
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

11-4-1997

Routing, Driven Placement for ATMEL 6000 Routing, Driven Placement for ATMEL 6000

Architecture FPGAs Architecture FPGAs

Songhua Zhang
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Zhang, Songhua, "Routing, Driven Placement for ATMEL 6000 Architecture FPGAs" (1997). Dissertations
and Theses. Paper 6119.
https://doi.org/10.15760/etd.7979

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://doi.org/10.15760/etd.7979
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Songhua Zhang for the Master of Science in Electrical and

Computer Engineering were presented November 4, 1997, and accepted by the thesis

committee and the department.

COMMITTEE APPROVALS:

ski

Jingke Li , , t- , · -1 ''
RepresentatixC o tlle Office of Graduate Studies

/)

DEPARTMENT APPROVAL:
Rolf Schaumann, Chair
Department of Electrical and Computer Engineering

ABSTRACT

An abstract of the thesis of Songhua Zhang for the Master of Science in Electrical and

Computer Engineering presented November 4, 1997.

Title: Routing- Driven Placement for ATMEL 6000 Architecture FPGAs

Based on the concept of Cell Binary Tree (CBT), a new technique for mapping

combination circuits into ATMEL 6000 Architecture FPGAs is presented in this

thesis. Cell Binary Tree (CBT) is a net-list representation of combinational circuits.

For each node of CBT there is a distinguished variable associated with it, the node

itself represents a certain logic function, which is selected according to target FPGA

architecture. The proposed CBT placement algorithms preserve local connectivity and

allow better mapping into ATMEL FPGA. Experiments reveal that the new mapping

technique achieved reduction in a number buses used for routing comparing with

previously proposed Modified Squashed Binary Tree (MSBT) approach and possibly

reduction of area as well. In general, the new technique is realized through following

four major steps:

1. Grouping and generating CBT: This is a step to read blifformat file, which is

the result of logic synthesis, into a CBT data structure through grouping

algorithm, which is a process of gathering logic functions into nodes for

mapping based on a targeted FPGA architecture. The main objective of

creating CBT is to generate a minimum number of nodes (or cells) to be

mapped.

2. CBT placement: Upon getting the minimum number of nodes in CBT to be

mapped, the next step is to map those nodes into cells in FPGA. The

significance of the placement method in this thesis is to lineup the cells with

the same variable into the same row in the FPGA.

3. Bus Assignment: The process of assigning variables to local buses, which run

in two possible directions; horizontal and vertical. ATMEL 6000 has two

horizontal buses and two vertical buses for each cell. The assignment is based

on the number of times a variable appears in a row or column.

4. Routing: The last stage of the process is the connecting cells which have the

same input variable. One of the important steps in the routing process is to

choose connection bridge cells with the minimum impact on the area.

ROUTING - DRIVEN PLACEMENT

FOR

ATMEL 6000 ARCHITECTURE FPGAS

by

SONGHUA ZHANG

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
m

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University

1998

ACKNOWLEDGEMENTS

I would like to thank Dr. Malgorzata Chrzanowska-Jeske, my advisor, for

providing guidance in my research work and supporting my career growth. I thank her

for the methodical introduction to my thesis work by seminers and the reading and

conference group, which had help me to gein knowledge beyond the research area.

I would like to thank Dr. Marek A. Perkowski and Dr. Jingke Li for serving on

my committee and for their numerous suggestions in the preparation of the thesis.

Also, my special thanks go to Ms. Shirley Clark and Ms. Laura Riddell for

their support through these years.

Specially, I would like to thank Kiswanto Thayib, Dezheng Tang, and Sida

Zhou, who are my best friends, for their patience in going through my thesis work and

presentation, and working valuable suggestions and origination of my thesis.

