
Understanding the Magnetic Microstructure through Experiments
and Machine Learning Algorithms
Abhishek Talapatra,* Udaykumar Gajera,* Syam Prasad P, Jeyaramane Arout Chelvane,
and Jyoti Ranjan Mohanty*

Cite This: ACS Appl. Mater. Interfaces 2022, 14, 50318−50330 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Advanced machine learning techniques have un-
furled their applications in various interdisciplinary areas of
research and development. This paper highlights the use of
image regression algorithms based on advanced neural networks to
understand the magnetic properties directly from the magnetic
microstructure. In this study, Co/Pd multilayers have been chosen
as a reference material system that displays maze-like magnetic
domains in pristine conditions. Irradiation of Ar+ ions with two
different energies (50 and 100 keV) at various fluences was used as
an external perturbation to investigate the modification of magnetic
and structural properties from a state of perpendicular magnetic
anisotropy to the vicinity of the spin reorientation transition.
Magnetic force microscopy revealed domain fragmentation with a
smaller periodicity and weaker magnetic contrast up to the fluence of 1014 ions/cm2. Further increases in the ion fluence result in the
formation of feather-like domains with a variation in local magnetization distribution. The experimental results were complemented
with micromagnetic simulations, where the variations of effective magnetic anisotropy and exchange constant result in qualitatively
similar changes in magnetic domains, as observed experimentally. Importantly, a set of 960 simulated domain images was generated
to train, validate, and test the convolutional neural network (CNN) that predicts the magnetic properties directly from the domain
images with a high level of accuracy (maximum 93.9%). Our work has immense importance in promoting the applications of image
regression methods through the CNN in understanding integral magnetic properties obtained from the microscopic features subject
to change under external perturbations.
KEYWORDS: magnetic domains, magnetic force microscopy, convolutional neural network, micromagnetic simulation, machine learning

■ INTRODUCTION
Magnetic thin films exhibiting perpendicular magnetic
anisotropy (PMA) are of technological importance and
promising candidates for spintronic nanodevices in the context
of ultrahigh density magnetic storage,1 fast memory
applications,2 and nanosensors.3 At favorable atomic ordering,
ultrathin stacking of Co with Pd or Pt displays PMA. For
magnetic thin films and multilayers with PMA, the information
about magnetic microstructure is extremely important to
understand the magnetization reversal, which is governed by
energetics. The net magnetic energy (Etotal) for a thin film can
be represented as Etotal = EK + EA + ED + EH, where EK, EA, ED,
and EH represent the anisotropy energy, exchange energy,
magnetostatic energy, and Zeeman energy, respectively. The
minimization of EK tries to drive the magnetization along the
easy axis, which can be tuned with thickness, growth
parameters, and route of processing of the materials for a
real system. EA gets minimized when the spins align in parallel
and thus prefer the formation of a single domain. On the
contrary, ED, primarily determined by the saturation magnet-

ization and the shape of the magnetic structure (important in
the case of patterned structures), opposes the single domain
formation. Thus, in the absence of an external magnetic field
(EH = 0), the minimization of the total energy terms leads to
the formation of magnetic domains.4 In reality, it is
complicated to predict the simultaneously changing competing
magnetic interactions that result in various domain morphol-
ogies for perpendicularly magnetized systems.5−7 Now, the
characteristic features of magnetic domains in multilayer (ML)
films can be controlled by different factors such as growth
conditions,8 the thicknesses of the constituent layers, as well as
the application of external stimuli, viz., magnetic field, heat
treatment,9 laser,10 and ion irradiation.11 Moreover, the
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tunable exchange coupling in the exchange spring magnets can
significantly control the magnetic microstructure.12,13 Thus,
modeling of process-induced magnetic modifications has also
been proven to be important in designing highly controlled
experiments and predicting new materials and methods.
In recent times, machine learning techniques have been

proven to be an important tool to understand material systems
with interdependent and simultaneously variable material
properties. In this paper, we are going to address the
application of the convolutional neural network (CNN) to
understand the modifications of magnetic domains in a
perpendicularly magnetized multilayer, which has been
observed experimentally by using ion-beam irradiation. Of
late, advanced machine learning techniques have acquired
immense importance in interdisciplinary research, such as in
microstructure optimization,14 prediction of a magnetic field,15

phase transition,16 magnetic grain size study,17 modeling
magnetic domains,18,19 relation between different magnetic
chiral states,20 prediction of effective magnetic spin config-
urations,21,22 2D metal−organic frameworks with high
magnetic anisotropy,23 and different components of Hamil-
tonian including the Dzyaloshinskii−Moriya interaction
(DMI),24 using different deep learning and machine learning
methods. From the point of view of atomistic magnetism,
researchers21,22 have tried to estimate and analyze various
components of Hamiltonian, such as exchange constant,
anisotropy constant, and DMI, using different CNNs.25 The
advanced CNN methods showed effectiveness and accuracy in
different research domains. However, these methods generally
require a large data set26 to properly train and test the model,
which might stand in the way of directly using these methods
in analyzing regular experimental data.
From the experimental point of view, ion-beam irradiation is

a popular and viable technique to tune magnetic properties,
associated with a locally induced structural imperfection or
intermixing, relevant in the context of magnetic MLs.27 The
ion energy and fluence (number density) can be separately
adjusted to control the depth and lateral extent of the
irradiation-induced effects, which leads to the modification of
magnetic properties. The ions lose energy during their passage
through the material, which is either spent in displacing the
target atoms by elastic collision (nuclear stopping) or exciting
the atoms by inelastic collisions (electronic stopping).28 A
large variety of studies exists on ion-beam induced
modifications in magnetic ML, either in the context of
patterning29 or depth-resolved structural modifications.30,31

