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Abstract—Proposing scoring functions to effectively under-
stand, analyze and learn various properties of high dimensional
hidden representations of large-scale transformer models like
BERT can be a challenging task. In this work, we explore a new
direction by studying the topological features of BERT hidden
representations using persistent homology (PH). We propose
a novel scoring function named “persistence scoring function
(PSF)” which: (i) accurately captures the homology of the high-
dimensional hidden representations and correlates well with the
test set accuracy of a wide range of datasets and outperforms
existing scoring metrics, (ii) captures interesting post fine-tuning
“per-class“ level properties from both qualitative and quantitative
viewpoints, (iii) is more stable to perturbations as compared to
the baseline functions, which makes it a very robust proxy, and
(iv) finally, also serves as a predictor of the attack success rates
for a wide category of black-box and white-box adversarial attack
methods. Our extensive correlation experiments demonstrate the
practical utility of PSF on various NLP tasks relevant to BERT
1.

Index Terms—Machine Learning, Neural Networks, Persistent
Homology, BERT

I. INTRODUCTION

Extensive research is being conducted to comprehend the
functionality of the transformer [1] model and its variants
[2] by studying them from various perspectives such as: lan-
guage modeling [3], generalization [4], robustness and domain
adaptation standpoints. Many recent works have focused on
proposing a wide range of scoring functions and metrics based
on the attention mechanism of these models [5], [6] as well
as their contextualized embeddings [7], which can be used to
assess the aforementioned properties [8] and discover newer
lines of work such as predicting their performance without
explicitly training and/or testing [9].

Scoring functions which can estimate and/or predict proper-
ties based on the hidden state representations of these models
have diverse use cases. One such use case is the estimation of
testing accuracies of the trained NLP models, which is helpful
in the scenarios where held out sets are not available at all,
some examples being online leaderboards [10], [11]. One can
argue that these held out test sets can be created by sampling
from the training data itself or using techniques like cross-
validation. However, this reduction in the size of the training
set usually hurts the performance of deep learning models [12],
[13]. Another very interesting and highly practical use case is

1Code is available at https://github.com/chauhanjatin10/BERTops.

the estimation of the adversarial vulnerability of these fine-
tuned BERT models, where we use the attack success rate
of any given attacker (black or white-box) as the proxy for
this experiment, without actually performing the attack. This
benefits us greatly from a computational perspective, since
performing an attack by developing a held-out sample set can
be extremely resource-intensive as well as time-consuming.
For example, we empirically observed that some black-box at-
tacks can take nearly 15 hours to generate adversarial examples
for merely 1000 sentences on a single dataset. We note that
these estimations, however, also need to be reliable as well as
invariant to slight input transformations, which can otherwise
result in spurious and non-generalizable conclusions. One of
the best ways to show it is by studying the stability of these
scoring functions to perturbations in the space over which they
are computed.

In this work, we provide a novel scoring function based
on the hidden state representations of the transformer variant
BERT, using persistent homology (PH) [14], [15]. We show
that our scoring function, named persistence scoring function
(PSF), captures the 0-th and 1-st dimensional homology
features which are essentially the connected components and
holes (or tunnels) in the hidden representation space, and thus
more accurately defines the spread of data points via their
persistence values, which is otherwise difficult for functions
based solely on Euclidean distance or dimensionality reduction
techniques [16].

Through our empirical investigations, we first show that the
scores generated by our proposed PSF correlate well to the test
set accuracy of fine-tuned BERT models on a diverse category
of datasets. We also verify PSF’s superior scoring performance
over strong existing baseline methods. More interestingly, we
observed that PSF scores also shows high correlations to the
f1-score per class label on the datasets and that the qualitative
observations from this experiment can help in understanding
some properties of the fine-tuned models which are retained
from the pre-training phase. We then show that PSF exhibits
stability against noisy perturbations in the input space and
thus serves as a robust scoring function. Finally, based on the
aforementioned preliminary experiments, we show that PSF
can also serve as an estimator of vulnerability against both
black-box and white-box adversarial attacks and significantly
outperforms the state-of-the-art vulnerability scoring baselines.

