. Reference [82] used a bin width of 0.3 ms, as this was close to the mean inter-spike

interval. Reference [84] used a width of 1 ms due to this being a common discretisation scale for a

variety of analyses on spike trains.

In the cases where narrow (< 5 ms) bins were used, only a very narrow slice of history is being

considered in the estimation of the history-conditional spike rate. This is problematic, as correlations

in spike trains exhist over distances of (at a minimum) hundreds of milliseconds [86], [87]. Conversely,

in the instances where broad (> 5 ms) bins were used, relationships occurring on fine time scales will

be completely missed. This is significant given that it is established that correlations at the millisecond
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and sub-millisecond scale play a role in neural function [88]–[91]. This highlights the hard trade-off

that is encountered when performing the estimation of TE on spike trains in discrete time. One can

either capture fine temporal details or effects occurring over larger spans of time. However, it is not

possible to do both simultaneously.

2.7.2 Application of TE to Biological Neural Networks

There have been a number of studies which have applied the discrete-time TE estimator for spike

trains described in Section 2.7.1 to biological recordings of neural populations. This work primarily

made use of recordings from neural cell cultures [22], [67], [70], [73], [83]–[85]. These studies primarily

focused on inferring the directed functional networks implied by the estimated TE values between

pairs of nodes and analysing various features of these information flow networks. These studies found

interesting results, such as Shimono and Beggs [83], who found that these networks exhibited a highly

non-random structure and contained a long-tailed degree distribution. This work was expanded by

Nigam et. al. [73], where it was found that the functional networks contained a rich-club topology.

Conversely, Timme et. al. [22] found that the hubs of these networks were localised to certain time

scales. Other work [67], [70] has instead focussed on how the components of information flows in cell

cultures can be decomposed into unique, redundant and synergystic components.

2.7.3 Information Dynamics on Spike Trains in Continuous Time

Recent work [19], [20] has derived a continuous-time formalism for information dynamics. This work

holds the promise of allowing for the estimation of quantities like TE on spike trains in continuous-

time, thus overcoming some of the drawbacks of the discrete-time estimator described in Section 2.7.1.

Indeed, this potential is realised in this thesis in the estimator derived in Chapter 3. Here, we briefly

review this prior work.

It was found that the transfer entropy rate (the information flow per unit time) between two spike

trains is:

ṪY→X = lim
T→∞

1
T

NX

∑
i=1

ln
λx|y [x<ti , y<ti ]

λx [x<ti ]
(2.42)

Here, the spike train is observed over a period of time T, during which NX spikes occurred. λx|y [x<ti , y<ti ]

is the instantaneous conditional spike rate of the neuron X. The conditioning is performed over the

history of the neurons X and Y, where this history is represented by the k most recent inter-spike

intervals of X and the l most recent inter-spike intervals of Y. Similarly, λx [x<ti ] is the instantaneous

conditional spike rate of X, where the conditioning is performed only on the history of X. The

contributions to the TE are, therefore, only coming from the spikes (events). As shown in [19], the

contributions from the quiescent periods cancel and average to zero - thus making no contribution to

the TE.

It was further found that the active information storage diverges in continuous time. It was,

therefore, decomposed into a diverging and a non-diverging component. That is:

AX = IX + ṀX∆t +O
(
∆t2) (2.43)

IX refers to the instantaneous predictive capacity, which captures the uncertainty reduction due to the
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path regularity of the process. This quantity diverges for many processes, but is zero for spike trains.

ṀX refers to the active memory utilisation rate, which is the uncertainty reduction due to correlations

other than path regularity.

ṀY→X = lim
T→∞

1
T

NX

∑
i=1

ln
λx [x<ti ]

⟨λx⟩
(2.44)

Here, ⟨λx⟩ refers to the average spike rate of X over the entire length of the spike train.
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CHAPTER 3

IMPROVING THE ESTIMATION OF TE ON SPIKE TRAINS

As discussed in Chapter 1, despite the fact that we know that brains perform a dizzying array of

advanced computations, there is still much work to be done in revealing the information dynamics that

undergird this ability. Investigations into the information processing operations of brains would ideally

be performed on the finest scale for which we have abundant recordings, which is the spiking activity

of individual neurons. Moreover, individual neurons are considered the fundamental computational

units of the brain [1].

This thesis pays particularly close attention to the information transfer component of computation,

as measured by the Transfer Entropy (TE). There have already been a number of studies which have

applied TE to the spike times of neurons. However, although this work provided many valuable

contributions, interpretability of results was limited by the traditional approach for estimating TE on

spike trains.

The traditional approach towards estimating TE involved an initial step of time discretisation,

whereby the process is divided into bins of a fixed width. The process is then transformed into a

binary sequence, with the binary values signifying the presence or absence of spikes in bins. The TE

is then estimated using a simple plugin estimator [2], [3]. See Section 2.7.1 for more details on this

traditional method of estimation.

There are numerous problems with this method of estimation. Chief among these is that the

estimator is not consistent, that is, it does not usually converge to the true value of the TE in the

limit of infinite data. Moreover, it requires a hard tradeoff between the length of history dependence

that can be captured and the temporal precision. Small time bins allow for better time precision,

but reduce the length of the history effects that can be studied. Large time bins have the opposite

effect. It is not possible for this estimator to perform both simultaneously (for any realistically sized

dataset). Moreover, if we would like to estimate the total information flow, it is not sufficient to sum

up estimates performed at different time scales, as this would ignore any synergistic effects between

them.

In order to make possible the high-fidelity study of information flows on spike trains that we will

perform in subsequent chapters, this chapter presents a novel estimator of TE on spike trains. This

estimator makes use of a recently-developed continuous-time formalism for information dynamics

[4], [5] in order to operate without time-discretisation by performing estimation using the inter-spike

intervals. The resulting estimator is provably consistent (section 3.4.1). Further, the use of the inter-

spike intervals for the history embeddings provides an efficient representation of the history of the
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spike train, allowing for relatively long histories to be examined, with no loss of precision and minimal

use of extra dimensions.

This new estimator makes possible, for the first time, the high fidelity study of information flows

from spike-train data. This then allows us to perform the study of information flows in developing

neural cell cultures that we do in Chapter 4. The efficient use of dimension in the history embeddings

of this new estimator allows for the use of larger sets of conditioning processes. This, in turn, makes it

possible for TE to be used in the inference of effective networks from spike times. We demonstrate this

capability in Chapter 5.
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Abstract

Transfer entropy (TE) is a widely used measure of directed information flows in a number of

domains including neuroscience. Many real-world time series for which we are interested in

information flows come in the form of (near) instantaneous events occurring over time.

Examples include the spiking of biological neurons, trades on stock markets and posts to

social media, amongst myriad other systems involving events in continuous time throughout

the natural and social sciences. However, there exist severe limitations to the current

approach to TE estimation on such event-based data via discretising the time series into

time bins: it is not consistent, has high bias, converges slowly and cannot simultaneously

capture relationships that occur with very fine time precision as well as those that occur over

long time intervals. Building on recent work which derived a theoretical framework for TE in

continuous time, we present an estimation framework for TE on event-based data and

develop a k-nearest-neighbours estimator within this framework. This estimator is provably

consistent, has favourable bias properties and converges orders of magnitude more quickly

than the current state-of-the-art in discrete-time estimation on synthetic examples. We dem-

onstrate failures of the traditionally-used source-time-shift method for null surrogate genera-

tion. In order to overcome these failures, we develop a local permutation scheme for

generating surrogate time series conforming to the appropriate null hypothesis in order to

test for the statistical significance of the TE and, as such, test for the conditional indepen-

dence between the history of one point process and the updates of another. Our approach is

shown to be capable of correctly rejecting or accepting the null hypothesis of conditional

independence even in the presence of strong pairwise time-directed correlations. This

capacity to accurately test for conditional independence is further demonstrated on models

of a spiking neural circuit inspired by the pyloric circuit of the crustacean stomatogastric gan-

glion, succeeding where previous related estimators have failed.
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Author summary

Transfer Entropy (TE) is an information-theoretic measure commonly used in neurosci-

ence to measure the directed statistical dependence between a source and a target time

series, possibly also conditioned on other processes. Along with measuring information

flows, it is used for the inference of directed functional and effective networks from time

series data. The currently-used technique for estimating TE on neural spike trains first

time-discretises the data and then applies a straightforward plug-in information-theo-

retic estimation procedure. This approach has numerous drawbacks: it has high bias,

cannot capture relationships occurring on both fine and large timescales simultaneously,

converges very slowly as more data is obtained, and indeed does not even converge to

the correct value for any practical non-vanishing discretisation scale. We present a new

estimator for TE which operates in continuous time and demonstrate, via application to

synthetic examples, that it addresses these problems and can reliably differentiate statis-

tically significant flows from (conditionally) independent spike trains. Further, we also

apply it to more biologically-realistic spike trains obtained from a biophysical model

inspired by the pyloric circuit of the crustacean stomatogastric ganglion; our correct

inference of directed conditional dependence and independence between neurons here

provides an important validation for our approach where similar methods have previ-

ously failed.

This is a PLOS Computational Biology Methods paper.

Introduction

In analysing time series data from complex dynamical systems, such as in neuroscience, it is

often useful to have a notion of information flow. We intuitively describe the activities of

brains in terms of such information flows: for instance, information from the visual world

must flow to the visual cortex where it will be encoded [1]. Further, information coded in the

motor cortex must flow to muscles where it will be enacted [2].

Transfer entropy (TE) [3, 4] has become a widely accepted measure of such flows. It is

defined as the mutual information between the past of a source time-series process and the

present state of a target process, conditioned on the past of the target. More specifically (in dis-

crete time), the transfer entropy rate [5] is:

_TY!X ¼
1

Dt
I Xt ; Y<t jX<tð Þ ¼

1

t

XNT

t¼1

ln
pðxt j x<t; y<tÞ

pðxt j x<tÞ
: ð1Þ

Here the information flow is being measured from a source process Y to a target X, I(�;�|�) is

the conditional mutual information [6], p(�|�) is a conditional probability, xt is the current state

of the target, x<t is the history of the target, y<t is the history of the source, Δt is the interval

between time samples (in units of time), τ is the length of the time series and NT = τ/Δt is the

number of time samples. The histories x<t and y<t are usually captured via embedding vectors,

e.g. x<t = xt−m:t−1 = {xt−m, xt−m+1, . . ., xt−1}. The average here is taken over time, as opposed to

possible states and histories (both formulations are equivalent under the assumptions of statio-

narity and ergodicity). Recent work [5] has highlighted the importance of normalising the TE

by the width of the time bins, as above, such that it becomes a rate, in order to ensure conver-

gence in the limit of small time bin size.
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It is also possible to condition the TE on additional processes [4]. Given additional pro-

cessesZ ¼ fZ1;Z2; . . . ;ZnZ
g with historiesZ<t ¼ fZ1;<t;Z2;<t; . . . ;ZnZ ;<tg, we can write the

conditional TE rate as

_TY!XjZ ¼
1

Dt
I Xt ; Y<t jX<t;Z<tð Þ: ð2Þ

When combined with a suitable statistical significance test, the TE (and conditional TE)

can be used to show that the present state of X is conditionally independent of the past of Y–

when conditioned on the past of X (and on the conditional processesZ). Of course, we refer

to conditional independence in the statistical sense (i.e. pðxt j x<t;z<t; y<tÞ ¼ pðxt j x<t;z<tÞÞ

rather than the causal sense. Such a conditional independence test can be used as a component

in a network inference algorithm and, as such, TE is widely used for inferring directed func-

tional and effective network models [7, 8, 9, 10, 11, 12] (and see [4, Sec. 7.2] for a review).

TE has enjoyed widespread application in neuroscience in particular [13, 14]. Uses have

included the functional/effective network inference as mentioned above, as well as the mea-

surement of the direction and magnitude of information flows [15, 16] and the determination

of transmission delays [17]. Such applications have been performed using data from multiple

diverse sources such as MEG [18, 19], EEG [20], fMRI [21], electrode arrays [22], calcium

imaging [9] and simulations [23].

Previous applications of TE to spike trains [22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] and

other types of event-based data [35], including for the purpose of network inference [9, 36,

37], have relied on time discretisation. As shown in Fig 1, the time series is divided into small

bins of width Δt. The value of a sample for each bin could then be assigned a binary value—

denoting the presence or absence of events (spikes) in the bin—or a natural number denoting

the number of events (spikes) that fell within the bin (the experiments in this paper use the

former). A choice is made as to the number of time bins, l and m, to include in the source and

target history embeddings y<t and x<t. This results in a finite number of possible history

embeddings. For a given combination x<t and y<t, the probability of the target’s value in the

current bin conditioned on these histories, p(xt|x<t, y<t), can be directly estimated using the

plugin (histogram) [38] estimator. The probability of the target’s value in the current bin con-

ditioned on only the target history, p(xt|x<t), can be estimated in the same fashion. From these

estimates the TE can be calculated in a straightforward manner via Eq (1). See Results for a

description of the application of the discrete time TE estimator to synthetic examples including

spiking events from simulations of model neurons.

There are two large disadvantages to this approach [5]. If the process is genuinely occurring

in discrete time, then the estimation procedure just described is consistent. That is, it is

guaranteed to converge to the true value of the TE in the limit of infinite data. However, if we

are considering a fundamentally continuous-time process (with full measurement precision),

such as a neuron’s action potential, then the lossy transformation of time discretisation

(Δt> 0) will result in an inaccurate estimate of the TE. Thus, in these cases, any estimator

based on time discretisation is not consistent. Secondly, whilst the loss of resolution of the dis-

cretization will reduce with decreasing bin size Δt, this requires larger dimensionality in the

history embeddings to capture correlations over similar time intervals. This increase in dimen-

sion will result in an exponential increase in the state space size being sampled to estimate p(xt|
x<t, y<t), and therefore the data requirements. However, some recordings of the activities of

neurons are done with low time precision. For example, recordings from calcium imaging

experiments usually use a sampling rate of around 1 to 10 Hz [39]. In such cases, we could use

bin sizes on the order of the experimental precision and still capture a reasonable history

PLOS COMPUTATIONAL BIOLOGY Estimating Transfer Entropy in Continuous Time Between Neural Spike Trains
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length with history embeddings composed of only a small number of bins. This might keep the

size of the history state space small enough that we can collect an adequate number of samples

for each history permutation with the available data. In such cases, we might expect the dis-

crete-time approach to perform as well as can be expected given the limitations imposed by

the apparatus. On the other hand, data from microelectrode arrays can be sampled at rates

over 70 kHz [40]. When using data collected with this high temporal precision, if we use bin

sizes corresponding to the sampling rate, we will be forced to use incredibly short history

embeddings in order to avoid the size of the history state space growing to a point where it can

no longer be sampled.

In practice then, if the data has been collected with fine temporal precision, the application

of transfer entropy to event-based data such as spike trains has often required a trade-off

between fully resolving interactions that occur with fine time precision and capturing correla-

tions that occur across long time intervals. There is substantial evidence that spike correlations

at the millisecond and sub-millisecond scale play a role in encoding visual stimuli [41, 42],

motor control [43] and speech [44]. On the other hand, correlations in spike trains exist over

lengths of hundreds of milliseconds [45]. A discrete-time TE estimator cannot capture both of

these classes of effects simultaneously, and remains heavily dependent on the value of Δt [31].

Recent work by Spinney et al. [5] derived a continuous-time formalism for TE. It was dem-

onstrated that, for stationary point processes such as spike trains, the pairwise TE rate is given

by:

_TY!X ¼ lim
t!1

1

t

XNX

i¼1

ln
lxjx<t ;y<t

½x<xi
; y

<xi
�

lxjx<t
½x<xi
�

: ð3Þ

Here NX is the number of events in the target process and τ is the length in time of this process

Fig 1. Diagrams highlighting the differences in the embeddings used by the discrete and continuous-time estimators. The discrete-time estimator

(A) divides the time series into time bins. A binary value is assigned to each bin denoting the presence or absence of a (spiking) event–alternatively, this

could be a natural number to represent the occurrence of multiple events. The process is thus recast as a sequence of binary values and the history

embeddings (xt−4:t−1 and yt−4:t−1) for each point are binary vectors. The probability of an event occurring in a bin, conditioned on its associated history

embeddings, is estimated via the plugin (histogram) [38] estimator. Conversely, the continuous-time estimator (B) performs no time binning. History

embeddings x<xi
and y<xi

for events or x<ui
and y<ui

for arbitrary points in time (not shown in this figure, see Fig 10) are constructed from the raw

interspike intervals. This approach estimates the TE by comparing the probabilities of the history embeddings of the target processes’ history as well as

the joint history of the target and source processes at both the (spiking) events and arbitrary points in time.

https://doi.org/10.1371/journal.pcbi.1008054.g001
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whilst lxjx<t ;y<t
½x<xi

; y
<xi
� is the instantaneous firing rate of the target conditioned on the histo-

ries of the target x<xi
and source y

<xi
at the time points xi of the events in the target process.

lxjx<t
½x<xi
� is the instantaneous firing rate of the target conditioned on its history alone, ignor-

ing the history of the source. Note that lxjx<t ;y<t
and lxjx<t

are defined at all points in time and

not only at target events. It is worth emphasizing that, in this context, the processes X and Y
are series of the time points xi and yj of the events i and j in the target and source respectively.

This is contrasted with Eq (1), where X and Y are time series of values at the sampled time

points ti. To avoid confusion we use the notation that the yj 2 Y are the raw time points and

y
<xi

is some representation of the history of Y observed at the time point xi (see Methods).

Eq (3) can easily be adapted to the conditional case:

_TY!XjZ ¼ lim
t!1

1

t

XNX

i¼1

ln
lxjx<t ;y<t ;z<t

½x<xi
; y

<xi
;z<xi

�

lxjx<t ;z<t
½x<xi

;z<xi
�

: ð4Þ

Here lxjx<t ;y<t ;z<t
½x<xi

; y
<xi
;z<xi

� is the instantaneous firing rate of the target conditioned

on the histories of the target x<xi
, source y

<xi
and other possible conditioning processes

z<xi
¼ fz1;<xi

; z2;<xi
; . . . ; znz ;<xi

g. lxjx<t ;z<t
½x<xi

;z<xi
� is the instantaneous firing rate of the of the

target conditioned on the histories of the target and the additional conditioning processes,

ignoring the history of the source.

Crucially, it was demonstrated by Spinney et al., and later shown more rigorously by Coo-

per and Edgar [46], that if the discrete-time formalism of the TE (in Eq (1)) could be properly

estimated as limΔt! 0, then it would converge to the same value as the continuous-time for-

malism. This is due to the contributions to the TE from the times between target events vanish-

ing in expectation. Yet there are two important distinctions in the continuous-time formalism

which hold promise to address the consistency issues of the discrete-time formalism. Firstly,

the basis in continuous time allows us to efficiently represent the history embeddings by inter-

event intervals, suggesting the possibility of jointly capturing subtleties in both short and long

time-scale effects that has evaded discrete-time approaches. See Fig 1 for a diagrammatic

representation of these history embeddings, contrasted with the traditional way of construct-

ing histories for the discrete-time estimator. Secondly, note the important distinction that the

sums in Eqs (3) and (4) are taken over the NX (spiking) events in the target during the time-

series over interval τ; this contrasts to a sum over all time-steps in the discrete-time formalism.

An estimation strategy based on Eqs (3) and (4) would only be required to calculate quantities

at events, ignoring the inter-event interval time where the neuron is quiescent. This implies a

potential computational advantage, as well as eliminating one source of estimation variability.

These factors all point to the advantages of estimating TE for event-based data using the

continuous-time formalism in Eqs (3) and (4). This paper presents an empirical approach to

performing such estimation. The estimator (presented in Methods) operates by considering

the probability densities of the history embeddings observed at events and contrasts these with

the probability densities of those embeddings being observed at other (randomly sampled)

points. This approach is distinct in utilising a novel Bayesian inversion on Eq (4) in order to

operate on these probability densities of the history embeddings, rather than making a more

difficult direct estimation of spike rates. Furthermore, this allows us to utilise k-Nearest-Neigh-

bour (kNN) estimators for the entropy terms based on these probability densities. These esti-

mators have known advantages of consistency, data efficiency, low sensitivity to parameters

and known bias corrections. By combining these entropy estimators, and making use of estab-

lished bias reduction techniques for combinations of kNN estimators, we arrive at our pro-

posed estimator. The resulting estimator is consistent (see Methods) and is demonstrated on
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synthetic examples in Results to be substantially superior to estimators based on time discreti-

sation across a number of metrics.

To conclude that there exists non-zero TE (and thus establish conditional dependence)

between two processes a suitable hypothesis test is required. This is usually done by creating a

surrogate population of processes (or samples of histories) which conform to the null hypothe-

sis of zero TE, or in other words, directed conditional independence of the target spikes from

the source. The algorithm which we use should create surrogates which are identically distrib-

uted to the original processes (or history samples) if and only if the null hypothesis holds

[47]. The historically used method for generating these surrogates was to either shuffle the

original source samples or to shift the source process in time. However, this results in surro-

gates which conform to an incorrect null hypothesis–that the transitions in the target are

completely independent of the source histories. That is, they conform to the factorisation

pðXt;Y<t jX<t;Z<tÞ ¼ pðXt jX<t;Z<tÞpðY<tÞ. In cases where there is a pairwise correlation

between the present state of the target and the history of the source, but they are nonetheless

conditionally independent, shuffling or time shifting will create surrogates that are not identi-

cally distributed to the original history samples. This is despite the fact that the null hypothesis

holds. This can result in the estimate of the TE on the original processes being statistically

different from those on the surrogate population, leading to the incorrect inference of non-

zero TE.

As shown in Results, this can lead to incredibly high false positive rates for conditional

dependence in certain settings such as the presence of strong common driver effects. There-

fore, in order to have a suitable significance test for use in conjunction with the proposed esti-

mator, we also present (in Methods) an adaptation of a recently proposed local permutation

method [48] to our specific case. This adapted scheme produces surrogates which conform to

the correct null hypothesis of conditional independence of the present of the target and the

source history, given the histories of the target and further conditioning processes. This is the

condition that pðXt;Y<t jX<t;Z<tÞ ¼ pðXt jX<t;Z<tÞpðY<t jX<t;Z<tÞ.

It is easy to intuit that the second factorisation is correct by rewriting the discrete-time TE

(Eq (2)) as:

_TY!X ¼
1

t

XNT

t¼1

ln
pðxt; y<t j x<t;z<tÞ

pðxt j x<t;z<tÞpðy<t j x<t;z<tÞ
: ð5Þ

That is, transfer entropy can be readily interpreted as a measure of the difference between

the distributions pðXt;Y<t jX<t;Z<tÞ and pðXt jX<t;Z<tÞpðY<t jX<t;Z<tÞ.

We show in Results that the combination of the proposed estimator and surrogate genera-

tion method is capable of correctly distinguishing between zero and non-zero information

flow in difficult cases, such as where the history of the source has a strong pairwise correlation

with the occurrence of events in the target, but is nevertheless conditionally independent. The

combination of the current state-of-the-art in discrete-time estimation and a traditional

method of surrogate generation is shown to be incapable of making this distinction.

Similarly, we demonstrate that the proposed combination is capable of correctly distin-

guishing between conditional dependence and independence relationships in data taken from

a simple circuit of biophysical model neurons inspired by the crustacean stomatogastric gan-

glion [49]. Despite the presence of strong pairwise correlations, the success of our estimator

here contrasts not only with known failure of a related Granger causality estimator, but also

our demonstration that the discrete-time estimator is incapable of correctly performing this

task.
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Our results provide strong impetus for the application of our proposed techniques to inves-

tigate information flows in spike-train data recorded from biological neurons. Furthermore,

we underline the importance of our correct identification of conditional dependence and inde-

pendence in these experiments. Whilst functional/effective network inference algorithms

using TE estimators such as ours are not expected to align with structural networks in general,

they would be expected to do so under certain idealised assumptions (e.g. full observability,

large sample size, etc., as outlined in Methods 16) implemented in these experiments. As

recently discussed by Novelli and Lizier [50], and specifically for spiking neural networks by

Das and Fiete [51], inference aligning with underlying structure under such conditions is a

crucial validation that the effective network models they infer at scale are readily interpretable.

As such, the demonstration of the efficacy of our proposed approach to detecting conditional

dependence in small networks here implies that it holds promise for larger scale effective net-

work inference once paired with a suitable (conditional-independence-based) network infer-

ence algorithm (e.g. IDTxl as described in [7, 52]).

Results

The first two subsections here present the results of the continuous-time estimator applied to

two different synthetic examples for which the ground truth value of the TE is known. The

first example considers independent processes where _TY!X ¼ 0, whilst the second examines

coupled point processes with a known, non-zero _TY!X . The continuous-time estimator’s per-

formance is also contrasted with that of the discrete-time estimator. The emphasis of these

sections is on properties of the estimators in isolation, as opposed to when combined with

a statistical test. As such, we focus on the estimators’ bias, variance and consistency (see

Methods).

The third, fourth and fifth subsections present the results of the combination of the contin-

uous-time estimator and the local permutation surrogate generation scheme applied to two

examples: the first two synthetic and the last a biologically plausible model of neural activity.

The comparison of the estimates to a population of surrogates produces p-values for the null

hypothesis of zero TE. Rejection of this null hypothesis and the resulting conclusion of non-

zero TE implies a directed statistical dependence. The results are compared to the known con-

nectivity of the studied systems. Whilst we do not expect directed statistical dependence to

have a one-to-one correspondence with structural connectivity in general, these experiments

are designed under ideal conditions such that they would. This provides important test cases

for detection of conditional dependence and independence. These p-values could be translated

into other metrics such as ROC curves and false-positive rates, but we choose to instead visual-

ise the distributions of the p-values themselves. The combination of the discrete-time estimator

along with a traditional method for surrogate generation (time shifts) is also applied to these

examples for comparison.

No TE between independent homogeneous poisson processes

The simplest processes on which we can attempt to validate the estimator are independent

homogeneous Poisson processes, where the true value of the TE between such processes is

zero.

Pairs of independent homogeneous Poisson processes were generated, each with rate

�l ¼ 1, and contiguous sequences of NX 2 {1 × 102, 1 × 103, 1 × 104, 1 × 105} target events were

selected. For the continuous-time estimator, the parameter NU for the number of placed sam-

ple points was varied (see Methods) to check the sensitivity of estimates to this parameter. At
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each of these numbers of target events NX, the averages are taken across 1000, 100, 20 and 20

tested process pairs respectively.

Fig 2 shows the results of these runs for the continuous-time estimator, using various

parameter settings. In all cases, the Manhattan (ℓ1) norm is used as the distance metric and

the embedding lengths are set to lX = lY = 1 spike. See Methods for a description of these

parameters. See also [52] for a discussion on how to set these embedding lengths. For this

example, the set of conditioning processesZ is empty. S1 Fig shows results with longer his-

tory embeddings.

The plots show that the continuous-time estimator converges to the true value of the TE

(equal to 0). This is a numerical confirmation of its consistency for independent processes.

Moreover, it exhibits very low bias (as compared to the discrete-time estimator, Fig 3) for all

values of the k nearest neighbours and NU/NX parameters. The variance is relatively large for

k = 1, although it dramatically improves for k = 5—this reflects known results for variance of

this class of estimators as a function of k, where generally k above 1 is recommended [53].

Fig 3 shows the result of the discrete-time estimator applied to the same independent

homogeneous Poisson processes for two different combinations of the source and target his-

tory embedding lengths, l and m time bins, and four different bin sizes Δt (see S2 Fig for

Fig 2. Evaluation of the continuous-time estimator on independent homogeneous Poisson processes. The solid

line shows the average TE rate across multiple runs and the shaded area spans from one standard deviation below the

mean to one standard deviation above it. Plots are shown for two different values of k nearest neighbours, and four

different values of the ratio of the number of sample points to the number of events NU/NX (See Methods).

https://doi.org/10.1371/journal.pcbi.1008054.g002
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different choices of l and m). At each of the numbers of target events NX, the averages are

taken across 1000, 100, 100 and 100 tested process pairs respectively. The variance of this esti-

mator on this process is low and comparable to the continuous-time estimator, however the

bias is very large and positive for short processes. The bias of both estimators could be reduced

by subtracting the mean of the estimates over a population of surrogates (see the following sub-

section for an example of this being done with the continuous-time approach). We do observe

the discrete-time estimator converging to zero (the true value of the TE) as we increase the

available data. This would suggest that it might be consistent on this specific example. How-

ever, we will shortly encounter an example where this is not the case.

Consistent TE between unidirectionally coupled processes

The estimators were also tested on an example of unidirectionally coupled spiking processes

with a known value of TE (previously presented as example B in [5]). Here, the source process

Y is a homogoneous Poisson process. The target process X is produced as a conditional point

Fig 3. Result of the discrete-time estimator applied to independent homogeneous Poisson processes. The solid line

shows the average TE rate across multiple runs and the shaded area spans from one standard deviation below the mean

to one standard deviation above it. Plots are shown for four different values of the bin width Δt as well as different

source and target embedding lengths, l and m.

https://doi.org/10.1371/journal.pcbi.1008054.g003
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process where the instantaneous rate is a function of the time since the most recent source

event. More specifically:

lyjx<t ;y<t
½x<t; y<t� ¼

�ly

lxjx<t ;y<t
x<t; y<t

� �
¼ lx t1

y

h i
¼

l
base
x

l
base
x þm exp � 1

2s2 t1
y �

tcut
2

� �2
� �

� m exp � 1

2s2 �
tcut
2

� �2
h i

t1
y > tcut

t1
y � tcut:

8
>>>>>>><

>>>>>>>:

Here, t1
y is the time since the most recent source event. As a function of t1

y , the target spike rate

lxjx<t ;y<t
½x<t; y<t� rises from a baseline l

base
x at t1

y ¼ 0 to a peak at t1
y ¼ tcut=2, before falling back

to the baseline l
base
x from t1

y ¼ tcut onwards (see Fig 4A). We simulated this process using the

parameter values �ly ¼ 0:5, m = 5, tcut = 1, l
base
x ¼ 0:5 and σ2 = 0.01. This simulation was per-

formed using a thinning algorithm [54]. Specifically, we first generated the source process at rate

�ly. We then generate the target as a homogeneous Poisson process with rate λh such that lh >

lx½t1
y � for all values of t1

y . We then went back through all the events in this process and removed

each event with probability 1 � lx½t1
y �=lh. As with the previous example, once a pair of processes

had been generated, a contiguous sequence of NX target events was selected. Tests were con-

ducted for the values of NX 2 {1 × 102, 1 × 103, 1 × 104, 1 × 105, 1 × 106}. For the continuous-

time estimator, the number of placed sample points NU was set equal to NX (see Methods). At

each NX, the averages are taken over 1000, 100, 20, 20 and 20 tested process pairs respectively.

Spinney et al. [5] present a numerical method for calculating the TE for this process, based

on known conditional firing rates in the system under stationary conditions. For the parame-

ter values used here the true value of the TE is 0.5076 ± 0.001.

Given that we know that the dependence of the target on the source is fully determined

by the distance to the most recent event in the source, we used a source embedding length of

lY = 1. The estimators were run with three different values of the target embedding length lX 2
{1, 2, 3} (see Methods). For this example, the set of conditioning processesZ is empty.

Fig 4B shows the results of the continuous-time estimator applied to the simulated data. We

used the value of k = 4 and the Manhattan (ℓ1) norm. The results displayed are as expected in

that for a short target history embedding length of lX = 1 spike, the estimator converges to a

slight over-estimate of the TE. The overestimate at shorter target history embedding lengths lX
can be explained in that perfect estimates of the

PNX
i¼1

lnlxjx<t
½x<t� component require full

knowledge of the target past within the previous tcut = 1 time unit; shorter values of lX don’t

cover this period in many cases, leaving this rate underestimated and therefore the TE overesti-

mated. For longer values of lX 2 {2, 3} we see that they converge closely to the true value of the

TE. This is a further numerical confirmation of the consistency of the continuous-time estima-

tor. See S1 Fig for plots with a different value of lY.

Fig 4C shows the results of the discrete-time estimator applied to the same process, run for

three different values of the bin width Δt 2 {1, 0.5, 0.2, 0.1} time units. The number of bins

included in the history embeddings was chosen such that they extended one time unit back

(the known length of the history dependence). Smaller bin sizes could not be used as this leads

to undersampling of the possible history permutations, resulting in far inferior performance.

The plots are a clear demonstration that the discrete-time estimator is very biased and not con-

sistent. At a bin size of Δt = 0.2 it converges to a value around half the true TE. Moreover, its
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convergence is incredibly slow. At the bin size of Δt = 0.1 it would appear to not have con-

verged even after 1 million target events, and indeed it is not even converging to the true value

of the TE. The significance of the performance improvement by our estimator is explored fur-

ther in Discussion.

Identifying conditional independence despite strong pairwise correlations

The existence of a set of conditioning processes under which the present of the target compo-

nent is conditionally independent of the past of the source implies that, under certain assump-

tions, there is no causal connection from the source to the target [55, 56, 57] (see Methods for

details on the assumptions we use to conclude the ground truth of dependence/independence

in the examples we use here). More importantly, TE can be used to test for such conditional

independence (see Methods), thus motivating its use in directed functional (using pairwise

TE) and effective (using multivariate TE) network inference. A large challenge faced in testing

for conditional independence is correctly identifying “spurious” correlations, whereby condi-

tionally independent components might have a strong pairwise correlation. This problem is

particularly pronounced when investigating the spiking activity of biological neurons, as

Fig 4. The discrete-time and continuous-time estimators were run on coupled point processes for which the ground-truth value of the TE is

known. (A) shows the firing rate of the target process as a function of the history of the source. (B) and (C) show the estimates of the TE provided by the

two estimators. The solid blue line shows the average TE rate across multiple runs and the shaded area spans from one standard deviation below the

mean to one standard deviation above it. The black line shows the true value of the TE. For the continuous-time estimator the parameter values of NU/

NX = 1 and k = 4 were used along with the ℓ1 (Manhattan) norm. Plots are shown for three different values of the length of the target history component

lX. For the discrete-time estimator, plots are shown for four different values of the bin width Δt. The source and target history embedding lengths are

chosen such that they extend back one time unit (the known length of the history dependence).

https://doi.org/10.1371/journal.pcbi.1008054.g004
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populations of which often exhibit highly correlated behaviour through various forms of syn-

chrony [58, 59, 60] or common drivers [61, 62]. In this subsection, we demonstrate that the

combination of the presented estimator and surrogate generation scheme is particularly adept

at identifying conditional independence in the face of strong pairwise correlations on a syn-

thetic example. Moreover, the combination of the traditional discrete-time estimator and sur-

rogate generation techniques are demonstrated to be ineffective on this task.

The chosen synthetic example in this subsection models a common driver effect, where an

apparent directed coupling between a source and target is only due to a common parent. In

such cases, despite a strong induced correlation between the source history and the occurrence

of an event in the target, we expect to measure zero information flow when conditioning on

the common driver. Our system here consists of a quasi-periodic ‘mother’ process M (the com-

mon driver) and two ‘daughter’ processes, D1 and D2 (see Fig 5A for a diagram of the process).

The mother process contains events occurring at intervals of T + ξM, with the daughter pro-

cesses being noisy copies with each event shifted by an amount aDi
þ xDi

(ξM and xDi
are noise

terms). We also choose that aD1
< aD2

; so long as the difference between these aDi
values is

large compared to the size of the noise terms, this will ensure that the events in D1 precede

those in D2. When conditioning on the mother process, the TE from the first daughter to the

second, _TD1!D2 jM
, should be 0. However, accurately detecting this is difficult, as the history of

source daughter process D1 is strongly correlated with the occurrence of events in the second

Fig 5. Diagram of the noisy copy process. Events in the mother process M occur periodically with intervals T + ξM (ξM and xDi
are noise

terms). Events in the daughter processes D1 and D2 occur after each event in the mother process, at a distance of aDi
þ xDi

(with aD1
< aD2

). (A)

shows a graph of the dependencies with the labels on the edges representing delays. (B) shows a diagram of a representative spike raster.

https://doi.org/10.1371/journal.pcbi.1008054.g005
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daughter process D2—the events in D1 will precede those in D2 by the constant amount aD2
�

aD1
plus a small noise term xD2

� xD1
.