The creation of graded anisotropy media by domain wall
positioning has also been reported using ion irradiation.32 Ion-
induced modification of magnetic properties with depth-
resolved structural studies in Co/Pt ML has been reported.33,34

An interesting study on the investigation of magnetic domains
after ion beam irradiation was performed by Trassinelli et al.,
where local microscopic features of domains were highlighted
in the vicinity of the ferromagnetic to paramagnetic phase
transition temperature for Mn−As thin films.35 Co/Pt ML36

and soft magnetic FeCoSiB thin film37 systems have also been
investigated in order to study the behavior of magnetic
domains in response to light ions. Swift heavy ion-induced
modification of magnetization dynamics,38 lattice distor-
tion39,40 and spin reorientation41 are also topics of
contemporary research interest. Of late, deterministic gen-
eration42 and precise tunability of skyrmion density43 have
been achieved using energetic ions. From the point of view of

ferrimagnetic thin films, the compensation point and magnetic
anisotropy were successfully engineered in Gd−Fe and Tb−Fe
thin films using He+, and Ne+ ions with various fluences.44

Interestingly, magnetic domains were engineered without
domain walls in Tb/Co ML with the bombardment of He+
ions.45 Our recent works on Ar+-induced modifications of
magnetic properties in the amorphous Tb−Fe−Co thin films46
and Tb−Fe/Gd−Fe/Tb−Fe trilayer47 highlighted the tuna-
bility of magnetic domains correlated with the structural
changes in the vicinity of the spin reorientation transition.
The focus of this paper is to understand the modifications of

magnetic properties with a special interest in nanoscale
magnetic domains, displaying a transition from the maze-like
pattern in pristine condition to feather-like domains as a
function of the fluence (F) and energy (E) of Ar+ ions.
Micromagnetic simulations were performed to record the
variations of magnetic domains with micromagnetic input
parameters. Furthermore, we have proposed a model using a
CNN-based image regression technique to identify and
recognize various features of magnetic domains correlated
with the magnetic properties (micromagnetic input parame-
ters). A large set of simulated domain images was used to train
and test the neural network (NN) which determines the
magnetic properties of the unknown (out of the sets used for
training) domain images with higher accuracy. Our work
directs a novel route for the quantitative analysis of
microscopic domain images using artificial intelligence.

■ METHODS
Experiments. Co/Pd ML films with the configuration of Si

(substrate)/Ta (30)/Pd (30)/[Co (tCo)/Pd (8)]×50/Pd (12) (the
numbers in parentheses indicate thicknesses in Å) have been
deposited by ultrahigh vacuum DC magnetron sputtering at a
working pressure of 1.35 × 10−3 Torr of Ar. The ion-beam irradiation
was performed on the films with maximum PMA, obtained with a
specific tCo. The ion-irradiation process was carried out under high
vacuum (2 × 10−6 Torr), normal to the film surface using Ar+ ions of
energies 50 and 100 keV with varying fluences, ranging from 0.5 ×
1014 to 3.3 × 1016 ions/cm2. The time of irradiation (t) controls the
ion-fluence following the relation t F g

I
e
1= , where σ represents the area

of irradiation (1 cm2), g denotes the charge state of the ion (+1), I
denotes the beam current (2 μA), and e is the electronic charge. Table
1 describes the nomenclature of the films with different values of
fluence. Simultaneous atomic and magnetic force microscopy (AFM
and MFM) were carried out to observe the topography and magnetic
domains. Magnetization reversal has been studied with a vibrating
sample magnetometer (VSM) by applying the external magnetic field
along the in-plane (IP) and out-of-plane (OOP) directions with
respect to the film surface. Cross-sectional transmission electron

Table 1. Nomenclature of the Samples and Comparison of
MR, Hc, Keff, and Rq with Variable Ion Fluences

F in
ions/cm2 name

MR in
emu/cm3 OOP

(IP)
Hc in Oe
OOP (IP)

Keff in
erg/cm3

(×106)
Rq in
nm

0 pristine 1200 (120) 880 (440) 3.5 0.4
0.5 × 1014 A1 260 (395) 243 (244) −0.9 0.5
1 × 1014 A2 47 (424) 188 (268) −2.7 0.5
3.3 × 1014 A3 56 (921) 201 (80) −5.3 0.4
1.0 × 1015 A4 68 (68) 230 (226) −0.2 1.0
3.3 × 1015 A5 86 (783) 245 (75) −5.0 1.4
1.0 × 1016 A6 98 (779) 234 (85) −4.9 1.0
3.3 × 1016 A7 58 (483) 162 (88) −3.3 2.2
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microscopy (XTEM) was carried out for selective samples employing
high voltage (1250 kV) electron microscopy. Spatial mapping of the
corresponding elements was performed using energy-dispersive
spectroscopy (EDS) of the X-ray associated with the FEI Titan
scanning transmission electron microscope. The depth-resolved
structural investigation was complemented by X-ray reflectivity
(XRR) measurements.
Micromagnetic Simulation. Micromagnetic simulations of