11

TABLE OF CONTENTS
PAGE

Acknowledgements .. 1

List of Figures . v

List of Tables ... , . v11

Chapters

1. INTRODUCTION .. 1

1.1. Programmable Device 2

1. 1. 1. Programmable Logic Devices (PLDs) . 2

1.1.2. Field Programmable Gate Arrays (FPGAs) , . 2

1.2. Traditional Design Process with FPGA 3

1.3. Problems Description.. 5

1.4. Overview of Existing Algorithms for FPGA
Placement and Routing . 6

1.4.1. Graph/Tree Based Approach , 8

1.4.2. Complex Maitra Logic Array (CMLA) . 12

1.4.3. Efficient Logic Synthesis 14

1.4.4. Macro-Cell Approach.. 15

1.5. Objectives of the Thesis 16

1.6. Outline of the Thesis... 17

2. ARCHITECTURE OF ATMEL 6000 FPGA 18

2.1. The Symmetrical Array....................................... 19

2.2. The Bussing Network . 20

2.3. The ATMEL 6000 Macrocell 23

lll

2.4. Architecture Restriction . 24

3. LOGIC SYNTHESIS.. 26

3.1. Logic Synthesis Overview...................................... 26

3.1.1. Two-Level Logic Optimization 27

3.1.2. Multilevel Logic Optimization , . 28

3.1.3. EXOR-Based Logic Synthesis 29

3.2. Binary Tree Approach for Logic Optimization 29

3.2.1. Davio Expansions . 30

3.2.2. Permuted Reed-Muller Tree (PRMT) , . . . 32

3.3. Input Data File .. 34

4. TECHNOLOGY-DEPENDET BINARY

TREEAPPROACH ... 36

4.1. Approach Overview " 36

4.2. Description of Approach 40

4.2.1. Grouping .. 40

4.2.1.1. EXOR and AND Gates to EXOR_AND Cell 41

4.2.1.2. EXOR Gate to EXOR Cell 42

4.2.1.3. AND Gate to AND Cell . 43

4.2.1.4. Leaf Gate to Leaf Cell .. , . 44

4.2.1.5. Leaf Gates Combination .. 46

4.2.1.6. Switch Cell .. , ... 0.... 47

4.2.1.7. Extend Cell... 48

4.2.1.8. Cell 1/0 Assignment . .. 49

4.2.1.9. Grouping Algorithm....................................... 49

4.2.1.10. Grouping Example....................................... 54

4.2.2. Description of Placement . 56

4.2.2.1. Three Types of the Tree Form in CBT 57

4.2.2.2. CBT Placement . 58

lV

4.2.2.2.1. Full-Tree Form (FTF) Placement 58

4.2.2.2.2. Single-Tree Form (STF) Placement 59

4.2.2.2.3. Placement Algorithm with the Same

Variable Search . 60

4.2.2.2.4. Placement Example .. 65

4.2.2.3. Leaf Cell Reposition (LCR) . 68

4.2.3. Bus Assignment . 70

4.2.3.1. Basic Rules of Bus Assignment .. 71

4.2.3.2. Bus Assignment Example . 72

4.2.4. Routing , . 74

4.2.4.1. Parallel Wire . 74

4.2.4.2. Cross Wire ... 76

4.2.4.3. The Basic Rules of the Routing Algorithm 77

4.2.4.4. Routing Example . 78

5. COMPARISON AND RESULTS Evaluation................. 80

5.1. Comparison... 80

5.1.1. Comparison with Modified Squashed Binary Tree 80

5.1.2. Comparison with ATMEL Place&Route Tools................. 84

5 .2. Results Evaluation .. 86

5.2.1. Results ... , .. 86

5.2.2. Result Description . 88

5 .3. Limitations . 90

5.4. Summary... 92

6. CONCLUSION . 93

BIBLIOGRAPHY . 95

APPENDIX (Examples of comparison for our approach Vs. MSBT) 100

LIST OF FIGURES

FIGURE

1.1

1.2

1.3

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

CA-Type FPGAs .. .

CAD system for FPGAs C ••••••••••••••••••••••••••

CMLA: Realization of a Function

Symmetric array of the ATMEL 6000 chip ,

Bussing network .. .

Cell-to-cell and cell-to-bus connections

Combinatorial states of AMTEL macrocell

Four input/output configurations to the cells , . ,

Shannon Davio I and Davio II expansion

Example of expansion tree ,

Blif format ... C ••••••••••••

Approach overview

EXOR and AND gates grouped to EXOR_AND cell

EXOR gate and AND gate grouping

Three leaf cells

Two NOT gates combine into one NOT cell

Switch cell ,

Extend cell .. .

