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Abstract – Endoscopy is typically used to visualize various parts of the digestive tract. The technique is well suited to detect 
abnormalities like cancer/polyp, taking sample tissue called a biopsy, or cauterizing a bleeding vessel. During the procedure, video/
images are generated. It is affected by eight different artefacts: saturation, specularity, blood, blur, bubbles, contrast, instrument and 
miscellaneous artefacts like floating debris, chromatic aberration etc. The frames affected by artefacts are mostly discarded as the 
clinician could extract no valuable information from them. It affects post-processing steps. Based on the transfer learning approach, 
three state-of-the-art deep learning models, namely YOLOv3, YOLOv4 and Faster R-CNN, were trained with images from EAD public 
datasets and a custom dataset of endoscopic images of Indian patients annotated for artefacts mentioned above. The training set of 
images are data augmented and used to train all the three-artefact detectors. The predictions of the artefact detectors are combined to 
form an ensemble model whose results outperformed well compared to existing literature works by obtaining a mAP score of 0.561 and 
an IoU score of 0.682. The inference time of 80.4ms was recorded, which stands out best in the literature.
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1. INTRODUCTION

Endoscopy is a non-surgical technique that encom-
passes inserting a thin and long flexible tube called an 
endoscope down through the throat to inspect a per-
son’s gastrointestinal tract. The flexible tube is attached 
with a light and a camera. A gastroenterologist uses an 
endoscope to diagnose and treat common ailments in 
the digestive tract, collect tissue samples called a bi-
opsy, pass special tools through the endoscope to treat 
bleeding vessels, remove a foreign body or a polyp etc. 

Recent technologies allow doctors to switch between 
imaging modalities like narrow-band imaging (NBI), 
fluorescence light and white light to detect abnormali-
ties better. These technologies improve the visualiza-
tion of the mucosal surface and microvascular pattern. 
The internal organ is viewed on a television monitor 
connected outside during the procedure. Also, the 
complete process is recorded. The clinician can review 
the recorded video for planning further treatment, re-

port preparation, discussion with a senior clinician and 
follow-up etc.

Artefacts [1] are the artificial effect found in most 
endoscopy images but are not present in the imaged 
organ. The presence may be due to mishandling minia-
turized components, hand movements, natural causes 
etc. These artefacts affect the video quality and in-
crease procedure time. In the recorded video, most of 
the frames are affected by artefacts. Hence, the most 
affected frames are discarded, which reduces the qual-
ity of the video during post-processing, thus directly 
affecting the quality of treatment and diagnosis. Also, 
these artefacts may obscure features/ characteristics 
relevant to an abnormality like cancer. They also in-
crease false detection rates in Computer-Aided Diag-
nostic (CAD) systems. Thus, an efficient method to de-
tect these artefacts prior may help the doctors to speed 
up the procedure with improved accuracy. It can be ac-
complished by deploying artificial intelligence.  Figure 
1 displays endoscopic images affected by artefacts. 
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Fig. 1. Endoscopic images affected by artefacts

Figure 1. highlights only a few artefacts to maintain 
clarity. Encouragingly, Deep Learning (DL) algorithms, 
a subset of AI, have the power to extract features from 
annotated images without human intervention. Con-
gregating the study toward endoscopy, we deploy pre-
trained DL-based object detection models for detect-
ing endoscopic artefacts in this research.

The motivation behind the research is as follows. 
Firstly, the clinician cannot adequately examine the 
underlying tissue due to the presence of various arte-
facts, which increases procedure time. Secondly, the 
procedure is recorded, and specific regions are imaged 
for further examination and report preparation. Most 
of the frames are affected by endoscopic imaging ar-
tefacts, due to which the affected frames are discarded 
as no helpful information can be extracted from them.

Third, the artefact varies in size and location in an 
endoscopic image. The size of artefact-like specular 
reflection is tiny, occurring in groups. On the other 
hand, other artefacts like saturation and contrast cover 
a large area. This challenges the object detection algo-
rithm to detect objects of various scales. Interestingly 
more than one artefact occurs in most of the frames. 
Thus, locating tiny to significant artefacts in a single 
frame adds complexity to the existing problem.