magnetic domains were performed using MuMax3 software.48 The
Co/Pd ML is considered as a single magnetic layer with an effective
anisotropy constant (Keff) and effective thickness (teff) of the magnetic
layers, comparable to the multilayer. The input parameters are close
to the values reported in the literature,49 that is, exchange constant
(Aex) = 2.3 μerg/cm, saturation magnetization (Ms) = 1 kemu/cm3,
and Keff = 10 Merg/cm3. The simulation temperature (T) and
damping constant (α) were 300 K and 0.9, respectively. Cubic meshes
of volume (4 nm)3 are used for the discretization of the total area of
simulations (∼2 μm × 2 μm) with teff = 16 nm. The simulations
started from arbitrary initial spin configurations and run for 100 ns to
obtain energy-minimized stable configuration of magnetization
following Landau−Lifshitz−Gilbert equation.50,51 Here our main
focus is to analyze the domain images which essentially signify the
spatial variation of the overall magnetization (M).
Building and Training of CNN. In this article, the CNN-based

image regression technique is used. We have used different popular
deep learning (DL) models as mentioned below.

• Cutsom multilayer perceptron model using Tensorflow.52

• Residual NN architectures ResNets with and without
pretrained models.53

• VGG16 with improved (3 × 3) convolution filters54

• DenseNet, which utilize dense connections between layers
through dense blocks.55

• One of the classic DL algorithms: AlexNet56

• EfficientNet uniformly scales all dimensions of depth, width,
and resolution using compound coefficients.57,58

The custom architecture of CNN contains a multilayer perceptron
with a batch normalization layer followed by a dense NN. For
optimization, during the training of CNN, the default function Adam
is used, which is the first-order gradient-based optimization of
stochastic objective functions. For the pretrained ResNets models, we
have used Fastai and PyTorch libraries to train and predict the
different magnetic properties from the simulated domain images. We
have also compared the performance using different models such as
ResNet-18 and ResNet-34 comprising 18 and 34 layers, respectively.
Overfitting is prevented by employing the default early-stopping
algorithm. The learning rate is set to 0.001 with a strategy to reduce
the learning rate when the error stops decreasing with several steps.
Furthermore, early stopping is implemented in a way that it decides to
stop training based on accuracy improvement. The fit one cycle
method was used for the dynamic learning rate implemented in
PyTorch. We have also checked our model using pretrained weights.
In order to create a large data set for training the NN, we have used

960 simulated images, obtained by realistic variations of four
micromagnetic input parameters, viz., Aex (range: 0.1−2.7 μerg/
cm), α (range: 0.825−0.925), Keff (range: within the order of 104 to
109 erg/cm3), and T (range: 300−1000 K). The considered range of
parameters makes the data sets versatile by incorporating various
types of magnetic domains of different characteristic length scales and
spatial features. Physically, the variation of Aex and Keff results in a
change in domain wall energy (proportional to A Kex eff· ). The
variation in temperature introduces thermal agitation that results in
fluctuation of magnetization near the boundary between two
oppositely magnetized domains. α controls the relaxation of
magnetization. The entire data set was divided into three different
groups, as mentioned below.

• The first group was used for training the model, using 63%
(605) of the total images.

• The second group was utilized for the validating and
rearrangement of weights, using 7% (67) of the total images.

• The third group was used to test the model, using 30% (288)
of the total images.

It is worth mentioning that the images used for validating were also
used during the training process. However, the images used for testing
the model were never exposed to the machine during training.

■ RESULTS AND DISCUSSIONS
Pristine Co/Pd Multilayers. Co/Pd ML films were

deposited with three different tCo to observe the variation in
PMA. Figure 1a−c represents the OOP and IP hysteresis loops

for the values of tCo of 3, 5, and 8 Å, respectively, with a fixed
Pd layer thickness of 8 Å and number of Co/Pd repeats of 50.
Additionally, Ta and Pd were used as the buffer layers to aid
the PMA. For tCo = 3 Å (Figure 1a), an almost square
hysteresis loop can be observed with high remanence (MR)
and coercivity (Hc) along the OOP direction, which is the
indication of strong PMA. On the other hand, slanted
hysteresis loops are observed with the increase in tCo, as
shown in Figure 1b,c, which indicate the onset of nucleation of
reversed domains at comparatively higher magnetic fields. A
quantitative comparison shows that the OOP Hc is 884 (±10)
Oe for tCo = 3 Å and decreases to 161 (±10) Oe and 205
(±10) Oe for tCo = 5 and 8 Å, respectively, whereas the OOP
saturation field (Hs) varies to 5, 5.5, and 7 kOe, as shown in
Figure 1a−c, respectively. The value of the nucleation field
(HN) is closely related to the ratio of saturation magnetization
(Ms) to MR, as both the quantities play a decisive role in
magnetization reversal. A high MR/Ms of 90% and HN of