We also note the parallel between PSF and the problem
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of predicting the generalization gap (GP) [17], which is the
difference between a model’s performance on the training data
and its performance on the unseen data drawn from the same
distribution, for which various bounds based on complexity
measures such as the VC dimension and Rademacher com-
plexity have been proposed to “explain and interpret” how
sensitive a neural network’s output is to changes in the input
space (e.g., added noise, distribution shifts etc). The rationale
behind PSF follows similar lines, but more importantly, it is
invariant to slight input transformations and also simultane-
ously serves as a strong indicator of a network’s likelihood of
being successfully attacked, for which no prior work in NLP
exists. It is worth noting that in the absence of such complexity
measures and estimators, one has to resort to generating
numerous augmented training sets along with their test sets
for all possible input transformations (including adversarial
examples), which can be computationally infeasible.

Our formulation of PSF also has a very direct connection
to the compactness of Euclidean embeddings of the data
points (the work of [18] provides relevant bounds for the
same). Intuitively speaking, lower the PSF score for a given
cluster of points in Euclidean space, more compact the cluster
is, which ultimately accounts for well separated classes and
improved performance (section V-B). Subsequently, higher
PSF correlates to higher adversarial vulnerability, since the
intra-cluster spread is larger, making the model prone to
attacks, as discussed in more detail in section V-C.

The summary of our contributions is as follows:
1) To the best of our knowledge, we are the first to propose

a scoring function (i.e., PSF) using topological features
of BERT’s hidden representation space.

2) Extensive experiments demonstrate that PSF can be used
as an estimator of important properties of fine-tuned
BERT models and is stable against perturbations.

3) Our method requires only a few lines of post-processing
code and can be utilized with any representation learning
method, in and even outside the realm of NLP models.

II. RELATED WORK

Using scoring functions as estimators and/or predictors of
some property of deep learning models and datasets has gained
widespread interest in recent years. [19] used optimal transport
distance between datasets to predict the performance of BERT
on domain adaptation from one dataset to another, [20]
worked on word embedding matrix compression algorithms
and introduced an eigen overlap score to identify the best
performing compression method, without actually training
downstream models on them. [9] tried to predict the evaluation
score of an NLP experiment for machine translation, while the
work of [8] tries to predict the performance drop of modern
NLP models under domain-shift.

Complementary to other mathematical sub-fields, persistent
homology (PH) has also been used for such works. [21] pro-
posed a complexity measure, named neural persistence, based
on PH to characterize the structural complexity of MLPs,
whereas [22], [23] proposed PH-based algorithms to predict

the ability of models to generalize and detect adversarial sam-
ples. Both these PH-based methods employ methods that are
fundamentally different than ours, namely (i) their filtrations
are constructed on binary graphs as opposed to our filtration
construction which are built on BERT hidden representations,
and (ii) their methods mainly focus on computer vision related
tasks.

PH has also been previously used in NLP by [24], [25] for
document analysis and standard classification tasks, however,
none of these prior works have studied the topological features
of the space of BERT hidden representations via PH.

III. BACKGROUND

Persistent Homology (PH): In this section, we briefly re-
view persistent homology (PH). For a more complete coverage
of algebraic topology and PH, we refer the reader to [15].

Let X = {x1, · · · , xn} be a compact subset in a metric
space (M,d), where dM : M → R is the underlying distance
function. Consider a ball Br(x) = {y ∈ M | dM (x, y) ≤ r}
of radius r centered on x ∈ X . Imagine placing such a ball of
radius r on every point in X to get a model Xr = ∪n

i=1Br(xi);
note that X0 = X .

As we vary the radius r from 0 to ∞, (as shown in Fig-
ures 1a–1c ), we observe changes in Xr. Persistent homology
summarizes the change in topology of Xr, as r is increased.
Here, Xr is considered as a topological space and its j-th
homology group Hj(Xr) (j = 0, 1, · · · ), is a vector space, and
its dimension dimHj(Xr) depicts the number of connected
components (j = 0), tunnels/holes (j = 1), voids (j = 2),
and so on. For example, X0.2 in Figure 1b comprises of
one connected component (i.e., dimH0(X0.2) = 1) and two
tunnels (i.e., dimH1(X0.2) = 2).

Notice that these topological features can be born (appear)
and die (disappear) as the radius r is increased. For example,
one of the tunnels in X0.2 dies in X0.35. By gathering the
birth-death pairs Pl(X) = {{(bi, di) ∈ R2 | i ∈ I}} , we obtain
a multi-set. The collection Pl(X) refers to the l-th persistence
diagram, where l is the dimension of the homology group.
Figure 1d shows the birth-death pairs corresponding to the
number of connected components (in green) and the tunnels
(in red) in the same persistence diagram. Points close to the
diagonal are topological features with short lifespans and are
considered topological noise. We are interested in features that
persist over larger intervals of r.