Due to the noise in the system, this level of correlation will gradually break down if we

translate the source daughter process relative to the others. This allows us to do two things.

Firstly, we can get an idea of the bias of the estimator on conditionally independent processes

for different levels of pairwise correlation between the history of the source and events in the

target. Secondly, we can evaluate different schemes of generating surrogate TE distributions as

a function of this correlation. We would expect that, for well-generated surrogates which

reflect the relationships to the conditional process, the TE estimates on these conditionally

independent processes will closely match the surrogate distribution.

We simulated this process using the parameter values of T = 1.0, aD1
¼ 0:25, aD2

¼ 0:5,

xD1
� N ð0; s2

DÞ and xD2
� N ð0; s2

DÞ where σD = 0.05. ξM was distributed as a left-truncated

normal distribution, with mean 0 and standard deviation σM = 0.05, with a left truncation

point of −T + ε, where ε = 1 × 10−6, ensuring that T + ξM> 0. Once the process had been simu-

lated, the source process D1 was translated by an amount ω. We used values of ω between -10T
and 10T, at intervals of 0.13T. For each such ω, the process was simulated 200 times. For each

simulation, the TE was estimated on the original process with the translation ω in the first

daughter as well as on a surrogate generated according to our proposed local permutation

scheme (see Methods for a detailed description). The parameter values of kperm = 10 and

NU,surrogate = NX were used. For comparison, we also generated surrogates according to the tra-

ditional source time-shift method, where this shift was distributed randomly uniform between

200 and 300 time units. A contiguous region of 50 000 target events was extracted and the esti-

mation was performed on this data. The continuous-time estimator used the parameter values

of lX ¼ lY ¼ lZ1
¼ 1, k = 10, NU = NX and the Manhattan (ℓ1) norm.

The results in Fig 6A demonstrate that the null distribution of TE values produced by the

the local permutation surrogate generation scheme closely matches the distribution of TE val-

ues produced by the continuous-time estimator applied to the original data. Whilst the raw TE

estimates retain a slight negative bias (explored further in Discussion), we can generate a bias-

corrected TE with the surrogate mean subtracted from the original estimate (giving an “effec-

tive transfer entropy” [63]). This bias-corrected TE as displayed in Fig 6B is consistent with

zero because of the close match between our estimated value and surrogates, which is the

desired result in this scenario. On the other hand, the TE values estimated on the surrogates

generated by the traditional time-shift method are substantially lower than those estimated on

the original process (Fig 6A); comparison to these would produce very high false positive rates

for significant directed statistical relationships (see the values of TE bias-corrected to these sur-

rogates, which are not consistent with 0, in Fig 6B). This is most pronounced for high levels of

pairwise source-target correlation (with translations ω near zero). The reason behind this dif-

ference in the two approaches is easy to intuit. The traditional time-shift method destroys all

relationship between the history of the source and the occurrence of events in the target. This

means that we are comparing estimates of the TE on the original processes (where there is a

strong pairwise correlation between the history of the source and the occurrence of target

events) with estimates of the TE on fully independent surrogate processes. Specifically, in dis-

crete time, the joint distribution of the present state of the target and the source history, condi-

tioned on the other histories decomposes as pðXt;Y<t jX<t;Z<tÞ ¼ pðXt jX<t;Z<tÞpðY<tÞ

when using a naive shift method.

By contrast, the proposed local permutation scheme produces surrogates where, although

the history of the source and the occurrence of events in the target are conditionally inde-

pendent, the relationship between the history of the source and the mediating variable,
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which in this case is the history of the mother process, is maintained. That is, the scheme

produces surrogates where (working in the discrete-time formalism for now) the joint dis-

tribution of the present of the target and the source history, conditioned on the other histo-

ries decomposes appropriately as pðXt;Y<t jX<t;Z<tÞ ¼ pðXt jX<t;Z<tÞpðY<t jX<t;Z<tÞ.

See Methods for the analogous decomposition within the continuous-time event-based TE

framework.

We then confirm that the proposed scheme is able to correctly distinguish between cases

where an information flow does or does not exist. To do so, we applied it to measure _TM!D2 jD1

Fig 6. Results of the continuous-time estimator run on a noisy copy process _TD1!D2 jM
, where conditioning on a

strong common driver M should lead to zero information flow being inferred. The translation ω of the source,

relative to the target and common driver, controls the strength of the correlation between the source and target

(maximal at zero translation). For each translation, the estimator is run on both the original process as well as

embeddings generated via two surrogate generation methods: our proposed local permutation method and a

traditional source time-shift method. The solid lines show the average TE rate across multiple runs and the shaded

areas span from one standard deviation below the mean to one standard deviation above it. The bias of the estimator

changes with the translation ω, and we expect the estimates to be consistent with appropriately generated surrogates

reflecting the same strong common driver effect. This is the case for our local permutation surrogates, as shown in (A).

This leads to the correct bias-corrected TE value of 0, as shown in (B).

https://doi.org/10.1371/journal.pcbi.1008054.g006
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in the above system, where we would expect to see non-zero information flow from the com-

mon driver or mother to one daughter process, conditioned on the other. The setup used was

identical to above however focussing on a translation of ω = 0, and for completeness, two dif-

ferent levels of noise in the daughter processes were used: σD = 0.05 and σD = 0.075. The trans-

lation of ω = 0 was chosen as, in the cases of zero information flows ( _TD1!D2jM
), the pairwise

source-target correlations will be at their highest, increasing the difficulty of correctly identify-

ing these zero flows.

We recorded the p values produced by the combination of the proposed continuous-time

estimator and the local permutation surrogate generation scheme when testing for conditional

information flow where it is expected to be non-zero through _TM!D2 jD1
, in addition to where

there is expected to be zero flow through _TD1!D2 jM
. These flows were measured in 10 runs each

and the distributions of the resulting p values are shown in Fig 7. We observe that our pro-

posed combination assigns a p value of zero in every instance of _TM!D2 jD1
as expected; whilst

for _TD1!D2 jM
it assigns p values in a broad distribution above zero, meaning the estimates are

consistent with the null distribution as expected.

We also applied the combination of the discrete-time estimator and the traditional time-

shift method of surrogate generation to this same task of distinguishing between zero and

non-zero conditional information flows. We used time bins of width Δt = 0.05 and history

lengths of 7 bins for the target, source and conditional histories. In order to increase the length

of history being considered, while keeping the length of the history embeddings constant,

application of the discrete-time estimator often makes use of the fact that the present state of

the target might be conditionally independent of the most recent source history due to, for

instance, transmission delays. In order to exploit this property of the processes, a lag parameter

is determined. This lag parameter is a number of time bins to skip between the target present

bin and the start of the source history embedding. We followed the current best practice in

determining this lag parameter [17]. That is, before calculating the conditional TE from the

source to the target, we determined the optimal lag between the conditional history and the

target by calculating the pairwise TE between the conditioning process and the target for all

lags between 0 and 10. The lag which produced the maximum such TE was used. We then

Fig 7. The p-values obtained when using continuous and discrete-time estimators to infer non-zero information

flow in the noisy copy process. The estimators are applied to both _TD1!D2 jM
(expected to have zero flow) and _TM!D2 jD1

(expected to have non-zero flow and therefore be indicated as statistically significant). Only the results from the

continuous-time estimator match these expectations. Ticks represent the particular combination of estimator and

surrogate generation scheme making the correct inference in the majority of cases when a cutoff value of p = 0.05 is

used. The dotted line shows p = 0.05.

https://doi.org/10.1371/journal.pcbi.1008054.g007
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calculated the conditional TE between the source and the target, using this determined lag for

the conditioning process, for all lags to the source process between 0 and 10. The TE was then

determined to be the maximum TE estimated over all these different lags applied to the source

process. This procedure was applied when estimating the TE on the original process as well as

on each separate surrogate. The results of this procedure are also displayed in Fig 7. Here we

see that the combination of the discrete-time estimator and the traditional time-shift method

of surrogate generation assigns a p value indistinguishable from zero to all individual runs of

both _TM!D2 jD1
and _TD1!D2 jM

. This result–contradicting the expectation that _TD1!D2 jM
is consis-

tent with zero–suggests that this benchmark approach has an incredibly high false positive rate

here.

Finally, we investigated whether the poor performance of the traditional combination of

the discrete-time estimator and source time-shift surrogate generation scheme was entirely

due to the surrogate generation scheme, or at least partially due to time discretisation. To do

so, we reran the experiments for the discrete-time estimator shown in Fig 7B, but replaced the

time-shift surrogate generation scheme for an approach which is equivalent to our local per-

mutation scheme, but operates on categorical variables (such as binary numbers). This is a

pre-existing conditional-permutation-based surrogate generation technique [64]. The results

were identical to those shown in Fig 7B for which the time-shift method of surrogate genera-

tion (the usual approach for TE analysis) was used. This suggests that time discretisation plays

a substantial role in the failure of the traditional approach on this example. That is, good per-

formance here also requires estimation in continuous time.

Scaling of conditional independence testing in higher dimensions

The previous subsection demonstrated the ability of the proposed continuous-time TE esti-

mator and local permutation surrogate generation scheme to perform conditional indepen-

dence tests despite strong pairwise correlations. The results and analysis there demonstrated

how the distribution of the TE values over the surrogates was able to match those over the

original time series in cases of zero TE, resulting in a broad distribution of p values between

0 and 1. It was further demonstrated that the distribution of p values obtained from cases

with a non-zero TE was clustered around 0, thus providing us with an effective test between

zero and non-zero TE. As argued in Introduction and Methods, this is equivalent to a test for

conditional independence.

One of the main applications of conditional independence tests is as a component in net-

work inference algorithms [7, 50, 65]. In such cases, the number of processes included in the

conditioning set can be as large as one less than the degree of the node. The previous subsec-

tion performed a detailed analysis of the distribution of TE values of the original time series,

TE values of the surrogate time series as well as the resulting p values in a case where there is

a single process in the conditioning set. It was also demonstrated that the inference of non-

zero TE could be performed successfully in this case. In this subsection, we study the scaling

of the inference of non-zero TE with the size of the conditioning set. As such, we provide a

demonstration of the suitability of the combination of the proposed estimator and surrogate

generation scheme as a component in a conditional-independence based network inference

algorithm.

We generate synthetic data on which to test this scaling. The simulated example consists of

a single Leaky-Integrate-and-Fire (LIF) [66] neuron and a set of stimuli to it. See Methods for

a full description of this model. The LIF neuron has parameters V0 = −65 mv, Vreset = −75 mv,

Vthreshold = −45 mv, a time constant of τ = 10 ms and a hard refractory period of 5 ms.
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Each stimulus is a separately generated inhomogeneous Poisson process, with an added

refractory period of 5 ms. All the stimuli have a common rate. This rate is constant across win-

dows of 0.5s and is generated uniformly randomly between 0 Hz and 40 Hz. As in the above

example of unidirectionally coupled process pairs, the stimuli are generated using a thinning

algorithm. The process is first generated as a homogeneous Poisson process with rate R> 40

Hz. Spikes are excluded with probability 1 − ri/R, where ri is the common rate of the window

of the spike. All spikes within the refractory period of the previous spike are also excluded. The

stimuli are divided into a set of background processes B, with |B| 2 {6, 12, 18}, and a source Y.

One third of the stimuli in the background set are inhibitory and remainder are excitatory.

The strength of the connection Vconnect associated with each stimulus was adjusted by hand

such that the average firing rate of the target LIF neuron was around 20 Hz when only the sti-

muli in the background set were connected to the target (that is, the extra source stimulus was

unconnected). The resulting connection strengths used are 18 mV, 13 mV and 10 mV for each

of the three sizes of the background set, respectively. All connections have a fixed delay of 2

ms. The source stimulus Y is set to be either inhibitory, excitatory or is otherwise unconnected

to the target LIF neuron.

In the case where the source neuron is unconnected, when conditioning on all the processes

in the background set, the TE between the source and the target LIF neuron is zero. In the

cases where it is connected in either an inhibitory or excitatory manner, the TE will be non-

zero. This follows from the assumptions made explicit in Methods relating conditional inde-

pendence and dependence to network structure. We tested the ability of both estimator and

surrogate generation scheme combinations to correctly infer zero or non-zero TE.

For the continuous-time estimator and local permutation surrogate generation scheme we

used the parameter values of lX ¼ lY ¼ lZi ¼ 1, k = 5, kperm = 10, NU/NX = 1 and NU,surrogate/NX

= 10. The discrete-time estimator used the same history embedding length for the source, tar-

get and conditioning processes. This was set at 3, 2 or 1 bins for each of the conditioning set

sizes (6, 12 or 18), respectively. These embedding lengths were chosen so as to keep the total

number of bins used across the target, source and conditioning processes below 25. Using

more than 25 bins resulted in the space of possible history permutations growing too large,

leading to undersampling and far inferior performance. The bin width Δt was set at 8 ms, 11

ms and 22 ms for each of these three embedding lengths. These bin widths were chosen so that

the history would extend back a distance of at least twice the time constant of the LIF target

neuron, plus the transmission delay from the stimuli.

For both combinations, 100 surrogates and a threshold of p = 0.05 for the inference of non-

zero TE were used. Tests were conducted for the number of target spikes NX 2 {100, 500, 1000,

2000, 5000, 10000}. For each data set size, both approaches were tested on 30 independent sim-

ulations for each setting of Y as either inhibitory, excitatory or unconnected.

Fig 8 shows the results of running the two approaches on the simulated data for different

data set sizes. The combination of the discrete-time estimator and the traditional time-shift

surrogate generation scheme is found to be inadequate. For data set sizes of NX� 1000, we see

that this approach assigns non-zero TE to all 30 runs of every connection class (excitatory,

inhibitory or absent) at each size, despite the fact that the 30 runs on absent connections corre-

spond to cases of zero TE. Moreover, in the case of absent connections, the direction of con-

vergence is in the wrong direction—this approach performs worse as we provide more data.

This is likely due to this scheme’s poor ability to identify conditional independence in the

presence of pairwise correlations, as we have already seen in the previous subsection. In the

instances where the source is not connected to the target, its spiking activity will still be corre-

lated with that of the target, due to it sharing a common rate with the background processes.
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S4 Fig displays the same results as Fig 8, but in the simpler case where all stimuli have a con-

stant rate of 20 Hz. In this case, with the pairwise correlations removed, we see that the dis-

crete-time estimator is capable of more consistently correctly identifying cases of zero TE,

although it still displays a substantially inflated false positive rate compared to the expected

value of 0.05. Moreover, it is worth emphasising that this is an unrealistic scenario as it is

assuming completely independent sources, whereas the activity of biological neurons are

known to exhibit a wide variety of correlations in their activities [58, 59, 60].

Returning to Fig 8A, in the cases where the conditioning set contains 6 or 12 processes, the

combination of the continuous-time estimator and local permutation surrogate generation

scheme is able to correctly identify zero versus non-zero TE provided that it has access to

around 10000 target spikes. In the case where the conditioning set contains 18 processes, it is

capable of correctly identifying non-zero TE for excitatory connections as well as correctly

identifying zero TE in the case of an unconnected source. In all combinations of numbers of

spikes and number of conditionals, our method is able to control the false positive rate at the

prescribed level. This is crucial: in the context of network inference applied to neuroscientific

data, false positives are considered more detrimental than false negatives [67]. This is due to

such false positives often existing between communities and thus resulting in substantial errors

in the inferred topology. With that said, the true positive rate is below 50% for inhibitory

sources, though it is observed to rise with an increase in the number of target spikes being con-

sidered. Importantly, were a greedy approach to effective network inference to be used, as in

Fig 8. The scaling of the combination of the continuous-time estimator and the local permutation surrogate generation scheme on

correctly identifying conditional independence relationships with increasing dimension and data size (A). This is compared with

the performance of the combination of the discrete-time estimator with the traditional time-shift surrogate generation procedure (B).

The y axis represents the number of background processes being conditioned on. Above a certain moderate threshold of data size, the

discrete-time approach infers a non-zero TE in all of the runs, including those where the source was in fact not connected to the target.

This renders it impractical for this task.

https://doi.org/10.1371/journal.pcbi.1008054.g008
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[7, 50], whereby edges are iteratively added to the conditioning set based on their TE value,

then the majority of conditional independence tests will be performed at a dimension well

below the degree of the node. In order to measure the performance of our proposed approach

at the start of this process (where no sources have yet been selected and conditioned on), S5

Fig displays the same results as Fig 8 but where the background processes are not included in

the conditioning set. Here we see higher true positive rates at lower numbers of spikes, with

the inhibitory connections being easily identified. This implies that, when used as a compo-

nent in such a greedy algorithm, our approach will be able to identify the principal sources

whilst controlling the false-positive rate, although it may miss some true sources in higher

dimensions.

Finally, we investigated whether the poor performance of the traditional combination of

the discrete-time estimator and source time-shift surrogate generation scheme was entirely

due to the surrogate generation scheme. That is, could it be rescued by using a better surrogate

generation technique? We therefore repeated the discrete-time experiments shown in Fig 8, S4

and S5 Figs, but replaced the time-shift surrogate generation scheme for an approach which is

equivalent to our local permutation scheme, but operates on categorical variables (such as

binary numbers). This is an established conditional-permutation based surrogate generation

scheme [64]. The results of these runs are displayed in S6 Fig. We observe qualitatively similar

results for the use of these two surrogate generation techniques. The only substantial difference

is that the conditional-permutation based scheme has lower true positive rates for inhibitory

connections when less data is available under all setups. This implies that the poor perfor-

mance of the traditional approach is largely due to time-discretisation. Once again, we see that

good performance here requires estimation in continuous time.

Testing for conditional independence on the simulated pyloric circuit of

the crustacean stomatogastric ganglion

The pyloric circuit of the crustacean stomatogastric ganglion has received significant attention

in terms of statistical modelling and has been proposed as a benchmark circuit on which to

test spike-based connectivity inference techniques [68, 69]. Such modelling attempts have

faced substantial difficulties. For instance, it has been shown that Granger causality is unable

to infer the connectivity of this network [68] (Granger causality and TE are equivalent for lin-

ear dynamics with Gaussian noise [70]). We demonstrate here that our proposed approach is

able to correctly infer the conditional dependence and independence relationships in this cir-

cuit (which, as per the previous examples, are expected to match connectivity under the condi-

tions of this experiment, see Methods).

The crustacean stomatogastric ganglion [49, 71, 72] has received substantial research atten-

tion as a simple model circuit. The fact that its full connectivity is known is of great use for

modelling and statistical analysis. The pyloric circuit is a partially independent component of

the greater circuit and consists of an Anterior Burster (AB) neuron, two Pyloric Driver (PD)

neurons, a Lateral Pyloric (LP) neuron and multiple Pyloric (PY) neurons. As the AB neuron

is electrically coupled to the PD neurons and the PY neurons are identical, for the purposes of

modelling, the circuit is usually represented by a single AB/PD complex, and single LP and PY

neurons [68, 69, 73, 74].

The AB/PD complex undergoes self-sustained rhythmic bursting. It inhibits the LP and PY

neurons through slow cholinergic and fast glutamatergic synapses. These neurons then burst

on rebound from this inhibition. The PY and LP neurons also inhibit one another through fast

glutamatergic synapses and the LP neuron similarly inhibits the AB/PD complex.
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Fig 9 shows sample membrane potential traces from simulations of this circuit as well as a

connectivity diagram. Despite its small size, inference of the relationships between neurons is

challenging [68, 69] due to the fact that it is highly periodic. Although there is no structural

connection from the PY to the ABPD neuron (implying conditional independence due to full

observability and the causal Markov assumption), there is a strong, time-directed, correlation

between their activity—the PY neuron always bursts shortly before the ABPD. Recognising

Fig 9. Results of both estimator and surrogate generation combinations being applied to data from simulations of

a biophysical model of a neural circuit inspired by the pyloric circuit of the crustacean stomatogastric ganglion.

The circuit, shown in (A), is fully connected apart from the missing connection between the PY neuron and the AB/

PD complex, and generates membrane potential traces which are bursty and highly-periodic with cross-correlated

activity. The distribution of p values from the combination of the continuous-time estimator and local permutation

surrogate generation scheme are shown in (C). They demonstrate that this combination is capable of correctly

identifying the conditional dependence and independence relationships in this circuit in all runs, apart from two false

negatives. By contrast, the distribution of p values produced by the combination of the discrete-time estimator and the

traditional source time-shift surrogate generation method shown in (D) mis-specified the relationship from the PY to

the ABPD in every run. Ticks represent the particular combination of estimator and surrogate generation scheme

making the correct inference of dependence or independence in the majority of cases when a cutoff value of p = 0.05 is

used.

https://doi.org/10.1371/journal.pcbi.1008054.g009
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that this is a spurious correlation, and that the AB/PD complex is thus conditionally indepen-

dent of the history of the PY neuron, requires fully resolving the influence of the AB/PD’s his-

tory on itself as well as that of the LP on the AB/PD. To further complicate matters, the

dependence implied by the connection between the LP and ABPD neurons (along with the

contraposition of our assumption of faithfulness) is very challenging to detect. The AB/PD

complex will continue bursting regardless of any input from the LP. Correctly inferring this

dependence requires detecting the subtle changes in the timing of AB/PD bursts that result

from the activity of the LP.

Previous work on statistical modelling of the pyloric circuit has used both in vitro and in sil-
ico data [68, 69]. We ran simulations of biophysical models inspired by this network, similar to

those used in [68] (see S1 Text). Attempts were then made to identify the conditional depen-

dence/independence relationships in the network by detecting non-zero conditional informa-

tion flow from the spiking event times produced by the simulations. This was done by

estimating the TE from the source to the target, conditioned on the activity of the third

remaining neuron for every source-target pair. Both the combination of the proposed continu-

ous-time estimator and local permutation surrogate generation scheme and the combination

of the discrete-time estimator and source time-shift surrogate generation scheme were applied

to this task. As the dynamics of the network are fully captured in the three neurons of the net-

work (we have full observability), and due to the causal Markov assumption, in the case where

there is no causal directed connection from a source to a target, the target’s present will be con-

ditionally independent of the source’s past. By the contraposition of the faithfulness assump-

tion, in the presence of a connection the target’s current state will be dependent on the

source’s past (see Methods).

Both combinations were applied to nine independent simulations (ten simulations were

instantiated but one was discarded due to early termination from a numerical instability) of

the network and the number of target events NX = 2 × 104 was used. For the continuous-

time estimator the parameter values of lX ¼ lY ¼ lZ1
¼ 3, k = 10, NU = NX, NU,surrogate = 5NX

and kperm = 10 were used along with the Manhattan (ℓ1) norm (see Methods). The discrete-

time estimator made use of a bin size of Δt = 0.05s and history embedding lengths of seven

bins for each of the source, target and conditioning processes. Searches were performed to

determine the optimum embedding lag for both the source and conditioning histories (as

above) with a maximum search value of 20 bins being used. We designed the search proce-

dure to include times up to the inter-burst interval (around 1 time unit), which placed an

effective lower bound on the width of the time bins (as bin sizes below Δt = 0.05s resulted in

impractically large search spaces). For both estimators, p values were inferred from 100

independently generated surrogates (see Methods). The source time-shift surrogate genera-

tion scheme used time shifts distributed uniformly randomly between 200 and 400 time

units.

Fig 9C and 9D show the distributions of p values resulting from the application of both esti-

mator and surrogate generation scheme combinations. The continuous-time estimator and

local permutation surrogate generation scheme were able to correctly infer the dependence/

independence relationships in the network in the majority of cases (indicated by p-values

approaching 0 for the true positives, and spread throughout [0, 1] for the true negatives). On

the other hand, the discrete-time estimator and source time-shift surrogate generation scheme

produced an erroneous inference on every run: a dependence between the PY neuron and the

AB/PD complex. S7 and S8 Figs contain plots showing runs of the continuous-time estimator

using different values of the parameters lX, lY, lZ1
and NX. The results are qualitatively very
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similar to those presented in Fig 9C, showing that, on this example, our methodology is robust

to these parameter choices.

As in the previous subsections, we investigated whether the poor performance of the tradi-

tional combination of the discrete-time estimator and source time-shift surrogate generation

scheme was entirely due to the surrogate generation scheme, or at least partially due to time

discretisation. To do so, we reran the experiments for the discrete-time estimator shown in Fig

9D, but replaced the time-shift surrogate generation scheme for an approach which is equiva-

lent to our local permutation scheme, but operates on categorical variables (such as binary

numbers). As previously, this is a pre-existing conditional-permutation-based surrogate gener-

ation method [64]. The results were identical to those shown in Fig 9D for which the time-

shift method of surrogate generation (the usual approach for TE analysis) was used. This sug-

gests that time discretisation plays a substantial role in the failure of the traditional approach

on this example. Mirroring our previous findings, we observe that good performance here

requires estimation in continuous time.

On this particular example, the inference of all connections using the continuous-time

approach took 13 minutes and 6 seconds when using 20 cores of an Intel Xeon E5-2670. The

discrete-time approach took around 37 minutes and 4 seconds when running on the same

hardware. We would, however, point out that the computational requirements for both meth-

ods are highly sensitive to their parameters. The discrete-time approach will be particularly

sensitive to Δt and the number of lag settings searched over. The continuous-time approach is

particularly sensitive to the embedding lengths.

Discussion

Despite transfer entropy being a popular tool within neuroscience and other domains of

enquiry [7, 8, 9, 13, 14, 15, 16, 17, 18, 19], it has received more limited application to event-

based data such as spike trains. This is at least partially due to current estimation techniques

requiring the process to be recast as a discrete-time phenomenon. The resulting discrete-time

estimation task has been beset by difficulties including a lack of consistency, high bias, slow

convergence and an inability to capture effects which occur over fine and large time scales

simultaneously.

This paper has built on recent work presenting a continuous-time formalism for TE [5] in

order to derive an estimation framework for TE on event-based data in continuous time. This

framework has the unique advantage of only estimating quantities at events in the target pro-

cess alongside efficient representation of the data as inter-spike intervals, providing a signifi-

cant computational advantage. Instead of comparing spike rates conditioned on specific

histories at each target spiking event, we use a Bayesian inversion to instead make the empiri-

cally easier comparison of probabilities of histories at target events versus anywhere else along

the target process. This comparison, using KL divergences, is made using k-NN techniques,

which brings desirable properties such as efficiency for the estimator. This estimator is prov-

ably consistent. Moreover, as it operates on inter-event intervals, it is capable of capturing rela-

tionships which occur with fine time precision along with those that occur over longer time

distances.

The estimator was first evaluated on two simple examples for which the ground truth is

known: pairs of independent Poisson processes (first subsection of Results) as well as pairs

of processes unidirectionally coupled through a simple functional relationship (second sub-

section of Results). The current state-of-the-art in discrete-time estimation was also applied

to these processes. It was found that the continuous-time estimator had substantially lower

bias than the discrete-time estimator, converged orders of magnitude faster (in terms of the
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number of sample spikes required), and was relatively insensitive to parameter selections.

Moreover, these examples provided numerical confirmation of the consistency of the contin-

uous-time estimator, and further demonstration that the discrete-time estimator is not con-

sistent. The latter simple example highlighted the magnitude of the shortcomings of the

discrete-time estimator. In the authors’ experience, spike-train datasets which contain 1 mil-

lion spiking events for a single neuron are vanishingly rare. However, even in the unlikely cir-

cumstance that the discrete-time estimator is presented with a dataset of this size, as in the

second subsection of Results, it could not accurately estimate the TE for a simple one-way

relationship between only two neurons. Moreover, this example neatly demonstrates a

known [31], notable problem with the use of the discrete-time estimator, which is that it pro-

vides wildly different estimates for different values of Δt. Whilst the underlying theory [5]

suggests that in principle taking the discrete time TE rate as Δt! 0 converges with the con-

tinuous time formalism, the use of smaller Δt values leads to issues in undersampling and

inability to represent patterns on long time scales. In real-world applications, where the

ground truth is unknown, there is no principled method for choosing which resulting TE

value from the various bin sizes to use.

One of the principal use-cases of TE is the inference of non-zero information flow. As the

TE is estimated from finite data, we require a manner of determining the statistical significance

of the estimated values. Traditional methods of surrogate generation for TE either shift the

source in time, or shuffle the source embeddings. However, whilst this retains the relationship

of the target to its past and other conditionals, it completely destroys the relationship between

the source and any conditioning processes, which can lead to very high false positive rates as

detailed in the third subsection of Results and Methods. We developed a local permutation

scheme, based on [48], for use in conjunction with this estimator which is able to maintain the

relationship of the source history embeddings with the history embeddings of the target and

conditioning processes. The combination of the proposed estimator and this surrogate genera-

tion scheme were applied to an example where the history of the source and the occurrence of

events in the target are highly correlated, but conditionally independent given their common

driver (third subsection of Results). The established time-shift method for surrogate genera-

tion produced a null distribution of TE values substantially below that estimated on the origi-

nal data, incorrectly implying non-zero information flow. Conversely, the proposed local

permutation method produced a null distribution which closely tracked the estimates on the

original data. The proposed combination was also shown to be able to correctly distinguish

between cases of zero and non-zero information flow. When applied to the same example, the

combination of the discrete-time estimator and the traditional method of time-shifted surro-

gates inferred the existence of information flow in all cases, even when no such flow was pres-

ent. The scaling of these results with the size of the conditioning set was investigated in the

fourth subsection of Results. Here, in a highly simplified model of the input-output relation-

ships of a neuron, it was demonstrated that the proposed method could correctly identify con-

ditional dependence vs. independence in cases of up to 12 conditioning processes with access

to 104 target spikes. Moreover, it maintained robustness to pairwise correlations despite condi-

tional independence. Again, the traditional combination of discrete-time estimator and time

shifted surrogates was found to be lacking.

Finally, our proposed approach was applied to inferring the dependence/independence

relationships in a more biologically faithful example in the fifth subsection of Results. For this

purpose, we made use of models inspired by the pyloric circuit of the crustacean stomatogas-

tric ganglion. The full observability and large noise provided by this model allowed us to

conclude that the conditional dependence/independence relationships would match the

underlying connectivity of the model, thus providing us with a ground truth against which to
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test our approach. Statistical modelling of this network is challenging due to its highly periodic

dynamics. For instance, attempts to use Granger causality, using a more established estimator,

to infer its connectivity have been unsuccessful [68]; furthermore, we showed that the discrete-

time binary-valued TE estimator (with time-shifted surrogates) also could not successfully

infer the independence and dependence relationships in the network. It is worth highlighting

in this context that Granger causality and TE are equivalent for linear dynamics with Gaussian

noise [70]. Given that discrete-time TE (capable of capturing nonlinear relationships) failed on

this network, we suspect that the reason for the earlier failures of Granger causality applied to

this network were due, at least in part, to time binning and not entirely due to its inability to

find nonlinear relationships. Despite these challenges, our combination of continuous-time

estimator and surrogate generation scheme was able to correctly infer the relationships implied

by the pyloric network. This provides an important validation of the efficacy of our presented

approach on a challenging example of representative biological spiking data.

This work represents a substantial step forward in the estimation of information flows from

event-based data. To the best of the authors’ knowledge it is the first consistent estimator of TE

for event-based data. That is, it is the first estimator which is known to converge to the true

value of the TE in the limit of infinite data, let alone to provide efficient estimates with finite

data. As demonstrated in the first and second subsections of Results it has substantially favour-

able bias and convergence properties as compared to the discrete-time estimator. The fact that

this estimator uses raw inter-event intervals as its history representation allows it to efficiently

capture relevant information from the past of the source, target and conditional processes.

This allows it to simultaneously measure relationships that occur both with very fine time

scales as well as those that occur over long intervals. This was highlighted in the fifth subsec-

tion of Results, where it was shown that our proposed approach is able to correctly infer the

conditional dependence/independence relationships implied by a model inspired by the pylo-

ric circuit of the crustacean stomatogastric ganglion. The inference of these relationships

requires capturing subtle changes in spike timing. However, its bursty nature means that there

are long intervals of no spiking activity. This is contrasted with the poor performance of the

discrete-time estimator on this same task, as above. The use of the discrete-time estimator

requires a hard trade-off in the choice of bin size: small bins will be able to capture relation-

ships that occur over finer timescales but will result in an estimator that is blind to history

effects existing over large intervals. Conversely, whilst larger bins might be capable of captur-

ing these relationships occurring over larger intervals, the estimator will be blind to effects

occurring with fine temporal precision.

Further, real-world data is of course sampled at some limited resolution; this means that any

estimator cannot detect TE in the underlying process associated with smaller time scales than

available in the data, though the consistency property of our continuous-time estimator means

that it will converge to the TE value of the process at the available resolution. Of course, as per

our Introduction, where temporal resolution in recordings is very poor (such as in calcium

imaging experiments) the aforementioned trade-offs for the discrete-time estimator are likely

to be less problematic and the advantages of the continuous-time estimator less pronounced.

To the best of our knowledge, this work showcases the first use of a surrogate generation

scheme for statistical significance estimates which correctly handles strong source-conditional

relationships for event-based data. This has crucial practical benefit in that it greatly reduces

the occurrence of false positives in cases where the history of a source is strongly correlated

with the present of the target, but conditionally independent.

We make note of the fact that inspection of some plots, notably Fig 6 shows that, in some

cases, the estimator can exhibit small though not insignificant bias. Indeed, similar biases can

readily be demonstrated with the standard KSG estimator for transfer entropy on continuous
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variables in discrete time, in similar circumstances where a strong source-target relationship is

fully explained by a conditional process. The reason for the small remaining bias is that while

the underlying assumption of the nearest neighbour estimators is of a uniform probability

density within the range of the k nearest neighbours, strong conditional relationships tend to

result in correlations remaining between the variables within this range. For the common use-

case of inferring non-zero information flows this small remaining bias will not be an issue as

the proposed method for surrogate generation is capable of producing null distributions with

very similar bias properties. Furthermore, such bias can be removed from an estimate by sub-

tracting the mean of the surrogate distribution (as shown via the effective transfer entropy [63]

in the third subsection of Results). However, it is foreseeable that certain scenarios might bene-

fit from an estimator with lower bias, without having to resort to generating surrogates. In

such cases it will likely prove beneficial to explore the combination of various existing bias

reduction techniques for k-NN estimators with the approach proposed here. These include

performing a whitening transformation on the data [75], transforming each marginal distribu-

tion to uniform or exploring alternative approaches to sharing radii across entropy terms (see

Methods). The authors believe that the most probable cause of the observed bias in the case of

strong pairwise correlations is that these correlations cause the assumption of local uniformity

(see Methods) to be violated. Gao, Ver Steeg and Galstyan [76] have proposed a method for

reducing the bias of k-NN information theoretic estimators which specifically addresses cases

where local uniformity does not apply. The application of this technique to our estimator

holds promise for addressing this remaining bias.

We foresee that one of the more useful applications of the conditional independence test

that the combination of estimator and surrogate generation scheme provides will be network

inference. Strictly speaking, statistical methods such as these produce effective network

models which are not generally expected to provide precise matches to underlying structural

connectivity. Under certain idealised circumstances though, as implemented in our experi-

ments (see Methods), the two can be expected to match, and this provided for the important

validation that our methods detect directed conditional independence where it exists in

these small networks. The extent to which our method can be validated in this manner on

larger more latent-confounded networks, and more importantly the extent to which the net-

work models it infers correlate with underlying structure outside of such idealised condi-

tions including faithfulness (see Methods), remain open questions. This is an intended focus

of future work. Indeed, the inference of the connectivity of spiking neural networks from

their activity is an active area of research [77, 78] which includes recently proposed continu-

ous-time approaches [79, 80]. However, any conditional independence test will suffer from

the curse of dimensionality. This means that performing effective network inference

requires pairing the conditional independence test with a suitable (conditional-indepen-

dence-based) network inference algorithm which reduces the dimensionality of the tests.