Fourth, deep learning models need many labelled 
data to train themselves. Especially in the medical im-
aging sector, the amount of labelled data for every ab-
normality is significantly less. In such a scenario, Trans-
fer Learning (TL) lends its helping hand. It is important 
to note that choosing the suitable model for every ap-
plication is a tedious and trial and error process. It is 
an unsolved research issue to date. This research con-
siders the unique property of every algorithm in the 
literature and selects the one that meets the accuracy 
and inference time balance. For this research purpose, 
several algorithms are trained; namely, You Only Look 
Once (YOLO)v3 [2], YOLOv4[3] and RetinaNet [4], Faster 
Region-based -Convolutional Neural Network (R-CNN) 
[5] with various backbones. The final model is chosen 
after estimating the performance of all trained models.

To train any DL-based object detection algorithm 
massive dataset is essential. A few datasets are available 
for research / academic purposes to study artefacts in 
endoscopic images. They are the Kvasir-Instrument da-
taset [6], Computer Vision Centre (CVC)-ClinicSpec [7], 
Cholec80 dataset [8] etc. Most of these datasets hold 
annotations for a single artefact only. But in real-time 
endoscopic images are severely affected by various 
other artefacts also. To serve the purpose of multiple 
artefact detection: The endoscopic Artefact Detection 
(EAD) dataset [9][10] is available. The datasets hold an-
notations for common artefacts like saturation, specu-
lar reflections, blur, blood, bubbles, instrument, con-
trast and miscellaneous imaging artefacts.  

Authors reported that the EAD datasets suffer from a 
class imbalance problem [11][12]. A standard solution ac-
cepted across the globe is to use the data augmentation 
technique [13]. It is also vital that all the data augmenta-
tion techniques cannot be adopted to all medical images. 
Carefully choosing the method is essential. After trivial 
analysis considering the availability of data, pre-trained 
models, hardware requirements etc., This research paper 
seeks to analyze the performance of three different object 
detection models using a custom dataset.

The specific contribution of this research article is as 
follows:

•	 A new dataset has been curated with clinician 
assistance to add more images to the dataset 
with patients of Indian origin to combat data 
requisite for DL algorithms.

•	 We have trained 3 DL-based object detection 
models, namely YOLOv3, YOLOv4 and Faster R-
CNN, for multi-class artefact detection. 

•	 All the three trained artefact detectors are com-
bined to form an ensemble model for improved 
performance.

•	 The research results prove superior performance 
over literature outcomes, and the results are com-
pared with recently reported literature works.

The outline of the research article is as follows. Sec-
tion 2 explores literature works related to multiple en-
doscopic artefact detection. Section 3 addresses the 
details of curation of the new dataset, annotation pro-
tocols and the details of the public dataset. Section 4 
gives a comprehensive report on methodology, trans-
fer learning approach, training of various models and 
design of proposed ensemble model architecture, fol-
lowed by a detailed description of the results obtained. 
The last section reports the conclusion and presents 
the future scope of this research findings.

2. RELATED LITERATURE WORKS

Deep learning algorithms have shown exceptional 
performance in every branch of the health care indus-
try in the past decade. In recent years, deploying DL 
algorithms in detecting multiple artefacts gained im-
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portance after the release of EAD datasets. This section 
concisely presents the literature works relevant to the 
field of multiclass endoscopic artefact detection.

Pengyi Zhang et al. (2019) [14] proposed a modified 
version of Mask R-CNN called Mask Aided R-CNN. Ini-
tially, a basic Mask R-CNN is trained for the segmenta-
tion task. The trained Mask R-CNN is used to predict 
instant masks for training samples from the detection 
set. The masks are predicted only for ground truth 
bounding boxes. The predicted masks are termed soft-
pixel level labels which are added to the segmentation 
set to retrain the network. This strategy proves to be 
the best in the detection task.

Yan-Yi Zhang and Di Xie (2019) [15] proposed a cas-
caded R-CNN-based model and trained the model by 
gradually increasing the Intersection over Union (IoU) 
threshold. The model was initially pre-trained using Mi-
crosoft Common Objects in Context (MSCOCO) dataset 
[16] and later retrained with EAD datasets.