Grouping example and cell data structure for CBT

Cell binary tree from blif format

CBT grouping .. .

Three tree forms in the CB T

Mapping FTF cells in three ways

STF Placement

CBT Placement

Three ways to lineup leaf_cell

V

PAGE

3

4

13

20

21

22

23

24

31

33

34

37

42

43

45

46

47

48

52

54

55

58

59

60

66

68

4.16

4.17

4.18

4.19

4.20

4.21

5.1

5.2

5.3

5.4

Leaf cell reposition example

Bus assignment example ... ,

Parallel Wire .. .

Routing Cell Connection .. .

Cross Wire

Routing example

Modified Squashed Binary Tree ,

MSBT placement example ,

CBT placement example

PW and CW combination routing

70

72

75

76

76

78

81

81

83

91

vi

LIST OF TABLES

TABLE

4.1

5.1

5.2

5.3

5.4

Cell Input/Output (1/0) Assignment

Comparison with MSBT

Our algorithm Vs. ATMEL tools and MSBT o••······

MSBT Vs. our algorithm 0 ••••••••••••

MSBT Vs. our algorithm with manual examples

Vll

PAGE

49

84

85

87

90

CHAPTER!

INTRODUCTION

1

Very Large Scale Integration Technology (VLSI) has opened the door to the

implementation of powerful digital circuits at low cost. It has become possible to

build chips with millions of transistors, as exemplified by state-of-art microprocessors.

Such chips are realized using the full-custom approach, where all parts of a VLSI

circuit are carefully tailored to meet a set of specific requirements. Semi-custom

approaches such as Standard Cells and Mask-Programmed Gate Array have provided

an easier way of designing and manufacturing Application-Specific Integrated Circuits

(ASICs). Each of these techniques, however, requires extensive manufacturing effort,

taking several months from beginning to end. In the electronics industry it is vital to

reach the market with new products in the shortest possible time. Furthermore, it is

important that the financial risk incurred in the development of a new product be

limited so those more new ideas can be prototyped. Field Programmable Gates Arrays

(FPGAs) have emerged as a solution to these time-to-market and risk problems

because they provide instant manufacturing and very low cost prototyping.

Programmable devices, which are becoming a popular technology for

designers seeking fast and cost effective implementations of their circuits, have gone

through a complete evolution from simple PLDs (Programmable Logic Devices) to

FPGAs.

2

1.1 Programmable Devices

1.1.1 Programmable Logic Devices (PLDs)

A PLD typically consists of an array of AND gates connected to an array of

OR gates. A logic circuit to be implemented in a PLD is thus represented in a sum of

product form. There are two versions of the PLD:

• Programmable Array Logic (PAL): A PAL is comprised of a programmable

AND-plane followed by a fixed OR-plane.

• Programmable Logic Array (PLA) is also comprised of an AND-plane

followed by an OR-plan, but, in this case, they are more flexible than P ALs,

because the connections to both planes are programmable.

P ALs and PLAs are available in both mask programmable and field

programmable versions. With their simple two-level structure, the PLDs allow high

speed-performance implementations of logic circuits. However, the simple structure

also leads to their main drawback; they can only implement small logic circuits that

can be represented with a modest number of product terms. This limitation confined

the PLDs from emerging as a general device for digital designs.

1.1.2 Field Programmable Gate Array (FPGA)

A more evolved Logical Device, the Field Programmable Gate Array (FPGA),

combines the programmability of PLD and the scalable interconnection structure of

Mask-Programmed Gate Array (MPGA). This has resulted in programmable devices

with much higher logic density. An FPGA consists of an array of uncommitted

3

elements that can be interconnected usmg available routing structure. The

interconnections between the elements are user-programmable.