Figure 1. The in-plane and out-of-plane hysteresis loops for Co/Pd
ML at different tCo are shown in (a−c) along with the corresponding
MFM images of magnetic domains in the as-deposited state, shown in
(d−f) for tCo = 3, 5, and 8 Å, respectively.
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around −200 Oe in Figure 1a clearly indicate that the
magnetization reversal is dominated by the rapid domain wall
motion.59 The values of HN are close to 2.4, and 4.5 kOe along
with weak MR/Ms of 4 and 2.9% for Figure 1b,c, respectively,
which confirm that nucleation, propagation, and annihilation of
the reverse domains lead to the magnetization reversal of these
films. The IP loops for all three films cannot be brought up to
saturation within the limited field of the VSM measurements.
Thus, the magnetization studies confirmed that all the ML
displays a predominant easy axis along the OOP direction
among which the strongest PMA can be observed with tCo = 3
Å. Microscopic investigation of tCo-induced variation of PMA
was performed using MFM. All the pristine Co/Pd ML
displays a uniform featureless surface (not shown) with a root
mean square roughness (Rq) of less than 1 nm, and the domain
imaging has been performed in the as-deposited condition of
the films before exposure to an external magnetic field.
Periodic, nanoscale magnetic domains can be observed in
Figure 1d−f for tCo = 3, 5, and 8 Å, respectively. Maze-like
domains with strong OOP contrast with an average lateral size
of 434 (±12) nm can be observed in Figure 1d. The domain
size reduces to 176 (±2) nm, and 88 (±2) nm for Figure 1e,f,
respectively. The reduction in the OOP contrast is also clear
from the normalized MFM images with a transition to thinner
stripes domains for the highest tCo. The effective magnetic
anisotropy (Keff) for magnetic multilayers can be expressed as
K K 2 K

teff v
int= + , where Kv and Kint represent the volume and

interface anisotropy constants, respectively, with t as the
effective thickness of the magnetic layers. The magnetic
properties of the ML can be modified with the variation of the
number of stacking or by varying the thickness of the
constituent materials.60,61 The increase in the effective
thickness reduces the contribution of interfacial anisotropy
energy and simultaneously increases the volume anisotropy
energy. In this competition, whenever both the interface and
volume anisotropy energies become comparable, the system
breaks into multiple domains. From the results of Figure 1, it
can be confirmed that the domain nucleation is more favorable
at higher tCo, which essentially reduces the PMA of the
systems, and hence, the highest contribution of interface
anisotropy energy at the lowest tCo is considered to play a
major role behind the strong PMA.
Effect of Ion Irradiation. Magnetic Characterizations.

Owing to the possession of strong PMA, the films with tCo = 3
Å have been used for the ion irradiation studies. The integral
magnetic response of the irradiated films has been charac-
terized with the OOP and IP hysteresis loops, as depicted in
Figure 2a,b, respectively, for the selected samples. It can be
clearly understood from Figure 2 that the maximum magnitude
of magnetization detected in the IP mode is larger than that in
the OOP mode, in contrast to the case of the pristine film,
shown in Figure 1a. This essentially indicates that irradiation
with 50 keV ion energy triggers a spin reorientation transition
(SRT) from OOP to IP with respect to the film surface. The
OOP loops become slanted with reduced MR/Ms and a higher
saturation field, whereas the IP loops gain MR with a lower
saturation field. At higher fluence of irradiation, the collision
between the larger number of energetic ions and the film
surface may result in the formation of surface defects that act
as the pinning sites for the domain wall and restrict the rapid
domain wall motion, as interpreted from the hysteresis loops
(Figure 1a) of the pristine film. The values of IP and OOP MR,

Hc, and Keff have been recorded in Table 1 for all the irradiated
films. Although the variations of the parameters are not very
systematic, a huge increase in IP MR is to be noticed with
respect to its OOP counterpart. The IP loops gain squareness
with a decreased IP coercivity, which shows variation close to
the error limit of ± 5 Oe at higher F values. This behavior is
also reflected in the Keff values. Most importantly, the negative
values for Keff essentially indicate the presence of easy-plane
anisotropy, originating due to the SRT induced by ion
irradiation. The hysteresis loops for the irradiated samples at
various fluences with E = 100 keV are presented in Figure S1
of the Supporting Information.
The simultaneously recorded normalized AFM and MFM

images are depicted in Figure 3a,b, respectively, for the
irradiated films. The Rq values, listed in Table 1, are
determined from the AFM images and show an overall
increasing trend with the increase in F. This can be connected
with the ion-induced surface damage with irradiation for longer
times at higher F. In addition to that, the growth of irregularly
distributed granular topographic features has been observed
with high-resolution AFM imaging (not shown here), where
the maximum grain size appears to be 141 nm with a
distribution error of ±50% for the A6 film. The MFM images
(Figure 3b) for A1 and A2 display a maze-like domain pattern
with alternate dark-bright contrast, reduced with respect to
that of the pristine film, as shown in Figure 1d. The average
domain size is estimated to be 150 (±4) nm and 126 (±3) nm
for A1 and A2, respectively. A3 is seen to be the threshold
where a domain pattern with this in-plane correlation length
no longer exists. Instead, feather-like domains are observed for
A3 and A4. Finally, the magnetic contrast drops significantly
for A6 and topographic interference starts to appear in the
MFM images due to the increased height of the topographic
features. Two distinct factors are relevant for this domain
transformation. The first one is ion energy which determines
the penetration depth of the ions inside the film. This gives rise
to intermixing at the interfaces by modifying the periodicity of
the ultrathin stacking. Hence, the effective anisotropy is
expected to decrease,33 causing a reduction in the domain size
and the associated magnetic contrast, as observed in the case of