IV. PERSISTENCE SCORING FUNCTION (PSF)

Here, we propose a novel scoring function called persistent
scoring function (PSF). Let X denote the finite and compact
subset of BERT hidden state vectors. As explained in Sec-
tion III, we can study the topological features, expressed at
various spatial scales, of the BERT hidden representation space
(i.e., X). X is studied as a collection of l persistence diagrams
and denoted by Pl(X).
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Fig. 1: (a) Original data points X with r = 0. (b,c) “Fattened points” by placing balls of radius r > 0 centered on each point
in X and generating spaces X0.2 and X0.35. As we increase r, one of the topological features (tunnels) born at r = 0.2, dies
at r = 0.35. (d) The persistence diagram summarizes the lifetimes of the topological features of X . The green dots represent
the connected components and the red dots represent the tunnels formed.

Inspired by [26], we propose our PSF. First, we concatenate
the collection of persistence diagrams, denoted by P (X), as

P (X) =

lm⊕
l=0

Pl(X)

where
⊕

denotes concatenation of persistence diagrams repre-
sented as multi-sets of birth-death pairs into a single multi-set
P (X) and lm is the maximum dimension of the computed
homology group. This concatenation operation is different
from the union of multi-sets and preserves the total multiplicity
of birth-death pairs across all persistence diagrams.

Our PSF based on the concatenated persistence diagrams
P (X), denoted by L(p, q;P (X)), is then computed as

1

|P (X)|

|P (X)|∑
i=1

(
|di − bi|

d̂

)p( |di + bi|
2d̂

)q

(1)

where |P (X)| is the cardinality of the concatenated multiset
and d̂ is computed as: max{di|(bi, di) ∈ P (X)}. In (1), the
term |di − bi| (difference between the death and birth of a
topological feature) denotes the lifetime or persistence of
the topological feature. Parameter p is varied to ignore or
emphasize the persistent features, whereas the parameter q
is used to weight topological features that are born later at
higher values of radius r.

Multi-Valued PSF: Following a similar reasoning about
multi-headed subnetworks as provided in the works of [1],
[27], we too define the PSF via multiple pairs of values for p
and q, which are finally composed together. For this work, we
have averaged over the PSF computed for different pairs of
p and q in (1) as the composition function. This has twofold
benefits: (i) multiple pairs for the tuple (p, q) can provide
different levels of penalty and emphasis on the topological
features and (ii) we can bypass the manual effort of tuning
PSF for a specific pair of p and q. Henceforth, we refer to
multi-valued PSF as PSF for the remainder of this work.

V. EMPIRICAL STUDY

A. Setup

We validate the utility of PSF empirically using the BERT
[2] model consisting of 12 layers and 12 attention heads
per layer from [28]. We consider ten widely used datasets,
spanning small and large datasets alike, to show that PSF is
agnostic to dataset size. Six of these are standard multi-class
classification datasets: AG News(AG), DBPedia 14(DB), Sogou
News(SG), Yelp Review Full(YR), Yahoo Answers Topics(YA)
and TREC(TC), while the rest are sentiment polarity classifi-
cation datasets: SST-2(SS), IMDB(IM), Yelp Polarity(YP) and
Rotten Tomatoes(RT). The datasets are taken from the hug-
gingface2datasets-library. The experiments were performed on
a single NVIDIA Titan-X GPU with 12 GB CUDA memory.

For the PSF score outlined in (1), we select multiple pairs
of values for p and q from a very small set as: {p, q} ∈ S =
{2, 3} × {2, 3}, rather than performing a naive grid search
over a large set. We exclude values less than 2 from the set
because they provide weaker penalization and pairs with small
persistence values can be considered as noise and ignored,
while values greater than 3 provide very strong penalization
and diminish many persistence pairs.

The construction of persistence diagrams is done using the
well-known Vietoris-Rips filtration from Ripser [29] library.
To obtain the persistence diagrams P0(X) and P1(X), the
training samples from each class of a given dataset are passed
through the fine-tuned BERT and the corresponding vector
representations of [CLS] token from the final layer are passed
through the filtration mechanism. We compute the persistence
diagrams upto homology group 1, ie, the holes/tunnels in the
compact space.