Interconnection
Resources

Figure 1.1: CA-Type FPGAs

Cell Logic Block

VO Cells

A conceptual diagram of a typical FPGA is shown in Figure 1.1. An FPGA

consists of a two-dimensional array of logic blocks that can be connected by general

interconnection resources. The interconnections comprise of segments of wire, and

the segments are of various lengths. Programmable switches serve to connect the logic

blocks to the wire segments or one segment to other. Logic circuits are implemented

in the FPGA by partitioning the logic into individual logic blocks and then

interconnecting the blocks as required via switches.

1.2 Traditional Design Process with FPGA

A designer who wants to make good use of FPGAs must have access to an

efficient CAD system. A good design tool can greatly improve the quality of the

4

resulting circuit. The traditional steps involved in a typical CAD system for

implementing a circuit using FPGA is given in Figure 1.2.

I
T

I Loeic Svnthesis I
I

Placement
(Mapping of sub-circuits)

I
Routing

(Assigning of interconnections)

,- - - - -- - - - - - - - - - ,, _ - - -- - - -- - - - - -- -.
: Programming unit to configure FPGAs I

I

I
I I

I_ - I

Figure 1.2: CAD system for FPGAs

The CAD system for FPGAs consists of the following steps:

1. Logic Synthesis: If is an essential part of the entire design process. It starts

from the functional description of the circuit or system, and ends with the

description, typically referred to as a net-list, which depends on the particular

target technology. In general, logic synthesis consists of three steps;

translation from a Register-Transfer level representation written in a hardware

description language like VHDL to a gate-level circuit; optimization of the

gate-level circuit; and technology mapping.

2. Placement: In this step of the design cycle, the sub-circuits, which are formed

in the technology mapping phase, are allocated to a physical location on the

FPGA, i.e., the logic block on the FPGA is programmed to behave like the

5

sub-circuit that is mapped to it. This placement must be carried out in a

manner that the routing can complete the interconnections. This is very

critical, as the routing resources of the FPGA are limited. The placement

algorithms [28,29,30,31,32,33,34,42,43] for general gate arrays are normally

used for the placement in FPGAs, which will be discussed in next few sections.

3. Routing: In this phase, all the sub-circuits which have been programmed on

the FPGA blocks are interconnected with the routing segments [32,35,36,37].

In this thesis, the steps of placement and routing will be the main focus. In the

following section, the problems of placement and routing will be defined and followed

by a section to overview existing placement and routing solutions for FPGA. Whether

or not these existing algorithms can be used in our defined problem or ATMEL 6000

architecture (CA-Type) (which will be discussed in detail in next chapter) will also be

analyzed.

1.3 Problem Description

In traditional methods, technology mapping, placement and routing are dealt

with separately. Therefore, for Cellular-Architecture Type (CA-Type) FPGAs, a large

number of logic cells is used for wiring connections, or is left unused [3, 7]. This

problem is mainly caused by not preserving the local connectivity during the logic

optimization step. Frequently, local buses need to be used to complete even very short

connections, which increases circuit delay. To avoid the excessive usage of the local

buses a better solution is to use different logic implementations with logic cells used

6

as wiring cells. But this will lead to wasting a large number of logic cells for wiring in

the phase of technology mapping.

In general, the placement step is a process used to transfer net-list into physical

layout in FPGA, which assigns the logic blocks in the FPGA to implement the

modules in the net-list. The placement step is very crucial in the overall layout design

because it must make provisions for optimal routing. An ill-placed layout results in

poor quality routing. The routing step determines the routing channels (vertical and

horizontal) and logic cells to be used in each interconnection path without specifying

the actual geometric layout of tracks.

1.4 Overview of Existing Algorithms for FPGA
Placement and Routing

Before going to the detailed overview of placement and routing methods, a

brief description of types of FPGA architecture and their differences will be helpful

for the review. ATMEL 6000 architecture, which is the target architecture of this

thesis, is a symmetrical array of identical cells. Except for "repeaters" spaced every

eight cells. Each cell can realize logic functions as AND, AND-XOR etc. The array is

continuous and completely uninterrupted from one edge to the other. In addition to

logic and storage functions, cells can also be used as wires. Buses, which include

local and global buses, support fast, efficient communication over medium and long

distances. Local buses deal with communications within eight-cell array and global

buses are used for communication among eight-cell array. Both resources are very

limited with maximum usage of four local buses for each cell. Therefore, routing is

7

critical due to the fact that connections among cells are restricted and the number of

possible connections is much smaller than other FPGAs, such as Xilinx's FPGA.