Figure 2. Hysteresis loops of the irradiated films with the applied field
along the (a) out-of-plane and (b) in-plane directions.
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A1 and A2. The other effect is fluence, which is responsible for
the extent of modification of surface properties such as defects
and pinning sites for domain walls. The observed feather-like
domains can be explained based on the IP magnetization
distribution and transport of the magnetic charge toward the
surface, which is achieved by a small deviation from the IP
magnetization, similar to the formation of cross-tie walls.62 The
modified domain morphologies can be different for different
material systems and choice of ions.63 The surface roughness
of the films increases with higher ion energy, and the
fragmented maze-like domains could not be observed for the
irradiated samples with E = 100 keV; the corresponding AFM
and MFM images are presented in Figure S2 of the Supporting
Information. Thus, variation in the domain size and pattern
can be tuned via locally competing anisotropies, which create a
strong force for the SRT toward the IP direction.
Depth-Resolved Structural Characterizations. The depth-

resolved structural studies were performed with XTEM. First,
we have shown the TEM image for the pristine [Co (3 Å)/Pd

(8 Å)]×50 multilayer (with highest PMA) in Figure 4a, which
shows a multilayer film on top of the single-crystalline Si
substrate. A high-resolution (HR) TEM image is depicted in
Figure 4b, clearly displaying the presence of lattice fringes.
Inverse Fourier filtered transform (IFFT) was performed
selectively at different regions (regions 1 and 2 are indicated by
yellow boxes for clarity) of Figure 4b. The average value of the
d-spacing was estimated from the line scans over the IFFT
images shown in Figure 4c and turned out to be around 2.43
(±0.02) Å. This lattice spacing can be attributed to the
fcc(111) crystal orientation of the Co/Pd system that appears
due to the lattice averaging of Co and Pd, and therefore, can be
tuned with tCo.

64,65 It is always intriguing to analyze the depth-
resolved elemental mapping for the case of ultrathin multilayer
stacks, which provides information about the interfaces. The
EDS technique was used to perform the elemental mapping of
the constituent elements along the specified region (box),
shown in the high-angle annular dark-field scanning trans-
mission electron microscopy (HAADF-STEM) image in the
extreme left of Figure 4d. Thereafter, the mappings for Ta, Co,
and Pd are shown from left to right which well justifies Ta as
the buffer layer. However, Co and Pd are observed everywhere
in the selected region of mapping, which suggests the
possibility of alloying at the interfaces of the corresponding
ultrathin layers in the pristine state. Yang et al. reported the
absence of the multilayer feature when thicknesses of both Co,
and Pd layer reach around 5 Å.66 The XTEM and HRTEM
images of the sample, irradiated at the maximum fluence (A7),
are shown in Figure 4e,f, respectively. Unlike the pristine
sample, Figure 4e displays the presence of irregular and
aperiodic stripes that could probably be the footprint of the
bombarded ions. Two regions with different textures have been
indicated in Figure 4f, where the position of the dotted line
could be the grain boundary in the polycrystalline film. The
average d-spacing estimated from the IFFT images of Figure 4g
is around 2.37 (±0.06) Å, indicating no change in the fcc(111)
growth direction. The estimations of d-spacing are comparable
to those values, mentioned by Barton et al.67 The HAADF-
STEM image of Figure 4h shows the presence of bubble-like
features, which might be the Ar bubbles, appearing after
irradiation. However, we could not confirm the presence of Ar
with EDS due to its lighter atomic weight. The alloying of Co
and Pd is clear from the EDS mapping, shown in Figure 4h,
which also suggests the possibility of the diffusion of Ta in the
multilayer.
The XTEM studies on the depth-resolved microstructure

have been complemented with XRR. Comparative XRR
spectra for the pristine Co/Pd ML and the irradiated films
with minimum (A1) and maximum (A7) fluence are presented
in Figure 5. All the spectra have been fitted with multilayer
models, relevant to the experimentally prepared samples. The
best-fitted data along with the experimental spectra for the
pristine film are shown in Figure 5a, which confirms the
presence of interfacial diffusion of Co and Pd, as explained
from the elemental mappings in Figure 4d. The fitted model
suggests the formation of the [Co (1.8 Å)/CoPd (1.13 Å)/Pd
(7.1 Å)]×50 ML in the pristine state (Figure 5a), and [Co (1.3
Å)/CoPd (3.16 Å)/Pd (5.96 Å)]×50, and [CoPd (10.82 Å)/Pd
(3.34 Å)]×50 for A1 and A7, respectively, in Figure 5b. The
highest ion fluence in A7 results in complete diffusion of Co
along with higher interfacial and surface roughnesses, and
consequently, the XRR intensity falls rapidly at lower 2θ values.
The XRR results follow similar trends when the ion energy

Figure 3. Normalized (a) AFM images with simultaneously captured
(b) MFM images for the films irradiated with 50 keV of Ar+ ions at
various fluences (specified by the nomenclature). The scale bar is the
same for all the images.
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increases to 100 keV at the same fluences (Figure S3 of the
Supporting Information). Thus, the XRR studies explain the
broadening of interface width and roughness with increasing
energy and fluence of Ar+ ions.68 The interface quality and
magnetic properties change significantly due to reduced
symmetry breaking at the Co/Pd interfaces.67 It is worth
mentioning that consideration of a thin native oxide layer of