Downsampling the Points: Since the number of samples
per class can be large depending upon the dataset used,
we first use Kernel Density Estimation (KDE) [30] over the
vector representations of the [CLS] tokens and then sample a
desired number of points from KDE, which are finally passed

2https://huggingface.co/docs/datasets/
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Fig. 2: Sample TSNE and PD visualizations for SST-2 dataset
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(c) Accuracy vs Davies Bouldin Index

Fig. 3: Accuracy scores of the datasets against the estimator functions: PSF, Silhouette Coefficient and Davies Bouldin Index.

through the filtration mechanism to compute the PDs. All the
experiments have been performed over the points (of each
class) sampled from KDE. Finally, the PSF score for a given
dataset is computed by averaging the class-wise PSF scores.

In Figure 2, we juxtapose a t-SNE plot of BERT hidden
states and the corresponding persistence diagram (only dim-1
topological features, i.e., the ”holes” in the space) for the SST-
2 dataset. Observe that for class label 0 (blue points), there is
a wider spread of birth-death pairs, where later birth indicates
the formation of very large holes due to points covering a
wider expanse. In comparison, points for class label 1 (orange
points) are more densely packed and have no points in the
other cluster, therefore they cover a shorter range of birth in
the persistence diagram.

B. Results

1) Estimating Test Accuracy via PSF: In this section, we re-
port the results of PSF as an estimator of the test performance
of fine-tuned BERT models. This is done by calculating the
Spearman rank correlation ρ of PSF to the test set accuracy
of the corresponding datasets. It is noteworthy that in this
experiment, we desire a negative correlation because of the
fact that the model performances are highly associated with
the cluster quality of the vector representations in the latent
space, i.e., more compact clusters result in lower PSF values
(due to lower persistence in topology features) but result in
higher accuracy due to improved class separation. Improved
model performance with more compact clusters of data points
has been previously shown by exhaustive experiments of [31].

As baselines, we compare to the popular Silhouette coeffi-
cient (SC) [32], where we subtract the value of SC on each
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dataset from 1 to ensure consistency in experiments, and the
Davies Bouldin index (DBI) [33]. Both these methods have
been widely used in the literature to assess the quality of
the learned representations of the data by machine learning
models. For reference, we point the reader to the works
by [34], [35]. Figure 3 shows the dataset accuracies versus
the PSF values of the different estimator functions. We can
observe that PSF, with a stronger negative correlation of
−0.515, outperforms both SC and DBI with a correlation of
−0.442, thus affirming our claims.

We mentioned the practical utility of such estimators in
section I. Apart from comparing the performance across
datasets, we expect that PSF can also be quite useful in
the scenarios where we want to analyze and compare the
performance of variants of a single model trained on different
random seeds to select the best performing ones, which we
will explore in depth in our future works.
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Fig. 4: Classwise F1-scores vs the PSF values.

2) Fine-Grained Analysis: We further conduct experiments
to show that PSF can also be used for a more fine-grained
analysis at a class-wise level and capture interesting properties
about the same class labels across multiple datasets. This is
done by calculating the Spearman correlation (ρ) of the f1-
scores of the class labels to the corresponding class-wise PSF
values. Similar to the previous experiment, we expect a strong
negative correlation. Note that here we concatenate the PSF
of the class labels across all the datasets in a single array
(as opposed to averaging over an entire dataset). As shown in
figure 4, PSF achieves a strong negative correlation of −0.685.

From the qualitative viewpoint, we observed that the PSF
value of the “Business and Finance” class was approximately
the highest and its f1-score was approximately the lowest
compared to other class labels across the datasets, while the
PSF of “Sports“ class was comparatively lower and its f1-
score was higher than various other labels. We also observed
that variance in the PSF values of the negative polarity
class(label 0) in sentiment datasets was high, whereas the
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Fig. 5: Stability analysis of PSF against SC and DBI.

positive polarity class (label 1) had comparatively marginal
variance, implying a distinct spread of the polarity classes
across the datasets. We believe that such findings can help
shed some light on the properties that the fine-tuned BERT
models retain from the self-supervised pre-training phase
pertaining to both data and tasks [36].