Fortunately, a variety of such algorithms exist [65] (see Runge [81] for a methodology for

reducing the dimensionality outside of network inference). In particular, the greedy algo-

rithm [7, 50], which has already been validated for use in combination with TE (for different

types of dynamics on larger networks), holds particular promise. Further, it was recently

shown by Das and Fiete [51] that popular existing approaches to the inference of spiking

neural networks, such as generalised linear models and maximum entropy-based reverse

Ising inference, had very high false-positive rates in instances where the activity of uncon-

nected neurons was highly correlated. Given our focus on demonstrating that our condi-

tional independence test is highly robust to strong pairwise correlations despite conditional

independence, we believe that the work presented in this paper holds great promise towards

making progress on this important issue.
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Finally, it is worth pointing out that, as well as presenting a specific estimator and surro-

gate generation algorithm, this paper is also presenting an approach to testing for time-

directed statistical dependence in spike trains much more generally. Any estimator of KL

divergence can be plugged into our framework by being applied to estimate the two KL diver-

gence terms appearing in Eq (10). Moreover, a different surrogate generation scheme could

be used, so long as it factorises the distribution of histories as specified in Eq (20) (see Meth-

ods). There has been substantial recent progress towards the efficient estimation of diver-

gences [82, 83] in high dimension, pointing to the future promise of this work being applied

in the context of network inference.

Methods

There are a variety of approaches available for estimating information theoretic quantities

from continuous-valued data [84]; here we focus on methods for generating estimates _̂TY!XjZ

of a true underlying (conditional) transfer entropy _TY!XjZ.

The nature of estimation means that our estimates _̂TY!XjZ may have a bias with respect

to the true value _TY!XjZ, and a variance, as a function of some metric n of the size of the

data being provided to the estimator (we use the number of spikes, or events, in the target

process). The bias is a measure of the degree to which the estimator systematically deviates

from the true value of the quantity being estimated, for finite data size. It is expressed as

biasð _̂TY!XjZÞ ¼ E½ _̂TY!XjZ� �
_TY!XjZ. The variance of an estimator is a measure of the

degree to which it provides different estimates for distinct, finite, samples from the same

process. It is expressed as varianceð _̂TY!XjZÞ ¼ E½ _̂T 2
Y!XjZ� � E½ _̂TY!XjZ�

2
. Another important

property is consistency, which refers to whether, in the limit of infinite data points, the

estimator converges to the true value. That is, an estimator is consistent if and only if

limn!1
_̂TY!XjZ ¼

_TY!XjZ.

The first half of this methods section is concerned with the derivation of a consistent esti-

mator of TE which operates in continuous time. In order to be able to test for non-zero infor-

mation flow given finite data, we require a surrogate generation scheme to use in conjunction

with the estimator. Such a surrogate generation scheme should produce surrogate history sam-

ples that conform to the null hypothesis of zero information flow. The second half of this sec-

tion will focus on a scheme for generating these surrogates.

The presented estimator and surrogate generation scheme have been implemented in a

software package which is freely available online (see the Implementation subsection).

Continuous-time estimator for transfer entropy between spike trains

In the following subsections, we describe the algorithm for our estimator _̂TY!XjZ for the trans-

fer entropy between spike trains. We first outline our choice of a kNN type estimator, due to

the desirable consistency and bias properties of this class of estimator. In order to use such an

estimator type, we then describe a Bayesian inversion we apply to the definition of transfer

entropy for spiking processes, which allows us to operate on probability densities of histories

of the processes, rather than directly on spike rates. This results in a sum of differential entro-

pies to which kNN estimator techniques can be applied. The evaluation of these entropy terms

using kNN estimators requires a method for sampling history embeddings, which is presented

before attention is turned to a technique for combining the separate kNN estimators in a man-

ner that will reduce the bias of the final estimate.
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Consideration of estimator type. Although there has been much recent progress on

parametric information-theoretic estimators [85], such estimators will always inject modelling

assumptions into the estimation process. Even in the case that large, general, parametric mod-

els are used—as in [82]—there are no known methods of determining whether such a model is

capturing all dependencies present within the data.

In comparison, nonparametric estimators make less explicit model assumptions regarding

the probability distributions. Early approaches included the use of kernels for the estimation of

the probability densities [86], however this has the disadvantage of operating at a fixed kernel

‘resolution’. An improvement was achieved by the successful, widely applied, class of nonpara-

metric estimators making use of k-nearest-neighbour statistics [53, 87, 88, 89], which dynami-

cally adjust their resolution given the local density of points. Crucially, there are consistency

proofs [88, 90] for kNN estimators, meaning that these methods are known to converge to the

true values in the limit of infinite data size. These estimators operate by decomposing the

information quantity of interest into a sum of differential entropy terms H�. Each entropy

term is subsequently estimated by estimating the probability densities p(xi) at all the points in

the sample by finding the distances to the kth nearest neighbours of the points xi. The average

of the logarithms of these densities is found and is adjusted by bias correction terms. In some

instances, most notably the Kraskov-Stögbauer-Grassberger (KSG) estimator for mutual infor-

mation [53], many of the terms in each entropy estimate cancel and so each entropy is only

implicitly estimated.

Such bias and consistency properties are highly desirable–given the efficacy of kNN estima-

tors, it would be advantageous to be able to make use of such techniques in order to estimate

the transfer entropy of point processes in continuous time. However the continuous time for-

mulations in Eqs (3) and (4) contain no entropy terms, being written in terms of rates as

opposed to probability densities. Moreover, the estimators for each differential entropy term

H� in a standard kNN approach operate on sets of points inRd
, and it is unclear how to sample

points so as to get an unbiased estimate of the rate.

The following subsection is concerned with deriving an expression for continuous-time

transfer entropy on spike trains as a sum of H� terms, in order to define a kNN type

estimator.

Formulating continuous-time TE as a sum of differential entropies. Consider two

point processes X and Y represented by sets of real numbers, where each element represents

the time of an event. That is, X 2 RNX and Y 2 RNY . Further, consider the set of extra condi-

tioning point processesZ ¼ fZ1;Z2; . . . ;ZnZ
g, Zi 2 R

NZi . We can define a counting process
NX(t) on X. NX(t) is a natural number representing the ‘state’ of the process. This state is incre-

mented by one at the occurrence of an event. The instantaneous firing rate of the target is

then λX(t) = limΔt!0 p(NX(T + Δt) − NX(t) = 1)/Δt. Using this expression, Eq (4) can then be

rewritten as

_TY!XjZ ¼
�lX lim

Dt!0
EPX

ln
pUðNXðxþ DtÞ � NXðxÞ ¼ 1 j x<x; y<x;z<xÞ

pUðNXðxþ DtÞ � NXðxÞ ¼ 1 j x<x;z<xÞ

� �

: ð6Þ

Here, �lX is the average, unconditional, firing rate of the target process, that is

�lX ¼ limNX ;t!1
NX=t. In practice this is estimated through a trivial bias free estimate

e.g. �̂lX ¼ ðNX � 1Þ=t with t ¼ xNX
� x1. x<x 2 X<X, y<x 2 Y<X andz<x ¼

fz1;<x; z2;<x; . . . ; znz;<xg 2Z<X are the histories of the target, source and conditioning pro-

cesses, respectively, at time x. The probability density pU is taken to represent the probability

density at any arbitrary point in the target process, unconditional of events in any of the
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processes. Conversely, pX is taken to represent the probability density of observing a

quantity at target events. The expectation EPX
is taken over this distribution. That is

EPX
½f ðYÞ� ¼

R

Yf ðyÞpXðyÞdy.

By applying Bayes’ rule we can make a Bayesian inversion to arrive at:

_TY!XjZ ¼
�lX lim

Dt!0
EPX

ln
pUðx<x; y<x;z<x j NXðxþ DtÞ � NXðxÞ ¼ 1Þ

pUðx<x;z<x j NXðxþ DtÞ � NXðxÞ ¼ 1Þ

�

�
pUðx<x;z<xÞ

pUðx<x; y<x;z<xÞ

�

:

ð7Þ

Eq (7) can be written as

_TY!XjZ ¼
�lXEPX

ln
pXðx<x; y<x;z<xÞ

pXðx<x;z<xÞ
þ ln

pUðx<x;z<xÞ

pUðx<x; y<x;z<xÞ

� �

: ð8Þ

Eq (8) can be written as a sum of differential entropy and cross entropy terms

_TY!XjZ ¼
�lX ½� HðX<X;Y<X;Z<XÞ þHðX<X;Z<XÞ

þHPU
ðX<X;Y<X;Z<XÞ � HPU

ðX<X;Z<XÞ�:
ð9Þ

Here, H refers to an entropy term and HPU
refers to a cross entropy term. More specifically,

HðX<X;Z<XÞ ¼ �
R
pXðx<x;z<xÞ ln pXðx<x;z<xÞdx<xdz<x

and

HPU
ðX<X;Z<XÞ ¼ �

R
pXðx<x;z<xÞ ln pUðx<x;z<xÞdx<xdz<x:

It is worth noting in passing that Eq (8) can also be written as a difference of Kullback-Lei-

bler divergences:

_TY!XjZ ¼
�lX½DKLðPXðX<X;Y<X;Z<XÞjjPUðX<X;Y<X;Z<XÞÞ

� DKLðPXðX<X;Z<XÞjjPUðX<X;Z<XÞÞ�:
ð10Þ

The expressions in Eqs (9) and (10) represent a general framework for estimating the

TE between point processes in continuous time. Any estimator of differential entropy Ĥ
which can be adapted to the estimation of cross entropies can be plugged into Eq (9) in

order to estimate the TE. Similarly, any estimator of the KL divergence can be plugged into

Eq (10).

Constructing kNN estimators for differential entropies and cross entropies. Following

similar steps to the derivations in [53, 75, 90], assume that we have an (unknown) probability

distribution μ(x) for x 2 Rd. Note that here X is a general random variable (not necessarily a

point process). We also have a set X of NX points drawn from μ. In order to estimate the differ-

ential entropy H we need to construct estimates of the form

ĤðXÞ ¼ �
1

NX

XNX

i¼1

dlnmðxiÞ ð11Þ

where dlnmðxiÞ is an estimate of the logarithm of the true density. Denote by �(k, xi, X) the dis-

tance to the kth nearest neighbour of xi in the set X under some norm L. Further, let pmi be the

probability mass of the �-ball surrounding xi. If we make the assumption that μ(xi) is constant

within the �-ball, we have pmi ¼ k
NX � 1
¼ cd;L�ðk; xi;XÞ

d
mðxiÞ where cd,L is the volume of the
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d-dimensional unit ball under the norm L. Using this relationship, we can construct a simple

estimator of the differential entropy:

ĤðXÞ ¼ �
1

NX

XNX

i¼1

ln
k

ðNX � 1Þcd;L�ðk; xi;XÞ
d : ð12Þ

We then add the bias-correction term ln k − ψ(k). ψ(x) = Γ−1(x)dΓ(x)/dx is the digamma

function and Γ(x) the gamma function. This yields ĤKL, the Kozachenko-Leonenko [87] esti-

mator of differential entropy:

ĤKLðXÞ ¼ � cðkÞ þ ln ðNX � 1Þ þ ln cd;L þ
d
NX

XNX

i¼1

ln � k; xi;Xð Þ: ð13Þ

This estimator has been shown to be consistent [87, 91].

Assume that we now have two (unknown) probability distributions μ(x) and β(x). We have

a set X of NX points drawn from μ and a set Y of NY points drawn from β. Using similar argu-

ments to above, we denote by �(k, xi, Y) the distance from the ith element of X to its kth nearest

neighbour in Y. We then make the assumption that β(xi) is constant within the �-ball, and

we have pbi ¼ k
NY
¼ cd;L�ðk; xi;YÞ

d
bðxiÞ. We can then construct a naive estimator of the cross

entropy

ĤbðXÞ ¼ �
1

NX

XNX

i¼1

ln
k

NYcd;L�ðk; xi;YÞ
d : ð14Þ

Again, we add the bias-correction term ln k − ψ(k) to arrive at an estimator of the cross

entropy.

Ĥb;KLðXÞ ¼ � cðkÞ þ lnNY þ ln cd;L þ
d
NX

XNX

i¼1

ln � k; xi;Yð Þ: ð15Þ

This estimator has been shown to be consistent [91].

Attention should be brought to the fundamental difference between estimating entropies

and cross entropies using kNN estimators. An entropy estimator takes a set X and, for each

xi 2 X, performs a nearest neighbour search in the same set X. An estimator of cross entropy

takes two sets, X and Y and, for each xi 2 X, performs a nearest neighbour search in the other
set Y.

We will be interested in applying these estimators to the entropy and cross entropy terms in

Eq (9). For instance, we could use Ĥb;KLðXÞ to estimate HPU
ðX<X;Z<XÞ, where we have that

m ¼ pXðx<x;z<xÞ and b ¼ pUðx<x;z<xÞ. This will be covered in more detail in a later subsec-

tion, after we first consider how to represent the history embeddings x<x; y<x;z<x as well as

sample them from their distributions.

Selection and representation of sample histories for entropy estimation. Inspection of

Eqs (8) and (9) informs us that we will need to be able to estimate four distinct differential

entropy terms and, implicitly, the associated probability densities:

1. The probability density of the target, source and conditioning histories at target events

pXðx<x; y<x;z<xÞ.

2. The probability density of the target, and conditioning histories at target events

pXðx<x;z<xÞ.
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3. The probability density of the target, source and conditioning histories independent of tar-

get activity pUðx<x; y<x;z<xÞ.

4. The probability density of the target and conditioning histories independent of target activ-

ity pUðx<x;z<xÞ.

Estimation of these probability densities will require an associated set of samples for a kNN

estimator to operate on. These samples for x<x; y<x;z<x will logically be representated as his-

tory embeddings from the raw event times of the target X 2 RNX , source Y 2 RNY and condi-

tioningZ ¼ fZ1;Z2; . . . ;ZnZ
g, Zi 2 R

NZi processes. It is assumed that these sets are indexed

in ascending order (from the first event to the last). The length of the history embeddings (in

terms of how many previous spikes are referred to) must be restricted in order to avoid the dif-

ficulties associated with the estimation of probability densities in high dimensions. The lengths

of the history embeddings along each process are specified by the parameters lX, lY, lZ1
, . . .,lZnZ .

We label the sets of samples as J<X ¼ fj<xi
g
NX

i¼1
, C<X ¼ fc<xi

g
NX

i¼1
, J<U ¼ fj<ui

g
NU

i¼1
, and

C<U ¼ fc<ui
g
NU

i¼1
, for each probability density pXðx<x; y<x;z<xÞ, pXðx<x;z<xÞ, pUðx<x; y<x;z<xÞ,

and pUðx<x;z<xÞ respectively (J for ‘joint’ and C for ‘conditioning’, i.e. without the source).

For the two sets of joint embeddings J<� (where � 2 {X, U}) each j
<�i
2 J<� is made up

of target, source and conditioning components. That is, j
<�i
¼ fx<�i ; y<�i ;z<�i

g where

z<�i
¼ fz1;<�i

; z2;<�i
; . . . ; znz;<�ig. Similarly, for the two sets of conditioning embeddings C<�

(where � 2 {X, U}) each c<�i 2 C<� is made up of target, and conditioning components. That is,

c<�i ¼ fx<�i ;z<�i
g.

Each set of embeddings J<� is constructed from a set of observation points T 2 RNT . Each

individual embedding j
<�i

is constructed at one such observation ti. We denote by pred(ti, P),

the index of the most recent event in the process P to occur before the observation point ti.
The values of x<�i ¼ fx

1
<�i
; x2

<�i
; . . . ; xlX

<�i
g 2 X<� are set as follows:

xk
<�i

≔

( ti � xpredðti ;XÞ k ¼ 1

xpredðti ;XÞ� kþ2 � xpredðti ;XÞ� kþ1 k 6¼ 1:
ð16Þ

Here, the ti 2 T are the raw observation points and the xj 2 X are the raw event times in the

process X. The first element of x<�i is then the interval between the observation time and the

most recent target event time xpred(ti, X). The second element of x<�i is the inter-event interval

between this most recent event time and the next most recent event time and so forth. The val-

ues of y
<�i
¼ fy1

<�i
; y2

<�i
; . . . ; ylX

<�i
g 2 Y<� and z<�i ¼ fz

1
<�i
; z2

<�i
; . . . ; zlX

<�i
g 2Z<� are set in the

same manner.

The set of samples J<X ¼ fj<xi
g
NX

i¼1
� RlXþlYþ

P
lZj for pXðx<x; y<x;z<xÞ is constructed using

this scheme, with the set of observation points T being simply set as the NX event times xj of

the target process X. As such, J<X ¼ X<X � Y<X �Z<X .

In contrast, while the set of samples J<U ¼ fj<ui
g
NU

i¼1
� RlXþlYþ

P
lZj for pUðx<x; y<x;z<xÞ is

also constructed using this scheme, the set of observation points T is set as U � RNU . U is com-

posed of sample time points placed independently of the occurrence of events in the target

process. These NU sample points between the first and last events of the target process X can

either be placed randomly or at fixed intervals. In the experiments presented in this paper they

were placed at fixed intervals. Importantly, note that NU is not necessarily equal to NX, with

their ratio NU/NX a parameter for the estimator which is investigated in our Results. We also
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have that J<U ¼ X<U � Y<U �Z<U . Fig 10 shows diagramatic examples of an embedded

sample from J<X as well as one from J<U. Notice the distinction that for J<X, the x1
<xi

in the

embeddings x<xi
are specifically an interspike interval from the current spike at ti = xi back to

the previous spike, which is not the case for J<U.

Fig 10. Examples of history embeddings. (A) shows an example of a joint embedding constructed at a target event (j<xi
2 J<X). (B) shows an example

of a joint embedding constructed at a sample event (j<ui
2 J<U).

https://doi.org/10.1371/journal.pcbi.1008054.g010
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The set of samples C<X � R
lXþ
P

lZj for pXðx<x;z<xÞ and C<U � R
lXþ
P

lZj for pUðx<x;z<xÞ

are constructed in a similar manner to their associated sets J<X and J<U, however, the

source embeddings y
<�i

are discarded. We will also have that C<X ¼ X<X �Z<X and

C<U ¼ X<U �Z<U .

Note that, as J<X ¼ X<X � Y<X �Z<X and C<X ¼ X<X �Z<X , these two sets are closely

related. Specifically, the i-th element of C<X will be identical to the i-th element of J<X, apart

from missing the source component y
<xi

. Further, as the same set U is used for both C<U and

J<U, we will have that the i-th element of C<U will be identical to the i-th element of J<U, apart

from missing the source component y
<ui

.

Combining Ĥ � estimators for _̂TY!XjZ. With sets of samples and their embedded repre-

sentation determined as per the previous subsection, we are now ready to estimate each of the

four Ĥ � terms in Eq (9). Here we consider how to combine the entropy and cross entropy esti-

mators of these terms (Eqs (13) and (15)) into a single estimator.

We could simply estimate each H� term in Eq (9) using ĤKL as specified in Eq 13 and ĤpU ;KL

as specified in Eq (15), with the same number k of nearest neighbours in each of the four esti-

mators and at each sample in the set for each estimator. Following the convention introduced

in [90] we shall refer to this as a 4KL estimator of transfer entropy (the ‘4’ refers to the 4 kNN

searches and the ‘KL’ to Kozachenko-Leonenko):

_̂TY!XjZ;4KL ¼
�lX

NX

XNX

i¼1

n
lJ½� ln �ðk; j

<xi
; J<XÞ þ ln �ðk; j

<xi
; J<UÞ�

þlC½ ln �ðk; c<xi
;C<XÞ � ln �ðk; c<xi

;C<UÞ�
o
:

ð17Þ

Here, lJ ¼ ðlX þ lY þ
PnZ

j¼1
lZjÞ is the dimension of the joint samples and lC ¼ ðlX þ

PnZ
j¼1

lZjÞ is

the dimension of the conditional-only samples. Note that the ln(NX − 1) − ψ(k) terms cancel

between the J<X and C<X terms (also for ln(NU) − ψ(k) between the J<U and C<U terms), whilst

the lncd,L terms cancel between J<X and J<U as well as between C<X and C<U. It is crucial also

to notice that all terms are averaged over NX samples taken at target events (the cross-entropies

which evaluate probability densities using J<U and C<U still evaluate those densities on the

samples j
<xi
2 J<X and c<xi

2 C<X , following the definition in Eq (15)), regardless of whether

NU = NX.

It is, however, not only possible to use a different k at every sample, but desirable when the

k are chosen judiciously (as detailed below). We shall refer to this as the generalised kNN esti-

mator:

_̂TY!XjZ;generalised ¼
�lX

NX

XNX

i¼1

n
c kJ<X ;i

� �
� c kJ<U ;i

� �
� c kC<X ;i

� �
þ c kC<U ;i

� �

þlJ½� ln �ðkJ<X ;i
; j
<xi
; J<XÞ þ ln �ðkJ<U ;i

; j
<xi
; J<UÞ�

þlC½ ln �ðkC<X ;i
; c<xi

;C<XÞ � ln �ðkC<U ;i
; c<xi

;C<UÞ�
o
:

ð18Þ

Here kA,i is the number of neighbours used for the ith sample in set A for the corresponding

entropy estimator for that set of samples. By theorems 3 and 4 of [75] this estimator (and, by

implication, the 4KL estimator) is consistent. Application of the generalised estimator requires

a scheme for choosing the kA,i at each sample. Work on constructing H� kNN estimators for

mutual information [53] and KL divergence [75] has found advantages in having certain H�

terms share the same or similar radii, e.g. resulting in lower overall bias due to components of
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biases of individual H� terms cancelling. Given that we have four H� terms, there are a number

of approaches we could take to sharing radii.

Our algorithm, which we refer to as the CT estimator of TE— _̂TY!XjZ;CT—is specified in

detail in Box 1. Our algorithm applies the approach proposed in [75] (referred to as the ‘bias

improved’ estimator in that work) to each of the Kullback-Leibler divergence terms separately.

In broad strokes, whereas Eq (17) uses the same k for each nearest-neighbour search, this esti-

mator uses the same radius for each of the two nearest-neighbour searches relating to a given

KL divergence term. In practice, this requires first performing searches with a fixed k in order

to determine the radius to use. As such, we start with a fixed parameter kglobal, which will be

Box 1: Algorithm for the CT TE estimator
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the minimum number of nearest neighbours in any search space. For each joint sample at a

target event, that is, each j
<xi

in J<X, we perform a kglobalNN search in this same set J<X and

record the distance to the kglobal-th nearest neighbour (line 3 of Box 1). We perform a similar

kglobalNN search for j
<xi

in the set of joint samples independent of target activity J<U, again

recording the distance to the kglobal-th nearest neighbour (line 4). We define a search radius as

the maximum of these two distances (line 5). We then find the number of points in J<X that

fall within this radius of j
<xi

and set kJ<X, i as this number (line 6). We also find twice the dis-

tance to the kJ<X, i-th nearest neighbour, which is the term �ðkJ<X ;i
; j
<xi
; J<XÞ in Eq (18) (line 7).

Similarly, we find the number of points in J<U that fall within the search radius of j
<xi

and set

kJ<U, i as this number (line 8). We find twice the distance to the kJ<U, i-th nearest neighbour,

which is the term �ðkJ<U ;i
; j
<xi
; J<UÞ (line 9).

In the majority of cases, only one of these two � terms will be exactly twice the search radius,

and its associated kA,i will equal kglobal. In such cases, the other � will be less than twice the

search radius and its associated kA,i will be greater than or equal to kglobal.

The same set of steps is followed for each conditioning history embedding that was con-

structed at an event in the target process, that is, each c<xi
in C<X, over the sets C<X and C<U

(lines 10 through 16 of Box 1).

The values that we have found for kJ<X,i, kJ<U,i, kC<X,i, kC<U,i, �ðkJ<X ;i
; j
<xi
; J<xi
Þ,

�ðkJ<U ;i
; j
<xi
; J<UÞ, �ðkC<X ;i

; c<xi
;C<xi

Þ and �ðkC<U ;i
; c<xi

;C<UÞ can be plugged into Eq (18) (lines

17 and 19 of Box 1).

Handling dynamic correlations. The derivation of the kNN estimators for entropy and

cross entropy given above assumes that the points are independent [53]. However, nearby

interspike intervals might be autocorrelated (e.g. during bursts), and indeed our method for

constructing history embeddings (see Selection and Representation of Sample Histories for

Entropy Estimation) will incorporate the same interspike intervals at different positions in

consecutive samples. This contradicts the assumption of independence. In order to satisfy the

assumption of independence when counting neighbours, conventional neighbour counting

estimators can be made to ignore matches within a dynamic or serial correlation exclusion

window (a.k.a. Theiler windows [92, 93]).

For our estimator, we maintain a record of the start and end times of each history embedding,

providing us with an exclusion window. The start time is recorded as the time of the first event

that formed part of an interval which was included in the sample. This event could come from

the embedding of any of the processes from which the sample was constructed. The end of the

window is the observation point from which the sample is constructed. When performing near-

est neighbour and radius searches (lines lines 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15 and 16 of Box 1 and

line 6 of Box 2), any sample whose exclusion window overlaps with the exclusion window of the

original data point around which the search is taking place is ignored. Subtleties concerning

dynamic correlation exclusion for surrogate calculations are considered in the next subsection.

Local permutation method for surrogate generation

A common use of this estimator would be to ascertain whether there is a non-zero conditional

information flow between two components of a system. When using TE for directed functional

network inference, this is the criteria we use to determine the presence or absence of a connec-

tion. Given that we are estimating the TE from finite samples, we require a statistical test in

order to determine the significance of the measured TE value. Unfortunately, analytic results

do not exist for the sampling distribution of kNN estimators of information theoretic
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quantities [48]. This necessitates a scheme for generating surrogate samples from which the

null distribution can be empirically constructed.

It is instructive to first consider the more general case of testing for non-zero mutual infor-

mation. As the mutual information between X and Y is zero if and only X and Y are indepen-

dent, testing for non-zero mutual information is a test for statistical dependence. As such, we

are testing against the null hypothesis that X and Y are independent (X⫫ Y) or, equivalently,

that the joint probability distribution of X and Y factorises as p(X, Y) = p(X)p(Y). It is straight-

forward to construct surrogate pairs ð�x;�yÞ that conform to this null hypothesis. We start with

the original pairs (x, y) and resample the y values across pairs, commonly by shuffling (in con-

junction with handling dynamic correlations, as per Implementation). This shuffling process

will maintain the marginal distributions p(X) and p(Y), and the same number of samples, but

will destroy any relationship between X and Y, yielding the required factorisation for the null

Box 2: Algorithm for the local permutation method for surrogate
generation.

Input : /* The joint history embeddings at the target events */

J<X = fj<xigNXi=1 = fx<xi ;y<xi ;z<xigNXi=1
/* The joint history embeddings at the sampled points */

J<U;surr = fj<uig
NU;surr
i=1 = fx<ui ;y<ui ;z<uig

NU;surr
i=1

kperm

Output : J<X;surr

/* Set to keep a record of the used indices in the independently sampled embeddings. */

1 UÃ ; /* Initialise this set to be empty */
2 J<X;surrogate Ã ; /* Initialise the surrogate embeddings as empty */
3 I Ã figNXi=1 /* Initialise the indices to iterate over */
/* Shuffle the indices to ensure that different samples are assigned duplicate source componenents

each time surrogate sample sets are generated. */

4 I Ã shuffle(I)

5 for i 2 I do
/* Search for the nearest neighbours in the set of embeddings at sampled points;ignoring the

source components. The function findIndicesOfNearestNeighbours(k;a;B) finds the indices of

the k nearest neighbours of the point a in the set B. */

6 N Ã findIndicesOfNearestNeighbours
³
kperm; fx<xi ;z<xig; fx<uj ;z<uj g

NU;surr
j=1

´

/* Create a set of candidate indices by removing those already used. */

7 E Ã N n (N \U)

8 if kEk > 0 then
9 hÃ chooseRandomElement (E)

10 end

11 else

12 hÃ chooseRandomElement (N)

13 end

/* Append the set of surrogate samples with an embedding composed of the original target and

conditioning components (at index i);but with the source component swapped for that at index h

of the independently sampled embeddings. */

14 J<X;surrogate Ã J<X;surrogate [ fx<xi ;y<uh ;z<xig
/* Add the index that we chose to the set keeping track of used indices */

15 UÃ U [ h
16 end
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hypothesis. One shuffling process produces one set of surrogate samples; estimates of mutual

information on populations of such surrogate sample sets yields a null distribution for the

mutual information.

As transfer entropy is a conditional mutual information (IðXt ; Y<t jX<t;Z<tÞ), we are test-

ing against the null hypothesis that the current state of the target Xt is conditionally independent

of the history of the source Y<t (Xt⫫Y<t jX<t;Z<t). That is, the null hypothesis states that the

joint distribution factorises as: pðXt;Y<t jX<t;Z<tÞ ¼ pðXt jX<t;Z<tÞpðY<t jX<t;Z<tÞ.

Historically, the generation of surrogates for TE has been done by either shuffling source

history embeddings or by shifting the source time series (see discussions in e.g. [4, 94]). These

approaches lead to various problems. These problems stem from the fact that they destroy any

relationship between the source history (Y<t) and both the target (X<t) and conditioning

(Z<t) histories. As such, they are testing against the null hypothesis that the joint distribution

factorises as: pðXt;Y<t jX<t;Z<tÞ ¼ pðXt jX<t;Z<tÞpðY<tÞ [48]. The problems associated

with this factorisation become particularly pronounced when we are considering a system

whereby the conditioning processesZ<t drive both the current state of the target Xt as well as

the history of the source Y<t. This can lead to Y<t being highly correlated with Xt, but condi-

tionally independent. This is the classic case of a “spurious correlation” between Y<t and Xt

being mediated through the “confounding variable”Z<t. If, in such a case, we use time shifted

or shuffled source surrogates to test for the significance of the TE, we will be comparing the TE

measured when Xt and Y<t are highly correlated (albeit potentially conditionally independent)

with surrogates where they are independent. This subtle difference in the formulation of the

null may result in a high false positive rate in a test for conditional independence. An analysis

of such a system is presented in the third subsection of Results. Alternately, if we can generate

surrogates where the joint probability distribution factorises correctly and the relationship

between Y<t and the histories X<t andZ<t is maintained, then Y<t will maintain much of its

correlation with Xt through the mediating variablesZ<t and X<t. We would anticipate condi-

tional independence tests using surrogates generated under this properly formed null to have a

false positive rate closer to what we expect.

Generating surrogates for testing for conditional dependence is relatively straightforward

in the case of discrete-valued conditioning variables. If we are testing for dependence between

X and Y given Z, then, for each unique value of Z, we can shuffle the associated values of Y.

This maintains the distributions p(X|Z) and p(Y|Z) whilst, for any given value of Z, the rela-

tionship between the associated X and Y values is destroyed.

The problem is more challenging when Z can take on continuous values. However, recent

work by Runge [48], demonstrated the efficacy of a local permutation technique. In this

approach, to generate one surrogate sample set, we separately generate a surrogate sample

ðx;�y; zÞ for each sample (x, y, z) in the original set. We find the kperm nearest neighbours of z
in Z: one of these neighbours, z0, is chosen at random, and y is swapped with the associated y0

to produce the surrogate sample (x, y0, z). In order to reduce the occurrence of duplicate y val-

ues, a setU of used indices is maintained. After finding the kperm nearest neighbours, those

that have already been used are removed from the candidate set. If this results in an empty can-

didate set, one of the original kperm candidates are chosen at random. Otherwise, this choice is

made from the reduced set. As before, a surrogate conditional mutual information is estimated

for every surrogate sample set, and a population of such surrogate estimates provides the null

distribution.

This approach needs to be adapted slightly in order to be applied to our particular case,

because we have implictly removed the target variable (whether or not the target is spiking)
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from our samples via the novel Bayesian inversion. We can rewrite Eq (8) as:

_TY!XjZ ¼
�lXEX ln

pXðx<x; y<x;z<xÞ

pXðx<x;z<xÞpUðy<x j x<x;z<xÞ

� �

: ð19Þ

This makes it clear that we are testing whether the following factorisation holds:

pXðx<x; y<x;z<xÞ ¼ pXðx<x;z<xÞpUðy<x j x<x;z<xÞ ð20Þ

(recall the difference between probability densities at target events pX and those not condi-

tioned at target events pU). In order to create surrogates J<X,surr that conform to this null

distribution, we resample a new set from our original data in a way that maintains the relation-

ship between the source histories and the histories of the target and conditioning processes,

but decouples (only) the source histories from target events. (As above, simply shuffling the

source histories across J<X or shifting the source events does not properly maintain the rela-

tionship of the source to the target and conditioning histories). The procedure to achieve

this is detailed in Box 2. We start with the samples at target events J<X ¼ fx<xi
; y

<xi
;z<xi

g
NX

i¼1

and resample the source components y
<xi

as follows. We first construct a new set J<U;surr ¼

fx<ui
; y

<ui
;z<ui

g
NU;surr

i¼1
from the set Usurr of NU,surr points sampled independently of events in

the target. This set is constructed in the same manner as J<U, although we might choose to

change the number of sample points (NU,surr 6¼ NU) at which the embeddings are constructed,

or whether the points are placed randomly or at fixed intervals. For each original sample j
<xi

from J<X, we then find the nearest neighbours fx<ui
;z<ui

g
kperm
i¼1

of fx<xi
;z<xi

g in J<U,surr (line 9

of Box 12), select y
<uj

randomly from amongst the kperm nearest neighbours (line 6 or Box 2),

and add a sample fx<xi
; y

<uj
;z<xi

g to J<X, surr (line 14). The construction of such a sample is

also displayed in Fig 11. Similar to Runge [48], we also keep a record of used indices in order

Fig 11. Diagrammatic representation of the local permutation surrogate generation scheme. For our chosen sample j
<xi

we find a j
<uh
2 J<U;surr

where we have that the x<xi
component of j

<xi
is similar to the x<uh

component of j
<uh

andz<xi
component of j

<xi
is similar to thez<uh

component of

j
<uh

. We then form a single surrogate sample by combining the x<xi
andz<xi

components of j
<xi

with the y
<uh

component of j
<uh

. Corresponding

colours of the dotted interval lines indicates corresponding length. The grey boxes indicate a small delta.

https://doi.org/10.1371/journal.pcbi.1008054.g011
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to reduce the incidence of duplicate y
<uj

(line 15). For each redrawn surrogate sample set

J<X, surr a surrogate conditional mutual information is estimated (utilising the same J<U

selected independently of the target events as was used for the original TE estimate) following

the algorithm outlined earlier; the population of such surrogate estimates provides the null dis-

tribution as before.

The p values are calculated by constructing Nsurrogates surrogates by the algorithm just

described. The TE is estimated on these surrogates and compared to the TE estimated on

the original embeddings. The p value is then the number of estimates on surrogate embed-

dings which were larger than the estimate on the original data divided by the total number

of surrogates.

Finally, we note an additional subtlety for dynamic correlation exclusion for the surrogate

calculations. Samples in the surrogate calculations will have had their history components

originating from two different time windows. One will be from the construction of the original

sample and the other from the sample with which the source component was swapped. A

record is kept of both these exclusion windows and, during neighbour searches, points are

excluded if their exclusion windows intersect either of the exclusion windows of the surrogate

history embedding.

Implementation

The algorithms shown in Boxes 2 and 1 as well as all experiments were implemented in the

Julia language. The implementation of the algorithms is freely available at the following reposi-

tory: github.com/dpshorten/CoTETE.jl. Scripts to run the experiments in the paper can be

found here: github.com/dpshorten/CoTETE_experiments. Implementations of kNN informa-

tion-theoretic estimators have commonly made use of KD-trees to speed up the nearest neigh-

bour searches [94]. A popular Julia nearest neighbours library (NearestNeighbors.jl, available

from github.com/KristofferC/NearestNeighbors.jl) was modified such that checks for dynamic

exclusion windows (see Handling Dynamic Correlations) were performed during the KD-tree

searches when considering adding neighbours to the candidate set.