SiO2 above the Si substrate makes the fitting model more
accurate and viable with the real samples.
Simulated Domain Configurations. Detailed analysis of

magnetic domains for the pristine and irradiated films has been
presented in Figures 1 and 3, respectively. The MFM imaging
(Figure 3) along with the integral magnetic measurements
(Figure 2) confirmed the modification of magnetic anisotropy,
which triggers a spin reorientation transition from OOP to the
plane of the film after irradiation. In this section, we are going
to discuss the possible changes in domain pattern as a function
of Keff, and Aex and qualitative comparison between the
simulated and experimental results. It is well known that
domain walls (DW) represent the net in-plane component of

magnetization, M M( )x y
2 2+ , acting as the boundary between

the out-of-plane magnetized (±Mz) domains. The width of the

DW is proportional to A
K

ex

eff
, and hence, the SRT phenomenon

can be well understood in terms of the parameters controlling
the width of the DW. The simulated domain images are
presented in Figure 6a,b for different Aex values of 2.3, and 1.15
μerg/cm, respectively, for four different Keff values, as
mentioned in the left column of the images. For all the

Figure 4. (a,e) cross-sectional TEM images, (b,f) HRTEM images, and (c,g) IFFT images for the pristine Co/Pd ML and A7 films, respectively.
(d,h) EDS mapping of the distribution of the corresponding elements in the pristine and A7 films, respectively.

Figure 5. Experimental and fitted XRR spectra for (a) pristine and
(b) irradiated A1 and A7 multilayer.
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domain images of Figure 6, the white and black colors indicate
two mutually opposite OOP components of magnetization,
and the other colors indicate the IP components, the
orientations for which are shown by the arrows. The domain
image in Figure 6a with Keff = 10 Merg/cm3 (top) displays
extended maze-like domain structure with strong perpendicular
anisotropy. With the reduction in Keff to 8 Merg/cm3, the
domain size decreases, and the pattern appears as extended
periodic stripes with no preferential orientations and higher in-
plane contrast. With further reduction in Keff, the extended
stripe patterns shrink to circular stripes (not shown) to
minimize the magnetostatic energy. Interestingly, strong in-
plane contrast leading to asymmetric vortex structure with an
out-of-plane magnetized core can be observed with Keff = 5
Merg/cm3. Further reduction in Keff results in a feather-like
structure with multiple vortices (bottom). The domain features
display significant changes with the reduction of Aex to 50% for
the same Keff. Unlike extended maze-like patterns, worm-like
domains without preferential orientation can be observed with
Aex = 1.15 μerg/cm, as shown in Figure 6b. Stronger OOP
contrast with reduced domain sizes can be observed with
respect to the corresponding domain images of Figure 6a with
the same Keff. Here, the threshold for transition from OOP to

IP magnetization can be marked at Keff = 5 Merg/cm3, where
the OOP components shrink to a thread-like region bounded
by IP magnetization in a different direction. Further reduction
of Keff leads to a symmetric vortex configuration. Thus, with
the combination of variables Keff and Aex, we can explain
tunability in the magnetic domain structure, which is
qualitatively similar to the experimentally observed domain
images in terms of the extended maze-like pattern in the
pristine condition, fragmented thinner domains with reduced
OOP magnetization after irradiation at lower fluences, and
finally, feather-like structure with dominant IP magnetization
in response to the irradiation at higher ion fluences is formed.
In view of the experimental and simulated results, it is

evident that a proper understanding of magnetic domain
patterns provides a direct route to understanding the change in
micromagnetic energetics in response to the physical
processes. Thus, it urges to establish a reliable path for proper
estimation of important parameters controlling the energetics,
which we visualize in the form of magnetic domains. It is
important to mention that recognizing the modifications in the
micromagnetic parameters from the domain images become
extremely difficult with the human eye when the change in
parameters does not lead to a significant change in the images,
or domain patterns obtained by simultaneous changes in two
or more parameters. In this regard, we propose different CNN
architectures to identify the micromagnetic parameters from
the domain images, which also help immensely to complement
the experimental results. As mentioned earlier, training the
CNN requires a large and homogeneous data set, which is not
easy to obtain through modifications of experimental process
conditions. Therefore, in this article, we are using only 960
domain images obtained through micromagnetic simulations
considering different combinations of Keff, Aex, T, and α. The
tuning of the domain size and net magnetization can arise from
the modification of the abovementioned parameters, but
pinpointing the exact parameters with higher accuracy from
the entire parameter space is not straight forward. In order to
reduce the expense of simulation time and increase accuracy,
we have reduced the simulation area to around 1 μm × 1 μm.
However, the CNN model is not limited to the size of the
images, which we have confirmed by verifying our model with
different sizes of images.
Overview of the CNN. In order to predict the micro-

magnetic properties (parameters) directly from the domain
images, we have used advanced numerical deep learning
methods, such as CNN. As we have mentioned in the previous
section, CNN consists of a convolutional part associated with a
fully or partially connected NN.69 Here, we will briefly discuss
the fundamental working principle of CNN.
First, we are going to explain different components of the