Hoang Manh Hung et al. (2020) [17] presented a DL-
based cascaded R-CNN with ResNeXt-101 backbone 
followed by Feature Pyramid Network (FPN). This com-
bination improved the feature extraction capability of 
the network and recall rate. To differentiate the object 
from the background, the authors added Deformable 
Convolution (DCN) to the network, improving the per-
formance.

Hongyu Hu and Yuanfan Guo (2020) [18] designed a 
cascaded R-CNN-based architecture with ResNeXt as 
backbone and FPN to extract features. The author ad-
opted multi-scale detection techniques to scale images 
from 512x512 to 1024x1024 randomly. Flipping images 
horizontally was employed to expand the dataset size. 
Soft-Non-Max Suppression (NMS) was adopted, which 
avoids unnecessary ignoring of objects.

Zhimiao Yu and Yuanfan Guo (2020) [19] used a 
cascaded R-CNN-based model with ResNet101 as the 
backbone with FPN. The network used an ImageNet 
pre-trained backbone. The author adopted data aug-
mentation, soft-NMS, cosine decay strategy for learn-
ing rate schedule, cross-entropy loss and smoothL1loss 
for classification and regression.

Xiaohong Gao and Barbara Braden (2020) [20] pre-
sented a DL network based on RetinaNet. The author 
incorporated a real-time instance segmentation task 
into RetinaNet to cater for the need for object detec-
tion and instance segmentation. 

Anand Subramanian and Koushik Srivatsan (2020) 
[21] experimented RetinaNet with ResNet101 feature 
extractor for artefact detection. The authors used im-
age correlation-based trackers to reduce inference 
time, improving the network performance. 

This section summarized recent works of literature 
in the domain of endoscopic artefact detection. All the 
researchers used EAD datasets to train the algorithms. 
The authors selected a state-of-the-art object detec-

tion model and trained the model with various back-
bone and learning strategies, deployed augmentation 
techniques, and cascaded the structures to produce 
efficient results. 

3. DATASETS

EAD2019 is a dataset that covers seven major arte-
facts like specularity, saturation, contrast, blur, bubbles, 
instruments and miscellaneous imaging artefacts. The 
dataset contains 2147 images. Figure 2 shows sample 
images from the EAD2019 dataset. EAD2020 comprises 
2531 images and covers eight imaging artefacts, in-
cluding blood and all seven artefacts covered by the 
EAD2019 dataset. Figure 3 illustrates some images 
from the EAD2020 dataset. Expert clinicians suggested 
all the artefacts mentioned above.

Fig. 2. Sample images from EAD2019 dataset

Fig. 3. Sample images from EAD2020 dataset

Both the datasets are multi-patient, i.e., the images 
are from 6 distinctive centres globally. It is a multi-or-
gan dataset covering the oesophagus, stomach, liver, 
colon and bladder. Also, it is a multi-tissue and multi-
modality dataset (white light, fluorescence light, and 
Narrow band imaging). Videos collected from these 
centres were imaged using standard endoscopes man-
ufactured by Karl Storz, Olympus and Bio spec. The im-
ages hosted in the dataset do not contain any patient 
information.

Initially, senior clinicians annotated the images and 
later, the experienced post-doctoral fellows. Finally, the 
senior clinicians validated the images. All the images 
were annotated (bounding box) for artefact detection 
using python, Qt, and an Open-CV-based in-house 
tool. The dataset contains images and a binary mask 
for semantic segmentation. 

3.1 CuSTom DATASET

The public dataset contains images of patients from 
western countries. The images with artefacts like blur, 
instrument and saturation were not much found. There-
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fore 2400 endoscopic images of Indian patients were col-
lected, which includes more images on saturation, blur 
and instrument to combat class imbalance problems in 
the public dataset. Initially, images were annotated in the 
presence of a senior clinician to gain expertise. Later an-
notations were done individually and finally validated by 
the clinician in the ratio of 1:10(no. of images). Figure 4 
shows random sample images from the custom dataset.