Another typical FPGA architecture is Xilinx' s Configurable Logic Blocks

(CLBs) based FPGA, which had a very different architecture from the previous

"AND-OR" array PLD architectures. Xilinx's FPGA architecture has an interior

matrix of CLBs and a surrounding ring of 1/0 interface Blocks (IOBs). Interconnect

resources occupy the channels between the rows and columns of CLBs, and between

the CLBs and IOBs. A CLB can be configured to function as one or two lookup

tables. A configuration program stored in an on-chip memory control the functions,

which include the CLBs, IOBs and their interconnection. The configuration program

is loaded automatically from an external memory on power-up or on command, or is

programmed by a microprocessor as a part of the system initialization.

Compared with fine grained FPGA such as ATMEL's FPGA, there are several

important differences between them:

• Input variables: Xilinx has 5 input variables for each CLB. ATMEL' s

FPGA has 3 input variables (maximum) for each cell.

• Cell size: Xilinx can implement many large logic functions for CLB.

ATMEL's FPGA only can implement certain small simple functions and

any large or complex functions have to be implemented in multiple cells.

• Interconnection: ATMEL's FPGA has more limited resources on local

interconnection due to large or complex logic function that has to be

8

realized by multiple cells, which results are more interconnection than the

CLB which can realize relatively large or complex logic functions.

Given the above architecture reasons, it can be inferred that methods

developed for Xilinx cannot be applied or will be very difficult to apply to ATMEL' s

FPGA because most of them do not consider the interconnection among the cells

(which is a much simpler problem in Xilinx's FPGA). Such methods like TRADE

[26], MIS-PGA [25] and chortle-crf [24] are focused on logic decomposition to

mapping the logic into CLBs. In the following, some of the important algorithms for

FPGA placement and routing will be discussed. The discussion will cover the graph

[7] and tree-based approaches [3, 12], the Complex Maitra Logic Array approach [22],

the efficient logic synthesis (i. e considering the placement and routing at the logic

synthesis stage) approach [1,3,6] and the macro-cell approach [12].

1.4.1 Graph/Tree Based Approach

Graph and tree based approaches are the most common ones to deal with

placement and routing problems. There are many papers in this area. Several graph

[7] and tree-based algorithms [3, 12], which are closely related to FPGA placement and

routing, will be reviewed in this section.

Directed Acyclic Graph (DAG)-Approach: A simulated evolution mapping

method, which is based on the general Directed Acyclic Graph (DAG), was developed

in [7]. The DAG is used as a multi-level representation of a Boolean function, where

each node represents the logic, which can be realized in one logic block of the target

architecture and an edge represents the connectivity between the cells. Taking into

9

consideration the routing constraints for target FPGA architecture, a cost function of

goodness was developed in [7]. The evolution process goes like this: It starts with an

initial placement of the cells, then every cell in the placement is subjected to evolution

phases. In each evolution phase, the goodness of each of the cells is determined and

followed by a selection phase to identify which cells needs to be replaced.

As pointed out in [12], the alternate columns are taken to place the grouping

cells in initial placement. Therefore, the room for evolution improvements is ensured.

But this approach leads to a lot of unused cells, which are considered to be wasted,

when the rectangular area of the mapped circuit is taken into account. Simulated

Evolution is a non-deterministic algorithm for incremental design change. In this

circumstance, the routing paths may change due to different placement and hence the

timing of the entire circuit may change.

Modified Squashed Binary Tree (MSB1J Approach: The new mappmg

approach called Modified Squashed Binary Tree (MSBT) [3, 12] has improved the area

usage significantly compared to Squashed Binary Tree (SBT)[44], which leaves a lot

of unused cells around the placed area. In MSBT method, the net-list is represented as

a binary tree with decision variables associated with each node. Each node is also

associated with logic functions of the target FPGA architecture. The author of [12] has

demonstrated that this method can be used in ATMEL 6000 architecture. Based on

this binary decision tree, a tree restructuring algorithm has been developed to directly

map logic nodes into cells of FPGA. The most significant feature of MSBT is to

10

preserve local connectivity during the placement process and map uncompleted binary

tree to the FPGAs.