Assumptions used to conclude conditional independence or dependence

We summarise here the conditions and assumptions that allow us to draw conclusions about

conditional independence relationships from the structure in a model. Although these rela-

tionships are obvious in some of our examples (see Results), they are less so in others. If we

consider, for now, the discrete-time case, then for a sufficiently small Δt there will be no

instantaneous effects. This implies that the causal relationships in these models can be repre-

sented by a Directed Acyclic Graph (DAG); specifically a Dynamic Bayesian Network with

multiple time slices and connections only going forward in time (see [95]). In order to con-

clude that connected nodes will be statistically dependent we need to use the contraposition

of the faithfulness assumption [55, 56, 57]. This assumption states that, if two nodes are con-

ditionally independent, given some conditioning set S, then they are d-separated [55] given

the same set. This in turn implies that if there exists some set of conditioning processes by

which a node is conditionally independent of another, then there is no direct causal link

between these nodes. It is worth asking how reasonable the faithfulness assumption is. After

all, particularly for the case of deterministic dynamics, it is easy to construct examples

whereby the present state of each of a pair of processes is determined by the history of the

other process, but where the present state of each process is conditionally independent of the

history of the other [96, 97] (e.g. one can have zero TE when a real causal connection exists,

for instance, the system xt = yt−1, yt = xt−1, x1 = 0 and y1 = 1). Such examples violate
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faithfulness. However, determinism is not a realistic assumption for biological systems or

their models. Moreover, it can be shown that almost all discrete probability distributions

(such as those of spike trains) satisfy faithfulness. Indeed, the set of discrete probability dis-

tributions that violate this assumption has measure zero [98]. In order to determine that the

present state of a process is independent of an unconnected source, when conditioning on its

direct causal parents, we need to assume sufficiency and the causal Markov condition [55,

56, 57]. Sufficiency assumes that we have observed all relevant variables (which is easy to

meet if we are defining the model). The causal Markov condition states that d-separation

implies conditional independence. Conditioning on all the direct causal parents of a variable

provides us d-separation. In summary then, under these conditions the directed structural

connections designed in our models are expected to have a one-to-one correspondence with

directed conditional dependence (or independence, in their absence), when appropriately

conditioned on other nodes. Correctly differentiating conditional dependence and indepen-

dence then, in alignment with the underlying structural connections in these models, pro-

vides an important validation of the correctness of the estimators.

Specification of leaky-integrate-and-fire model

What follows is a specification of the Leaky-Integrate-and-Fire (LIF) model which we used in

the Results subsection Scaling of Conditional Independence Testing in Higher Dimensions.

The membrane potential evolves according to:

t
dV
dt
¼ V0 � V: ð21Þ

When V crosses the threshold Vthreshold, the timestamp of crossing is recorded as a spike. V
is then set to Vreset and the evolution of the membrane potential is subsequently paused for the

duration of the hard refractory period. In the case of excitatory connections, when a presynap-

tic spike occurs, V is instantaneously increased by the connection strength of the synapse

(specified in millivolts) at the delay specified by the connections delay parameter. Inhibitory

connects behave in the same manner, but lead to a decrease in V. We use the initial condition

V(t = 0) = V0.

Supporting information

S1 Fig. Longer embeddings on homogeneous. The results of an identical experimental setup

to those displayed in Fig 2, but with history embedding lengths of lX = lY = 3.

(TIFF)

S2 Fig. Different embeddings on discrete homogeneous. The results of an identical experi-

mental setup to those displayed in Fig 3, but where the history embedding lengths (l and m)

were set to cover the distance of an average interspike interval. Specifically, these lengths were

1, 2, 5 and 10, corresponding to the Δt values of 1.0, 0.5, 0.2 and 0.1.

(TIFF)

S3 Fig. Different embeddings on continuous coupled. The results of an identical experimen-

tal setup to those displayed in Fig 4B, but where the history embedding length of the source is

set to lY = 3.

(TIFF)

S4 Fig. Conditional independence scaling at constant rate. The results of an identical experi-

mental setup to those displayed in Fig 8, but with a constant rate of 20 Hz in all the stimuli.

This removes the correlation between the unconnected source and the firing of the target. The
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top row shows results of the continuous-time approach, the bottom shows results of the dis-

crete-time approach.

(TIFF)

S5 Fig. Independence test with no conditioning. The results of an identical experimental

setup to those displayed in Fig 8, but where the background processes are not included in the

conditioning set (the conditioning set is left empty). This represents the nature of the inference

task at the early stage of a greedy network inference algorithm being applied to a node. We see

that the continuous-time estimator performs well on inhibitory connections in this case. Due

to the change in dimension, different source and target embedding lengths (l and m) as well

as bin widths Δt were used for the discrete-time estimator. These were set at l = m = 12 and

Δt = 2ms. The top row shows results of the continuous-time approach, the bottom shows

results of the discrete-time approach.

(TIFF)

S6 Fig. Conditional independence testing with the discrete-time estimator and permuta-

tion-based surrogates. The results of identical experimental setups to those displayed in the

bottom rows of Fig 8, S4 and S5 Figs. As the bottom rows of all of these figures show the results

of the discrete-time estimator, the plots in this figure similarly all display the results of runs of

the discrete-time estimator. However, where the other plots make use of the source time-shift

method for surrogate generation (as is traditionally used in conjunction with TE estimators),

these plots make use of a standard conditional-permutation-based surrogate generation

scheme for categorical variables [64]. The top row of this figure corresponds to the bottom

row of Fig 8, the middle row corresponds to the middle row of S4 Fig and the bottom row cor-

responds to the bottom row of S5 Fig.

(TIFF)

S7 Fig. Pyloric STG continuous different embedding lengths. The results of an identical

experimental setup to those displayed in Fig 9C, but where different embeddings lengths

(lX, lY and lZ1
) are used. The left plot shows lX ¼ lY ¼ lZ1

¼ 2 and the right plot shows

lX ¼ lY ¼ lZ1
¼ 4.

(TIFF)

S8 Fig. Pyloric STG continuous different dataset sizes. The results of an identical experi-

mental setup to those displayed in Fig 9C, but where different numbers of target spikes NX are

used. The left plot shows NX = 1 × 4 and the right plot shows NX = 3.5 × 4.

(TIFF)

S1 Text. Description of the biophysical neural network model insipred by the Pyloric

STG.

(PDF)
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Supplementary Text S9 for
Estimating Transfer Entropy in Continuous Time Between Neural

Spike Trains or Other Event-Based Data

David P. Shorten, Richard E. Spinney and Joseph T. Lizier

Specification of Biophysical Network Models Inspired by the
Pyloric Circuit of the Crustacean Stomatogastric Ganglion

Current E p q m∞ h∞

INa 50 3 1
1

1 + exp
(

V +25.5
−5.29

) 1

1 + exp
(
V +48.9
5.18

)

ICaT 3 1
1

1 + exp
(

V +27.1
−7.2

) 1

1 + exp
(
V +32.1

5.5

)

ICaS 3 1
1

1 + exp
(

V +33
−8.1

) 1

1 + exp
(
V +60
6.2

)

IA -80 3 1
1

1 + exp
(

V +27.2
−8.7

) 1

1 + exp
(
V +56.9

4.9

)

IKCa -80 4 0
[Ca]

[Ca] + 3

1

1 + exp
(

V +28.3
−12.6

)

IKd -80 4 0
1

1 + exp
(

V +12.3
−11.8

)

IH -20 1 0
1

1 + exp
(
V +75
5.5

)

Table 1: Parameters and functions used in the conductance based model.

We devised a simulation approach which follows very closely that presented in [1, 2, 3].
The only significant deviation is the addition of a noise term.

We modelled the neurons of the pyloric circuit using a conductance-based model. The
membrane potential (V ) evolves according to

C
dV

dt
= −

∑

i

Ii −
∑

s

Is + ξ. (1)

C = 0.628 nF is the membrane conductance. ξ is a noise term. Each current is specified by

Ii = gim
qi
i h

pi
i (V − Ei).

Ei is the reversal potential and its values are listed in table 1. The reversal potentials as-
sociated with the calcium channels are not listed as these are calculated according to the

1
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Current τm τh

INa 2.64− 2.52

1 + exp
(

V +120
−25

) 1.34

1 + exp
(

V +62.9
−10

)
[
1.5− 42.6

1 + exp
(
V +34.9

3.6

)
]

ICaT 43.4− 42.6

1 + exp
(

V +68.1
−20.5

) 210− 179.6

1 + exp
(

V +55
−16.9

)

ICaS 2.8 +
14

exp
(
V +27
10

)
+ exp

(
V +70
−13

) 120 +
300

exp
(
V +55

9

)
+ exp

(
V +65
−16

)

IA 23.2− 20.8

1 + exp
(

V +32.9
−15.2

) 77.2− 58.4

1 + exp
(

V +38.9
−26.5

)

IKCa 180.6− 150.2

1 + exp
(

V +46
−22.7

)

IKd 14.4− 12.8

1 + exp
(

V +28.3
−19.2

)

IH
2

exp
(

V +169.7
−11.6

)
+ exp

(
V−26.7
14.3

)

Table 2: Parameters and functions used in the conductance based model.

Nernst equation. Specifically, ECa = RT
2F log10

(
[Ca2+]ext
[Ca2+]

)
where R = 8.314 J K−1 mol−1 is the

universal gas constant, T = 293.3 K is the temperature and F = 96 485.332 12 C mol−1 is
Faraday’s constant. [Ca2+]ext = 3 mm is the extracellular Ca2+ concentration and [Ca2+] is
the intracellular Ca2+ concentration. The intracellular Ca2+ concentration evolves according
to

τCa
d[Ca2+]

dt
= −f (ICaT + ICaS)− [Ca2+] + [Ca2+]0.

[Ca2+]0 = 0.05 µm is the steady-state Ca2+ concentration, f = 14.96 µmnA−1 and τCa =
200 ms

The values of qi and pi are listed in table 1. The activation variables mi evolve according
to

τmi

dmi

dt
= m∞,i −mi.

The inactivation variables hi evolve according to

τhi

dhi
dt

= h∞,i − hi.

m∞,i and h∞,i are given in table 1 and τmi and τhi
are given in table 2.

The synaptic currents are specified by

Is = gsa(V − Es).

2
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Es is the synaptic reversal potential. It was set to −70 mV for glutamatergic synapses and
−80 mV for cholinergic synapses.

The activation variable as evolves according to

τas
das
dt

= a∞,s − as

where

τas =
1− as
k−

.

In the previous work which we are following [1, 2, 3], a∞,s was a function of the presynaptic
membrane potential. The functional form was such that the majority of current flow across
the synapse was in the vicinity of spikes. However, the fact that all the influence over the
synapse is not contained in the spikes opens the possibility for causal sufficiency not being
met. As the principal purpose of this model in the context of this paper is to produce examples
in which we have a known ground-truth of conditional dependence/independence we made
a slight modification to the model to ensure that this condition was met. We specified that
a∞,s would evolve according to

τa∞,s

da∞,s

dt
= 0− a∞,s

where τa∞,s = 25 ms. On the occurrence of a presynaptic spike a∞,s was set to 0.99.
∆ = 5 mV provides the slope of the activation curve. Vth = −35 mV is the half activation

potential of the synapse. Vpre is the membrane potential of the presynaptic neuron. k− is the
rate constant for the transmitter-receptor dissociation rate. For the glutamatergic synapses
we used k− = 0.025 ms and for the cholinergic synapses we used k− = 0.01 ms.

Simulations of the pyloric rhythm can be run with fixed maximum conductance values gi
and gs, as in [2]. However, it was found that these models were less robust to the addition
of a noise term. It was, therefore, decided to use adaptive conductances as described in [3].
Each conductance evolved according to:

τg
dgj
dt

= mj − gj

where

τmj

dmj

dt
= [Ca2+]− Catgt.

τg = 100 ms was common across all channels. The time constants τmj are listed in table
3. The time constants provided in [3] were not used as these produce a pyloric rhythm with
unrealistically short period. Instead, the approach presented in [3] for arriving at conductance
time constants from desired conductance values was used. The conductance values in [2] were
used as these desired values. Specifically, we used the values presented in table 2 in [2] for
AB/PD 1, LP 2 and PY 1. The time constant τmj associated with gj was set as τmj = c/gj .
c is a constant with units of seconds that was adjusted by hand so that the activity converged
in a reasonable amount of time and the time constants were of the same order of magnitude
as those provided in [3]. As in [3], the leak conductances were fixed. They were set at 0 for
the AB/PD neuron, and 0.0628 µS for the PY neuron and 0.1256 µS for the LP neuron.

3
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Conductance AB/PD LP PY
gNa 0.25 1 1
gCaT 40 1e15 40
gCaS 16.67 25 40
gA 2 5 2

gKCa 10 20 1e15
gKd 1 4 0.8
gH 1× 104 2× 103 2× 103

Table 3: The conductance time constants τmj . All values are in seconds.

LP → AB/PD, glutamatergic 2× 104

AB/PD → LP, cholinergic 500
AB/PD → LP, glutamatergic 1× 104

PY → LP, glutamatergic 1× 104

AB/PD → PY, cholinergic 5× 103

AB/PD → PY, glutamatergic 250
LP → PY, glutamatergic 1× 106

Table 4: The conductance time constants τmj for the synapses. All values are in seconds.

The TE approach to network inference will not work in a fully deterministic system. As
such, noise was added to the system. There are a number of techniques for adding noise to
conductance-based models [4]. The simplest such technique is to add noise to the currents
in (1). Although this is not a biophysically realistic method, it has been shown to produce
resulting behaviours which closely match those produced by more realistic techniques [4, 5].
As such, we decided to make use of this procedure in our simulations. The associated noise
term is shown in (1). The noise was generated using an AR(1) process

ξt = θξt−1 + εt. (2)

We used the parameter value of θ = 0.005. εt was distributed normally with mean 0 and
standard deviation 9× 10−9

A simulation timestep of ∆t = 0.005 ms was used.
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CHAPTER 4

EARLY LOCKIN OF INFORMATION FLOWS

Chapter 3 derived a new estimator for TE on spike trains which makes possible the study of informa-

tion flow on this data with high fidelity. Specifically, TE can be estimated without any loss of time

precision while still considering relatively long histories. Moreover, this new estimator allows for

much greater confidence in the resulting estimates, due to its consistency property.

In this chapter, we make use of this new estimator to perform the first high-fidelity study of

information flows on biological spike train recordings. We do so by applying it to recordings of

the spike times of developing cultures of dissociated cortical rat neurons. These cultures were

recorded on different days in vitro. This allows us to contrast the information flows on different

days of development, producing the first study of how information flows change over the course of

development in biological neural systems.

We study the emergence of distributed computation (that is, computation occurring over a network,

as opposed to a Von Neumann architecture [1]) during the development of these cultures, where the

development of the networks is being guided by the spontaneous activity of the neurons [2]. We

are able to uncover a number of fascinating aspects of this emergence. Firstly, we find that there

is a remarkable early lock-in phenomenon of the information flows. Flows between nodes early in

development are highly correlated with flows later in development, indicating that the nature of

the information transmission in the networks is determined early in development. We further find

that certain nodes, specifically those that burst in the middle of the burst propagation, occupy the

specialised role of the mediators of information flow, having a balance between both transmitting and

receiving information. Moreover, these computational roles are also locked in early in development.

We also studied the information flows in simulated networks developing according to an STDP

learning rule in order to confirm a putative mechanism for the observed phenomena. It was found

that the changes in the information flows in these networks closely mirrored those in the biological

cell cultures. Specifically, we observed that information flows locked in early and that middle bursters

were occupying the specialised computational role of mediators of information flow.

In this chapter, information flows were studied for all pairs across the network. That is, a given

source-target pair was considered in isolation. In Chapter 5, we will perform network inference using

multivariate information flows. That is, we will consider extra conditioning processes other than

just the source and target when inferring their relationship. This will allow us to arrive at minimal

sets of sources which explain the activity of the target. It is important to note that, in both chapters,

spike-sorting is not performed, and so we are considering multi-unit activity [3].
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Abstract The brains of many organisms are capable of complicated distributed computation 
underpinned by a highly advanced information processing capacity. Although substantial progress 
has been made towards characterising the information flow component of this capacity in mature 
brains, there is a distinct lack of work characterising its emergence during neural development. This 
lack of progress has been largely driven by the lack of effective estimators of information processing 
operations for spiking data. Here, we leverage recent advances in this estimation task in order to 
quantify the changes in transfer entropy during development. We do so by studying the changes in 
the intrinsic dynamics of the spontaneous activity of developing dissociated neural cell cultures. We 
find that the quantity of information flowing across these networks undergoes a dramatic increase 
across development. Moreover, the spatial structure of these flows exhibits a tendency to lock-in at 
the point when they arise. We also characterise the flow of information during the crucial periods of 
population bursts. We find that, during these bursts, nodes tend to undertake specialised compu-
tational roles as either transmitters, mediators, or receivers of information, with these roles tending 
to align with their average spike ordering. Further, we find that these roles are regularly locked-in 
when the information flows are established. Finally, we compare these results to information flows in 
a model network developing according to a spike-timing-dependent plasticity learning rule. Similar 
temporal patterns in the development of information flows were observed in these networks, hinting 
at the broader generality of these phenomena.
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5–10 days. The direction of the information flow is influenced by neuronal bursting properties: the 
early bursting neurons emerge as sources and late bursting neurons become sinks in the information 
flow.

Introduction
Throughout development, how do brains gain the ability to perform advanced computation? Given 
that the distributed computations carried out by brains require an intrinsic information processing 
capacity, it is of utmost importance to decipher the nature of the emergence of this capacity during 
development.
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For brains to engage in the computations required for specific tasks, they require a general-purpose 
computational capacity. This capacity is often studied within the framework of information dynamics, 
where it is decomposed into the atomic operations of information storage, transfer, and modification 
(Lizier et al., 2014; Lizier, 2013). We are particularly interested in the information flow component, 
which is measured using the transfer entropy (TE) (Schreiber, 2000; Bossomaier et al., 2016). There 
exists a substantial body of work examining the structure and role of computational capacity in terms 
of these operations in mature brains. This includes the complex, dynamic, structure of information 
transfer revealed by calcium imaging (Orlandi et  al., 2014), fMRI (Mäki-Marttunen et  al., 2013; 
Lizier et al., 2011), MEG (Wibral et al., 2011), and EEG (Shovon et al., 2016; Huang et al., 2015; 
Stramaglia et al., 2012; Marinazzo et al., 2014a), and the role of information storage in representing 
visual stimuli (Wibral et al., 2014a), among others.

Given the established role of information flows in enabling the computations carried out by mature 
brains, we aim to study how they self-organise during neural development. There are a number of 
requirements for such a study. Firstly, it needs to be performed at a fine spatial scale (close to the 
order of individual neurons) to capture the details of development. It also needs to be conducted 
longitudinally in order to track changes over developmental timescales. Finally, the estimation of the 
information flow as measured by TE needs to be performed with a technique which is both accurate 
and able to capture the subtleties of computations performed on both fine and large timescales 
simultaneously.

Considering the first requirement of fine spatial scale, cell cultures plated over multi-electrode 
arrays (MEAs) allow us to record from individual neurons in a single network, providing us with this 
fine spatial resolution. There have been a number of previous studies examining information flows in 
neural cell cultures, for example, Nigam et al., 2016; Shimono and Beggs, 2015; Matsuda et al., 
2013; Timme et al., 2014; Kajiwara et al., 2021; Timme et al., 2016; Wibral et al., 2017. Such work 
has focussed on the directed functional networks implied by the estimated TE values between pairs of 
nodes, which has revealed interesting features of the information flow structure. See section ‘Previous 
application of the discrete-time estimator’ for a more detailed description of this previous work.

However, moving to our second requirement of a longitudinal study, these studies have almost 
exclusively examined only single points in neural development since nearly all of them examined 
recordings from slice cultures of mature networks. By contrast, we aim to study the information flows 
longitudinally by estimating them at different stages in development. Using recordings from devel-
oping cultures of dissociated neurons (Wagenaar et al., 2006b) makes this possible.

In terms of our third requirement of accurate and high-fidelity estimation of TE, we note that all 
previous studies of information flows in neural cell cultures made use of the traditional discrete-time 
estimator of TE. As recently demonstrated (Shorten et al., 2021), the use of this estimator is problem-
atic as it can only capture effects occurring on a single timescale. In contrast, a novel continuous-time 
TE estimator (Shorten et al., 2021) captures effects on multiple scales, avoiding time binning, is data 
efficient, and consistent. See section ‘Transfer entropy estimation’ for a more detailed discussion of 
the differences between the continuous-time and discrete-time estimators.

In this article, we thus examine the development of neural information flows for the first time, 
addressing the above requirements by applying the continuous-time TE estimator to recordings of 
developing dissociated cultures. We find that the amount of information flowing over these cultures 
undergoes a dramatic increase throughout development and that the patterns of these flows tend 
to be established when the flows arise. During bursting periods, we find that nodes often engage 
in specialised computational roles as either transmitters, receivers, or mediators of information flow. 
Moreover, these roles usually correspond with the node’s mean position in the burst propagation, 
with middle bursters tending to be information mediators. This provides positive evidence for the 
pre-existing conjecture that nodes in the middle of the burst propagation play the vital computational 
role of ‘brokers of neuronal communication’ (Schroeter et al., 2015). Intriguingly, the designation of 
computational roles (transmitter, receiver, or mediator) appears to also be determined early when the 
information flows are established. Finally, in order to investigate the generality of these phenomena, 
as well as a putative mechanism for their emergence, we study the dynamics of information flow in a 
model network developing according to a spike-timing-dependent plasticity (STDP) (Caporale and 
Dan, 2008) update rule. We find that the abovementioned phenomena are present in this model 
system, hinting at the broader generality of such patterns of information flow in neural development.
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Results
Data from overnight recordings of developing cultures of dissociated cortical rat neurons at various 
stages of development (designated by days in vitro [DIV]) was analysed. These recordings are part 
of an open, freely available, dataset (Wagenaar et al., 2006b; Network, 2021). See ‘Materials and 
methods’ (section ‘Cell culture data’) for a summary of the setup that produced the recordings. We 
studied all cultures for which there were overnight recordings. We restricted our analysis to these 
overnight recordings as they provided sufficient data for the estimation of TE. In what follows, we refer 
to the cultures by the same naming convention used in the open dataset: 1-1 through 1-5 and 2-1 
through 2-6. The majority of cultures have recordings at three different time points, three have record-
ings at four points (1-3, 2-2, and 2-5) and one has only two recordings (2-1). The days on which these 
recordings took place vary between the 4th and 33rd DIV. By contrasting the TE values estimated at 
these different recording days, we are able to obtain snapshots of the emergence of these culture’s 
computational capacity.

In the analysis that follows, for space considerations, we show plots for four representative cultures: 
1-1, 1-3, 2-2, and 2-5. The latter three were chosen as they were the only cultures with four recording 
days. Culture 1-1 was selected from the group with three recording days, having the latest final 
recording day that was no more than a week later than the penultimate recording day. Plots for the 
remaining cultures are shown in Appendix 3. We also display certain summary statistics for the results 
of all cultures in the main text. Culture 1-5 is anomalous (among the recordings studied in this work) 
in that on its final day it has ceased to burst regularly, as stated in Figure 3A of Wagenaar et al., 
2006b. This leads to its results being substantially different from those of the other cultures, as will 
be presented below.

The TE between all pairs of electrodes was estimated using a recently introduced continuous-time 
estimator (Shorten et al., 2021; see section ‘Transfer entropy estimation’). This produces a directed 
functional network at each recording day, and we aim to analyse how the connections in this network 
change over development time. Spike sorting was not performed because we would not be able 
to match the resulting neural units across different recordings and could not then fulfil our aim of 
contrasting the information flow between specific source-target pairs at different recording days. 
As such, the activity on each node in the directed functional networks we study is multi-unit activity 
(MUA) (Schroeter et al., 2015) formed of the spikes from all neurons detected by a given electrode, 
with connections representing information flows in the MUA. For more details on data preprocessing 
as well as the parameters used with the estimator, see ‘Materials and methods’.

The dramatic increase in the flow of information during development
We first investigate how the amount of information flowing between the nodes changes over the 
lifespan of the cultures. Table 1 shows the mean TE between all source-target pairs (Appendix 3—
table 1 shows these values for the additional cultures). We observe that this mean value increases 
monotonically with the number of DIV, with only a single exception in the main cultures (a slight 
drop in the mean TE between days 21 and 33 of culture 2-2). We can make the same observation 
for the additional cultures, where the only drop is caused by day 5 of culture 2-4, a day still very 
early in development which had no significant TE values. We performed a two-sided Student’s t-test 

Table 1. Mean transfer entropy (TE) in nats per second between every source-target pair for each 
recording studied.

Culture 1-1 Day 4 Day 14 Day 20

0 0.060 0.097

Culture 1-3 Day 5 Day 10 Day 16 Day 24

0 2×10–4 0.017 0.098

Culture 2-2 Day 9 Day 15 Day 21 Day 33

0 0.015 0.11 0.057

Culture 2-5 Day 4 Day 10 Day 22 Day 28

0 2×10–3 0.037 0.082
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for the difference in the mean between all pairs of recordings for each culture. All such differences 
(increases and decreases) were found to be statistically significant at ‍p<0.01‍ with Bonferroni correction 
for multiple comparisons.

Overall, the magnitude of the increase in the mean TE is substantial. All the first recordings for the 
main cultures had a mean estimated TE of ‍0 nats.s−1‍ (with no statistically significant transfer entropies 
measured as per section ‘The emergence of functional information flow networks’). By contrast, all 
recordings beyond 20 DIV had a mean TE greater than ‍0.037 nats.s−1‍.

Figure 1 shows scatter plots of the TE values in each recording laid over box-and-whisker plots 
(Appendix 3—figure 1 shows equivalent plots for the additional cultures). The large increase over 
time in the amount of information flowing over the networks is clearly visible in these plots. However, 
it is interesting to note that certain source-target pairs do have large information flows between them 
on early recording days even while the average remains very low.

Figure 1b shows histograms of the TE values estimated in each recording along with probability 
densities estimated using a Gaussian kernel (Appendix 3—figure 1 shows these for the additional 
runs). The distributions only include the nonzero (statistically significant) estimated TE values. Some 
of these distributions do, qualitatively, appear to be log-normal, in particular for later DIV. More-
over, previous studies have placed an emphasis on the observation of log-normal distributions of TE 
values in in vitro cultures of neurons (Shimono and Beggs, 2015; Nigam et al., 2016). As such, we 
quantitatively analysed the distribution of the nonzero (statistically significant) estimated TE values 
in each individual recording. However, contrary to expectations, we found that these values were 
not well described by a log-normal distribution. It is worth noting that previous work which analysed 
the distribution of TE values in networks of spiking neurons was performed on organotypic cultures, 
as opposed to the dissociated cultures studied in this work. See Appendix 1 for further details and 
discussion.

(a) Scatters and boxplots of TE values. (b) Histograms and kernel density estimates of TE values.

Figure 1. Plots of the distributions of estimated transfer entropy (TE) values in the recordings analysed in this study. (a) Scatters of the TE values are 
overlaid on box plots. The box plots show the quartiles and the median (values greater than 10 SDs from the mean have been removed from both 
the box and scatter plots as outliers). (b) Density estimates of the nonzero (statistically significant) TE distribution on top of a histogram. The densities 
are estimated using a Gaussian kernel. The histogram bin width and kernel histogram are both 10% of the data range. Recordings with fewer than 10 
statistically significant TE values are excluded.
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The emergence of functional information flow networks
By considering each electrode as a node in a network, we can construct directed functional networks 
of information flow by assigning a directed edge between each source-target pair of electrodes with 
a statistically significant information flow. This results in weighted directed networks, the weight being 
provided by the TE value. Diagrams of these networks for the main cultures are shown in Figure 2, and 
in Appendix 3—figure 3 for the additional cultures. Note that, in all subsequent analysis presented in 
this article, a TE value of zero was assigned to all cases where the TE was not statistically significant.

We are able to notice a number of interesting spatiotemporal patterns in these diagrams. Firstly, 
the density (number of edges) of the networks increases over time. This is quantified in Table 2, which 
shows the number of source-target pairs of electrodes for which a statistically significant nonzero TE 
value was estimated. In all the main cultures studied, the number of such pairs (and, therefore, the 
network density) increased by orders of magnitude over the life of the culture. For instance, in all 
four cultures, no statistically significant TE values are estimated on the first recording day. However, 
over 1000 source-target pairs have significant TE values between them on the final day of recording 
for each culture. Appendix 3—table 2 shows the same values for the additional cultures. With a few 
exceptions (such as the abovementioned anomalous culture 1-5), the same relationship is observed. 
Note that the final recording day for culture 2-4 is relatively early (day 11), and so the low number of 
significant edges on this day is consistent with the other cultures.

We are, therefore, observing the networks moving from a state where no nodes are exchanging 
information, to one in which information is being transferred between a substantial proportion of the 
pairs of nodes (≈30% density of possible directed connections in most networks). Put another way, the 
functional networks are emerging from an unconnected state to a highly connected state containing 
the information flow structure that underpins the computational capacity of the network. This helps to 
explain the overall increase in information flow across the network reported in section ‘The dramatic 
increase in the flow of information during development’.

We observe that the information flow (both incoming and outgoing) is spread somewhat evenly 
over the networks – in the sense that in the later, highly connected, recordings there are very few 
areas with neither incoming nor outgoing flow (the one notable exception to this is culture 2-6). A 
number of clear hubs (with particularly high either outgoing or incoming information flow) do stand 
out against this strong background information flow however. The strongest such hubs (with many 
high-TE edges) are all information sinks: they have low outgoing information flow, but receive high 
flow from a number of other nodes.

One can observe many instances in these diagrams where nodes have either very high incoming 
flow and very low outgoing flow, or very low incoming flow and very high outgoing flow. That is, they 
are taking on the roles of source (information-transmitting) hubs or target (information-receiving) hubs. 
Notable instances of information-receiving hubs include node 49 of day 16 of culture 1-3, node 42 of 
day 22 of culture 2-5, and node 5 of day 15 of culture 2-2 (see Figure 2 for the node numbers used 
here). Notable examples of information transmitting hubs include node 28 of day 10 of culture 1-3 
and nodes 18, 19, 22, and 30 of day 22 of culture 2-5. The specialist computational roles that nodes 
can take on will be studied in more detail quantitatively in section ‘Information flows quantify compu-
tational role of burst position’, with a particular focus on how this relates to the burst propagation.

It is possible to observe some notable instances whereby the information processing properties 
of a node remain remarkably similar across recording days. For example, nodes 55, 50, and 39 of 
culture 2-2 are outgoing hubs (with almost no incoming TE) on all four recording days. This offers 
us a tantalising hint that the information processing structure of these networks might be locked-in 
early in development, being reinforced as time progresses. Section ‘Early lock-in of information flows’ 
performs a quantitative analysis of this hypothesis.

Early lock-in of information flows
In the previous subsection, analysis of the directed functional networks of information flow suggested 
that the structure of the information processing capacity of the developing networks might be deter-
mined early in development and reinforced during the subsequent neuronal maturation.

In order to quantitatively investigate this hypothesis, we examine the relationships in the infor-
mation flow from a given source to a given target between different recording days. That is, we are 
probing whether the amount of information flowing between a source and a target on an early day 
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(a) Functional networks

(b) Node numbering

Figure 2. Functional networks overlaid on the spatial layout of the electrodes. (a) The directed functional networks implied by the estimated transfer 
entropy (TE) values. Each node represents an electrode in the original experimental setup. The nodes are spatially laid out according to their position in 
the recording array. An edge is present between nodes if there is a statistically significant information flow between them. The edge weight and colour 
are indicative of the amount of information flowing between electrodes (see the legend). The scaling of this weight and colour is done relative to the 

Figure 2 continued on next page
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of development will be correlated with the amount flowing on a later day of development. This is 
equivalent to studying the correlation in the weights of the edges of the functional networks across 
different recording days. Figure 3 shows scatter plots between the TE values estimated between each 
source-target pair on earlier and later days. Note that, in every case where the null hypothesis of zero 
TE could not be rejected (the TE was not statistically significant), a value of zero was used. Days with 
fewer than 10 nonzero values were excluded from the analysis as they could not lead to meaningful 
insights. By observing the pair scatters in Figure 3a–d (equivalent plots for the additional cultures are 
shown in Appendix 3—figure 4), we see that, in many pairs of days, there appears to be a substan-
tial correlation between the TE values on the edges across days. This is particularly pronounced for 
cultures 1-3 and 1-1, though visual assessment of the trend is complicated by the many zero values 
(where TE is not significant), gaps in the distribution and outliers. As such, Figure 3a–d also display 
the Spearman rank-order correlation (‍ρ‍) for each early-late pair of days for each culture. This correla-
tion is positive and statistically significant at the ‍p<0.01‍ level (after Bonferroni correction for multiple 
comparisons) between all the final pairs of recording days in the analysed cultures (including those 
in the additional cultures). Table 3 summarises the proportions of pairs of recordings (including the 
additional cultures) which had significant positive Spearman correlations between the TE values on 
the edges across days. Whether we focus on either the final pairs of recordings or also include pairs 
that occur after day 15 (by which time the information flow networks have emerged), either all or all 
but one of the pairs of recordings exhibit such correlations. Moreover, the probability of this number 
of correlations arising by chance is found to be very low. This represents a strong tendency for the 
relatively strong information flows between a given source and target on later days to be associated 
with the relatively strong information flow between the same source and target on an earlier day of 
development. Figure 3 displays these Spearman correlations between the early and late TE between 
source-target pairs visually. We notice a trend, whereby the correlation of the TE values seems to be 
higher between closer days (sample point being closer to the diagonal) and where those days are later 
in the development of the cultures (sample points being further to the right).

We also investigated the manner in which a node’s tendency to be an information source hub might 
be bound once information flows are established. Figure 4 shows scatter plots between the outgoing 
TE of each node (averaged across all targets) on different days of development along with the asso-
ciated Spearman correlations (Appendix 3—figure 5 shows these plots for the additional cultures). 
By observing the scatter plots, it is easy to see that there is a strong positive relationship between 
the outgoing information flow from a given node on an earlier day of development and the outgoing 

mean and variance of the information flow in each recording separately. The size and colour of the nodes are assigned relative to the total outgoing and 
incoming information flow on the node, respectively. As with the edge colour and size, this is done relative to the distribution of these values in each 
recording separately. (b) The spatial layout of the nodes. The numbering is identical to that used in the documentation of the open dataset studied in 
this work (Wagenaar et al., 2006b; Network, 2021).

Figure 2 continued

Table 2. The number of source-target pairs of electrodes with a statistically significant transfer 
entropy (TE) value between them for each recording studied.
This corresponds to the number of possible edges in the functional networks shown in Figure 2. As 
the electrode arrays used to record the data had 59 electrodes, the total number of unique ordered 
pairs of electrodes (and, therefore, the number of possible edges) is 3422.