NN and the generally used terminologies. NN primarily
consists of node layers that include the input and output layers
and hidden layers, which are the dense layers between the
input and output layers. Each neuron is connected with other
neurons through weights in between and the threshold values.
If the output value of a neuron reaches the threshold values,
that particular neuron is activated and sends information to the
next layer. In general, the weights between different
connections can be adjusted by various methods following
the back-propagation or forward-propagation algorithms to
minimize the error in the output node layer. The simplest
model is to consider a NN of 3 input layers and 1 output layer,
as shown in the schematic of Figure 7. In this case, we can

Figure 6. Simulated domain images with different Keff (mentioned in
the left column) with Aex of (a) 2.3 and (b) 1.15 μerg/cm. The scale
bar is the same for all the images.
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write the equations for the input layer and the simple threshold
or activation function ( f i(x)) as

y wx b w x w x w x bi i 1 1 2 2 3 3= + = + + + (1)

l
m
ooo
n
ooo

( )f x
wx

( )
1, if b 0

0, otherwise
i

i i=
+

(2)

where wi, xi, and b are the weights, input values, and bias,
respectively. A bias vector is an additional set of weights in a
NN with no input, and thus, it corresponds to the output of an

artificial NN with zero input. Once the weights wi are
determined, we can also investigate the contribution of
different input properties. In general, larger weights for the
input values with comparable magnitude represent a higher
contribution to the prediction. Then, the summed function will
pass through the activation function, which determines the
output. If the output values are higher than the threshold
values, the neuron will be activated. This leads to the
propagation of the data to the next layer. In this way, finally,
we calculate and minimize the cost function or error function,

f x y y( ) ( )n
e 0

2= , by adjusting the weights.
Now, while investigating with images, we do not have the

exact numerical values of the parameters, mentioned above.
Therefore, convolutional layers are used to extract those
features from the images.70 Thus, in addition to the dense
layers, the CNN model contains convolutional layers and
pooling layers, which are utilized to extract important features
from the images. The schematic for the distribution of different
layers in a typical custom CNN is shown in Figure 8a, where
three convolution layers and four dense layers were used. In
order to extract the features, the convolution layer transforms
the input image using the different convoluted filters. A filter is
a small matrix with a dimension smaller than that of the image
to be convoluted. A single convolution layer contains a series
of filters as shown in Figure 8c. Following the convolution

Figure 7. Schematic of an artificial NN with three input and one
output neurons. Here, wi, x, and f i are the weights, input values, and
threshold function, respectively.

Figure 8. Details of the custom NN with different descriptions: (a) schematic for the reduction in dimension of the input image in each layer of
CNN, (b) flow chart of a custom CNN model, and (c) qualitative working principal of the CNN.
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layer (Conv2D), we have also used the pooling layer
(MaxPooling2D) to reduce the dimensions of the feature
maps (Figure 8a), which is helpful in reducing the number of
parameters to learn and the amount of computation performed
in the network. A reduction in the lateral dimension of the
input image can be observed after getting filtered through each
layer. While the convolution layer increases the depth effect
with a little reduction in the lateral dimension, the pooling
layer only contributes to the reduction in lateral dimension.
After getting filtered through a series of convolution and
pooling layers, the images pass through the global average
pooling layer and various dense layers. The sequence of
different filters in our custom model and the corresponding
changes in dimension at each layer has been well illustrated in
the flow chart of Figure 8b. The machine essentially
understands and compares the “higher dimensional images”
obtained after filtering through all the layers of the CNN
model. The features, extracted using the filters, were further
used for the prediction or classification. The entire process of
working principal of CNN can be understood through the
schematic of Figure 8c. However, in practice, substantially
more convolutional and pooling layers are used in a CNN to
extract different features from the images. In order to
understand the effect of filters inside different convolution
and pooling layers, we have shown an example of image
regression in Figure 9, illustrating the action of filtering three
important features when the simulated domain image of Figure
6a pass through different filters in different convolution and
pooling layers. In Figure 9a, the first filter (top row) is
extracting the distribution of the out-of-plane magnetization,
whereas the second filter (middle row) in Figure 9b marks the
domain walls, which are the boundaries between the two
oppositely magnetized areas, and the third filter (bottom) in
Figure 9c brings information about the domain curvature,
which is physically related to domain nucleation and

branching. However, the information extracted in the last
layer (4th Conv2D layer and higher) from a specific filter in
Figure 9 becomes too complex to understand with the human
eye. Several other filters were also used to produce this higher
dimensional information, which was further fed to the NN to
identify particular features inside the image, where we use
different functionalities mentioned above to predict the
magnetic properties. It is important to notice that the lateral
dimension of the images decreases from 256 × 256 to 15 × 15
after passing through all the filters, as observed from Figure 9.
Now, we will look into the training process of the CNN

model. For the training, we use particular images, grouped with
batch sizes of 32 images. Batch size decides the number of
images trained at a time. We trained the CNN model on the
entire training data set, also known as epochs. After training
the model, we checked the prediction of the model to validate
images and calculated the mean squared error (MSE) for each
epoch. Based on the errors, the model tries to adjust the
weights to reduce the MSE. We have used different models for
training, and their comparative performances are shown in
Figure 10, where the MSE has been plotted at different epochs.
A large MSE difference between the trained and validation data
sets indicates overfitting in the model. As observed from Figure
10, the difference between the validation data set and the
trained data set is small, which implies that the models are
learning different features from the images. Further, the three
different models are converging with comparable values of
MSE (close to 5%) for higher epochs. We have tried to
estimate the magnetic properties from an experimental domain
image, which has been shown in Figure S4 of the Supporting
Information.