However, MSBT has two obvious weaknesses;

(1) The bigger number of the unused cells is included in the placed area when

a rectangular area is concerned.

(2) Using more routing cells to connect the buses of same variable name from

the rows and columns if the input pad is limited.

Sometimes it may not be possible to complete the routing in an ATMEL 6000

senes. More details about MSBT approach will be described in Chapte5.

Binary Tree Mapping [43]: which presented an algorithm based on binary

decision tree mapping. This method is an improvement over MSBT because of the

following shortcomings ofMSBT as pointed out by [43]:

• Start with the left longest path and map it to a column (initial column) of

the two-dimensional array.

• Map the right longest path (root's right child) to the column (second

column) right of the initial column.

• Start from the leave node of the longest path and recursively map the nodes

on the left side of the initial column as close as possible to that column.

• Start from the leave node of the second column and recursively map the

nodes on the right side of the second column as close as possible to the

column.

11

To modify the above problem of the MSBT algorithm as follows by

Chrzanowska-Jeske and Xu approach [43]:

• First map the critical longest path.

• Map from bottom to top, the advantages of which are that the nodes of

higher level can occupy the unused cells left by the lower level.

In general, the modified method generated more compact mapping results. But

the disadvantage of this method is that it does not consider variable allocations, which

may result in the need of extra cells or buses to rout cells and may not be able to

complete of the routing if the mapping size is limited.

Other FPGA Routings: Most of FPGA routing has primarily concentrated on

producing feasible solutions that use the fewest routing resources, and most of the

algorithms are developed for the Xilinx-like architecture with the switches, which are

used programming the interconnections between cells. A key problem in the routing

of FPGA is that successful routing of some connection may rely on the assignment of

a specific wiring segment in the FPGA for that connection. If this essential segment is

assigned to some other connection, then routing failure is guaranteed. A Coarse Graph

Expansion (CGE) method [35] was developed for FPGA routing. This routing

algorithm has the ability to resolve routing conflicts by considering the side-effects of

options for cell connections, which can be realized by routing nets, based on demand

and assigning critical nets a higher routing priority. The coarse graph expansion

(CGE) router [35] decides specific wire segments implementing particular

connections. In the first phase of CGE, an expanded graph is generated for each net

12

by examining the routing switches and wire segments along the path described by the

coarse graph. In the second phase, CGE places all paths from all of the expanded

graphs into a single path list. The router then selects paths from the list based on a

cost function. Each selected path defines the detailed route of its corresponding

connection.

Other researchers also focus on minimizing path length, for example, the

bounded-radius bounded-cost (BRBC) method of [38] achieves wire-length-radius

tradeoffs in weighted graphs, but can not directly produce a shortest-paths tree with

minimum wire-length. Rather, with the tradeoff parameter tuned completely toward

path-length minimization, the methods of [38] produce the same shortest-paths tree as

would Dijkstra's algorithm [40]. The recent A-Tree algorithm of [39] for rectilinear

Arborescence Steiner trees depends heavily on the Manhattan norm.

However, none of these works directly on the CA-type of FPGAs such as

ATMEL 6000 architecture. One of the main reasons is that the switch box model does

not apply well on ATMEL 6000 architecture due to the fact that connection segments

(local buses) in the channel are limited to about four, and most of the routings are

through logic cells, hence it behaves differently.