Culture 1-1 Day 4 Day 14 Day 20

0 607 2166

Culture 1-3 Day 5 Day 10 Day 16 Day 24

0 44 999 1902

Culture 2-2 Day 9 Day 15 Day 21 Day 33

0 371 1409 1386

Culture 2-5 Day 4 Day 10 Day 22 Day 28

0 185 975 1263
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flow from that same node on a later day (when we restrict ourselves to focusing on pairs occurring 
after a substantial number of statistically significant information flows have been established). This is 
not surprising, given the correlation we already established for TE on individual pairs, but does not 
automatically follow from that. As with the TE on the edges, Table 3 summarises the proportions of 
pairs of recordings (including the additional cultures) which had significant positive Spearman correla-
tions between the outgoing TE from each node across days. We see that, whether we focus on just 
the last recordings of each culture or also include those after day 15, a substantial majority of pairs of 
recordings exhibit such correlations and that such a majority would be very unlikely to arise by chance. 
Some of these correlations are particularly strong, and indeed stronger than that observed on the TEs 

(a) Culture 1-3 (b) Culture 2-2

(c) Culture 2-5 (d) Culture 1-1 (e) All Cultures

Figure 3. Plots investigating the relationship between the information flow on a given source-target pair over different days of development. (a–d) 
show scatter plots between all pairs of days for each culture (excluding days with less than 10 significant transfer entropy [TE] values). Specifically, in 
each scatter plot, the ‍x‍ value of a given point is the TE on the associated edge on an earlier day and the ‍y‍ value of that same point is the TE on the 
same edge but on a later day. The days in question are shown on the bottom and sides of the grids of scatter plots. The orange line shows the ordinary 
least-squares regression. The Spearman correlation (‍ρ‍) between the TE values on the two days is displayed in each plot. Values of ‍ρ‍ significant at the 
0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. Red asterisks are used to denote 
significance after performing a Bonferroni correction for multiple comparisons. (e) shows all recording day pairs for all cultures (where the pairs are 
always from the same culture) and the associated Spearman correlation between the TE on the edges across this pair of recording days. Diamonds 
indicate significance at ‍p<0.05‍, with Bonferroni correction.
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of individual node pairs. For instance, between days 16 and 24 of culture 1-3 we have that ‍ρ = 0.62‍ 
and between days 14 and 20 of culture 1-1 we have that ‍ρ = 0.71‍. Figure 4 visualises all Spearman 
correlations between the early and late total outgoing TE of a given node. As per the TEs for indi-
vidual node pairs, the correlation is higher between closer days and where those days are later in the 
development of the cultures.

Appendix 2—figure 1 shows similar plots to Figure 4, but for the average inward TE on each 
node (with Appendix 3—figure 6 showing plots for the additional cultures). We observe three cases 
of significant correlations in this value between early and late days, indicating a weaker yet still statis-
tically significant (Table 3) propensity for the average inward TE to also lock-in.

Of course, some pairs involving earlier days of some cultures (such as day 10 of cultures 1-3 and 2-5) 
do not exhibit such lock-in tendencies. However, as displayed in Table 2, there are very few significant 
information flows at this early stage of development (44 and 185, respectively). This represents a point 
in development perhaps too early for any substantial information flow networks to have emerged.

In summary, the data suggests that, in these developing neural cell cultures, the structure of the 
information flows is to a large degree locked-in early in development, around the point at which the 
information dynamics emerge. There is a strong tendency for properties of these flows on later days 
to be correlated with those same properties on earlier days. Specifically, we have looked at the flows 
between source-target pairs, the average outgoing flow from a source, and the average incoming flow 
to a target. The values of these variables on later DIV were found, in the majority of cases, to be posi-
tively correlated with the same values on earlier DIV. Further, there were no cases where a statistically 
significant negative correlation was found.

Information flows quantify computational role of burst position
Developing cultures of dissociated neurons have a tendency to self-organise so as to produce popu-
lation bursts or avalanches (Wagenaar et al., 2006b; Pasquale et al., 2008). Such spike avalanches 
are not only a feature of cell cultures, being a ubiquitous feature of in vivo neural recordings (Priese-
mann et al., 2014; Priesemann et al., 2013; Priesemann et al., 2009). There is a wide body of work 
discussing the potential computational importance of such periods of neuronal activity (Lisman, 1997; 
Krahe and Gabbiani, 2004; Shew et al., 2011; Kinouchi and Copelli, 2006; Haldeman and Beggs, 
2005; Rubinov et al., 2011; Cramer et al., 2020). It has been observed that cultures often follow one 

Table 3. Summary of significance values for the lock-in results.
Each table cell shows the number of relationships that were found to be significant at the ‍p<0.05‍ 
level, out of the total number of relationships tested. Note that relationships were only tested in 
cases where both recordings in the pair had at least 10 significant transfer entropy (TE) values. A 
hypothesis test is conducted against the null hypothesis that the original p-values that produced 
these results were uniformly distributed between 0 and 1 (giving a 0.05 chance of a significant 
result). * indicates that this probability is less than 0.05. ** indicates that the probability of the 
observed number of significant results has probability less than 0.001 under this null hypothesis, with 
a Bonferroni correction for multiple comparisons. The first row summarises the significance values 
for the value of the TE on the edges, shown in Figure 3 and Appendix 3—figure 4. The second and 
third rows summarise the significance values for the mean outward and inward TE on each node, 
shown in Figure 4 and Appendix 3—figure 5 as well as Appendix 2—figure 1 and Appendix 3—
figure 6, respectively. The final row summarises the significance values for the ratio of inward to 
outward burst-local TE, shown in Figure 6 and Appendix 3—figure 9. The columns which restrict 
the analysis to bursting recordings exclude the final recording of culture 1-5, as this culture ceased 
bursting, after having previously been bursty (Wagenaar et al., 2006b).

All cultures, final 
pair

All cultures, final 
pair or post day 15 Bursting, final pair

Bursting, final pair or 
post day 15

Edge 7/7** 8/9** 6/6** 7/8**

Out 5/7** 6/9** 5/6** 6/8**

In 3/7* 3/9* 3/6* 3/8*

Burst-local ratios 5/7** 6/9** 5/6** 6/8**
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or more ordered patterns of burst propagation (Maeda et al., 1995), with some nodes exhibiting a 
tendency to burst towards the beginning of these patterns and others towards their end (Schroeter 
et al., 2015). More recent work has proposed that the nodes which tend to burst at different points in 
these progressions play different computational roles (Schroeter et al., 2015). This work has placed 
special importance on those nodes which usually burst during the middle of the burst progression, 
conjecturing that they act as the ‘brokers of neuronal communication’.

The framework of information dynamics is uniquely poised to illuminate the computational 
dynamics during population bursting as well as the different roles that might be played by various 
nodes during these bursts. This is due to its ability to analyse information processing locally in time 
(Lizier, 2013; Lizier et al., 2008; Lizier, 2014; Wibral et al., 2014b), as well as directionally between 
information sources and targets via the asymmetry of TE. This allows us to isolate the information 

(a) Culture 1-3 (b) Culture 2-2

(c) Culture 2-5 (d) Culture 1-1 (e) All Cultures

Figure 4. Plots investigating the relationship between the outward information flow from a given node over different days of development. (a–d) show 
scatter plots between all pairs of days for each culture (excluding days with less than 10 significant transfer entropy [TE] values). Specifically, in each 
scatter plot, the ‍x‍ value of a given point is the average outgoing TE from the associated node on an earlier day and the ‍y‍ value of that same point is 
the total outgoing TE from the same node but on a later day. The days in question are shown on the bottom and sides of the grids of scatter plots. The 
orange line shows the ordinary least-squares regression. The Spearman correlation (‍ρ‍) between the outgoing TE values on the two days is displayed 
in each plot. Values of ‍ρ‍ significant at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double 
asterisk. Red asterisks are used to denote significance after performing a Bonferroni correction for multiple comparisons. (e) shows all recording day 
pairs for all cultures (where the pairs are always from the same culture) and the associated Spearman correlation between the outward TEs of nodes 
across this pair of recording days. Diamonds indicate significance at ‍p<0.05‍, with Bonferroni correction.
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processing taking place during population bursting activity. We can then determine the information 
processing roles undertaken by the different nodes and examine how this relates to their average 
position in the burst propagation.

We analyse the information flowing between nodes during population bursts by estimating the 
burst-local TE between nodes in each recording (i.e. averaging the TE rates only during bursting 
periods, using probability distribution functions estimated over the whole recordings; see section 
‘Estimation of burst-local TE’). We also measure the mean position of each node within bursts (with 
earlier bursting nodes having a lower numerical position; see section ‘Analysis of population bursts’). 
Note that, although there is variability of the burst position across bursts, certain nodes have much 
lower or higher mean burst positions, indicating a strong tendency to burst earlier or later within the 
propagation.

Figure 5a and b show plots of the mean burst position plotted against the total inward (Figure 5a) 
and outward (Figure 5b) burst-local TE of each node. Appendix 3—figure 7 shows these plots for the 
additional cultures. Plots are only shown for days where there were at least 10 statistically significant 
burst-local TE values. The Spearman correlation (‍ρ‍) between these variables is also displayed on the 
plots.

We see from Figure  5 that, particularly for the final recording days, in most cases there is a 
positive correlation between the mean burst position of the node and the total inward burst-local 
TE. In some cases, this correlation is particularly strong. For instance, on the 24th DIV of culture 
1-3, we observe a Spearman correlation of ‍ρ = 0.84‍. In other words, we observe that nodes which 
tend to burst later have higher incoming information flows. Table 4 summarises the proportions of 
recordings (including the additional cultures) which had significant positive Spearman correlations 
between the mean burst position of the node and the total inward burst-local TE. By focussing on 
recordings that have reached a state of established information dynamics, by either selecting all 
final recordings or all that were performed post day 15, we see that in all cases a clear majority of 
cases had a statistically significant positive Spearman correlation. Moreover, the probability of this 
number of correlations arising by chance is found to be very low. These relationships suggest that 
there is a tendency for the late bursters to occupy the specialised computational role of information 
receivers.

Conversely, as shown in Figure 5, there is a tendency for the mean burst position of the nodes to 
be negatively correlated with the outward burst-local TE. Again, this correlation is particularly strong 
in many cases. For example, on the 24th DIV of culture 1-3, we observe a Spearman correlation of 

‍ρ = −0.80‍. In other words, we observe that nodes which tend to burst earlier have higher outward 
information flows. Table 4 summarises the proportions of recordings (including the additional cultures) 
which had significant negative Spearman correlations between the mean burst position of the node 
and the total outward burst-local TE. We see that a clear majority of either all final recording days 
or all recordings performed post day 15 had a statistically significant negative Spearman correlation. 
Moreover, the probability of this number of correlations arising by chance is found to be very low. 
These relationships suggest that there is a tendency for the early bursters to occupy the specialised 
computational role of information receivers.

Figure 5 plots the total incoming burst-local TE on each node against the total outgoing burst-
local TE, with points coloured according to the node’s mean burst position (Appendix 3—figure 8 
shows these plots for the additional cultures). We see a very clear pattern in these plots, which is 
remarkably clear on some later recording days: nodes which often fire at the beginning of the burst 
progression have high outgoing information flows with lower incoming flows, whereas those which 
tend to sit at the end of the progression have high incoming flows with lower outgoing flows. By 
contrast, those nodes which, on average, occupy the middle of the burst progression have a balance 
between outgoing and incoming information transfer. These nodes within the middle of the burst 
propagation are, therefore, occupying the suggested role of mediators of information flow.

Early lock-in of specialised computational roles
Given that we have seen in section ‘Information flows quantify computational role of burst position’ 
that nodes tend to occupy specialised computational roles based on their average position in the 
burst propagation and that we have seen in section ‘Early lock-in of information flows’ that informa-
tion processing properties can lock-in early in development, it is worth asking whether the specialised 
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(a) Burst position vs TE in (b) Burst position vs TE out

(c) Burst position relative to outgoing and incoming TE.

Figure 5. The relationship between the amount of incoming and outgoing local (in burst) transfer entropy (TE) on a given node and its average burst 
position. (a) and (b) show the burst position of each node on the ‍x‍ axis of each plot, plotted against either the total incoming (a) or outgoing (b) TE on 
the node. The Spearman correlation (‍ρ‍) between the mean burst position and the incoming or outgoing TE values is displayed in each plot. Values of ‍ρ‍ 
significant at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. Red asterisks are 
used to denote significance after performing a Bonferroni correction for multiple comparisons. (e) plots the outgoing TE on the ‍x‍ axis and the incoming 
TE on the ‍y‍ axis with the points coloured according to the mean burst position of the node: late bursters are coloured yellow and early bursters are 
purple.
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computational roles that nodes occupy during population bursts lock-in during the earlier stages of 
neuronal development.

In order to investigate this question, we quantified the computational role occupied by a node by 
measuring the proportion of its total incoming and outgoing burst-local TE that was made up by its 
outgoing burst-local TE. Scatters of these proportions between earlier and later DIV are plotted in 
Figure 6 for the main cultures (the additional cultures are shown in Appendix 3—figure 9). They also 
display the Spearman rank-order correlations (‍ρ‍) between the ratios on different days. We see that, 
in many cases, there are strong, significant, correlations in this ratio between earlier and later DIV. 
Table 3 summarises the proportions of pairs of recordings (including the additional cultures) which 
had significant positive Spearman correlations between this ratio on each node across days. We see 
that, whether we focus on just the last recordings of each culture or also include those after day 15, a 
clear majority of pairs of recordings exhibit such correlations and that such a majority would be very 
unlikely to arise by chance. Figure 6 visualises all these Spearman correlations between the early and 
late day pairs.

These results suggest that, if a node is an information transmitter during population bursts at the 
point at which the information flows are established, it has a tendency to maintain this specialised role 
later in development. Similarly, being an information receiver earlier in development increases the 
probability that the node will occupy this same role later.

Information flows in an STDP model of development
In order to investigate the generality of the phenomena revealed in this article, we reimplemented a 
model network (Khoshkhou and Montakhab, 2019) of Izhikevich neurons (Izhikevich, 2003) devel-
oping according to an STDP (Caporale and Dan, 2008) update rule as described in section ‘Network 
of Izhikevich neurons’. For the low value of the synaptic time constant which we used (see section 
‘Network of Izhikevich neurons’), these networks developed from a state where each neuron under-
went independent tonic spiking at a regular firing rate to one in which the dynamics were dominated 
by periodic population bursts (Zeraati et al., 2021; Khoshkhou and Montakhab, 2019). It is worth 
noting that these population bursts are significantly more regular than those in the biological data 
used in this article. Small modifications were made to the original model in order that the develop-
ment occurred over a greater length of time. The greater length of development allowed us to extract 
time windows which were short relative to the timescale of development (resulting in the dynamics 
being approximately stationary in these windows) yet still long enough to sample enough spikes 
for reliable TE rate estimation. The windows which we used resulted in a median of 5170 spikes per 
neuron per window compared with a median of 17,399 spikes per electrode in the biological data. 
See section ‘Network of Izhikevich neurons’ for more details on the modifications made. A single 
simulation was run. The dynamics of the model are very consistent across independent runs. Three 
windows were extracted, extending between the simulation timepoints of 200 and 250 seconds, 400 
and 450 seconds, and 500 and 550 seconds. These time windows were labelled ‘early’, ‘mid’, and 

Table 4. Summary of significance values for the results relating to computational roles.
Each table cell shows the number of relationships that were found to be significant at the ‍p<0.05‍ 
level, out of the total number of relationships tested. A hypothesis test is conducted against the 
null hypothesis that the original p-values that produced these results were uniformly distributed 
between 0 and 1 (giving a 0.05 chance of a significant result). ** indicates that the probability of the 
observed number of significant results has probability less than 0.001 under this null hypothesis, 
with a Bonferroni correction for multiple comparisons. The first row summarises the significance 
values for the relationships between inward burst-local TE and burst position, as shown in Figure 5 
and Appendix 3—figure 7. The second row summarises the significance values for the relationships 
between outward burst-local TE and burst position, as shown in Figure 5 and Appendix 3—figure 
7.

All cultures, final day All cultures post day 15 Bursting, final day Bursting, post day 15

In 7/11** 10/15** 7/10** 10/14**

Out 7/11** 11/15** 7/10** 11/14**
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‘late’, respectively. The early window was chosen such that it had a nonzero number of significant TE 
values, but such that this number was of the same (order of magnitude in) proportion as observed in 
the first recording days of the cell cultures (refer to Table 2). The mid period was set at the point where 
population bursting begun to emerge, and the late period was set at the point where all neurons were 
bursting approximately synchronously in a pronounced manner.

TE values between all pairs of model neurons were estimated, as described in section ‘Transfer 
entropy estimation’. These estimates were then subjected to the same statistical analysis as the cell 
culture data, the results of which are presented in the preceding subsections of this section. The plots 
of this analysis are displayed in Figures 7 and 8.

(a) Culture 1-3 (b) Culture 2-2

(c) Culture 2-5 (d) Culture 1-1 (e) All Cultures

Figure 6. Plots investigating the relationship between the ratio of outward to total burst-local information flow from a given node over different days 
of development. (a–d) show scatter plots between all pairs of days for each culture (excluding days with less than 10 significant burst-local transfer 
entropy [TE] values). Specifically, in each scatter plot, the ‍x‍ value of a given point is the ratio of total outgoing burst-local TE on the associated node 
to the total burst-local TE on the same node on one day and the ‍y‍ value of that same point is this same ratio on the same node but on a different day. 
The days in question are shown on the bottom and sides of the grids of scatter plots. The orange line shows the ordinary least-squares regression. The 
Spearman correlation (‍ρ‍) between the TE values on the two days is displayed in each plot. Values of ‍ρ‍ significant at the 0.05 level are designated with 
an asterisk and those significant at the 0.01 level are designated with a double asterisk. Red asterisks are used to denote significance after performing 
a Bonferroni correction for multiple comparisons. (e) shows all recording day pairs for all cultures (where the pairs are always from the same culture) and 
the associated Spearman correlation between the outward TE of the nodes across this pair of recording days. Diamonds indicate significance at ‍p<0.05‍, 
with Bonferroni correction.
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Scatters and box plots of the TE values estimated in each developmental window are shown in 
Figure 7. We observe a large, monotonic, increase in these values over development. This mirrors the 
finding in cell cultures, as described in section ‘The dramatic increase in the flow of information during 
development’.

We also observe a similar lock-in phenomenon of information processing as was found in the cell 
cultures (described in section ‘Early lock-in of information flows’). Figure 7a–d show the correlation in 
information flow between different stages of development. Specifically, Figure 7a plots the correla-
tion in TE values between each ordered pair of neurons between early and later windows. Figure 7d 
plots this same correlation, but for the total incoming TE on each neuron, and Figure 7c does this for 
the total outgoing TE. In all six of the plots for the relationships between the TE on each edge and for 
the total outgoing TE, we observe a substantial statistically significant positive correlation between 
values on earlier and later days (significant at the ‍p<0.01‍ level, with Bonferroni correction). We observe 
smaller positive correlations in these values for the total incoming TE on each node, although these 
correlations are not significant, which aligns somewhat with the weaker effect observed for incoming 
TE in the cultures. As with the cell cultures, some of the observed correlations are particularly strong, 
such as the Spearman correlation of ‍ρ = 0.62‍ between the total outgoing TE on each node in the 
mid window and this same value in the late window. This implies that the spatial structure of the 

(a) TE values

(b) Temporal correlations in edge TE (c) Temporal correlations in outgoing
TE by node

(d) Temporal correlations in inwards
TE by node

Figure 7. Equivalent plots to those shown in Figures 1, 3 and 4 and Appendix 2—figure 1, but for the simulated spiking network developing under 
spike-timing-dependent plasticity (STDP). (a) shows scatters of the transfer entropy (TE) values overlaid on box plots. The box plots show the quartiles 
and the median (values greater than 10 SDs from the mean have been removed from both the box and scatter plots as outliers). It corresponds 
to Figure 1. (b –d) show scatter plots investigating the relationship between TE values (or derived summary statistics) over different stages of 
development. Specifically, in each scatter plot, the ‍x‍ value of a given point is a TE value or derived statistic at an earlier simulation stage and the ‍y‍ value 
of that same point is a TE value (or derived statistic) on the corresponding edge or node, but later in the simulation. The orange line shows the ordinary 
least-squares regression. The Spearman correlation (‍ρ‍) between the TE values on the two days is displayed in each plot. Values of ‍ρ‍ significant at the 
0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. Red asterisks are used to denote 
significance after performing a Bonferroni correction for multiple comparisons. (b) corresponds to the scatter plots in Figure 3, (c) corresponds to the 
scatter plots in Figure 4, and (d) corresponds to the scatter plots in Appendix 2—figure 1.
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information flow has a tendency to be determined in the earlier stages of development, after which 
they are locked-in – in a similar fashion to what was observed in the biological experiments in earlier 
sections.

We also performed the same analysis on computational roles as presented in section ‘Information 
flows quantify computational role of burst position’. This analysis, the results of which are presented 
in Figure 8, only looked at the mid and late windows. The early window was ignored due to its lack 
of bursting activity. In the mid recording window, we observe a strong relationship between the mean 
burst position of the neuron and its computational role. Figure 8 shows that there is a significant 
(at the ‍p<0.01‍ level) positive correlation between the mean burst position of a neuron and its total 
incoming burst-local TE (see section ‘Estimation of burst-local TE’ for more details on the burst-local 
TE). There is also a negative correlation between the mean burst position and the total outgoing 
burst-local TE, as shown in Figure  8. However, this relationship is not significant after Bonferroni 
correction. These same figures also display these relationships for the late window. Here, we observe 
the same directions of relationships. This relationship is incredibly strong between incoming TE and 
burst position (‍ρ = 0.81‍). The relationship between the outgoing TE and burst position is still negative, 
although it is not as strong as in the mid window and is no longer significant. Inspection of Figure 8 
reveals that there is still a very clear negative relationship between burst position and outgoing TE 
after a burst position of about 20. Indeed, if we condition on the burst position being greater than 
20, then we find a Spearman correlation of ‍ρ = 0.80‍, which is significant at the ‍p<0.01‍ with Bonferroni 
correction. Inspection of the spike rasters of these simulations suggests that the anomalous results 
for the earliest bursters may be due to their spiking a very substantial distance ahead of the rest of 
the population in these simulations. These differing burst dynamics mean that the earliest bursters are 
then less able to reduce the uncertainty in the spike times of the majority of the neurons which begin 
spiking significantly later.

This implies that, midway through development, we are observing the same specialisation into 
computational roles based on burst position as was observed in the cell cultures: early bursters display 

(a) Burst position vs TE in (b) Burst position vs TE out

(c) Burst position relative to outgoing and incoming TE.

Figure 8. Equivalent plots to those shown in Figure 5, but for the simulated spiking network developing under spike-timing-dependent plasticity 
(STDP). Plots show the relationship between the amount of incoming and outgoing local (in burst) transfer entropy (TE) on a given node and its average 
burst position. (a) and (b) show the burst position of each node on the ‍x‍ axis of each plot, plotted against either (a) the total incoming or (b) outgoing 
TE on the node. The Spearman correlation (‍ρ‍) between the mean burst position and the incoming or outgoing TE values is displayed in each plot. 
Values of ‍ρ‍ significant at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. Red 
asterisks are used to denote significance after performing a Bonferroni correction for multiple comparisons. (c) plots the outgoing TE on the ‍x‍ axis and 
the incoming TE on the ‍y‍ axis with the points coloured according to the mean burst position of the node: late bursters are coloured yellow and early 
bursters are purple.
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a tendency to be information transmitters, late bursters operate as receivers, and middle bursters 
exhibit a balance of the two. Later on in development, we do, however, observe a slight departure 
from the roles we observed in the cell cultures. The computational roles are shifted further down the 
burst propagation and the earliest bursters here are less strongly driving the rest of the population.

It is worth noting that the estimated TE values in the model are substantially higher than in the 
biological dataset. The median estimated TE in the late window of the model was around ‍40 nats.s−1‍ 
(Figure 7). Conversely, it was less than ‍0.2 nats.s−1‍ for every last recording day of the cell cultures 
(Figure 1). This is due to the much higher spike rate of the model implying that the dynamics are 
operating on different timescales. Indeed, if we compare the magnitude of the burst-local TE – which 
is measured in nats per spike (see section ‘Estimation of burst-local TE’) – between the model and the 
biological data (Figures 8 and 5, respectively), we find values of similar magnitude.

In summary, in a network model of Izhikevich neurons developing according to STDP towards a 
state of population bursts, we observe a similar developmental information processing phenomena as 
in the cell cultures. Namely, the amount of information flowing across the network increases dramati-
cally, the spatial structure of this flow locks in early, and the neurons take on specialised computational 
roles based on their burst position.

Discussion
Biological neural networks are imbued with an incredible capacity for computation, which is deployed 
in a flexible manner in order to achieve required tasks. Despite the importance of this capacity to the 
function of organisms, how it emerges during development has remained largely a mystery. Informa-
tion dynamics (Lizier, 2013; Lizier et al., 2014; Lizier et al., 2008; Lizier et al., 2010; Lizier et al., 
2012) provides a framework for studying such computational capacity by measuring the degree to 
which the fundamental information processing operations of information storage, transfer, and modi-
fication occur within an observed system.

Previous work on the information flow component of computational capacity in neural cell cultures 
(Nigam et al., 2016; Shimono and Beggs, 2015; Matsuda et al., 2013; Timme et al., 2014; Kaji-
wara et al., 2021; Timme et al., 2016; Wibral et al., 2017) has focussed on the static structure of 
information flow networks at single points in time. This has mostly taken the form of elucidating prop-
erties of the functional networks implied by the information flows. However, such work leaves open 
questions concerning how these structures are formed. We address this gap here.

An initial goal in addressing how computational capacity emerges was to determine when the infor-
mation flow component arrived. It is plausible that this capacity could have been present shortly after 
plating or that it could have arrived suddenly at a later point in maturation. What we see, however, 
is that the capacity for information transmission is either not present or only minimally present in 
the early DIV. This can be seen by looking at the very low mean TE values in the first column of 
Table 1. However, over the course of development we see that the TE values increase progressively, 
reaching values orders of magnitude larger. This implies that information transmission is a capacity 
which is developed enormously during neuronal development and that its gain is spread consistently 
throughout the observed period.

The information processing operations of a system tend to be distributed over it in a heteroge-
neous fashion. For example, it has been found in models of whole-brain networks (Li et al., 2019; 
Marinazzo et al., 2012; Marinazzo et al., 2014b), abstract network models (Ceguerra et al., 2011; 
Novelli et al., 2020; Goodman and Porfiri, 2020), and even energy networks (Lizier et al., 2009) 
that nodes with high indegrees tend to also have high outgoing information flows. Section ‘The emer-
gence of functional information flow networks’ examined the emergent information flow networks, 
formed by connecting nodes with a statistically significant TE value between them. In accordance with 
this previous work – and indeed the large variation in shared, unique and synergistic information flow 
components observed on the same dataset (albeit with the discrete-time estimator) (Wibral et al., 
2017) – these networks exhibited a high degree of heterogeneity. Notably, as shown in Figure 2a, 
they have prominent hubs of inward flow (sinks) along with less pronounced hubs of outgoing flow 
(sources). Moreover, along with heterogeneity within individual networks, large structural differences 
are easily observed between the different networks shown in Figure 2a.

Keeping with our goal of uncovering how features of mature information flow networks self-
organise, we examined how this heterogeneity at both the intra-network and inter-network levels 
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emerged. It was found in section ‘Early lock-in of information flows’ that the key features of the infor-
mation flow structure are locked-in early in development, around the point at which the information 
flows emerge. This effect was identified for the outgoing TE from each node, for example, where we 
found strong correlations over the different days of development. It is worth further noting that this 
lock-in phenomenon occurs remarkably early in development. Specifically, in very many cases, we 
observe strong correlations between quantities estimated on the first recording days with nonzero 
TE and the same quantities estimated on later days. This early lock-in provides us with a mechanism 
for how the high heterogeneity exhibited in the inflow and outflow hubs emerges. Small differences 
between networks on early DIV will be magnified on subsequent days. This leads to the high levels of 
inter-network heterogeneity that we observe. A similar phenomenon has been observed with STDP, 
which can lead to symmetry breaking in network structure (Gilson et al., 2009; Kunkel et al., 2011), 
whereby small fluctuations in early development can set the trajectory of the synaptic weights on a 
specific path with a strong history dependence. In order to confirm a hypothesis that this observed 
lock-in of information flows could be induced by STDP, in section ‘Information flows in an STDP model 
of development’ we studied the information dynamics of a model network of Izhikevich neurons 
developing according to an STDP (Caporale and Dan, 2008) update rule from a state of independent 
tonic firing to population bursting. The lock-in of key features of the information flow structure was 
evident over the period where the network developed from independent firing to approximately 
synchronous bursting (i.e., bursts occurring at approximately the same point in time). This indicates 
a plausible mechanism for our observations and suggests a broader generality of these phenomena.

An interesting difference between the results for the model and the biological data is that the 
lock-in effect was stronger for outward TE as well as the TE on the edges than in the biological data. 
The reasons for this difference require further investigation; however, it might be due to the multi-unit 
nature of the biological data. A possible direction of future work is to modify the model such that the 
activity on neurons is sub-sampled and aggregated in order to model the effect of placing electrodes 
in a culture. However, this will detract from the simplicity of the model in its current form.

It has been hypothesised that different neural units take on specialised computational roles (Schro-
eter et al., 2015; Frost and Goebel, 2012; Cohen and D’Esposito, 2016). In section ‘Information 
flows quantify computational role of burst position’, we investigated the information flows occurring 
during the critical bursting periods of the cultures’ dynamics. Specifically, we studied the burst-local 
TE in order to measure the information being transferred between nodes during these periods. The 
plots shown in Figure 5 show a clear tendency for the nodes to take on specialised computational 
roles as development progresses. Moreover, these computational roles were tightly coupled to the 
position the node tended to burst within in the burst propagation. Nodes that tended to initiate the 
bursts had a tendency to have high outgoing information transfer combined with low incoming infor-
mation flow, implying their role as information transmitters. The opposite relationship is observed for 
typically late bursters, indicating their role as information receivers. By contrast, nodes that usually 
burst during the middle of the progression have a balance between outward and inward flows. This 
indicates that they are the crucial links between the transmitters and receivers of information. Neurons 
bursting in the middle of the burst progression of dissociated cell cultures have received special atten-
tion in past work using undirected measures, where it was conjectured that they act as the ‘brokers of 
neuronal communication’ (Schroeter et al., 2015). In this work, we have provided novel supporting 
evidence for this conjecture by specifically identifying the directed information flows into and out of 
these nodes. Moreover, in section ‘Information flows in an STDP model of development’, we observed 
that this same specialisation of neurons into computational roles based on average burst position 
occurred in a model network of Izhikevich neurons which had developed via an STDP learning rule to 
a state of population bursting. This suggests that this phenomenon might exist more generally than 
the specific cell cultures studied. It is also worth noting that some of these relationships, notably those 
shown in Figure 7b and d, are much stronger than what was observed in the cell culture. It is likely that 
this is due to the fact that in the model we estimated TE between individual model neurons, whereas 
in the cultures we estimated TE between the MUA on each electrode. A possible direction for future 
work will be to study how the estimated information flow changes when we aggregate the spikes from 
multiple model neurons into simulated MUA.

It is worth reflecting on the fact that the observed correlations between burst-local informa-
tion transfer and average burst position will not occur in all neuronal populations. For instance, in 
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populations with strictly periodic bursts, each node’s behaviour will be well explained by its own 
history, resulting in very low burst-local TE’s, regardless of burst position. Furthermore, neuronal 
populations develop bursty dynamics to different extents and such quantities (let alone their correla-
tion) are simply less meaningful in the absence of burstiness (e.g. for the final day of culture 1-5 as 
stated in Figure 3A of Wagenaar et al., 2006b).

Returning once more to our focus on investigating the emergence of information flows, we have 
demonstrated, in section ‘Early lock-in of specialised computational roles’, that these specialist compu-
tational roles have a tendency to lock-in early. There we looked at the ratio of outgoing burst-local TE 
to the total burst-local TE on each node. It was found that there is a strong tendency for this ratio to 
be correlated between early and late days of development. This suggests that the computational role 
that a node performs during population bursts is determined to a large degree early in development.

Insights into development aside, a fundamental technical difference between the work presented 
here and previous studies of TE in neural cultures is that here we use a recently developed continuous-
time estimator of TE (Shorten et  al., 2021). This estimator was demonstrated to have far higher 
accuracy in estimating information flows than the traditional discrete-time estimator. The principal 
challenge which is faced when using the discrete-time estimator is that the curse of dimensionality 
limits the number of previous time bins that can be used to estimate the history-dependent spike 
rates. All applications of this estimator to spiking data from cell cultures of which the authors are 
aware (Nigam et al., 2016; Shimono and Beggs, 2015; Matsuda et al., 2013; Timme et al., 2014; 
Kajiwara et al., 2021; Timme et al., 2016) made use of only a single previous bin in the estimation 
of these rates. This makes it impossible to simultaneously achieve high time precision and capture the 
dependence of the spike rate on spikes occurring further back in time. Conversely, by operating on 
the interspike intervals, the continuous-time estimator can capture the dependence of the spike rate 
on events occurring relatively far back in time, while maintaining the time precision of the raw data. 
Looking at a specific representative example, our target history embeddings made use of the previous 
four interspike intervals (section ‘Selection of embedding lengths’). For the recording on day 24 of 
culture 1-3, the mean interspike interval was 0.71 s. This implies that the target history embeddings on 
average extended over a period of 2.84 s. The raw data was collected with a sampling rate of ‍25 kHz‍ 
(Wagenaar et al., 2006b). In order to lose no time precision, the discrete-time estimator would thus 
have to use bins of 40 s, and then in order to extend over 2.84 s, the target history embeddings would 
therefore need to consist of around 70,000 bins which is empirically not possible to sample well.

It is worth noting that, as we were performing a longitudinal analysis where each studied recording 
was separated by days or weeks, we did not perform spike sorting as we would have been unable to 
match the different units on an electrode across different recordings. We would then not have been 
able to compare the TE values on a given unit over the course of development. Instead, we analysed 
the spikes on each electrode without sorting. As such, this work studies MUA (Schroeter et al., 2015). 
Spike sorting applied to data collected from a near-identical recording setup found an average of four 
neurons per electrode (Wagenaar et al., 2006a). This situates this work at a spatial scale slightly larger 
than spike-sorted neural data, but still orders of magnitude finer than fMRI, EEG, or MEG (Bassett 
and Sporns, 2017).

Functional and effective networks arising from the publicly available dataset used in this article 
(Wagenaar et al., 2006b) have been studied by other authors. For instance, it was shown that the 
functional networks were small world (Downes et al., 2012) and that more connected nodes exhib-
ited stronger signatures of nonlinearity (Minati et al., 2019). Work has also been conducted analysing 
the burst propagation of these cultures, finding that there are ‘leader’ nodes which consistently burst 
before the rest of the population (Eckmann et al., 2008). These are the information transmitters that 
we have observed in this work here.

An exciting direction for future work will be to move beyond directed functional networks to 
examine the information flow provided by higher-order multivariate TEs in an effective network struc-
ture (Novelli and Lizier, 2021; Novelli et al., 2019). The networks inferred by such higher-order TEs 
are able to better reflect the networks’ underlying structural features (Novelli and Lizier, 2021). As 
was the case with bivariate TEs prior to this work, there is an absence of work investigating how the 
networks of multivariate information flow emerge during neural development. Moreover, moving to 
higher-order measures will allow us to more fully characterise the multifaceted specialised computa-
tional roles undertaken by neurons.
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Materials and methods
Cell culture data
The spike train recordings used in this study were collected by Wagenaar et al., 2006b and are freely 
available online (Network, 2021). The details of the methodology used in these recordings can be 
found in the original publication (Wagenaar et al., 2006b). A short summary of their methodology 
follows.

Dissociated cultures of rat cortical neurons had their activity recorded. This was achieved by plating 
8 × 8 MEAs, operating at a sampling frequency of 25 kHz with neurons obtained from the cortices of 
rat embryos. The spacing between the electrodes was 200 m centre-to-centre. The MEAs did not have 
electrodes on their corners and one electrode was used as ground, resulting in recordings from 59 
electrodes. In all recordings, electrodes with less than 100 spikes were removed from the analysis. This 
resulted in electrodes 37 and 43 (see Figure 2 for the position of these electrodes) being removed 
from every recording as no spikes were recorded on them. The spatial layout of the electrodes is 
available from the website associated with the dataset (Network, 2021), allowing us to overlay the 
functional networks onto this spatial layout as is done in Figure 2a.