Fig. 4. Images from custom dataset

3.2 ANNoTATIoN proToCoLS

Annotation protocols from the EAD dataset [22] were 
followed for annotating the custom dataset. Images 
from EAD and custom dataset were used to train the 
endoscopic artefact detector. Thus, uniform annota-
tion protocols were used to maintain homogeneity 
across all three datasets. Figure 5 portrays images of a 
custom dataset labelled for eight commonly occurring 
artefacts. Artefacts like instruments, saturation, blur 
and contrast cover a larger area when compared to the 
artefact called specularity. Specular reflections cover a 
small region; for precise delineation, most specular re-
flections are marked with a separate bounding box. 

One single bounding box was used in some cases 
where the reflections are found in a series fashion. In 
the curated custom dataset, care was taken that no 
patient information was visible. It is apparent from the 
images exhibited that more than one artefact is said to 
be present in almost all the frames. 

Fig. 5. Annotated images from custom dataset

3.3 ANNoTATIoN SoFTwArE

All annotations were done using VGG (Visual Geometry 
Group) Image Annotator (VIA) [23], an open-source anno-
tation tool offered by Oxford University, United Kingdom.  

4. mETHoDoLoGY

Deep learning models like YOLOv3, YOLOv4 and Fast-
er R-CNN were chosen. The former two were selected 
based on their faster inference and faster R-CNN for its 
accuracy. All the models were trained and tested with 
images from EAD and custom datasets. This training 
was thoroughly carried out with Google Co-laboratory 
[24] single Graphics Processing Unit (GPU) environ-
ment.  After training, all three models were evaluated, 
tuned, retrained and combined for an ensemble mod-
el. The ensemble model is tested with images from the 
test set. To attain the best performance transfer learn-
ing approach was chosen.

4.1 TrANSFEr LEArNING

Transfer learning is a technique to train DL models 
on massive datasets like MSCOCO, ImageNet [25] etc. 
Later, for specific applications, these models can be re-
trained. During retraining, the model with already stored 
knowledge learns the features of new applications at a 
faster rate with reasonable accuracy. TL helps reduce 
the training time, hardware cost and the required high-
dimensional dataset. In the present decade, many pre-
trained models are available in the model zoo [26][27] 
for research purposes. Figure 6 shows a simple TL model. 
The following sub-sections discuss the three deep learn-
ing models used in this study.

Fig. 6. Outline of transfer learning-based 
detection model

4.2 YoLov3

YOLO first came into existence in the year 2016. Out 
of all updated versions of YOLO, YOLOv3 was tagged for 
its best performance in terms of speed. YOLOv3 looks at 
the complete image once and divides it into small grids. 
In each grid, bounding boxes will be drawn if there is 
a meaningful object. The predictions and their similar-
ity with the predefined classes are calculated. When 
the score is high, it is considered a positive detection. 
YOLOv3 uses Darknet53 as the backbone to extract fea-
tures. YOLOv3 also finds a good balance between de-
tecting various sizes of objects, from tiny to large. This 
characteristic is beneficial in the case of detecting arte-
facts like specular reflections, which are small and arte-
facts like contrast and instrument, which are prominent.
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4.3 YoLov4

YOLOv4 is the fourth principal member added to 
the YOLO family in 2020 by Alexey Bochkovskiy. It has 
many special features. One or more of the features can 
be combined and utilized for applications to obtain 
state-of-the-art results. They are grouped under two 
heads: Bag of Specials (BoS) and Bag of Freebies (BoF). 
BoF helps to improve model accuracy without compro-
mising the model inference time. On the other hand, 
BoS aid in improving accuracy at the cost of inference 
time. Thus, the researcher must select the best strate-
gies for the best results. 

4.4 FASTEr r-CNN

Faster R-CNN is a two-stage object detector from 
the R-CNN family. It uses the Region proposal Network 
(RPN) to improve its performance.

 In Faster R-CNN, the input image is passed into the 
ConvNet, which returns the feature maps, and RPN is ap-
plied to the feature maps to get object proposals. Using 
the Region of Interest (ROI) pooling layer, all the propos-
als are brought down to the same size. Finally, they are 
sent to a fully connected layer to classify and predict the 
classes of the objects in the bounding boxes. 