1.4.2 Complex Maitra Logic Array (CMLA)

This algebraic approach presented in [6, 22], provides a well-defined

theoretical background for the manipulation of Boolean function application to

Cellular Architecture two-dimensional arrays. The synthesis model of [6] 1s

composed of two planes: the complex (input) and the collecting (output) plane. It is

13

similar to the conventional PLA architecture. Since each cell in the ATMEL and

Xilinx architectures can realize an AND, OR, EXOR or their combinations, the

outputs of the cell array constitute a special class of Boolean function called Maitra

terms [23] which are named from Maitra Cascade. In ATMEL 6000 architecture,

because of the local connectivity among adjacent cells, a Maitra terms can be realized

using a column of logic cells and primary variables are assigned to local buses, one

per each column of cells. To illustrate this, let's look at the following example [7]:

Jo = ac (!) abd (!) bed

Ji=c(J) bd(J)a

r-----. r-----.
I I I I
I I I I
I I I I
I I I I

L-----' L-----'
r-----. r-----.
I I I I
I I I I
I I I I
I I I I

L-----' L-----'
Jo r-----. r-----. r-----.

I I I I I I
I I I I I I
I I I I I I
I I I I I I

L-----' L-----'
L _____ 1

r-----. r-----.
I I I I
I I I I
I I I I
I I I I

L-----' L-----'

Figure 1.3: CMLA: Realization of a Function

After factorization phase, the results are:

Jo = (bd + a)c + bda which is two complex terms:

fi=b(J)d which is one complex term:

which is one complex term.

[:]

14

The realization of the above complex terms with setting the variable order as

(b, d, a, c) is illustrated in Figure 1.3. One advantage of this approach is that no

separate routing step is required to realize a complex term [7].

This method was developed for generic CA-type FPGA. In general, it assumes

that two inputs and one output for every logic cell in CA-type FPGA. However, if we

attempt a realization with ATMEL 6000 FPGA [2] as the target architecture, we see

the following two major disadvantages of the chip architecture which ware pointed out

by [12]:

• "Two EXOR gates have been realized into two logic blocks (see Figure

1.3). To avoid this case we have to add a switch cell between the two

EXOR gates when they are mapping into ATMEL 6000 FPGA. It means

that we have to move the entire column, associated with the expansion

variable "c" to the next column".

• "In the ATMEL architecture, AND and EXOR gates can be combined and

realized into one logic block. The CMLA method does not take advantage

of this powerful feature. As a result of the additional cell used increases

the delay of the design".

1.4.3 Efficient Logic Synthesis

Since the routing resources are very limited, efficient usage of these resources

can significantly reduce the area occupied by the design. Consequently, it will increase

the capacity of the chip and improve performance. The early 1993 publications [1,3,6]

15

have revealed several logic synthesis approaches applicable to CA-Type FPGAs.

These approaches (in one way or another) try to link logic synthesis steps with

placement and routing steps. The spectral methods based on orthogonal expansion

[20] and Universal XOR Forms [9] on classical cellular array [10] are examples. The

spectral methods are more general and usually lead to better solution.

Decision diagram (DD) approaches are the most important development in

recent history. The DD approach is based on the decomposition of Boolean functions

using combinations of Shannon and two Davio expansions. There are many forms of

decision diagrams. Function representation based on EXOR gates are very attractive

for ATMEL 6000 architecture, because EXOR gates are available in logic with same

cost of other gates. In addition, EXOR gate based representations give the more

compact implementation for special functions. All the decision diagrams have the

structure of a binary tree with decomposition variables associated with each node of

the tree. The advantages and disadvantages of binary tree placement and routing have

been discussed in section 1.4 .1

1.4.4 Macro-Cell Approach

In the industry, the layout problem for CA-Type FPGA, such as ATMEL 6000

architecture is solved by the macro-cell approach. The macro cell represents certain

logic functions, which is a technology dependent representation of a circuit design.

The macro-cells are organized into libraries. The designed circuit is covered with a

minimum number of relatively small macro cells, the placement and routing of these

cells are done through automatic placement and routing techniques, such as simulated

16

annealing [41], heuristic approaches and other methods published in papers. But this

macro-cell approach has inherent disadvantages as pointed out by [12]:

• "This method does not provide any opportunity for the synthesis of the

general purpose function where decompositions into submodules are not

know".

• "The modules have irregular shapes and routing requires many cells to be

used just for connections".