30  min recordings were conducted on most days, starting from 3 to 4 DIV. The end point of 
recording varied between 25 and 39 DIV. Longer overnight recordings were also conducted on some 
cultures at sparser intervals. As the accurate estimation of information-theoretic quantities requires 
substantial amounts of data (Shorten et al., 2021; Kraskov et al., 2004), in this work we make use 

Table 5. File numbers used for each culture on each day.
These correspond to the file numbering used in the freely available dataset used in this study, 
provided by Wagenaar et al., 2006b; Network, 2021.

Culture 1-1 Day 4 Day 14 Day 20

2 2 2

Culture 1-2 Day 6 Day 11 Day 17

2 2 2

Culture 1-3 Day 5 Day 10 Day 16 Day 24

2 2 2 2

Culture 1-4 Day 8 Day 13 Day 19

2 2 2

Culture 1-5 Day 7 Day 12 Day 18

2 2 2

Culture 2-1 Day 14 Day 32

2 2

Culture 2-2 Day 9 Day 15 Day 21 Day 33

2 2 2 2

Culture 2-3 Day 6 Day 12 Day 24

2 2 2

Culture 2-4 Day 3 Day 5 Day 11

1 1 1

Culture 2-5 Day 4 Day 10 Day 22 Day 28

1 1 2 1

Culture 2-6 Day 7 Day 13 Day 31

1 1 1
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of these longer overnight recordings. These recordings were split into multiple files. The specific files 
used, along with the names of the cultures and days of the recordings, are listed in Table 5.

The original study plated the electrodes with varying densities of cortical cells. However, overnight 
recordings were only performed on the ‘dense’ cultures, plated with a density of ‍2500 cells/L‍.

The original study performed threshold-based spike detection by determining that a spike was 
present in the case of an upward or downward excursion beyond 4.5 times the estimated RMS noise 
of the recorded potential on a given electrode. The analysis presented in this article makes use of 
these detected spike times. No spike sorting was performed, and, as such, we are studying MUA 
(Schroeter et al., 2015).

Network of Izhikevich neurons
The model spiking network used to generate the data analysed in section ‘Information flows in an 
STDP model of development’ is identical to that presented in Khoshkhou and Montakhab, 2019, 
with a few minor alterations. This model consists of Izhikevich neurons (Izhikevich, 2003) developing 
according to an STDP (Caporale and Dan, 2008) update rule. At the beginning of the simulation, 
each neuron performs independent tonic spiking; however, the network develops towards population 
bursts.

The specific model settings used were based on those used to produce Figure 5A in Khoshkhou 
and Montakhab, 2019. That is, the proportion of inhibitory neurons (‍α‍) and the synapse time delay 
(‍τij‍) were both set to 0. The first change made was to use 59 neurons, as opposed to the 500 used in 
Khoshkhou and Montakhab, 2019, in order to correspond to the number of electrodes used in the 
cell culture recordings. The maximum connection strength (‍gmax‍) was also increased from 0.6 to 10 in 
order to compensate for this reduction in the network size.

The only remaining change was made in order to slow the rate of development of the population. 
The reasoning behind this was to allow for the extraction of windows which were much shorter than 
the timescale of development, resulting in the dynamics within these windows being approximately 
stationary (and including enough samples for estimation of the TE rates). Specifically, this change was 
to greatly reduce the values of the maximum synaptic potentiation and depression (‍A+‍ and ‍A−‍). These 
values were reduced from ‍5  ×  10−2‍ to ‍4  ×  10−4‍.

Data preprocessing
As the data was sampled at 25 kHz, uniform noise distributed between –20 s and 20 s was added 
to each spike time. This is to prevent the TE estimator from exploiting the fact that, in the raw data, 
interspike intervals are always an integer multiple of 40 s.

Transfer entropy estimation
The (bivariate) TE (Schreiber, 2000; Bossomaier et al., 2016) was estimated between each pair of 
electrodes in each of the recordings listed in Table 5. TE is the mutual information between the past 
state of a source process and the present state of a target process, conditioned on the past state of 
the target. More specifically (in discrete time), the TE rate is
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The TE above is being measured from a source ‍Y ‍ to a target ‍X ‍, ‍I( · ; · | · )‍ is the conditional mutual 
information (MacKay and Kay, 2003), xt is the current state of the target, ‍x<t‍ is the history of the 
target, ‍y<t‍ is the history of the source, ‍∆t‍ is the bin width (in time units), ‍τ ‍ is the length of the 
processes, and ‍NT = τ /∆t‍ is the number of time samples (bins). The histories ‍x<t‍ and ‍y<t‍ are usually 
captured via embedding vectors, for example, ‍x<t = xt−m:t−1 = {xt−m, xt−m+1, . . . , xt−1}‍.

Previous application of the discrete-time estimator
Previous applications of TE to spiking data from neural cell cultures (Nigam et al., 2016; Shimono 
and Beggs, 2015; Matsuda et al., 2013; Timme et al., 2014; Kajiwara et al., 2021; Timme et al., 
2016; Wibral et al., 2017) made use of this discrete-time formulation of TE. This work was primarily 
focussed on the directed functional networks implied by the estimated TE values between pairs of 
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nodes which has revealed interesting features of the information flow structure. Shimono and Beggs, 
2015 found that these networks exhibited a highly non-random structure and contained a long-tailed 
degree distribution. This work was expanded by Nigam et al., 2016, where it was found that the 
functional networks contained a rich-club topology. Conversely, Timme et al., 2014 found that the 
hubs of these networks were localised to certain timescales. Other work (Timme et al., 2016; Wibral 
et al., 2017) has instead focussed on how the components of information flows in cell cultures can be 
decomposed into unique, redundant, and synergistic components.

Continuous-time estimation
It has, relatively recently, been shown that, for event-based data such as spike trains, in the limit of 
small bin size, the TE is given by the following expression (Spinney and Lizier, 2018):
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Here, ‍λx|x<t,y<t
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‍ is the instantaneous firing rate of the target conditioned on the histories of 

the target ‍x<xi‍ and source ‍y<xi‍ at the time points xi of the spike events in the target process. ‍λx|x<t
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]
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is the instantaneous firing rate of the target conditioned on its history alone, ignoring the history of 
the source. It is important to note that the sum is being taken over the ‍NX ‍ spikes of the target, thereby 
evaluating log ratios of the expected spike rates of the target given source and target histories versus 
target histories alone, when the target does spike. As this expression allows us to ignore the ‘empty 
space’ between events, it presented clear potential for allowing for more efficient estimation of TE 
on spike trains.

This potential was recently realised in a new continuous-time estimator of TE presented in Shorten 
et al., 2021 (and utilised in Mijatovic et al., 2021), and all TE estimates in this article were performed 
using this new estimator. In Shorten et al., 2021 it is demonstrated that this continuous-time esti-
mator is far superior to the traditional discrete-time approach to TE estimation on spike trains. For 
a start, unlike the discrete-time estimator, it is consistent. That is, in the limit of infinite data, it will 
converge to the true value of the TE. It was also shown to have much preferable bias and convergence 
properties. Most significantly, perhaps, this new estimator utilises the interspike intervals to efficiently 
represent the history embeddings ‍x<xi‍ and ‍y<xi‍ in estimating the relevant conditional spike rates in 
(Lizier, 2013). This then allows for the application of the highly effective nearest-neighbour family of 
information-theoretic estimators (Kozachenko and Leonenko, 1987; Kraskov et al., 2004), which 
bring estimation efficiency, bias correction, and together with their application to interspike intervals 
enable capture of long timescale dependencies.

This is in contrast to the traditional discrete-time estimator which uses the presence or absence of 
spikes in time bins as its history embeddings (it sometimes also uses the number of spikes occurring 
in a bin). In order to avoid the dimensionality of the estimation problem becoming sufficiently large 
so as to render estimation infeasible, only a small number of bins can be used in these embeddings. 
Indeed, to the best of the authors’ knowledge, all previous applications of the discrete-time TE esti-
mator to spiking data from cell cultures used only a single bin in their history embeddings. The bin 
widths used in those studies were 40 s (Nigam et al., 2016), 0.3 ms (Garofalo et al., 2009), and 1 ms 
(Shimono and Beggs, 2015; Kajiwara et al., 2020). Some studies chose to examine the TE values 
produced by multiple different bin widths, specifically, 0.6 ms and 100 ms (Matsuda et al., 2013), 1.6 
ms and 3.5 ms (Timme et al., 2016), and 10 different widths ranging from 1 ms to 750 ms (Timme 
et al., 2014). Specifically those studies demonstrated the unfortunate high sensitivity of the discrete-
time TE estimator to the bin width parameter. In the instances where narrow (<5 ms) bins were used, 
only a very narrow slice of history is being considered in the estimation of the history-conditional 
spike rate. This is problematic as it is known that correlations in spike trains exist over distances of 
(at least) hundreds of milliseconds (Aldridge and Gilman, 1991; Rudelt et al., 2021). Conversely, in 
the instances where broad (>5 ms) bins were used, relationships occurring on fine timescales will be 
completely missed. This is significant given that it is established that correlations at the millisecond 
and sub-millisecond scale play a role in neural function (Nemenman et al., 2008; Kayser et al., 2010; 
Sober et al., 2018; Garcia-Lazaro et al., 2013). In other words, previous applications of TE to elec-
trophysiological data from cell cultures either captured some correlations occurring with fine temporal 
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precision or they captured relationships occurring over larger intervals, but never both simultaneously. 
This can be contrasted with the interspike interval history representation used in this study. To take 
a concrete example, for the recording on day 24 of culture 1-3, the average interspike interval was 
0.71  s. This implies that the target history embeddings (composed of four interspike intervals) on 
average extended over a period of 2.84 s and the source history embeddings (composed of two inter-
spike intervals) on average extended over a period of 1.42 s. This is despite the fact that our history 
representations retain the precision of the raw data (40 s) and the ability to measure relationships on 
this scale where they are relevant (via the underlying nearest-neighbour estimators).

The parameters used with this estimator are shown in Table 6. The values of ‍kglobal‍ and ‍kperm‍ were 
chosen because, in previous work (Shorten et al., 2021), similar values were found to facilitate stable 
performance of the estimator. The high values of ‍NU ‍ and ‍NU,surrogates‍ were chosen so that histories 
during bursting periods could be adequately sampled. These two parameters refer to sample points 
placed randomly in the spike train, at which history embeddings are sampled. As the periods of 
bursting comprise a relatively small fraction of the total recording time, many samples need to be 
placed in order to achieve a good sample of histories potentially observed during these periods. The 
choice of embedding lengths is discussed in the section ‘Selection of embedding lengths’, and the 
choice of ‍Nsurrogates‍ is discussed in the section ‘Significance testing of TE values’.

Instead of selecting a single number of target spikes ‍NX ‍ to include in the analysis, we chose to 
include all the spikes that occurred within the first hour of recording time. The reason for doing this 
was that the spike rates varied by orders of magnitude between the electrodes. This meant that fixing 
the number of target spikes would result in the source spikes being severely undersampled in cases 
where the target spike rate was much higher than the source spike rate. When using 1 hr of recording 
time, among the main cultures the smallest number of spikes per electrode was 481, the maximum 
was 69,627, and the median was 17,399.

Selection of embedding lengths
The target embedding lengths were determined by adapting the technique (Erten et  al., 2017; 
Novelli et al., 2019) extending (Garland et al., 2016) of maximising the bias-corrected active infor-
mation storage (AIS) (Lizier et al., 2012) over different target embedding lengths for a given target. 
Our adaptations sought to select a consensus embedding parameter for all targets on all trials to 
avoid different bias properties due to different parameters across targets and trials, in a similar fashion 
to Hansen et  al., 2021. As such, our approach determines a target embedding length ‍lX‍ which 
maximises the average bias-corrected AIS across all electrodes using one representative recording 

Table 6. The parameter values used in the continuous-time transfer entropy (TE) estimator.
A complete description of these parameters, along with analysis and discussion of their effects, can 
be found in Shorten et al., 2021.

Parameter Description Value

‍NX ‍ Number of spikes in the target spike train Varied (see text)

‍lX ‍
Number of interspike intervals in target history 
embeddings 4

‍lY ‍
Number of interspike intervals in source history 
embeddings 2

‍kglobal‍
Number of nearest neighbours to find in the initial 
search 10

‍kperm‍
Number of nearest neighbours to consider during 
surrogate generation 10

‍NU ‍
Number of random samples of histories at non-
spiking points in time ‍50NX ‍

‍NU,surrogates‍
Number of random samples of histories at non-
spiking points in time used for surrogate generation ‍10NX ‍

‍Nsurrogates‍
Number of surrogates to generate for each node 
pair 100
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(selected as day 23 of culture 1-3). To estimate AIS within the continuous-time framework (Spinney 
and Lizier, 2018) for this purpose, we estimated the difference between the second KL divergence of 
Equation 10 of Shorten et al., 2021 and the mean firing rate of the target. These estimates contain 
inherent bias correction as per the TE estimator itself. Moreover, the mean of surrogate values was 
subtracted to further reduce the bias. The embedding length ‍lX‍ was continuously increased so long 
as each subsequent embedding produced a statistically significant (at the ‍p<0.05‍ level) increase in the 
average AIS across the electrodes. The resulting mean AIS values (along with standard deviations) 
and p-values are shown in Table 7. We found that every increase in ‍lX‍ up to 4 produced a statistically 
significant increase in the mean AIS. The increase from 4 to 5 produced a non-significant decrease in 
the mean AIS and so ‍lX‍ was set to 4.

With the target embedding length determined, we set about similarly determining a consensus 
source embedding length ‍lY ‍ by estimating the TE between all directed electrode pairs on the same 
representative recording for different values of ‍lY ‍. Each estimate also had the mean of the surrogate 
population subtracted to reduce its bias (see section ‘Significance testing of TE values’).

The embedding length was continuously increased so long as each subsequent embedding 
produced a statistically significant (at the ‍p<0.05‍ level) increase in the average TE across all elec-
trode pairs. The resulting mean TE values (along with standard deviations) and p-values are shown 
in Table 8. We found that increasing ‍lY ‍ from 1 to 2 produced a statistically significant increase in the 
mean TE. However, increasing ‍lY ‍ from 2 to 3 produced a non-significant decrease in the mean TE. As 
such, we set ‍lY ‍ to 2.

Significance testing of TE values
In constructing the directed functional networks displayed in Figure 2a, we tested whether the esti-
mated TE between each source-target pair was statistically different from the distribution of TEs 
under the null hypothesis of conditional independence of the target from the source (i.e. TE consis-
tent with zero). Significance testing for TE in this way is performed by constructing a population of 
surrogate time-series or history embeddings that conform to the null hypothesis of zero TE (Novelli 
et al., 2019; Wollstadt et al., 2019; Novelli and Lizier, 2021). We then estimate the TE on each of 

Table 7. Summary statistics for the active information storage (AIS) values estimated at different 
target embedding lengths ‍lX‍.
These were estimated across all electrodes of a representative recording (day 23 of culture 1-3). The 
p-values shown in the fourth column are associated with the null hypothesis that the mean AIS at the 
given ‍lX‍ is equal to the mean AIS at ‍lX − 1‍.

‍lX ‍ Mean AIS SD p-Value

1 7.73 4.71 –

2 8.27 4.97 3.0×10–19

3 8.41 5.08 5.8×10–8

4 8.44 5.11 2.7×10–4

5 8.43 5.12 0.85

Table 8. Summary statistics for the transfer entropy (TE) values estimated at different source 
embedding lengths ‍lY ‍.
These were estimated between all electrodes of a representative recording (day 23 of culture 1–-3). 
The p-values shown in the fourth column are associated with the null hypothesis that the mean TE at 
the given ‍lY ‍ is equal to the mean TE at ‍lY − 1‍.

‍lY ‍ Mean TE SD p-Value

1 0.031 0.043 –

2 0.058 0.056 0.0

3 0.057 0.069 0.84
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these surrogates to generate a null distribution of TE. Specifically, we generate the surrogates and 
compute their TEs according to the method associated with the continuous-time spiking TE estimator 
(Shorten et  al., 2021) and using the parameters shown in Table 6. One small change was made 
to that surrogate generation method: instead of laying out the ‍NU,surrogates‍ sample points randomly 
uniformly, we placed each one at an existing target spike, with the addition of uniform noise on the 
interval ‍[−240 ms, 240 ms]‍. This was to ensure that these points adequately sampled the incredibly 
dense burst regions.

With the surrogate TE distribution constructed, the resulting p-value for our TE estimate can 
be computed by counting the proportion of these surrogate TEs that are greater than or equal to 
the original estimate. Here, we seek to compare significance against a threshold of ‍α < 0.01‍. We 
chose this lower threshold as false positives are generally considered more damaging than false 
negatives when applying network inference to neuroscientific data (Zalesky et  al., 2016). We 
also applied a Bonferroni correction (Miller, 2012) to all the significance tests done on a given 
recording. Given that there are 59 electrodes in the recordings, 3422 tests were performed in each 
recording. This meant that, once the Bonferroni correction was included, the significance threshold 
dropped to ‍p<2.9 × 10−6

‍. Comparing against such a low significance threshold would require an 
infeasible number of surrogates for the many pairs within each recording, if computing the p-value 
by counting as above. Instead, we assume that the null TE distribution is Gaussian and compute the 
p-value for our TE estimate using the CDF of the Gaussian distribution fitted from 100 surrogates 
(e.g. as per Lizier et al., 2011). Specifically, the p-value reports the probability that a TE estimate 
on history embeddings conforming to the null hypothesis of zero TE being greater than or equal 
to our original estimated TE value. If this p-value is below the threshold, then the null hypothesis 
is rejected and we conclude that there is a statistically significant information flow between the 
electrodes.

Analysis of population bursts
A common family of methods for extracting periods of bursting activity from spike-train recordings 
examines the length of adjacent interspike intervals. The period spanned by these intervals is desig-
nated a burst if some summary statistic of the intervals (e.g. their sum or maximum) is below a certain 
threshold (Kaneoke and Vitek, 1996; Wagenaar et al., 2005; Wagenaar et al., 2006b; Selinger 
et al., 2007; Bakkum et al., 2013). In order to detect single-electrode as well as population-wide 
bursts, we implement such an approach here.

We first determine the start and end points of the bursts of each individual electrode. The locations 
of the population bursts were subsequently determined using the results of this per-electrode analysis.

The method for determining the times during which an individual electrode was bursting proceeded 
as follows: the spikes were moved through sequentially. If the interval between a given spike and the 
second most recent historic spike for that electrode was less than ‍α‍, then, if the electrode was not 
already in a burst, it was deemed to have a burst starting at the kth most recent historic spike. A 
burst was taken to continue until an interspike interval greater than ‍a ∗ α‍ was encountered. If such an 
interval was encountered, then the end of the burst was designated as the timestamp of the earlier of 
the two spikes forming the interval.

The starts and ends of population bursts were similarly determined by moving through the time 
series in a sequential fashion. If the population was not already designated to be in a burst, but the 
number of electrodes currently bursting was greater than the threshold ‍β‍, then a burst start position 
was set at the point this threshold was crossed. Conversely, if the electrode was already designated to 
be in a burst and the number of individual electrodes currently bursting dropped below the threshold 

‍γ‍ (‍γ < β‍), then a burst stop position was set at the point this threshold was crossed.
In this article, we always made use of the parameters ‍k = 2,α = 1

2λ̄ , a = 3,β = 15‍ and ‍γ = 10‍, where 
‍̄λ‍ is the average spike rate. These parameters were chosen by trial-and-error combined with visual 
inspection of the resulting inferred burst positions. The results of this scheme showed low sensitivity 
to the choice of these parameters.

For the simulated network dynamics, we used the parameters ‍k = 1,α = 1
2λ̄ , a = 1.5,β = 2‍ and ‍γ = 1‍. 

These parameters were found to better suit the stereotyped dynamics of the simulated networks.
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Estimation of burst-local TE
The information dynamics framework provides us with the unique ability to analyse information 
processing locally in time (Lizier et al., 2008; Lizier, 2013; Lizier, 2014). We make use of that ability 
here to allow us to specifically examine the information flows during the important period of popula-
tion bursts. The TE estimator which we are employing here (Shorten et al., 2021) sums contributions 
from each spike in the target spike train. It then divides this total by the time length of the target spike 
train that is being examined. In order to estimate the burst-local TE, we simply sum the contributions 
from the target spikes where those spikes occurred during a population burst. We then normalise 
by the number of such spikes, providing us with a burst-local TE estimate in units of nats per spike, 
instead of nats per second. Note that the burst-local TE is different to the approach of Stetter et al., 
2012, who extracted the bursting activity prior to any analysis, rendering a TE conditioned on bursting 
occurring. Specifically, in contrast to the burst-local TE, in their work the non-spiking activity is ignored 
for the purposes of estimating the log densities.

Code availability
Scripts for performing the analysis in this article can be found at bitbucket.org/dpshorten/cell_cultures 
(Shorten, 2022; copy archived at swh:1:rev:8ee5e519da5cb90590865e9a692b96ad7e68a69e).
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Appendix 1

(a) QQ plots of TE values against the normal distribution. (b) QQ plots of log TE values against the normal distribution.

Appendix 1—figure 1. Quantile-quantile (QQ) plots (Gibbons and Chakraborti, 2020) of the nonzero estimated 
transfer entropy (TE) values against normal (a) and log-normal (b) distributions, respectively. The ‍y‍ axis shows 
estimated TE values (or their logarithm), whereas the ‍x‍ axis shows the value of the normal distribution at the same 
quantile. The solid orange line shows the line ‍y = x‍. If the data is drawn from the distribution against which it is 
being plotted, then the blue marks will sit along this line. We observe that the distributions of TE values deviate 
substantially from both normal and log-normal distributions in all recordings analysed.

Appendix 1—table 1. p-Values for the Shapiro–Wilk test (Shapiro and Wilk, 1965) of normality for 
the distribution of transfer entropy (TE) values estimated in each recording.
Only the statistically significant TE values are included in these tests. Recordings for which there 
were no statistically significant values estimated are left blank. These p-values represent the 
probability that the associated test statistic is more extreme than that calculated on the estimated 
TE values, under the null hypothesis that these values are normally distributed. For any reasonable 
choice of p cutoff value, the null hypothesis is rejected in all recordings.

Culture 1-1 Day 4 Day 14 Day 20

– 9.8×10–45 4.2×10–35

Culture 1-3 Day 5 Day 10 Day 16 Day 24

4.4×10–13 4.7×10–24 2.7×10–36 1.0×10–36

Culture 2-2 Day 9 Day 15 Day 21 Day 33

7.9×10–6 1.6×10–28 2.6×10–35 9.5×10–38

Culture 2-5 Day 4 Day 10 Day 22 Day 28

– 7.5×10–10 2.4×10–28 3.7×10–29

Appendix 1—table 2. p-Values for the Shapiro–Wilk test (Shapiro and Wilk, 1965) of normality for 
the distribution of transfer entropy (TE) values estimated in each recording.
Only the statistically significant TE values are included in these tests. Recordings for which there 
were no statistically significant values estimated are left blank. These p-values represent the 
probability that the associated test statistic is more extreme than that calculated on the estimated 
TE values, under the null hypothesis that these values are normally distributed. For any reasonable 
choice of p cutoff value, the null hypothesis is rejected in all recordings.

Culture 1-1 Day 4 Day 14 Day 20

Appendix 1—table 2 Continued on next page
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– 0 3.3×10–33

Culture 1-2 Day 6 Day 11 Day 17

– 2.3×10–21 3.8×10–43

Culture 1-3 Day 5 Day 10 Day 16 Day 24

– 6.4×10–13 3.3×10–14 5.3×10–14

Culture 1-4 Day 8 Day 13 Day 19

– 2.5×10–28 2.1×10–31

Culture 1-5 Day 7 Day 12 Day 18

8.4×10–2 1×10–35 1.5×10–12

Culture 2-1 Day 14 Day 32

2.8×10–1 0

Culture 2-2 Day 9 Day 15 Day 21 Day 33

– 1.4×10–19 7.1×10–44 0

Culture 2-3 Day 6 Day 12 Day 24

– 2.6×10–1 1.4×10–45

Culture 2-4 Day 3 Day 5 Day 11

3.5×10–12 – 1.0×10–2

Culture 2-5 Day 4 Day 10 Day 22 Day 28

– 1.2×10–21 3.5×10–40 1.2×10–37

Culture 2-6 Day 7 Day 13 Day 31

1.0×10–1 – 1.9×10–19 –

Appendix 1—table 3. p-Values for the Shapiro–Wilk test (Shapiro and Wilk, 1965) of log-normality 
for the distribution of transfer entropy (TE) values estimated in each recording.
Only the statistically significant TE values are included in these tests. Recordings for which there 
were no statistically significant values estimated are left blank. These p-values represent the 
probability that the associated test statistic is more extreme than that calculated on the logarithms 
of the estimated TE values, under the null hypothesis that these values are normally distributed. For 
any reasonable choice of p cutoff value, the null hypothesis is rejected in all recordings (apart from 
those with very few significant TE values). It is interesting to note that the p-values are often smaller 
on later days, despite the Q-Q plots in Appendix 1—figure 1, suggesting the distribution is closer 
to log-normal. This is probably due to there being many more statistically significant TE values on 
these later days (see Table 2).

Culture 1-1 Day 4 Day 14 Day 20

– 3.1×10–21 2.9×10–10

Culture 1-2 Day 6 Day 11 Day 17

– 3.2×10–14 1.6×10–22

Culture 1-3 Day 5 Day 10 Day 16 Day 24

– 1.3×10–4 3.0×10–13 1.3×10–22

Culture 1-4 Day 8 Day 13 Day 19

– 3.0×10–15 2.4×10–7

Culture 1-5 Day 7 Day 12 Day 18

3.3×10–2 7.8×10–24 2.0×10–4

Appendix 1—table 2 Continued

Appendix 1—table 3 Continued on next page
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Culture 2-1 Day 14 Day 32

9.7×10–1 3.6×10–22

Culture 2-2 Day 9 Day 15 Day 21 Day 33

– 1.8×10–12 3.6×10–14 5.8×10–29

Culture 2-3 Day 6 Day 12 Day 24

– 6.1×10–2 1.78×10–7

Culture 2-4 Day 3 Day 5 Day 11

9.8×10–13 – 5.1×10–2

Culture 2-5 day 4 day 10 Day 22 Day 28

- 1.2×10–3 1.1×10–16 2.4×10–14

Culture 2-6 day 7 day 13 Day 31
 

7.4×10–1 - 1.9×10–14 –

Previous studies have placed an emphasis on the observation of log-normal distributions of TE 
values in in vitro cultures of neurons (Shimono and Beggs, 2015; Nigam et al., 2016). As such, 
we analysed the distribution of the nonzero (statistically significant) estimated TE values in each 
individual recording.

Figure 1 shows histograms as well as probability density functions estimated by a kernel density 
estimator (KDE) of the nonzero TE values for each recording. From these plots, we can see that the 
distributions of TE values exhibit a clear right (positive) skew. In order to ascertain how well the 
estimated TE values were described by a log-normal distribution, we constructed quantile-quantile 
(QQ) plots (Gibbons and Chakraborti, 2020) for the TE values against the log-normal distribution 
in Appendix 1—figure 1. In all recordings, the plotted points deviate from the line ‍y = x‍, indicating 
that the data is not well described by a log-normal distribution. However, this deviation appears 
only slight for some recordings, most notably days 22 and 28 of culture 2-5. We also perform 
Shapiro–Wilk tests (Shapiro and Wilk, 1965) for log-normality, the resulting p-values are displayed 
in Appendix 1—table 3. The p-values for every recording are incredibly low, meaning that we reject 
the null hypothesis of a log-normal distribution in every case.

Given that the distributions of the TE values were not well described by a log-normal distribution, 
we investigated the alternative that they could be described by a normal distribution. Appendix 1—
figure 1 displays QQ plots (Gibbons and Chakraborti, 2020) for the TE values against the normal 
distribution. In all recordings, the plotted points deviate substantially from the line ‍y = x‍, indicating 
that the data is poorly described by a normal distribution. We also perform Shapiro–Wilk tests 
(Shapiro and Wilk, 1965) for normality, the resulting p-values are displayed in Appendix 1—table 
1. The p-values for every recording are incredibly low, meaning that we reject the null hypothesis of 
a normal distribution in every case.

These results contrast with observation of log-normal distributions of TE values in in vitro cultures 
of neurons (Shimono and Beggs, 2015; Nigam et al., 2016). The difference may be due to the use 
of continuous-time estimator here in contrast to the discrete-time estimator used in previous studies. 
This estimator is more faithful to capturing the true underlying TE for spike trains (as per Shorten 
et al., 2021); however, it may be that the combination of the discrete-time estimator and use of only 
a single previous time-bin – in specifically not representing history dependence well – align more 
strongly with the component of the statistical relationship that follows a log-normal distribution. It 
is also possible that log-normal distributions of TE emerge later in development and are simply not 
yet present in the early developmental stages observed here (noting that the fit to a log-normal 
distribution seems to improve for later DIV in Appendix 1—figure 1).

Appendix 1—table 3 Continued
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Appendix 2
Plots for early lock-in of incoming TE

(a) Culture 1-3 (b) Culture 2-2

(c) Culture 2-5 (d) Culture 1-1 (e) All Cultures

Appendix 2—figure 1. Plots investigating the relationship between the inward information flow from a given 
node over different days of development. (a–d) show scatter plots between all pairs of days for each culture 
(excluding days with zero significant transfer entropy [TE] values). Specifically, in each scatter plot, the ‍x‍ value of a 
given point is the average inward TE from the associated node on an earlier day and the ‍y‍ value of that same point 
is the total outgoing TE from the same node but on a later day. The days in question are shown on the bottom 
and sides of the grids of scatter plots. The orange line shows the ordinary least squares regression. The Spearman 
correlation (‍ρ‍) between the outgoing TE values on the two days is displayed in each plot. Values of ‍ρ‍ significant 
at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a 
double asterisk. A Bonferroni correction for multiple comparisons was used. (e) shows all recording day pairs for all 
cultures (where the pairs are always from the same culture) and the associated Spearman correlation between the 
outward TEs of nodes across this pair of recording days. Diamonds indicate significance at ‍p<0.05‍, with Bonferroni 
correction.
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Appendix 3

Extra cultures

Appendix 3—table 1. Mean transfer entropy (TE) in nats per second between every source-target 
pair for the additional cultures.

Culture 1-2 Day 6 Day 11 Day 17

0 6.6×10–4 0.023

Culture 1-4 Day 8 Day 13 Day 19

0 0.017 0.040

Culture 1-5 Day 7 Day 12 Day 18

5.6×10–5 6.6×10–3 0.016

Culture 2-1 Day 14 Day 32

2.9×10–6 0.028

Culture 2-3 Day 6 Day 12 Day 24

0 2.0×10–5 0.075

Culture 2-4 Day 3 Day 5 Day 11

6.4×10–3 0 5.3×10–5

Culture 2-6 Day 7 Day 13 Day 31

0 0 0.061

Appendix 3—figure 1. Identical plots to those shown in Figure 1, but showing the cultures left out of that plot 

for space considerations. (a) Scatters of the TE values are overlaid on box plots. The box plots show the quartiles 

and the median (values greater than 10 standard deviationSDs from the mean have been removed from both 

the box and scatter plots as outliers). (b) Density estimates of the nonzero (statistically significant) TE distribution 

on top of a histogram. The densities are estimated using a Gaussian kernel. The histogram bin width and kernel 
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histogram are both 10% of the data range. Recordings with fewer than 10 statistically significant TE values are 
excluded.

Appendix 3—table 2. Displays the same information as Figure 2, but for the additional cultures.

Culture 1-2 Day 6 Day 11 Day 17

0 105 860

Culture 1-4 Day 8 Day 13 Day 19

1 214 1457

Culture 1-5 Day 7 Day 12 Day 18

21 375 195

Culture 2-1 Day 14 Day 32

5 1165

Culture 2-3 Day 6 Day 12 Day 24

2 9 1000

Culture 2-4 Day 3 Day 5 Day 11

97 0 11

Culture 2-6 Day 7 Day 13 Day 31

9 0 873

(a) QQ plots of TE values against the normal distribution. (b) QQ plots of log TE values against the normal distribution.

Appendix 3—figure 2. Identical plots to those shown in Appendix 2—figure 1, but for the additional cultures. 
The ‍y‍ axis shows estimated TE values (or their logarithm), whereas the axis shows the value of the normal 
distribution at the same quantile. The solid orange line shows the line ‍y = x‍. If the data is drawn from the 
Appendix 3—figure 2 continued on next page
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distribution against which it is being plotted, then the blue marks will sit along this line. We observe that the 
distributions of TE values deviate substantially from both normal and log-normal distributions in all recordings 
analysed. 

Appendix 3—figure 3. Identical plots to those in Figure 2, but for the additional cultures.

Appendix 3—figure 2 continued
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(a) Culture 1-5 (b) Culture 1-2 (c) Culture 1-4

Appendix 3—figure 4. Identical plots to those in Figure 3, but for the additional cultures. (a) Contains plots for 
culture 1-5, (b) contains plots for culture 1-2 and (c) contains plots for culture 1-4.

(a) Culture 1-5 (b) Culture 1-2 (c) Culture 1-4

Appendix 3—figure 5. Identical plots to those in Figure 4, but for the additional cultures. (a) Contains plots for 
culture 1-5, (b) contains plots for culture 1-2 and (c) contains plots for culture 1-4.
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(a) Culture 1-5 (b) Culture 1-2 (c) Culture 1-4

Appendix 3—figure 6. Identical plots to those in Appendix 2—figure 1, but for the additional cultures. (a) 
Contains plots for culture 1-5. (b) Contains plots for culture 1-2. (c) Contains plots for culture 1-4.

(a) Burst position vs TE in (b) Burst position vs TE out

Appendix 3—figure 7. Identical plots to those in Figure 5a and b, but for the additional cultures. (a) Plots the 
mean burst position against the total incoming TE. (b) Plots the mean burst position against the total outgoing TE.
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Appendix 3—figure 8. Identical plots to those in Figure 5c, but for the additional cultures.
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(a) Culture 1-5 (b) Culture 1-2 (c) Culture 1-4

Appendix 3—figure 9. Identical plots to those in Figure 6, but for the additional cultures. (a) Contains plots for 
culture 1-5. (b) Contains plots for culture 1-2. (c) Contains plots for culture 1-4.
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CHAPTER 5

NETWORK INFERENCE

TE is a particularly attractive technique to use for the inference of effective networks from the

recordings of spiking neurons. This stems from the fact that the underlying estimation techniques

which allow for the estimation of this quantity are non-parametric [1], [2]. This implies that they do not

rely on any given model for the underlying system, but can rather detect any statistical relationship.

Network inference of spiking neurons can be performed using biophysical models of how neurons

spike [3], [4]. However, all such models are merely approximations of the actual behaviour of neurons

[5]. It is unclear how the simplifying assumptions in these models affect the resulting network

inference.

When inferring effective networks using TE, we aim to find a minimal set of source nodes which

together provide the maximum reduction in the uncertainty of the target [6]–[8]. The inference of

effective networks using TE requires an estimator that can reliably estimate conditional TE values

even in the case of large sets of conditioning processes. The traditionally-used discrete-time estimator

for TE on spike trains requires the use of multiple time bins in the history embedding of each process

in order to be able to capture that history both over a reasonable span of time as well as with decent

time precision. This makes it very challenging to use this estimator for conditional TE estimation with

reasonably large conditioning sets, as the addition of multiple history embeddings, each composed of

many individual bins, causes the dimensionality of the estimation task to become impractically large

By constructing history embeddings using the raw inter-spike intervals, the estimator presented

in Chapter 3 is capable of capturing effects which occur over fairly large time intervals, with no loss

of precision and using very few embedding dimensions. This opens up the possibility of using it for

the inference of effective networks, as the dimensionality of the estimation task will be growing more

slowly with the addition of each extra conditioning process, as compared to when the standard time-

binning estimator is used. Moreover, Chapter 3 also presented an adaptation of a recently-proposed

local permutation scheme for the generation of the surrogates necessary for performing significance

tests. It was demonstrated that this method was much superior to the traditional time-shift method,

especially when a target was strongly pairwise dependent, but conditionally independent of a source.