5. EXPERIMENTAL ANALYSIS 

This section presents details of datasets, training and 
testing of models, evaluation criteria and results obtained.

5.1 DATASET

EAD datasets embrace endoscopic images anno-
tated for various artefacts like saturation, specularity, 
blood, bubbles, contrast, blur, instruments and mis-
cellaneous artefacts. In total, 2147 images from the 
EAD2019 dataset and 2531 images from the EAD2020 
dataset were used in this research. Apart from the exist-
ing public dataset, the newly curated dataset with 2400 
annotated images was used. Thus approximately 7000 
images were pooled to form the training and test set.

5.2 TrAINING AND TESTING

The proposed research work is written using python. 
The training of the artefact detection model was done 
on a google co-laboratory single GPU environment. Ini-
tially, all the images were pooled and manually split into 
train and test with 80% and 20% split-up. Later train set 
was divided into train and validation sets. Finally, 70% 
of the images were allocated for training, 10% of total 
images for validation and 20% of total images for test-
ing. Three models, namely YOLOv3, YOLOv4 and Faster 
R-CNN, were trained using the train set's augmented 
images. The training strategy followed for each model 
is discussed in the sections below.

It is well known that more images are required to 
train deep learning-based algorithms. Images avail-

able may not be sufficient to make the detector robust; 
hence data augmentation was adopted.

5.3 DATA AuGmENTATIoN 

Augmentation is a technology that magnifies the 
dataset by slightly modifying the existing images [28]. 
The augmentation technique must be carefully chosen. 
It may affect the performance of the detector if not ap-
propriately selected. For our study, we have adopted 
rotation at various angles, namely 0º,90º,180º,270º 
and flipping. Hence the existing data expanded eight 
times. Then augmented dataset was used to train all 
three algorithms. Along with manual augmentation 
techniques, this research adopts run time augmenta-
tion techniques like a mosaic, varying hue, saturation, 
brightness and other augmentation techniques offered 
by the network to make the detector more robust.

5.4 TrAINING oF YoLov3

YOLOv3 was cloned from Darknet [29]. The augment-
ed dataset was used to train YOLOv3 for artefact detec-
tion. The algorithm has various runtime augmentation 
techniques like varying hue, saturation and exposure; 
it was also considered during training. Various param-
eters set during training are as follows, learning rate = 
0.001, batch size=64, maximum batches = 16,000, im-
age size=416x416. By setting all the initializations, the 
training started with pre-trained weights. The training 
lasted until the network reached a minimum average 
loss. Approximately after 55,000 iterations, the average 
loss curve was found to be smoothed. Once the aver-
age loss no longer reduces, the iterations can stop. On 
the other hand, the iterations can be stopped when the 
loss reaches 0.05, provided the dataset is small, and 3.0 
if the dataset is bigger [29]. The average loss did not im-
prove after 55,000 iterations. The training was stopped 
at 70,000 iterations. Various weight files extracted dur-
ing training are tested for their performance in terms of 
mAP and IoU. Weights file extracted at 65,000th itera-
tion gave its best results. 

5.5 TrAINING oF YoLov4

The basic network architecture was cloned from [30]. 
YOLOv4 was customized with the following features: 
CSPdarknet53 as the backbone, PanNet for aggregat-
ing the features and YOLOv3 head for final predictions. 
Special features from BoF and BoS like mosaic augmen-
tation, Mish Activation function, NMS, optimized an-
chors etc., were handpicked. Pre-trained weights were 
opted to reduce training time.

The other important initial hyper-parameters set for 
training are as follows, image size= 512x512, batch 
size=64, momentum=0.949, decay=0.0005 and learn-
ing rate=0.013. Few run-time data augmentation tech-
niques like varying hue, saturation, exposure, cut-mix 
and mosaic were deployed. With the above set param-
eters, training lasted till 85,000 iterations. Until 35,000 
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iterations, handpicked features like cut-mix and mosaic 
augmentation were employed. The loss did not con-
verge as expected. Hence on trial-and-error bases, cut-
mix augmentation was removed, which yielded results 
as expected. The training was stopped at 95,000 itera-
tions. Weights files extracted during the training pro-
cess were examined for best results, and it was decided 
to use the 76,000th weight file, which gave a good bal-
ance between mAP, IoU and inference time as well. 