Comparison with Pretrained CNN Architectures. We have
constructed our custom CNN architecture and compared it
with different available CNN architectures. Many numerical
methods, such as Pearson correlation coefficient, mean squared

Figure 9. Evolution of images with the application of different filters on the input image and feature extraction from different layers, (a) distribution
of out-of-plane magnetization, (b) domain boundaries, and (c) curvature or branching.
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error (MSE), R2 score, and so forth, are used to check the
accuracy of the prediction. In our case, we have checked the
accuracy of each model by the goodness parameter, R2 score,
as defined in the eq 3. It is a measure of fit that indicates the
variation of a dependent variable, explained by the
independent variable(s) in a regression model. Furthermore,
we also report different R2 scores for different methods in
Table 2. Here, it is worth mentioning that the reported R2

scores are calculated using the test images, which were never
exposed to the model during the training process.

R 1
SS

SS
2 residual

total
=

(3)

In eq 3, y ySS ( )i itotal
2= and y fSS ( )i i iresidual

2= ,
where f i are the predicted values; xi and yi are values of input
and output properties, respectively; and x̅ and y̅ are the mean
of the input and output values, respectively. In general, the
values of R2 score should lie between 0 and 1, where 0
indicates no dependency of input parameters on output
properties (least accuracy), while 1 shows the 100% depend-
ence (maximum accuracy). Negative values of R2 score are also
possible, indicating the worst performance by selecting the
mean value from the data set.
In addition to that, we refer to Table 2, which shows that the

pretrained models that have a significantly large number of
layers than the custom model work comparatively better. We

run each pretrained model in two parts: (1) using the freeze
(unchanged) weights and (2) using the unfreeze weights, as
suggested in the model manual.53 It is a general practice to
decrease the load on the computer and preserve the prefixed
weights in pretrained models since these CNN architectures
have around half a million parameters to adjust. We can see
significant improvement when we increase the layers from the
custom model to ResNet18, after which the improvement is
not significant while increasing the number of layers in
ResNet34. A larger number of layers generally captures higher-
dimensional features from the images; however, after some
threshold number of layers in the model, the possibility of
overfitting increases.

■ CONCLUSIONS
This paper explains a detailed understanding of modifications
of magnetic domains in the perpendicularly magnetized Co/Pd
ML. Sputtered ML films with tCo = 3 Å show the highest PMA
with maze-like magnetic domains in pristine condition. The
integral magnetic properties and magnetic domains are
influenced significantly by the irradiation of Ar+ ions at 50
keV of energy. The magnetic contrast decreases, and the
domain size reduces to almost one-third of that in the pristine
state after the bombardment of ions with a fluence of 1014
ions/cm2. Irradiation with a higher ion fluence renders the
effective anisotropy to reorient along the plane of the film. As a
result of that, no definite periodic domain configurations were
observed. Instead, feather-like domain patterns with localized
vortices could be seen. The changes in magnetic properties can
be corroborated by the structural modifications in terms of
diffusion and alloying at the interfaces of the ultrathin Co and
Pd layers. In this context, we felt an urge to establish a reliable
and automated way to predict the magnetic properties directly
from the microscopic investigation. Advanced machine
learning algorithms, in the form of a CNN, were found to be
the best route to achieve our goal. In order to produce a large
data set of images to train the CNN, micromagnetic simulation
was used, which acts as a bridge between microscopy and the
CNN, as the simulated domain images showed good
qualitative agreement with the MFM images. The CNN
architecture, trained through 960 simulated images, success-
fully predicts the micromagnetic parameters with a maximum
efficiency of 93.9%, which is quite high and well comparable
with the recently reported results. However, the model requires
the same lateral dimension of images and similar color
information while comparing the trained and validation data
sets. From the point of view of a realistic change in magnetic
properties correlated with the experimental results, we have
considered here the variations of Keff, Aex, T, and α to create
the data set for training. In the future, the CNN model can be
extended to a more complex form, extending to the variations
of Ms, external magnetic field, DMI constant, and spin-
polarized current, encompassing the aspect of predicting novel
magnetic materials with chiral domain wall/skyrmion config-
urations, to be manipulated using the current..
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Hysteresis loops, AFM and MFM images, and XRR
spectra of the samples irradiated at an energy of 100 keV

Figure 10. Evolution of the loss function for different CNN models as
a function of epochs. Here losses for training and validation images
are shown by solid and dashed lines, respectively. The blue solid line
represents a reference level at 5%.

Table 2. Comparison of the R2 Scores and Time of Training
for 1000 Epochs (500 Epochs with Each of Freeze and
Unfreeze Weights) for Different CNN Modelsa

name of the model R2 score (%) training time (s × 103)

custom model [Figure 8] 81.8 5
ResNet18 90.2 130
ResNet34 93.4 145
VGG16 93.9 72
EfficientNet 92.9 65
AlexNet 89.1 35
DenseNet 91.1 75

aThe time for training is based on an Intel i5 quad core processor.
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