These substantial improvements in our ability to estimate pairwise and conditional TE on spike

trains imply that it is now feasible to infer effective networks on them. This chapter validates this

ability by utilising the novel estimator in conjunction with a slightly modified version of a pre-

existing greedy TE-based effective network inference algorithm [6], [9]. The author is only aware of a

single, very recent, piece of work which performs effective network inference on spiking data [10].
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Moreover, this is the first study which validates effective network inference to spike-train data using

TE by comparing the inferred networks against a known ground truth. We validate the estimator on

simulated networks for which the ground-truth is known, achieving high accuracy at relatively low

spike train lengths. We also inferred the effective networks from the spikes of neural cell cultures,

demonstrating the use of this technique on biological data.
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When analysing high-dimensional time-series datasets, the inference of effective networks has

proven to be a valuable modelling technique. This technique produces networks where each target

node is associated with a set of source nodes that are capable of providing explanatory power for

its dynamics. Multivariate Transfer Entropy (TE) has proven to be a popular and effective tool

for inferring these networks. Recently, a continuous-time estimator of TE for event-based data

such as spike trains has been developed which, in more efficiently representing event data in terms

of inter-event intervals, is significantly more capable of measuring multivariate interactions. The

new estimator thus presents an opportunity to use TE for the inference of effective networks from

spike trains, and we demonstrate in this paper for the first time its efficacy at this task. Using

data generated from models of spiking neurons — for which the ground-truth connectivity is known

— we demonstrate the accuracy of this approach in various dynamical regimes. We further show

that it exhibits far superior performance to a pairwise TE-based approach at inference as well as a

recently-proposed convolutional neural network approach. Moreover, comparison with Generalised

Linear Models (GLMs), which are commonly applied to spike-train data, showed clear benefits,

particularly in cases of high synchrony. Finally, we demonstrate its utility in gleaning insight from

recordings of in vitro spiking neurons.

I. INTRODUCTION10

For many of the complex systems that scientists are most interested in, our ability to record high-fidelity data from11

the numerous components of these systems is improving rapidly. For instance, the number of biological neurons that12

can be simultaneously recorded from is increasing exponentially, with a doubling rate of around six to seven years [1, 2],13

while the spatial resolution at which neural electrical activity can be recorded continues to increase dramatically[3].14

The process of drawing scientific insight from this flood of data is, however, not always straightforward [4].15

The inference of effective networks [5] from high-dimensional time-series data has become a popular and productive16

technique for reducing the complexity of this class of data. Such data sets often consist of millions of (or far more)17

individual data points [6]. The inference of effective networks aims to produce a minimal model of the data, by finding18

∗ david.shorten@sydney.edu.au
† joseph.lizier@sydney.edu.au
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the smallest set of system source components capable of explaining the activity of each target component [7]. As such,19

it compresses the large number of data points down to a single directed network diagram describing the relationship20

between components of the system, thus facilitating the interrogation of the data at hand.21

There are different philosophical approaches to the inference of these networks. These include: uncovering causal22

relationships [8], inferring the coupling parameters in models faithful to the underlying system [9] or delineating23

the computational properties of the system by revealing information flows [7, 10]. When the latter approach is24

properly grounded in information theory, it provides the unique advantage of giving us networks that are readily25

interpretable in terms of the fundamental computational operations of information storage, transfer and modification26

[7, 11]. Moreover, as these measures can be estimated non-parametrically [12], they are not dependent on model27

assumptions and can capture any form of non-linear relationship.28

As Transfer Entropy (TE) [13, 14] is a widely accepted measure of information transfer, it has become a popular29

method in the inference of effective networks [15]. When applying transfer entropy to network inference, we aim to30

establish a minimal set of parents whose activity is able to maximally explain the dynamic updates of each target31

node. This set is minimal in the sense that the addition of any extra parents will not further decrease our uncertainty32

about the state of the target. On the other hand, it provides maximal explainability in the sense that the removal of33

any parent will increase our uncertainty.34

The challenge, then, is to infer this minimal set. An approach which has proven effective is to iteratively add35

sources to each target in a greedy fashion [7, 10, 16–18]. Specifically, for each target process, we select the source with36

the strongest information flow (without any conditioning). We then select the next source as the component with the37

highest information flow when conditioned on the first source and add this new source to the conditioning set. We38

continue adding sources to the conditioning set in this fashion until we are unable to find a source with a statistically39

significant non-zero information flow. The process then finishes with a pruning step, where it is verified that each40

source still has a non-zero information flow when conditioned on all other sources in the set. See Methods for more41

details.42

In this work, we specifically focus on the inference of effective networks for event-based data. Such data is char-43

acterised by being represented by the timestamps of events (e.g.: the times of social-media posts or the times of44

stock-market trades), as opposed to regular samples from a continuously varying signal. This type of data is of par-45

ticular importance in neuroscience as the activity of neurons is often summarised by the timestamps of their action46

potentials (spikes). There have been several previous studies which have proposed TE-based methods for inferring47

networks from the spike times of neurons and evaluated them against ground truth [19–22]. There have also been a48

number of studies which used TE to infer networks from in vitro [23–29] and in vivo [30] recordings of spiking activity.49

These networks were found to exhibit highly non-random structure [24], including rich-club topologies [23]. All of this50

work has estimated the TE in a pairwise fashion, that is, without conditioning on other recorded processes. Networks51

inferred based on pairwise statistics are often referred to as functional (as opposed to effective) networks [5], since52

they are reporting pairwise relationships rather than a minimal multivariate directed model of the dynamics.53

The main obstacle that has prevented the inference of effective networks from spike trains using TE has been54

the manner in which the traditional method of estimating TE on spike train data causes a rapid increase in the55

dimensionality as we add conditioning processes [31]. This traditional method operates by first discretising the process56

into time bins. The TE is then estimated on the resulting binary sequences. The estimation of TE requires the use of57
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embedding vectors to represent histories for the target, source and conditioning processes in the relevant conditional58

probability distributions for the target process. In order for these embeddings to both extend over a reasonable period59

of time and also capture fine subtleties in event timings, each embedding vector needs to consist of multiple time bins.60

Capturing effects occurring on both fine and large time scales is necessary as it is known that correlations in spike61

trains exhist over distances of (at least) hundreds of milliseconds [32, 33]. Moreover, it is established that correlations62

at the millisecond and sub-millisecond scale play a role in neural function [34–37]. The use of multi-bin embedding63

vectors causes an explosion in the dimensionality of the state space over which probability distributions needs to be64

estimated as conditioning processes are added, rendering the estimation of TE with substantial sets of conditioning65

processes infeasible.66

Recent work has developed a continuous-time estimator of TE for event-based data [31] which bypasses the em-67

bedding dimension problems of the discrete-time estimator. Specifically, as it uses inter-spike intervals to efficiently68

represent the history embeddings, it is capable of using embeddings that extend over relatively long periods of time69

(on the order of seconds [38]), with no loss of time precision. This makes the estimation of TE with significant70

conditioning sets feasible, thus allowing for the inference of effective networks.71

In this paper, we bring the greedy network inference algorithm and the continuous-time TE estimator together72

for the first time. We validate the efficacy of this combination on synthetic examples, where the underlying causal73

network is recovered by the model. We further compare its efficacy against generalised linear models [39] and a74

convolutional neural network based approach [40], finding its performance to be highly competitive. We finally75

demonstrate its ability to uncover biological insight by inferring the effective networks of developing cell cultures of76

dissociated cortical rate neurons [41].77

II. RESULTS78

In this section we apply the greedy TE-based effective network inference algorithm [7] in conjunction with the79

continuous-time TE estimator for event-based data [31]. Please see Sec. IVA for details of the operation of the greedy80

algorithm, along with a description of a few minor changes that were made for the application to event-based data.81

Sec. IVC summarises the TE estimation approach used.82

The first three subsections of this section focus on the inference of simulated spiking networks for which the ground83

truth connectivity is known. We must emphasize, however, that in general we do not expect the effective networks84

inferred by TE to align with the causal structure [7]. Whilst the effective networks always provide a useful model for85

interpreting the directed relationships in the system, it is only under certain specific conditions that we expect them86

to match the causal structure, most importantly full observability of the nodes involved in the dynamics, and under87

certain assumptions such as faithfulness and the causal Markov property [42, 43]. We evaluate the performance of the88

network inference scheme by comparing the inferred network to this ground truth under these idealised conditions,89

since this provides an important validation of the output of the inference when this match can be expected. In order90

to measure the accuracy of the inference scheme, we make use of the commonly-employed classification metrics of91

recall and precision. They are defined as:92

recall =
TP

TP + FN
(1)

CHAPTER 5: NETWORK INFERENCE 140



4

and93

precision =
TP

TP + FP
. (2)

Here, TP is the number of true positives, FP is the number of false positives and FN is the number of false negatives.94

In the context of network inference, recall can be interpreted as the proportion of true connections that were predicted95

by the algorithm. Precision, on the other hand, is the proportion of predicted edges that are true edges.96

The final subsection of the results focuses on the application of the estimator to the spike times from recordings of97

cultures of dissociated rat cortical neurons. This provides a demonstration of the utility of this approach for extracting98

insights from biological data.99

A. Inference at varying levels of synchrony100

We constructed networks of Leaky-Integrate-and-Fire (LIF) [44] neurons with alpha synapses [45]. These networks101

were composed of 30 excitatory and 20 inhibitory neurons. Each neuron had exactly three excitatory and two102

inhibitory sources, where these sources were selected randomly from the respective sets. By varying the ratio of103

inhibitory to excitatory connection strength g, we could vary the level of synchrony within the networks. We ran104

simulations for three different levels of synchrony, which we refer to as “low” (g = 3), “medium” (g = 1.5) and “high”105

(g = 1). Varying the relative strength of inhibitory connections across the excitation-inhibition balance threshold is106

a known method for adjusting the degree of synchrony in these networks [46]. Please see Sec. IVE for full details on107

these network models. It is also worth noting that the level of synchrony present in these networks (even at “high”108

synchrony) is far lower than in the biological data examined in Sec. IID.109

The combination of the greedy inference algorithm and the continuous-time estimator was applied to these networks,110

and the resulting inferred networks were compared against the ground truth for varying numbers of target spikes111

available to the estimator: 100, 300, 500, 1000, and 3000 (extra runs at 5000 target spikes were included for the high112

synchrony network, as the recall rose more slowly in this case). 10 independent simulations of the network model were113

run for each level of synchrony and the algorithm was applied to each run for each number of target spikes, although114

it was only applied to the first 5 simulations at 3000 spikes and the first 3 simulations at 5000 spikes due to the high115

computational requirements.116

The precision and recall of the resulting inferences was calculated and is plotted in Fig. 1 for the different dynamical117

regimes and numbers of target spikes.118

In the results shown in Fig. 1, we see that the algorithm exhibits high precision for all combinations of dynamical119

regime and number of target spikes. The precision only drops below 0.9 where the recall is very low, when few links120

are inferred. This demonstrates the high confidence with which it predicts links — a very low proportion of the121

predicted links turn out to be false positives – which can also be seen as a conservative approach.122

In these plots, the recall begins low, but rises rapidly with the increase in the number of target spikes available.123

In the case of low network synchrony (Fig. 1a), we observe that, by 3000 target spikes, the recall has risen to nearly124

one. As the precision is also nearly one at this number of target spikes, the networks are being inferred nearly125

perfectly. Taken in conjunction with the apparent trends towards converging on perfect inference as the number of126
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(a) Lower synchrony network, recall (b) Lower synchrony network, precision

(c) Medium synchrony network, recall (d) Medium synchrony network, precision

(e) High synchrony network, recall (f) High synchrony network, precision

FIG. 1: Plots showing the resulting precision and recall from running the network-inference scheme on networks of
LIF neurons composed of 30 excitatory neurons and 20 inhibitory neurons. The ratio of the inhibitory to excitatory
connection strength was varied in order to change the level of synchrony in the network. Plots are shown for three
different synchrony levels. Each plot contains points for each experiment the precision and recall for the inhibitory
and excitatory sources separately as well as for their overall weighted average. The lines pass through the means of

these points.
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spikes increases for the other regimes, this suggests evidence for validation that the approach provides a consistent127

inference of the underlying network under the aforementioned idealised conditions.128

By comparing Figs. 1a, 1c and 1e, we can observe that the achieved overall recall drops as the level of synchrony is129

increased. This is entirely driven by a drop in the recall on inhibitory connections. In fact, we observe a small increase130

in the recall on excitatory connections. This drop in recall is due to the increased complexity in the nature of the131

statistical relationship between the activity of a given target and an inhibitory source in the case of high synchrony.132

When the populations are highly synchronous, all of the cells spike close together, so the firing of an inhibitory133

source can become positively correlated with the firing of its target, when considering the purely pairwise relationship134

between the source and target. However, when conditioned on the target’s excitatory sources (which becomes possible135

with more target spikes observed), for any given firing pattern of the excitatory sources, the firing of the inhibitory136

source is associated with a decrease in the probability of the firing of the target for that given pattern, allowing137

the inhibitory source to be identified. Crucially the precision remains high despite the spurious pairwise correlations138

that appear in the highly synchronous regime, due to the conditioning in the multivariate approach removing such139

redundant sources being included in the inference. Fig. 3f shows an ROC curve for the use of a purely pairwise140

approach on this same high-synchrony example for 1000 target spikes, which will be discussed in Sec. II C. We see141

that it cannot achieve a high true positive rate without a substantial increase in the false positive rate (and thus142

a decrease in the precision). This highlights the necessity of using a full multivariate approach when dealing with143

highly-synchronous neural populations.144

In order to compare the performance of the proposed scheme with an existing network inference approach, we ran145

the recently-proposed CoNNECT [40] algorithm on the spike times from the simulations. This approach makes use of146

pre-trained convolutional neural networks and has been demonstrated to be competitive when compared with other147

existing network inference algorithms for spike trains. In order to perform this inference, we made use of the associated148

web-app provided by the authors [47]. The resulting precision and recall plots are shown in Fig. 8 of Appendix A.149

We consistently see that, for any given combination of number of target spikes and dynamical regime, the proposed150

approach is able to achieve both higher precision and higher recall. In particular, the precision of the results of the151

CoNNECT inference is particularly low, being largely in the region 0.1-0.2.152

We also compared the performance of the proposed approach with a Generalised Linear Model (GLM), which is153

a popular approach for modelling spiking neural data [39, 48, 49], including for inferring connectivity [50, 51]. We154

closely followed previous work [50] which demonstrated the use of these models for connectivity inference, with a few155

minor differences, as specified in Sec. IVG. The resulting precision and recall plots are shown in Fig. 9 of Appendix156

A. The GLM approach exhibits markedly lower precision than the proposed TE-based approach, except for precision157

on inhibitory sources for very low numbers of available spikes in the target spike trains, where our more conservative158

approach is inferring very few links. Moreover, in the case of high synchrony, the precision of the proposed approach159

is far superior, whereas the very low precision of the GLM approach indicates that it is inferring almost half of all160

possible connections, rendering those inferred network models far less useful. For low numbers of target spikes, the161

GLM approach is able to achieve better recall. However, this is always at a cost of significantly higher precision,162

and any advantage in recall for the GLM approach disappears as the number of target spikes is increased above 1000163

(except in the high-synchrony case). Interestingly, the better recall that our approach shows for excitatory versus164

inhibitory sources is reversed in the GLM approach.165
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B. Inference at varying levels of stimulus regularity166

In Sec. II A neurons were always provided with independent Poisson stimulus. However, we can vary the properties167

of this stimulus in order to mimic different plausible inference scenarios. For instance, simulations constructed with168

a fully regular stimulus to the neurons provide us with an example of dynamics with no hidden sources of variability.169

That is, it is possible to perfectly predict the dynamics of the neuron based on its past and the past of those neurons170

connecting to it. Moreover, the system is completely deterministic. As we move towards the semi-regular and fully171

random Poisson stimuli, we are modelling increasing amounts of hidden activity or noise within the system, which172

prevents perfect predictability of the future state of the units. Full determinism is known to cause problems in the173

inference of networks from time series [42]. Conversely, very large amounts of noise can make it challenging to detect174

a comparatively weak relationship between two nodes. As such, it is important that both potentially problematic175

ends of this spectrum are tested.176

We constructed model networks as in Sec. II A, however, this was done at a single level of ratio of inhibitory to177

excitatory connection strength. The same ratio (g = 3) used to produce the low synchrony runs was used. Instead,178

we varied the nature of the stimulus provided to each neuron, providing them with a regular, semi-regular or Poisson179

(fully random) stimulus. The regular stimulus was composed of spike times placed at a fixed interval. There was180

slight variation in this interval between neurons, in order to prevent the network settling into a simple, fixed, pattern.181

The semi-regular stimulus was similar to the regular stimulus, but with the addition of a small amount of Gaussian182

noise. Note that a few other minor simulation parameters had to be changed from the simulations used in Sec. II A183

in order to ensure numerical stability. See Sec. IVE for a full specification of these differences.184

Fig. 2 shows plots of precision and recall, for different numbers of observed spikes in the target, for these different185

levels of stimulus regularity. We observe that the recall increases slightly when moving from the regular to the semi-186

regular stimulus, but then drops as we move to the Poisson stimulus. By contrast, the precision exhibited a slight187

increase with increasing irregularity. This is likely because the increasing irregularity reduces the correlations between188

true and false sources, thereby decreasing the likelihood of false positives. In all three cases, good performance is189

achieved at 3000 target spikes, with overall precision and recall both being around 0.9.190

These results demonstrate that the proposed combination of estimator and network inference scheme is capable of191

successful inference at various levels of determinism or unobserved noise.192

C. Comparing the greedy algorithm to pairwise inference193

Recent work [52] has highlighted the improvements that can be gained when performing network inference using194

TE in its full multivariate sense, via the greedy algorithm, as opposed to the simpler pairwise approach. The pairwise195

approach operates by only checking for a statistically significant non-zero TE value between each source-target pair,196

without taking into account the other processes in the system. It is generally found that the full multivariate approach197

tends to exhibit much higher precision, as, among other reasons, it is able to distinguish true sources (which provide198

information about the target even when conditioned on all other system components) from spurious sources, which199

are merely correlated with the true sources but provide no additional information about the target when conditioning200

on these true sources.201
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(a) Regular stimulus, recall (b) Regular stimulus, precision

(c) Semi-regular stimulus, recall (d) Semi-regular stimulus, precision

(e) Poisson stimulus, recall (f) Poisson stimulus, precision

FIG. 2: Plots showing the resulting precision and recall from running the network-inference scheme on networks of
LIF neurons composed of 30 excitatory neurons and 20 inhibitory neurons. The regularity of the stimulus provided

to each neuron was varied.
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(a) Lower synchrony, full algorithm only (b) Lower synchrony, pairwise inference and full algorithm

(c) Lower synchrony, full algorithm only, normal
approximation

(d) Lower synchrony, pairwise inference and full algorithm,
normal approximation

(e) High synchrony, full algorithm only (f) High synchrony, pairwise inference and full algorithm

(g) High synchrony, full algorithm only, normal
approximation

(h) High synchrony, pairwise inference and full algorithm,
normal approximation

FIG. 3: ROC curves for both the presented network inference technique, as well as performing the inference using
the continuous-time estimator in a simple pairwise fashion. Plots are shown for the higher synchrony and lower

synchrony examples from Fig. 1, with 500 target spikes available to the algorithms. We also show plots for both the
presented surrogate testing method as well as when using a normal approximation fitted to the surrogate population

in order to estimate the p value.
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The previous work [52] which compared multivariate TE and the greedy algorithm to the pairwise approach did202

so for standard time series of continuously varying signals sampled at a fixed interval. In this section, we verify203

that similar results hold when analysing event-based data using the continuous-time estimator of TE. Moreover, the204

analysis in this section will confirm the benefit of using the multivariate greedy approach, over the pairwise approach,205

when inferring networks from spike trains using TE.206

We make use of the higher and lower synchrony simulations presented in Sec. IIA, with 500 target spikes available.207

We applied a simple pairwise network-inference scheme to the resulting spike times from these simulations, which208

simply tested for statistically significant non-zero TE between each source-target pair. The resulting ROC curves are209

shown in Fig. 3. These ROC curves are created by sweeping through the α cutoff values (the threshold below which210

the p value must be for a link to be inferred) between 0 and 1 and recording the false-positive and true-positive rate211

observed at each α value. Calculating the p values for the statistical significance tests of non-zero TE was done by212

both counting the proportion of empirical surrogates (see Sec. IVB for a discussion of how these empirical surrogates213

are created) larger than the measured TE (Fig. 3f and Fig. 3b), as well as via a fitting a normal distribution to the214

surrogate values (Fig. 3h and Fig. 3d).215

The purpose of also performing this normal approximation is that it allowed us to use much lower p value thresholds216

for a given number of surrogate calculations than is possible when evaluating p values by counting proportions of217

empirical surrogates, making it possible to efficiently gain more resolution on the far left of the ROC curves.218

We also ran the full greedy algorithm with different α cutoff values between 0 and 0.75, providing it with 1000219

target spikes (the pairwise approach made use of the same number of target spikes). The final pruning step (see220

Sec. IVA) was, however, excluded, as this allowed for for greater computational efficiency in a single bulk run. The221

resulting ROC curves are also plotted in Fig. 3. Note that these ROC curves will not reach the point where the true222

positive rate and false positive rate both equal one, as we are unable to inspect p values larger than 0.75.223

By inspecting the ROC curves in Fig. 3a through Fig. 3d we can compare the performance of the two approaches224

on the networks with lower levels of correlation. The full multivariate approach is seen to very quickly arrive at a true225

positive rate of above 0.9, for very few false positives, which again underlines the effectiveness of this approach. In226

contrast, the true positive rate of the pairwise approach rises much more slowly; in other words it costs a substantially227

larger number of false positives to achieve the same true positive rate. Visually we see this in that the ROC curve of228

the multivariate approach is markedly above that of the pairwise apprach.229

We see an even starker difference in the performance of these two approaches when we look at the results of inference230

run on the networks exhibiting higher synchrony (Fig. 3e through Fig. 3h). Here, we see that the true positive rate231

of the pairwise approach rises much more slowly than the multivariate approach as before, but its performance also232

saturates around a true positive rate of around 0.6 before false positives begin to strongly dominate further inference.233

In this regime the entire population has a tendency to be active together and also remain quiescent together. As the234

activity of all neurons are therefore correlated, the pairwise approach is unable to delineate which particular neurons235

are driving the activity of others. The multivariate approach is, by contrast, more robust to the higher synchrony236

and still able to achieve very high true positive rates at incredibly low false positive rates.237

These results demonstrate the substantial advantages in using multivariate TE estimation in conjunction with the238

greedy algorithm as opposed to a pairwise (functional network) approach.239
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day 14 day 20

high
out-degree

low
out-degree

high
in-degree

low
in-degree

day 10 day 16 day 24

day 15 day 21 day 33

culture 1-1

culture 1-3

culture 2-2

FIG. 4: Effective networks inferred using the presented approach between electrodes in developing cultures of
dissociated cortical rat neurons. Each node in the network visualisations is placed in the same relative spatial

location that the corresponding electrode occupied in the recording apparatus. Networks were inferred at different
stages of development (days in vitro). The recordings used are part of an openly-available public dataset [41, 53].

Node colour and size is proportional to the in and out degrees (see the legend in the top right). The spacing
between the electrodes is 200µm centre to centre [41, 53].

D. Inference of the effective networks of developing cell cultures240

In order to demonstrate the utility of the application of this network inference scheme to biological data, we inferred241

the effective networks at various stages of development of cultures of dissociated cortical rat neurons. These recordings242

are part of a freely-available public dataset [41, 53]. See Sec. IVF for a summary of the nature of this dataset as243

well as details on how the network inference scheme was applied to it. In brief, cultures were allowed to develop over244

periods of around 30 days. On certain days, overnight recordings were performed. As these long overnight recordings245

contain sufficient numbers of spikes for effective application of information-theoretic estimators, they are eminently246

suitable for the application of our network inference approach. No spike sorting was performed, and so the networks247

are being inferred between the time series of the recording electrodes. This allows the nodes in the network to remain248

identifiable across different stages in development.249
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FIG. 5: Plots showing the relationship between the out-degree of a given node over different days of development.
Each group of plots shows scatter plots between all pairs of days for each culture analysed. Specifically, in each

scatter plot, the x value of a given point is the out-degree of the associated node on an earlier day and the y value of
that same point is the out-degree of the same node but on a later day. The days in question are shown on the

bottom and sides of the grids of scatter plots. A small amount of Gaussian jitter (σ = 0.1) is added to the points to
aid the visualisation of repeated values. The orange line shows the ordinary least squares regression. The Spearman
correlation (ρ) between the out-degrees on the two days is displayed in each plot. Values of ρ significant at the 0.05
level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk.
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(c) Culture 2-2

FIG. 6: Plots showing the relationship between the in-degree of a given node over different days of development.
Each group of plots shows scatter plots between all pairs of days for each culture analysed. Specifically, in each

scatter plot, the x value of a given point is the in-degree of the associated node on an earlier day and the y value of
that same point is the in-degree of the same node but on a later day. The days in question are shown on the bottom
and sides of the grids of scatter plots. A small amount of Gaussian jitter (σ = 0.1) is added to the points to aid the

visualisation of repeated values. The orange line shows the ordinary least squares regression. The Spearman
correlation (ρ) between the in-degrees on the two days is displayed in each plot. Values of ρ significant at the 0.05
level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk.

The results of applying the greedy algorithm along with the continuous-time estimator are displayed in Fig. 4. Note250

that the first recording days of each culture are not included in the figure as hardly any links (less than 10) were251

inferred in any of these recordings. We observe that effective networks with a rich and complex structure emerge,252

beginning to appear around the tenth day in vitro or so and quickly becoming more dense. This path of development253

correlates with the authors’ previous investigation [38] of these recordings, with simpler directed functional networks254
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(b) Functional networks.

FIG. 7: Bar plots showing the proportion of possible edges that were inferred at different inter-node distances. (a)
shows the proportions for the networks inferred using the presented greedy algorithm and, whose diagrams are
displayed in Fig. 4. (b) shows the same proportions for the functional networks inferred on the same data in the
authors’ recent work [38]. The inference of such functional networks only considers pairwise relationships. The

distances on the x axis are the Manhattan (cityblock) distances between electrodes. It is clear from the plots that,
on this dataset, the effective network inference algorithm has a greater propensity to infer short distance links.

inferred using pairwise transfer entropy (via the same underlying estimator). The density of the networks inferred by255

the multivariate algorithm are lower than for the directed functional networks in [38], with the total number of edges256

in the last recording days declining from around 1000 to 2000 to around 100 to 200. This is common because the257

strongest action of the multivariate algorithm is to remove redundant sources [52].258

Despite the difference in density, the effective network structures retain some of the interesting features observed for259

the directed functional networks in [38], such as containing pronounced inward and outward hubs (that is, nodes with260

particularly high in-degree or out-degree), and various features of the networks being locked in early in development.261

Specifically, in the directed functional networks in [38] characteristics such as the total inward or outward information262

flow for a given node exhibited high correlation between early and late days of development. Here, Fig. 5 shows263

scatter plots of the out-degrees of the inferred effective networks on earlier and later days of development. We see in264

these plots that, as with the functional networks, in all cases, there is a positive correlation between the out-degree on265

the earlier and later days of development. Moreover, there are no statistically significant negative correlations. The266

positive correlation for the out-degree across the last two recording days is statistically signfiicant for each culture,267

with some of these relationships, such as for culture 1-3, being particularly strong. Fig. 6 shows similar plots, but for268

the in-degrees of the nodes. Again, we see a positive correlation between the in-degree on earlier and later days in269

every case. These results indicate that features of the effective networks, representing the multivariate information270

flows here, are being locked in early in development. This is particularly interesting since these are more sparse271

network models than the directed functional networks in [38], suggesting that the lock-in effect is deeply ingrained in272

the system.273

Fig. 7 displays the proportion of possible links that are inferred in the networks at various physical distances between274
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the nodes. Fig. 7a does so for the effective networks inferred in this work and Fig. 7b does so for the functional networks275

studied in the authors’ previous work. These plots show that the effective networks inferred on this dataset exhibit a276

clear preference towards links between nodes that are physically close together. This preference appears to become277

stronger with developmental time. By contrast, the functional networks do not exhibit this preference.278

III. DISCUSSION279

In this work, we have validated the efficacy of the combination of an existing greedy multivariate TE-based network280

inference algorithm with a recently-introduced continuous-time estimator for TE on event-based data.281

As the inference of networks from the spike times of neurons is a common goal within neuroscience, we expect this282

particular task to be a core application of the presented approach. Indeed, there is a significant body of existing work283

which validated [19–22] and applied [23–30, 54] TE to the task of inferring networks from the spike times of neurons.284

However, apart from a single very recent study [54], this previous work has always considered only the pairwise285

relationships between the activity on each node. As was demonstrated in Fig. 3, even when using the highly-effective286

continuous-time TE estimator, this approach suffers substantial drawbacks. Perhaps most notably, when the entire287

population is highly correlated, the pairwise approach is unable to distinguish a smaller subset of sources which can288

provide all the information about the target contained in the entire population, instead inferring large numbers of289

sources due to the redundant information they hold with the true sources.290

Here, by contrast, we have presented a multivariate approach to inferring effective networks from neural spike291

trains using TE. Unlike the pairwise approach, this strategy infers a set of parents for a target collectively rather292

than individually for each source. In doing so, the multivariate strategy considers the activity of other nodes within293

the network when determining the directed relationship between any two nodes. Specifically, as the multivariate294

strategy iteratively or greedily adds new candidate sources to the parent set for a target, it requires that each source295

provide statistically significant non-zero TE, when conditioning on all other current parents for the target. This is in296

contrast to the pairwise approach, which only requires a non-zero TE value between the source and target, without297

taking other processes into account. That iterative conditioning, along with final associated pruning step, supports298

much more accurate inference because it eliminates redundant information from being spuriously attributed to other299

sources, and captures synergistic or collective interactions between multiple sources which jointly impact the target.300

The term “accurate” here has specific meaning in the context in which we have evaluated the performance of the301

multivariate approach. Although we cannot and do not always expect the inferred effective networks to align with302

the underlying causal or structural network of the system being examined, under certain highly-specific idealised303

conditions (full observability etc., see Sec. I) we do indeed expect a minimal model explaining the dynamics of the304

variables (the effective network) to align with the causal structure in this way. As such, confirming such alignment305

– even though in highly-specific conditions – is an important validation of the performance of such an approach.306

Indeed, this validation is clear from our results, including in Fig. 1 and Fig. 2, and by the improved performance of307

the multivariate approach compared to pairwise, using the same underlying TE estimator, in Fig. 3. There, it was308

found that the multivariate approach was able to achieve a comparable true positive rate as the pairwise approach309

with a much lower corresponding false positive rate.310

Maintaining a low false positive rate (or, equivalently, a high precision) is of utmost importance for network inference311
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in a neuroscientific context. Zalesky states that “False positives are at least twice as detrimental as false negatives”312

[55]. As demonstrated in all of our results, the presented approach errs on the conservative side and consistently313

maintains high precision (a low false-positive rate) even in the challenging cases where the activity on the nodes314

is highly correlated (Fig. 1f). This high precision is a result not only of the multivariate strategy, but also the315

local permutation surrogate generation method used for the significance testing of the individual TE estimates being316

different from zero. This method was developed in tandem with the recently-developed continuous-time TE estimator317

[31] that is used here and was demonstrated to have substantially lower false positive rates when compared with using318

traditionally-used approaches for surrogate generation in conjunction with this estimator. Our results also compared319

the proposed approach with two existing approaches for the inference of connectivity from spiking data (CoNNECT320

in Fig. 8 and GLM in Fig. 9), finding that it exhibited far superior precision in most cases. This is particularly321

important when we reflect on the goal of effective network inference being to provide a “minimal model” that can322

explain the dynamics.323

Not only does this work present the first validation of TE for multivariate effective network inference on spike-train324

data, but it presents the first validation study of the using of the recently-developed continuous-time estimator for TE325

on event-based data such as spike trains in the context of network inference [31]. This estimator has been demonstrated326

to have many substantial advantages over the traditional discrete-time approach. These include consistency, lower327

bias and faster convergence. Of particular relevance to network inference, by representing the history embeddings of328

processes using inter-event intervals, it is able to represent histories of substantial length using few dimensions and329

without any loss of time precision. This efficient use of dimensions facilitates building conditioning sets of significant330

size.331

These various benefits culminate in a technique that is highly effective in the inference of networks from event332

times. We have demonstrated its strong performance, with high precision, in dynamical regimes ranging from low333

to high network synchrony (Fig. 1) as well as with varying levels of unobserved noise sources in the system (Fig. 2).334

Furthermore, high quality inferences were made with relatively low numbers of target spikes. In some instances (eg:335

Fig. 1a and Fig. 1b), near perfect reconstruction was achieved with only 3000 events per target.336

These results all point to the strong potential for deploying this methodology in the inference of networks from337

recordings of the spike times of biological neurons. Tantalising hints of the results that might be expected were338

provided in Sec. IID. Further such applications remain a focus of future work. It is of particular interest to note that,339

in these effective networks, there was a strong preference towards inferring edges between nodes that are spatially340

close together, especially when compared with the functional network approach. This is likely due to the fact that341

effective networks are known to conform closer to the underlying structural networks than those inferred using pairwise,342

functional, methods [52]. However, despite this change in the topology of the networks, it is worth noting that the343

lock-in of information flows early in development, which was previously observed in functional networks [38], remained344

in these effective networks.345
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IV. METHODS346

A. Greedy Algorithm347

The greedy network inference algorithm used here was proposed in a range of papers [10, 16–18], as summarised348

and studied in depth by Novelli et. al. [7], for traditional time series (a continuous-valued signal sampled at regular349

time intervals). We describe it here for completeness, and also to highlight some small changes that we made to adapt350

to the context of event-based data. The most significant change made is that only one inter-spike interval per source351

is considered as a candidate, and sequentially, from the most recent. This is as opposed to the original algorithm,352

where several lags from each source could be considered in the same selection round, and no ordering was imposed on353

the addition of these lagged samples.354

The greedy algorithm is specified in Algorithm 1. We walk through its operation here, with reference to the line355

numbers in Algorithm 1.356

We iterate over each process Ri in the set of processes R (line 1). These processes are the raw timestamps of events357

(spikes). Each process is being considered as a target, for which the sources need to be inferred. It is worth noting358

that the computations performed for each target are considered completely independent of one another. As such, it359

is easy to parallelise this algorithm across the different targets. Indeed, such parallelisation was performed for the360

experiments presented in this paper.361

We initialise a data structure to keep track of the last interval added to the conditioning set for each source and362

the target itself (line 2). This algorithm makes the assumption that more recent inter-event intervals from a given363

source (or the target itself) always have more influence over the target than inter-event intervals further in the past.364

Based on this assumption, inter-event intervals for a given source are only considered as candidates once more recent365

intervals for that source have been added to the conditioning set. As above, this is distinct from the operation of the366

algorithm for traditional time-series.367

Before considering candidate sources, we determine the number of target history intervals to condition on. We always368

include at least one (the most recent) such interval. We continue incrementing the total number of intervals that we369

are conditioning on until the next interval does not provide a statistically significant reduction in the uncertainty of370

the target (line 4). This reduction in uncertainty is measured by the conditional Active Information Storage (AIS)371