5.6 TrAINING oF FASTEr r-CNN

Faster R-CNN was adopted from detectron2 [31], built 
by Facebook AI Research (FAIR). It holds a model zoo 
consisting of trained model files for faster implementa-
tions and several baselines for research.  The training 
parameters set to train Faster R-CNN is as follows: Im-
age size=512x512, backbone = Resnet50, learning rate 
=0.1, ROI head size= 256 x 256 and batch size = 4.  Faster 
R-CNN training started with the initialized training pa-
rameters. Model checkpoints were set to every 1000th 
iteration. The training lasted for 80,000 iterations. The 
trained weight file extracted at the 74,000th iteration 
gave good accuracy and reasonable inference time. 

All three models are trained with pre-trained weight. 
The need to choose the TL approach in this research is 
to reduce the training time. The images available for 
training is also limited; hence it was preferred to use 
TL rather than training from scratch. The impact of TL 
has been proven by exhibiting accurate results in lesser 
iterations and with a limited size of the training dataset.

5.7 propoSED ENSEmBLE moDEL

The term ‘ensemble’ means collective or collabora-
tive. Ensemble learning model combines the predic-
tions of multiple object detection models to improve 
the overall performance. 

Fig. 7. Ensemble endoscopic artefact detection model

Ensemble models are classified into three types: af-
firmative, unanimous, and consensus. The proposed 
ensemble model combines the benefits of both sin-
gle-stage and two-stage object detectors. The trained 
and tested model files of YOLOv3, YOLOv4 and Faster 
R-CNN are blended together for predictions. A test im-
age is passed into the model. All three trained models 
predict every artefact present in the image. Based on 
the ensemble method chosen, final predictions will be 
generated. Out of all three methods result of the con-
sensus, the model proved exemplary. Figure 7 depicts 
the proposed ensemble model. 

5.8 rESuLTS

This section discusses the performance of the pro-
posed ensemble model against different literature 
results compared based on standard performance pa-
rameters like IoU, mAP and Inference time.

5.8.1 mean average precision (mAp)

Average Precision (AP) can be calculated by inter-
secting the precision-recall (PR) curve and coordinate 
axis at recall values, say r1,r2,..rn. Equation (1) is used to 
calculate the AP score.

(1)

where pinterp= max p(r) and mAP can be calculated by 
taking the mean of every AP using Equation (2) over all 
artefacts i. N=8, is the total number of classes.

(2)

5.8.2 Intersection over union (Iou)

IoU must be calculated using the formula in (3). IoU is 
a ratio between the intersection of ground truth(A) and 
predicted bounding boxes(B) and the union of ground 
truth(A) and predicted bounding boxes(B).

(3)

5.8.3 Score_d

Score_d is a weighted score of IoU and mAP as given 
in Eq. (4). 

(4)

The ensemble artefact detection model combines 
predictions of all three base learners and produces a 
final prediction based on the ensemble methods cho-
sen. In the affirmative method, all the models can pre-
dict objects in the image. Even if one model proposes 
a bounding box for an object, it will be considered for 
the final predictions of the ensemble model. In a unani-
mous approach, all the models can predict bounding 
boxes around the objects in the image. If all the three 
models predict the same instance, then that instance 
is considered for final predictions provided if the IoU 
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is greater than 0.5. Finally, in the consensus approach, 
a bounding box around an instance will be considered 
if most models generate the same box. Fig. 8 illustrates 
the results of the ensemble model with a consensus 
approach.

(a) (b)

Fig. 8(a) &(b): Artefact detection by ensemble model

In Fig. 8(a), three different locations are affected by 
an artefact called saturation. Each of them was detect-
ed with 86%,99% and 98% accuracy. Similarly, artefact 
contrast was detected with 86% and 96% accuracy. 
Specular reflections are scattered around the image; 
each of them was predicted with 70%-98% of accuracy. 
In Fig. 8(b), the artefact blur was detected with 86% 
accuracy. Hence the prediction accuracy proves the ro-
bustness of the detector.