3) Stability of PSF: Robustness against minor
changes/perturbations in the inputs used to compute
such estimators is one of the most important and desirable
properties. Recent works such as [37] in NLP and [17]
in vision have focused on providing stable estimator and
predictor metrics. Here, we show that PSF is robust to
perturbations that are generated by adding random Gaussian
noise to the word embedding vectors of a subset of the
input samples. Following the techniques outlined in [38],
we add noise ϵih ∼ N (0, σ2

h) to each dimension h of the
768 dimensional embedding vectors of the words in input
sample i chosen for perturbation (here σ2

h is the variance of
the corresponding dimension (column) of BERT’s embedding
matrix). We then recompute the PSF scores (KDE step is
also repeated) for the test accuracy estimation experiment in
section V-B1. It is evident from the results shown in figure
5 that the reduction in the correlation of PSF (reduction of
0.014) is significantly lower than the reduction of 0.042 and
0.052 for baselines SC and DBI respectively, thus verifying
the stability of PSF.

C. PSF as an Estimator of Adversarial Vulnerability of trained
Models

Considering the experiments of the previous section as our
basis, we present the core analysis results of our work in this
section.

It is well-known that deep natural language models are
highly susceptible to adversarial attacks, as shown by various
attack methods, elaborately described in [39]. Usually,
the adversarial vulnerability is quantitatively evaluated by
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attacking the NLP model via multiple text samples and
calculating the success rate of the attacker, which, however,
has various computational issues as described in section I.
Thus, the question - “Can we estimate the success rate
without actually performing the attack?” becomes extremely
pertinent and interesting. We explicitly point out that here
we are trying to estimate the value of the success rate as an
expectation over a large number of samples, thus providing
a global perspective of the attacker, rather than evaluating it
per sample as done by [23], which requires an actual input
sample for evaluation, a bottleneck we try to overcome here.
The following experiments show that PSF can serve as a
good estimator of the success rates of both the black-box and
white-box categories of attackers and substantially outperform
the baselines as well.

1) Setup: The experimental setup for computing PSF as
well as the datasets are retained from section V-A. Here, we
first describe the baselines used for comparison, then briefly
mention the adversarial attack methods and lastly the setup for
performing the attack.

Baseline 1: We call the first baseline as Adjusted Local
Intrinsic Dimensionality (ALID), a modified version of Local
Intrinsic Dimensionality (LID) proposed by [40], originally
used for the characterization of adversarial regions of neural
networks. For our work, we use it for the characterization of
the compactness of representations of the samples for each
class label. For a given vector xc

j in class c, we first calculate
its ALID as follows:

ALID(xc
j ) = rk(x

c
j )

(
−1

k

k∑
i=1

log
ri(x

c
j )

rk(xc
j )

)
(2)

where ri(x
c
j ) is the distance between xc

j and its ith nearest
neighbor within the samples of points of class c and rk(x

c
j )

is the maximum distance. Here, k is the nearest neighbor
hyperparameter (tuned manually). The ALID score for class c
is then obtained as

ALIDc(.) =
1
Nc

∑Nc

j=1 ALID(xc
j )

max{ALID(xc
j ) | j ∈ {1, ..., Nc}}

(3)

where Nc is the number of samples in class c. Finally, the
ALID score for a given dataset is the average of class-wise
ALID scores.

Baseline 2: We refer to the second baseline as the Adjusted
Mahalanobis Score (AMS), which is a modification of the
Mahalanobis distance-based confidence score proposed by
[41], originally used for detection of out-of-distribution and
adversarial samples (generated by attack methods), both done
simultaneously. Here, we use it as a Gaussian density-based
scoring mechanism to measure the compactness of represen-
tations of the samples for each class label. For a given class c,
we first calculate the empirical mean (µ̂) and covariance (V̂)
as follows

µ̂ =
1

Nc

Nc∑
i=1

xc
i , V̂ =

1

Nc

Nc∑
i=1

(xc
i − µ̂)(xc

i − µ̂)T (4)

where Nc is the number of samples in class c. The AMS score
for vector xj in class c is then calculated as

AMS(xc
j ) = (xc

j − µ̂)T V̂−1(xc
j − µ̂) (5)

Finally, the AMS score for class c is obtained as:

AMSc(.) =
1
Nc

∑Nc

j=1 AMS(xc
j )

max{AMS(xc
j ) | j ∈ {1, ..., Nc}}

(6)

The AMS score for a given dataset is the average of class-wise
AMS scores.