[11], which is the mutual information between the last target history interval being considered and the current state372

of the target, conditioned on the more recent target history intervals. Note that this quantity can be easily estimated373

using the continuous-time TE estimator by simply considering this last target interval as a source interval. The active374

information storage is estimated on the original spike train and on Nsurrogates surrogate processes (lines 5 and 6),375

constructed using the local permutation method described in Sec. IVD. The p value for the significance test is then376

the proportion of AIS estimates on the surrogates which are larger than the AIS estimate on the original process.377

If p < pcutoff, then the null hypothesis of zero AIS is rejected and the number of target intervals being added is378

incremented.379

Returning to the canidate sources then, we continuously iterate parent selection for the target until the candidate380

source interval with the highest TE is no longer statistically significant (line 13). For each of these iterations, we iterate381

over every process other than the target under consideration (line 16). For each such candidate source, we estimate382
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the TE between the most recent inter-event interval of that source that has not yet been added to the conditioning383

set and the target, conditioned on all intervals of all sources already added to the conditioning set (line 17). We then384

estimate the TE for Nsurrogates surrogate processes between the same source and target and conditioned on the same385

conditioning set (line 18). We also bias-correct the original and surrogate TE estimates by subtracting the mean value386

of the surrogates from each estimate (lines 19 and 20).387

Once this has been performed for every candidate source interval, we select the interval which had the highest388

bias-corrected conditional TE (line 22). We then estimate the p value associated with the null hypothesis of the389

conditional TE from this source interval being zero (line 23). This is done using the maximum statistic test (see390

Sec. IVB).391

The above process continues until the selected candidate source interval (with maximum bias-corrected conditional392

TE) fails the significance test (line 13). The algorithm then moves onto the final pruning step, where it is checked that393

every source retains a statistically significant conditional TE, once conditioning on every other process added to the394

conditioning set. This step is necessary as a source added early in the process might be providing information about395

the target that is fully redundant with that held by sources added later in the greedy building of the conditioning set.396

Such redundant sources need to be removed.397

To perform the pruning, we continually try removing source intervals from the conditioning set one-by-one, until398

every final source interval in the set is found to be statistically significant. In a mirror image to how the candidate399

intervals, for a given source, are added iteratively from the most recent and then further back in time, they are removed400

in order from the last interval to the most recent. In each round of pruning, we iterate over all sources which had an401

interval added to the conditioning set (line 31). We then estimate the conditional TE and associated surrogates for402

the last remaining added interval for that source (lines 32 and 33). We then calculate the p value corresponding to403

the null hypothesis (line 34) of zero TE in the normal manner (that is, not using the maximum statistic test). After404

iterating over all sources in the conditioning set, we then find the source index with the maximum p value (line 36).405

If this p value is greater than the specified α cutoff, then we remove the last added interval for that source from the406

conditioning set (line 39).407

B. Maximum Statistic Test408

When considering adding sources to the conditioning set, we test the candidate source with the highest TE using409

the maximum statistic test (line 23 of Algorithm 1).410

It is worth briefly describing the usual method for testing for non-zero TE using surrogates. We generate Nsurrogates411

surrogates, which conform to the null hypothesis of no temporal relationship (zero TE), using a given surrogate412

generation algorithm (see Sec. IVD for a description of the surrogate generation method used here). We then estimate413

the TE on each of these generated surrogate series. The proportion of these estimates which are greater than or equal414

to the estimate on the original data is then an estimate of the probability that we would observe a value greater than415

or equal to what we estimated on the original data, under the null hypothesis of zero TE (and therefore it is our p416

value).417

Novelli et. al. [7] highlighted the fact that using this test as is, when adding sources to the conditioning set, would418

lead to high false-positive rates. This is effectively a multiple comparisons problem, in that the test is being performed419
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Algorithm 1: Greedy TE algorithm for network inference from event-based data.
input : /* Set of the event times of each process */

R = {Ri}Nproc
i=1

/* Cutoff significance value for adding sources */
pcutoff
/* Number of surrogate estimates to perform per TE estimation */
Nsurrogates

output: /* Set of the indices of the sources of each process */

S = {Si}Nproc
i=1

/* Iterate over all target processes. */
1 for i← 1 to Nproc do

/* Variable to keep track of added sources, as well as the added target inter-event intervals. If ck is zero, this implies
the source is not added. Otherwise, the value of ck indicates the number of added inter-event intervals. */

2 C ← {0}Nproc
k=1

3 p← 0
/* Keep trying the next target interval, until the added information is no longer significant. */

4 while p < pcutoff do
/* Estimate the TE from the next interval of the target under consideration, conditional on all target intervals already
added. */

5 a← estimateConditionalAIS (i, ci + 1, R, )
/* Estimate the associated surrogate values. */

6 {asurrogate,n}
Nsurrogates
n=1 ← estimateConditionalAISOnSurrogates (i, ci + 1, R,Nsurrogates)

7 p← calculatePVal
(
t, {{tsurrogate,n}

Nsurrogates
n=1 }

)

/* If the null hypothesis is rejected, we increment the number of target intervals added */
8 if p < pcutoff then
9 ci ← ci + 1

10 end
11 end

12 pmax ← 0
/* Keep looking for sources until the candidate with maximum TE is not significant. */

13 while pmax < pcutoff do
/* Initialise TE and surrogate TE values to 0. */

14 {tj}Nproc
j=1 ← {0}Nproc

j=1

15 {{tsurrogate,j,n}
Nsurrogates
n=1 }Nproc

j=1 ← {{0}Nsurrogates
n=1 }Nproc

j=1

/* Iterate over all processes except the target under consideration. */
16 for j = 1 . . . Nproc where j ̸= i do

/* Estimate the TE from the next interval of the source under consideration, conditional on all source intervals
already added. */

17 tj ← estimateConditionalTE (i, j, cj + 1, R, C)
/* Estimate the associated surrogate values. */

18 {tsurrogate,j,n}
Nsurrogates
n=1 ← estimateConditionalTEOnSurrogates (i, j, cj + 1, R, C,Nsurrogates)

/* Bias-correct both the original and surrogate TE estimates by subtracting the mean of the surrogates. */

19 tj ← tj − mean
(
{tsurrogate,j,n}

Nsurrogates
n=1

)

20 {tsurrogate,j,n}
Nsurrogates
n=1 ← {tsurrogate,j,n − mean

(
{tsurrogate,j,n}

Nsurrogates
n=1

)
}Nsurrogates
n=1

21 end
/* Find which candidate source interval had the highest bias-corrected TE estimate. */

22 jmax ← findIndexOfMax
(
{tj}Nproc

j=1

)

/* Estimate the p value corresponding to the null hypothesis that this source had zero TE. */

23 pmax ← calculateMaxStatPVal
(
tjmax , {{tsurrogate,j,n}

Nsurrogates
n=1 }Nproc

j=1

)

/* If the null hypothesis is rejected, add the candidate source interval to the set of sources. */
24 if pmax < pcutoff then
25 cjmax ← cjmax + 1
26 end
27 end

/* We now check that all added source intervals are still significant, when conditioning on all other added sources. */
28 pmax ← 0

/* Iterate until no checked source interval is not significant. */
29 while pmax > pcutoff do

30 {pj}Nproc
j=1 ← {1}Nproc

j=1

/* Iterate over all processes that had any intervals added. */
31 for j = 1 to Nproc where j ̸= i and cj > 0 do

/* Estimate the TE from the last interval of the source under consideration, conditional on all other added source
itervals. */

32 t← estimateConditionalTE (i, j, cj , R, C)
/* Estimate the associated surrogate values. */

33 {tsurrogate,n}
Nsurrogates
n=1 ← estimateConditionalTEOnSurrogates (i, j, cj , R, C,Nsurrogates)

/* Estimate the p value corresponding to the null hypothesis that this source had zero TE. */

34 pj ← calculatePVal
(
t, {tsurrogate,n}

Nsurrogates
n=1

)

35 end
/* Find the index of the source whose final interval had the highest p value. */

36 jmax ← findIndexOfMax
(
{pj}Nproc

j=1

)

37 pmax ← pjmax
/* If the null hypothesis is not rejected for this source interval, remove the candidate source interval from the set of
sources. */

38 if pmax > pcutoff then
39 cjmax ← cjmax − 1
40 end
41 end

/* Add the indices of the sources which had any intervals remaining in the conditional set to the final set of inferred
sources for the given target. */

42 Si ← {j : j ∈ {1, 2, . . . , Nproc} and cj > 0}
43 end
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on the maximum estimated TE value from the set of candidate sources.420

In order to compensate for this, we replicate the selection of the maximum candidate source in the significance421

testing step. Specifically, for each i ∈ {1, 2, . . . , Nsurrogates}, we compare the TE estimates on the ith surrogate for422

each of the candidate sources. We select the maximum such estimate for each i. The population of surrogate values423

for the maximum statistic test is then made up of the resulting Nsurrogates maximum values. The test then proceeds424

as normal.425

C. Transfer Entropy Estimation426

It has, relatively recently, been shown that, for event-based data such as spike-trains, in the limit of small bin size,427

that the expected TE rate is given by the following expression [56]:428

Parameter Description Value

NX Number of spikes in the target spike train varied (see text)

kglobal Number of nearest neighbours to find in the initial
search

4

kperm Number of nearest neighbours to consider during sur-
rogate generation

20

NU Number of random samples of histories at non-
spiking points in time

20NX

NU,surrogates Number of random samples of histories at non-
spiking points in time used for surrogate generation

20NX

Nsurrogates Number of surrogates to generate for each node pair 100

TABLE I: The parameter values used in the continuous-time TE estimator when used for the inference of the
simulated spiking networks. A complete description of these parameters, along with analysis and discussion of their

effects can be found in [31].

ṪY→X = lim
τ→∞

1

τ

NX∑

i=1

ln
λx|x<t,y<t

[x<xi
,y<xi

]

λx|x<t
[x<xi ]

. (3)

Here, λx|x<t,y<t
[x<xi ,y<xi ] is the instantaneous firing rate of the target conditioned on the histories of the target429

x<xi
and source y<xi

at the time points xi of the spike events in the target process. λx|x<t
[x<xi

] is the instantaneous430

firing rate of the target conditioned on its history alone, ignoring the history of the source. It is important to note431

that the sum is being taken over the NX spikes of the target during the sampling period τ : thereby evaluating log432

ratios of the expected spike rates of the target given source and target histories versus target histories alone, when433

the target does spike. As this expression allows us to ignore the “empty space” between events, it presented clear434

potential for allowing for more efficient estimation of TE on spike trains.435

This potential was recently realised in a new continuous-time estimator of TE presented in [31], and all TE estimates436

in this paper were performed using this new estimator. In [31] it is demonstrated that this continuous-time estimator437

is far superior to the traditional discrete-time approach to TE estimation on spike trains. For a start, unlike the438
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Parameter Description Value

NX Number of spikes in the target spike
train

varied (see text)

kglobal Number of nearest neighbours to find in
the initial search

10

kperm Number of nearest neighbours to con-
sider during surrogate generation

20

NU Number of random samples of histories
at non-spiking points in time

20NX

NU,surrogates Number of random samples of histories
at non-spiking points in time used for
surrogate generation

20NX

Nsurrogates Number of surrogates to generate for
each node pair

100

TABLE II: The parameter values used in the continuous-time TE estimator when used for network inference on the
in vitro spike recordings. A complete description of these parameters, along with analysis and discussion of their

effects can be found in [31].

discrete-time estimator, it is consistent. That is, in the limit of infinite data, it will converge to the true value of the439

TE. It was also shown to have much preferable bias and convergence properties. Most significantly, perhaps, this new440

estimator utilises the inter-spike intervals to efficiently represent the history embeddings x<xi and y<xi in estimating441

the relevant conditional spike rates in (3).442

This is in contrast with the traditional discrete-time estimator which uses the presence or absence of spikes in an443

array of time bins as its history embeddings (it sometimes also uses the number of spikes occurring in a bin). In order444

to avoid the dimensionality of the estimation problem becoming sufficiently large so as to render estimation infeasible,445

only a small number of bins can be used in these embeddings. To focus in on cell-culture data, previous applications446

of TE to this type of data have used a variety of bin sizes: 40 µs [23], 0.3ms [19], and 1ms [24, 27]. Some studies447

chose to examine the TE values produced by multiple different bin widths, specifically: 0.6ms and 100ms [25], 1.6ms448

and 3.5ms [28] and 10 different widths ranging from 1ms to 750ms [26]. And specifically, those studies demonstrated449

the unfortunate high sensitivity of the discrete-time TE estimator to the bin width parameter. Moreover, all of these450

studies have only used a single bin in the history embeddings. In the instances where narrow (< 5ms) bins were451

used, only a very narrow slice of history is being considered in the estimation of the history-conditional spike rate.452

This is problematic, as it is known that correlations in spike trains exist over distances of (at least) hundreds of453

milliseconds [32, 33]. Conversely, in the instances where broad (> 5ms) bins were used, relationships occurring on454

fine time scales will be completely missed. This is significant given that it is established that correlations at the455

millisecond and sub-millisecond scale play a role in neural function [34–37]. In other words, previous applications456

of transfer entropy to electrophysiological data from cell cultures either captured some correlations occurring with457

fine temporal precision or they captured relationships occurring over larger intervals, but never both simultaneously.458

This can be contrasted with the inter-spike interval history representation used by the continuous-time estimator.459

To take a concrete example, in the in vitro data we used, for the recording on day 24 of culture 1-3, the average460

interspike interval was 0.71 seconds. This implies that the history embeddings used are at least on average 0.71461
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seconds long, being longer than this in cases where multiple intervals are being used. This is despite the fact that462

our history representations retain the precision of the raw data (40 µs) and the ability to measure relationships on463

this scale where they are relevant (via the underlying nearest-neighbour estimators). Furthermore, the innovative464

representation of history embeddings as an array of inter-spike intervals allows for the application of the highly465

effective nearest-neighbour family of information-theoretic estimators [12, 57], which bring estimation efficiency and466

bias correction.467

The challenges of using the discrete-time estimator only become more severe when one attempts to infer networks468

using conditional TEs. As there are now more processes being considered by the estimator (those in the conditioning469

set) the dimensionality of the estimation problem increases faster as we increase the embedding length. This places470

further pressure on keeping the number of bins in each embedding low, thus increasing the harshness in the tradeoff471

between history length and temporal precision. This is the likely reason behind the fact that almost all previous472

studies which evaluated the use of TE for the inference of spiking networks only made use of pairwise TE estimates473

[19–22]. This is as opposed to the multivariate conditional TE estimation used here, which takes into account the474

relationship of the target to other processes when considering its relationship to the given source.475

The parameters used with this estimator for the simulated data are shown in Table I and those used for in vitro spike476

recordings are shown in Table II. The chief difference in the parameter values used in these situations is that, for the477

in vitro recordings a larger value of kglobal (the number of nearest neighbours to consider in the initial searches) was478

employed (10 compared to 4). This was due to the observation that the estimates on the in vitro recordings exhibited479

much higher variance than those on the simulated data. It is a known property of nearest-neighbour information480

theoretic estimators that considering larger numbers of neighbours reduces their variance [12].481

As in the authors’ previous work applying the continuous-time TE estimator to in vitro spike recordings [38], a482

small change was made to the estimation procedure described in [31]. This was made in how random sample points483

were placed along the process both for the estimation of the TE and the generation of surrogates. Instead of laying484

out the NU and NU,surrogates sample points randomly uniformly, we placed each one at an existing target spike, with485

the addition of uniform noise on the interval [−80ms, 80ms]. This was due to the fact that these recordings contain486

incredibly dense bursts. Such a sampling strategy is required in order to adequately sample these regions of intense487

activity.488

An implementation of the estimator contained in the Java Information Dynamics Toolkit (JIDT) [58] software489

package was used in this study.490

D. Surrogate Generation491

Surrogate processes were generated by applying an adaptation of the permutation method of Runge [59] to the492

spiking TE estimator, as detailed in [31]. In brief, this method permutes the history embedding vectors to destroy493

the relationship between the source intervals and the existence or absence of spiking in the target. However, it retains494

the relationship between the source history embedding intervals and the embedding intervals from the target and495

conditioning processes.496
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E. Spiking Network Simulation497

Parameter Description Value

Nexc Number of excitatory neurons 30

Ninh Number of inhibitory neurons 20

τ Membrane time constant 20ms

Rm Membrane resistance 1Ω

Vreset Membrane reset potential 0mV

V0 Membrane resting potential 0mV

Vthreshold Spike threshold potential 40mV

τsyn Synaptic time constant 20ms

g Ratio of inhibitory to excitatory connection strength {1, 1.5, 3}
ᾱexc Excitatory connection strength 20mA

nexc Number of excitatory sources per neuron 3

ninh Number of inhibitory sources per neurons 2

λstim Rate of the Poisson stimuli 200Hz

ᾱstim Stimulus connection strength 6mA

TABLE III: The parameter values used in the LIF network simulations at various levels of synchrony, presented in
Sec. II A

Parameter Description Value

Nexc Number of excitatory neurons 30

Ninh Number of inhibitory neurons 20

τ Membrane time constant 20ms

Rm Membrane resistance 1Ω

Vreset Membrane reset potential 0mV

V0 Membrane resting potential 0mV

Vthreshold Spike threshold potential 40mV

τsyn Synaptic time constant 20ms

g Ratio of inhibitory to excitatory connection strength 3

ᾱexc Excitatory connection strength 17.5mA

nexc Number of excitatory sources per neuron 3

ninh Number of inhibitory sources per neurons 2

ᾱstim Stimulus connection strength 4mA

TABLE IV: The parameter values used in the LIF network simulations at various levels of synchrony, presented in
Sec. II B

All network simulations were conducted using Leaky-Integrate-and-Fire (LIF) model neurons [44]. In this model,498
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the membrane potential of the ith evolves according to:499

τ
dVi

dt
= (V0 − Vi) +RmIsyn,i. (4)

When Vi crosses the threshold Vthreshold, the timestamp of crossing is recorded as a spike. Vi is then set to Vreset500

and the evolution of the membrane potential is subsequently paused for the duration of the hard refractory period.501

Isyn,i is the synaptic input current into neuron i. Neurons were connected using alpha synapses [60]. Each synapse502

connecting neuron j to neuron i evolves according to:503

Ii,j(t) = ai,jᾱj

∑

ts∈St,j

t− ts
τsyn

exp

(
− t− ts

τsyn

)
. (5)

A is the connectivity matrix, with ai,j = 1 indicating that neuron j is a pre-synaptic input to neuron i and ai,j = 0504

indicating otherwise. ᾱj is the connection strength of the afferent connections from neuron j. All excitatory neurons505

share the same afferent connection strength ᾱexc. Inhibitory neurons, by contrast, have connection strength gᾱexc.506

The sum is taken over the set of spike times in neuron j occurring before time t, St,j . The synaptic current for neuron507

i is then the sum of the currents from all other neurons in the network, that is, Isyn,i =
∑

Ii,j .508

Each neuron was connected to exactly nexc excitatory sources, chosen randomly from the set of excitatory neurons.509

Similarly, each neuron was connected to ninh inhibitory sources, chosen randomly from the inhibitory sources. The510

specific parameter values used in the experiments described in Sec. II are shown in Table III and Table IV.511

Each neuron also received an independent stimulus. In the experiments presented in Sec. II A, this source was512

an homogeneous Poisson point process. In the experiments presented in Sec. II B, it contained varying amounts513

of regularity. Specifically, in Sec. II B, each neuron received a stimulus with a spike rate λ drawn from a normal514

distribution with mean 500 hertz and standard deviation of 25 hertz. In the fully random case, the stimulus was515

generated as an homogeneous Poisson point process, with rate λ. In the fully regular case, spikes were placed at a516

fixed interval of 1/λ. In the semi-regular case, the spikes were placed with this same fixed interval, but gaussian noise517

with mean 0 and standard deviation 0.5millisecond was added to each spike time. The connectivity strength between518

each stimulus and its target was specified by the parameter ᾱstim.519

F. Analysis of in vitro Data520

We made use of the same dataset as in the authors’ previous study [38] and analysed it in a very similar fashion.521

As such, the following section closely follows the discussion of this dataset in that previous work.522

The spike train recordings used in this study were collected by Wagenaar et. al. [41] and are freely available online523

[53]. The details of the methodology used in these recordings can be found in the original publication [41]. A short524

summary of their methodology follows:525

Dissociated cultures of rat cortical neurons had their activity recorded. This was achieved by plating 8x8 Multi-526

Electrode Arrays (MEAs), operating at a sampling frequency of 25 kHz with neurons obtained from the cortices of527

rat embryos. The spacing between the electrodes was 200 µm center-to-center. The MEAs did not have electrodes528

on their corners and one electrode was used as ground, resulting in recordings from 59 electrodes. In all recordings,529
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electrodes with less than 100 spikes were removed from the analysis. This resulted in electrodes 37 and 43 being530

removed from every recording as no spikes were recorded on them. The spatial layout of the electrodes is available531

from the website associated with the dataset [53], allowing us to overlay the inferred networks onto this spatial layout532

as is done in figure Fig. 4.533

Recordings were conducted on most days, starting from 3-4 Days In Vitro (DIV). The end point of recording varied534

between 25 and 39 DIV. Longer overnight recordings were also conducted on some cultures at sparser intervals. In this535

work we make use of these longer overnight recordings. These recordings were split into multiple files. The specific536

files used, along with the names of the cultures and days of the recordings are listed in Table V. 30 Minute windows537

of spiking activity were extracted and used for network inference. Specifically, the number of target spikes NX was538

set as the number of spikes that fell within this 30 minute window for the given target neuron.539

The original study plated the electrodes with varying densities of cortical cells. However, overnight recordings were540

only performed on the ‘dense’ cultures, plated with a density of 2500 cells/µL.541

The original study performed threshold-based spike detection by determining that a spike was present in the case542

of an upward or downward excursion beyond 4.5 times the estimated RMS noise of the recorded potential on a543

given electrode. The analysis presented in this paper makes use of these detected spike times. No spike sorting was544

performed and, as such, we are studying multi-unit activity (MUA) [61].545

As the data was sampled at 25 kHz, uniform noise distributed between −20 µs and 20µs was added to each spike546

time. This is to prevent the TE estimator from exploiting the fact that, in the raw data, inter-spike intervals are547

always an integer multiple of 40 µs.548

Culture 1-1 day 4 day 14 day 20
2 2 2

Culture 1-3 day 5 day 10 day 16 day 24
2 2 2 2

Culture 2-2 day 9 day 15 day 21 day 33
2 2 2 2

TABLE V: File numbers used for each culture on each day. These correspond to the file numbering used in the
freely available dataset used in this study, provided by Wagenaar et. al.[41, 53]

G. GLM Model549

The implementation of Generalised Linear Models (GLMs) of spiking activity followed that of Song et. al. [50] very550

closely. We briefly list the few minor differences.551

For the B-spline basis functions, we excluded all knot locations beyond 100ms. This was done due to the membrane552

potential decay time constant (τ) in the simulated models being set to 20ms (see Table IV), implying that statistical553

relationships beyond 100ms would be very unlikely.554

Song et. al. [50] propose finding the penalty weight parameter λ using the Bayesian information criterion (BIC),555

by iteratively trialling various penalty weight values. Performing this for each target spike train would have been556

computationally prohibitive given the large networks and long simulation times used in this work. Instead, this step557

was performed on a few trial runs and a single value of λ = 1×10−3 was chosen as it closely approximated that chosen558
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by the BIC in all such trial runs.559

We chose to designate the existence of a connection between a source and target when the GLM for the given target560

contained one or more non-zero weights assigned to the basis-splines associated with a given source.561

Fitting of the GLM models was performed using the statsmodels [62] Python library.562
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Appendix A: Comparison with CoNNECT Algorithm and Generalised Linear Models570

Plots identical to those in Fig. 1, but showing the results of applying competing spiking network inference techniques571

to the same data. Specifically, Fig. 8 applies the CoNNECT algorithm [40], which makes use of pretrained convolutional572

neural networks to classify the existence (or otherwise) of edges between spike trains. Fig. 9 shows the results of573

applying a GLM model of spiking activity [50] to the data, and basing the inference of connectivity on the existence574

of non-zero weights in this model.575
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(a) Lower synchrony network, recall (b) Lower synchrony network, precision

(c) Medium synchrony network, recall (d) Medium synchrony network, precision

(e) High synchrony network, recall (f) High synchrony network, precision

FIG. 8: Plots showing the resulting precision and recall from running the CoNNECT algorithm [40] on networks of
LIF neurons composed of 30 excitatory neurons and 20 inhibitory neurons. The ratio of the inhibitory to excitatory
connection strength was varied in order to change the degree of synchrony in the network. Plots are shown for three
different synchrony levels. Each plot contains points for the precision and recall for the inhibitory and excitatory

neurons as well as the combined precision and recall. The lines pass through the means of these points.
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(a) Lower synchrony network, recall (b) Lower synchrony network, precision

(c) Medium synchrony network, recall (d) Medium synchrony network, precision

(e) High synchrony network, recall (f) High synchrony network, precision

FIG. 9: Plots showing the resulting precision and recall from using a GLM model of spiking activity [50] to infer the
connectivity of networks of LIF neurons composed of 30 excitatory neurons and 20 inhibitory neurons. The ratio of

the inhibitory to excitatory connection strength was varied in order to change the degree of synchrony in the
network. Plots are shown for three different synchrony levels. Each plot contains points for the precision and recall
for the inhibitory and excitatory neurons as well as the combined precision and recall. The lines pass through the

means of these points.
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CHAPTER 6

CONCLUSION

6.1 Summary of the Main Contributions

At a high level, this thesis presents the first high-fidelity study of information flows between the

spiking activity of neurons. That is, it is the first time that the information flow between neurons has

been studied without any loss of time precision whilst still considering history effects over reasonable

time intervals.

Such a study was not possible until now due to the limitations of the traditional approach to

estimating information flows (via TE) from event-based data (such as spike trains). This traditional

approach operated by first discretising the process into bins of width ∆t. The process was then cast as

either a sequence of binary numbers or a sequence of natural numbers. For a binary sequence, each

number represented the presence or absence of any spikes in the bin, whereas natural numbers would

indicate the number of spikes that occurred within the bin. A straightforward plugin estimator was

then applied to this data, which simply counts the frequency of values in the bins for each different

unique history combination (see Section 2.3.1). There are a number of serious issues with this strategy

for estimating TE. First and foremost, this estimation strategy is not consistent: it does not converge to

the true value of the TE in the limit of infinite data. We also showed on some examples (Section 3.2.2)

that it has very high bias and converges slowly. More importantly, it involves a fundamental tradeoff

between being able to capture relationships occurring with fine temporal precision and those occurring

over long periods of time. Using smaller bin sizes will reduce the loss of temporal precision, but also

reduces the length of history that can be captured by the history embedding vectors. By contrast,

larger bin sizes allow for longer histories to be represented, but reduce the temporal precision.

In Chapter 3, we presented a novel estimator of TE on event-based data (such as spike trains),

which operates in continuous time and is able to overcome the above-mentioned challenges. This

estimator is the first provably consistent estimator of TE on this data type. That is, it is the first

estimator guaranteed to converge to the true value of the TE in the limit of infinite data. By operating

on the raw inter-event intervals of the data, it does not lose any time precision. Moreover, for the

usual spike density occuring in biological measurements, it can capture history effects occurring over

fairly large intervals, with minimal use of dimensions. In Chapter 3, we also present an adaptation of

a recently proposed local permutation method [1] for generating surrogate data, in order to perform

statistical tests for non-zero TE. In Section 3.2.3 , we demonstrate that the traditionally-used time-shift

method for surrogate generation can result in a very high false-positive rate when testing for non-zero
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TE. The newly-proposed method, on the other hand, circumvents this issue by permuting the history

embeddings correctly according to the null hypothesis of zero TE.

Given that we now have the ability to estimate TE with high-fidelity on event-based data, Chapter 4

makes use of this new ability to conduct the first ever high-fidelity study of information flows between

the spiking activity of neurons. It does this using an openly-available dataset of recordings from

developing cultures of dissociated cortical rat neurons [2]. Not only is this the first high-fidelity study

of information flows between neurons, but it also represents the first study of information flows at

different points in the development of neural cell cultures. Previous studies of information flows in

neural cell cultures [3]–[9] studied recordings from mature cultures. By contrast, the dataset which we

used contained recordings taken at multiple different days in vitro. This allowed us to contrast the

information flows on earlier days with those on later days. We found that these flows exhibited an

early lock in phenomenon, whereby the flows between nodes on earlier days of development were

highly correlated with the flows on later days. We further found that nodes occupied specialised

computational roles depending on their position in the burst propagation. Those nodes that tend to

burst at the beginning of the propagation act as information transmitters and those that burst at the

end of the propagation act as information receivers. By contrast, those that burst during the middle

of the propagation perform a mixture of transmission and reception, occupying the vital role of the

mediators of information flow. We also explored a plausible mechanism for these results by studying

the information flows in simulated networks developing according to an STDP learning rule. We

found that the changes in information flows exhibited remarkable similarities to those observed in the

biological cell cultures, with early lockins and specialised computational roles both being present.

The networks inferred in Chapter 4 were directed functional networks. That is, each candidate source-

target pair was considered in isolation. This resulted in very dense information flow networks. In

Chapter 5, we move beyond this to consider multivariate information flows. That is, we are interested

in whether there exists an information flow between a source and a target when conditioning on the

activity of the rest of the neural population. Such an analysis aims to find the minimal set of sources

for a given target whose histories will provide the maximal explanatory power of the activity of the

target. The addition of further sources to the set will not reduce our uncertainty of the activity of the

target, whereas removing sources from the set will increase our uncertainty. This is often referred to as

the inference of an effective network. Although TE has been used for the inference of effective networks

from other data modalities within neuroscience [10], [11], to date there has been minimal application

of TE to the inference of effective networks from spike train data (the author is only aware of a single,

very recent, contribution [12]). This is largely due to the limitations of the discrete-time estimator

discussed above which prohibits the use of large conditioning sets and long embeddings. However,

the new estimator proposed in Chapter 3 not only circumvents these issues, but also improves on the

statistical testing for non-zero TE. As such, in Chapter 5, we take advantage of these exciting new

advances to provide the first ever validation and application of TE to the task of inferring effective

networks from spike train data. We utilise a (slightly-adapted) pre-existing greedy algorithm [10],

[13] for the inference of effective networks using TE and then validate this approach on simulated

spiking networks for which the ground truth is known. The approach is found to be able to achieve

high accuracy with low data requirements. We also infer effective networks for the same dataset that

was analysed in Chapter 4, providing a demonstration for its utility in deriving biological insights.
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6.2 Directions for Future Research

6.2.1 Improving the Event-Based TE Estimator

One significant direction for future research is the improvement of the estimator presented in Chapter 3.

In Section 3.4.1 , we showed how the TE on event-based data could be expressed as a sum of four

KL-divergences. These KL-divergences are over the history embeddings of either the source, target

and conditioning process or over just the history embeddings of the target and conditioning processes.

These history embeddings are taken either at the events, or at randomly sampled points along the

process. In the estimator presented in Chapter 3, the KL-divergences are estimated using relatively

simple k-nearest neighbour estimators (with the addition of a radius sharing strategy in order to reduce

bias). Although this scheme for estimating the divergences was quite adequate for the demonstration

of the efficacy of this general approach for the estimation of TE on event-based data, there has been

substantial recent research on the estimation of divergences [14]–[17]. By incorporating some of these

results into the estimation of the divergence terms, we can expect to see reductions in bias as well as a

better ability to scale to more dimensions. Better scaling over dimensions is particularly exciting, as it

will allow for the handling of more conditioning processes in the network inference task.

One potential avenue for improvement involves advancements in the k-NN class of estimators for

divergences. As just mentioned, in Chapter 3 we presented a strategy for estimating the necessary

divergence terms using reasonably simple k-nearest neighbour estimators. There are a number of

recent advances in this class of estimator that could be easily incorporated into the approach presented

there. A particularly attractive possibility is the use of ensembles across various values of k [18]–[20],

which has been shown to substantially reduce the bias of the estimators. The Kozachenko-Leonenko

[21] class of k-NN estimators that we use assume that the probability density is constant in the

ε-ball that surrounds the k closest neighbours. This assumption is often violated in the case high

dimension relative to the number of data points. One avenue for ameliorating this issue is to use a

shape which can more closely enclose the k points, and assume constant probability density within it.

Suggested shapes include hyper-rectangles [22] and ellipsoids [23]. An alternate strategy is to relax the

assumption of local uniformity, instead assuming that the probability distribution is locally Gaussian

[24].

There has been significant recent research into methods for estimating divergences that do not

rely on nearest-neighbour searches. An obvious extension to the estimation strategy presented in

Chapter 3 would be to investigate the use of these newer techniques to estimate the two divergence

terms required for the estimation of the TE. Notable examples of newer estimation approaches include:

variational techniques [15]–[17], and the use of dependence graphs [14].

6.2.2 Further Applications

Another important direction for future work would be the further application of the novel estimator

to spike train data. The study presented in Chapter 4, which analysed recordings of the spiking

activity of neurons on different days of development, made use of an older dataset [2] (collected

in 2006). As the recordings were collected sparsely (with many missing days between individual

recordings), spike sorting was not practical. This is because it would not be possible to tell whether a
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given sorted unit on one day was the same sorted unit on a different day. Some more recent work has

performed continuous long-term recordings of neural cell cultures [25]. We could apply a spike-sorting

algorithm capable of performing drift-tracking (that is, tracking the changes in the action-potential

shapes over time, eg: [26]), to this data. This would provide us with spike-sorted data with consistent

unit identities across development. We could then use this to study how information flows changed

over the course of development between individual neural units, as opposed to between electrodes.

Another possibility would be to apply the presented estimation technique to modern cell-culture

recordings collected at incredibly high spatial resolution. Modern high-density electrode arrays allow

for recordings from cell cultures to be performed with far higher spatial resolution than the recordings

used in Chapter 4 [27]. This then allows for incredibly accurate spike sorting, where we can be certain

about the identities of the individual neurons associated with each spike. Given that this then provides

us with full observability of the system, this type of data would be well suited to the application of the

full effective network approach presented in Chapter 5.

It is worth bearing in mind that the development of neural networks in cell cultures does not

perfectly mimic the development of neural tissue in animals [28], [29]. It is unclear how the differences

between cell cultures and natural brain tissue will affect the development of information flows. As

such, there is some uncertainty concerning to what degree the results presented in Chapter 4 are

applicable to natural nervous systems. This implies that a clear focus for future application work will

be applying the techniques presented in this thesis to recordings from live animals or experimental

models that more faithfully mimic natural neural tissue [28].

The inference of effective networks has become an incredibly popular technique for analysing

neuroscientific recordings [30]. However, its application to recordings of spiking neurons has been

more limited. This is at least in part due to the limitations of previous information-theoretic estimation

techniques when applied to event-based data. In particular, their inability to handle long-range history

effects with high temporal fidelity has made them unsuitable for this task. The new continuous-time

TE estimator which we have presented in this thesis, and validated in the context of network inference,

circumvents these issues. It therefore opens up the possibility of much more widespread application

of effective network analysis to spiking data within the neuroscience community.
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[27] X. Yuan, M. Schröter, M. E. J. Obien, et al., “Versatile live-cell activity analysis platform for

characterization of neuronal dynamics at single-cell and network level,” Nature Communications,

vol. 11, no. 1, pp. 1–14, 2020.

[28] J. G. Roth, M. S. Huang, T. L. Li, et al., “Advancing models of neural development with biomate-

rials,” Nature Reviews Neuroscience, vol. 22, no. 10, pp. 593–615, 2021.

[29] E. Di Lullo and A. R. Kriegstein, “The use of brain organoids to investigate neural development

and disease,” Nature Reviews Neuroscience, vol. 18, no. 10, pp. 573–584, 2017.

[30] O. Sporns, Networks of the Brain. MIT press, 2010.