5.9 CompArATIvE ANALYSIS

This section presents the comparative analysis of 
the multi-class endoscopic artefact detection model 
with literature results. This study compares research 
outcomes based on performance evaluators of the 
detectors in terms of mAP, IoU, Score_d and inference 
time. The average precision obtained by the model in 
detecting every artefact is tabulated in Table 1. 

Class YoLov3-Spatial 
pyramid pooling[32]

proposed 
model

Specular reflections 34.7 48.12

Saturation 55.7 56.46

Miscellaneous Artefact 48.0 44.91

Blur 7.5 51.31

Contrast 72.1 36.74

Bubbles 55.9 51.61

Blood - 58.39

Instrument - 100.00

From the table, it is evident that the model has a bal-
anced performance over predicting all artefacts. The 
combination of EAD and custom datasets to coun-
terbalance the class imbalance problem has turned 
prolific. Specular reflections and a few miscellaneous 
artefacts are tiny, but saturation covers comparatively 
a bigger area. But all three artefacts have a common 
attribute of having bright pixel areas. Yet the trained 
model is capable of differentiating them well. Contrast 
has different characteristics of having dark pixel areas. 

Table 1. Class-wise average precision scores

Blur has an attribute of un-sharpness or having a poor 
spatial resolution. Artefacts like bubbles, blood and 
instrument have different attributes like well-defined 
boundaries for instruments and colour features for 
blood and bubbles. Often artefacts like bubbles, miscel-
laneous artefacts and specular reflections overlap, yet in 
most cases, the model predicts the artefacts well.

The common metric used to evaluate the perfor-
mance of every detection model is the mAP and IoU.  
The model is evaluated by having a threshold value of 
0.5. The results are deliberated in Table 2. Score_d is a 
metric exerted from the EAD challenge [22]. The metric 
is used to compare the performance of the proposed 
model with literature results.

Author mAp Iou Score_d

Yan-Yi Zhang and Di Xie [15] - - 0.3429

Xiaohong Gao and Barbara Braden [20] - - 0.2205

Pengyi Zhang et al. [14] 0.3117 0.4051 0.361

Anand Subramanian and  
Koushik Srivatsan [21] 0.2151 - -

Proposed method 0.561 0. 682 0.6094

Table 2. Comparative analysis

Almost all researchers concentrated on accuracy, but 
inference time is equally essential when it comes to real-
time implementation of the modules in CAD and semi-
automated/ fully automated robotic systems. Thus, this 
ensemble model with trained base learners produced an 
impactful research output in detecting multiple endo-
scopic artefacts. Often authors try to balance inference 
time and accuracy. An inference time of 80.4ms was 
observed during the testing of the proposed ensemble 
model. Most of the authors concentrate on prediction 
accuracy. Thus, there are not plenty of results to analyze 
the work based on inference time. This result can be a 
benchmark for researchers in this area.

6. CONCLUSION AND FUTURE SCOPE 

For this study, three different state-of-the-art object 
detection models: YOLOv3, YOLOv4, and Faster R-CNN, 
were trained using an augmented train set comprising 
56,000 images. The test set contains 1400 images. With 
all the three base learners trained on EAD and custom 
datasets, a new ensemble model has been designed, 
which combines the predictions of all the models. The 
final proposed model is evaluated against performance 
criteria like mAP, IoU and inference time. It was ob-
served that the ensemble model under the consensus 
method with three base learners mentioned above was 
said to perform well against literature results proposed 
in [14][15][17–21] with mAP=0.561 and IoU score of 
0.62 and inference time of 80.4ms. 

This work can be expanded by incorporating a resto-
ration algorithm for every possible artefact. The endo-
scopic artefact detector could be re-trained to detect 
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all possible clinical abnormalities in the GI tract. Thus, it 
could become an all-in-one detection and restoration 
system, which could aid clinician with better viewabil-
ity of internal organs, reduces procedure time, improve 
the prediction accuracy of the CAD system and aid as-
sociated post-processing steps. The custom dataset 
curated can be expanded by adding more images to 
create a large benchmark dataset.
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