It is important to note that there do not exist any baselines
for direct comparison in this experiment, thus we select the
above two state-of-the-art methods from the literature on
adversarial attacks on models.

Attack Methods: We consider six state-of-the-art attack
methods, including both black and white box attacks. These
are: Probability Weighted Word Saliency (PWWS) [42], Ge-
netic Algorithm (GA) [43], TextFooler (TF) [44], Textbugger
Black-box (TB-B) as well as Textbugger White-box (TB-W)
[45] and lastly, Universal Adversarial Triggers (UAT) [46].

Following [44], we randomly select 1000 samples from
the test set of each dataset and perform adversarial attack
via each of the six methods. Note that in this experiment,
we desire a positive correlation, since higher function values
for PSF and both the baselines denote a larger spread in
the hidden representation space and a higher probability of
having many points near the non-linear decision boundaries,
making the attacks easier [47].

2) Discussion: Figure 6 shows the correlation plots of PSF
for each of the attack methods. From the results demonstrating
the comparison of PSF to the baselines shown in Table I, it is
evident that PSF outperforms both ALID and AMS by large
margins for most of the attack methods. The % improvements
of PSF are extremely large as compared to ALID, wherein the
improvements are more than 200% on four attack methods,
including both black-box and white-box. Against AMS, the
improvements are more than 25% on three attack methods,
while the reductions on PWWS are negligible. UAT attacker
seems to be an exception, where ALID outperforms both PSF
and AMS.

We can conclude from these results that PSF can serve as
a good estimator of the attack success rates and is able to
generalize well across attack methods from different categories
measured on diverse datasets. Apart from estimating the vul-
nerabilities at the dataset level, we expect that such estimators
can help us identify, from a set of multiple models trained on
the same dataset, the least vulnerable ones, along similar lines
as mentioned in Section V-B1.

Note that it is non-trivial to provide theoretical claims and
layout the conditions under which a given method will show
a good correlation against an attacker due to the discrete
nature of the adversarial attack task in NLP and variation in
attack strategies, for eg: UAT’s principal attack mechanism
is different from standard white-box attacks. The same holds
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(b) Textbugger Black-box Attacker
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(c) TextFooler Attacker
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(d) Genetic Attacker
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(e) UAT Attacker
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(f) Textbugger White-box Attacker

Fig. 6: Each plots shows the corresponding attack method’s Success Rates (in %) vs the PSF values on the 10 datasets. Full
forms of dataset abbreviations are same as in section V-A .

TABLE I: Spearman correlations of PSF, ALID and AMS (row-wise) against the attack methods (column-wise). Best results
in bold, second best underlined. % Improvements of PSF against each baseline are also reported.

PWWS TB-B TF GA UAT TB-W
PSF (Ours) 0.4545 0.5151 0.5515 0.5272 0.3212 0.7212

ALID 0.3696 0.1515 0.0420 0.0780 0.5393 -0.0900
% Improvement of PSF over ALID 22.97% 240% 1213% 575% -40% 901%

AMS 0.5030 0.4060 0.4787 0.2727 0.4181 0.4545
% Improvement of PSF over AMS -0.09% 26.8% 15.2% 93.3% -23.4% 58.67%

true for the genetic algorithm as compared to the greedy blank-
out mechanism of Textbugger, and will be our focus in future
works.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel scoring function named
persistent scoring function (PSF) using persistent homology
to study the topological features present in BERT’s hid-
den representation. Through exhaustive empirical studies, we
showed that PSF can capture the homology of hidden state
representations of BERT quite accurately and can be utilized
as an estimator of the test set accuracies over a diverse range
of classification datasets. PSF also provides some qualitative
properties on a more fine-grained “per class” level and more
importantly, it is more stable w.r.t to perturbations in the input
space, thus realizing its practical utility. Lastly, we showed
that PSF can also be used as an estimator of adversarial
success rates generalizing across different categories of attack

methods. PSF also has the advantage that it requires a few
lines of post-processing code and can be utilized with any
representation learning model.

We hope that our work will pave a new and interesting
direction for the community to realize the power of topolog-
ical feature analysis to: (i) explain and interpret large-scale
transformers variants such as BERT, RoBERTa, ALBERT, T5
etc and (ii) propose robust estimators and predictors for more
diverse NLP tasks ranging from machine translation, dialogue
evaluation to summarization in the future.
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