1.5 Objectives of the Thesis

In this thesis, we focus on layout synthesis for Cellular-Architecture Type

(CA-Type) FPGA [3,4]. The distinguished feature of these devices is the local

connectivity between logic blocks placed in a symmetrical array. Logic blocks are

usually of small granularity and of the standard-cell type with a limited number of

inputs and outputs. Local or global buses are used for distance connections. As we

know, the approach of separating technology mapping, placement and routing, which

is currently used for other FPGAs, has little value for CA-type devices primarily due

to the local connectivity. Therefore, new comprehensive methods to the layout

synthesis problem need to be developed to efficiently utilize the potential of CA-Type

FPGAs.

We present a new approach to the placement and routing problems in the

ATMEL 6000 architecture FPGAs that takes local bus connections into consideration.

Permuted Reed-Muller Tree (PRMT), which is obtained by applying Davio I

Expansion [1, 7] to a Boolean function, is used as input to our algorithm. Input data are

17

represented in blif format. The new approach is to restructure a Permuted Reed-Muller

Tree (RPRMT) (input blif file from logic synthesis) into a Cells Binary Tree (CBT)

with minimized nodes, such that these nodes (cells) can be mapped to the ATMEL

6000 Series FPGA. The CBT will result in minimized area that can be easy to route.

The method developed here is applicable to any general binary tree. In our approach,

the ATMEL 6000 Series FPGA is the target architecture, but the approach can be

adapted to other CA-Type FPGAs. Our algorithms are written in C and implemented

on a SP ARC 10 workstation.

1.6 Outline of the Thesis

The thesis is organized as follows. In Chapter 2 architecture and restrictions of

the ATMEL 6000 FPGA are discussed. Chapter 3 provides an overview of logic

synthesis methods and describes some logic synthesis methods to generate a binary

tree; specifically Permuted Reed-Muller Tree (PRMT). Chapter 4 introduces the

restructuring of a PRMT into a Cell Binary Tree form and how it relates to the

architecture of the CA-Type FPGAs. The formulation of the problem and our

approach (including grouping, placement, bus assignment and routing algorithms) will

also be described. Chapter 5 compares our methods to the MSBT method with layout

examples and results tables. Conclusions and future work from our research are given

in Chapter 6. Finally, in Appendix, some examples of physical layouts are manually

presented and the differences between the MSBT method and our algorithm are

shown.

18

CHAPTER2

ARCHITECTURE OF ATMEL 6000 FPGA

FPGA combines the high density and the versatility of gate arrays with the

time-to-market advantages and the off-the-shelf availability of user programmable

standard parts. There are several kinds ofFPGAs in the market, the primary interest of

this thesis is in ATMEL 6000 Series FPGAs. A single ATMEL FPGA chip is an array

of small yet highly functional cells that have many routing resources and provide

excellent flexibility and silicon utilization. In general, the following are the major

advantages:

• Lots of Powerful Cells: ATMEL 6000 Series FPGAs have thousands of small,

powerful cells that can be programmed into any of 3 5 cell state types. A single

cell can be configured into 20 combinatorial states, including NO~ O~ AND,

NAND and two-input multiplexer.

• Fast, Flexible Bussing: Two type of buses such as local and express buses

support fast efficient communication over medium and long distances in the

ATMEL 6000 Series array. Local buses are the link between the cells and the

bussing network. Repeaters, located every eight cells in the array, transfer

signals to maintain signal strength and enhance design performance. Because

the since express buses are not connected directly to cells, they are fast.

19

• Flexible Synchronous and Asynchronous Clocking: Each cell column has an

independent clock and reset or a global clock can provide low-skew

distribution of external clock signals.

• Simpler Placement and Routing: Each cell is symmetrical in the array. Signals

can enter and exit from any side, and cells can also be used as wires that can

make placement and routing faster.

• High-J/0 Options: The lower-density devices are available in high-1/0 versions

to accommodate small designs requiring lots of input and outputs.

• Pipelined Designs: The registers of any comparable FPGA, designs can be

pipelined for super-fast performance.

Since technology mapping is architecture specified, in order to describe the

proposed methodology for technology mapping and routing in this thesis, the general

features of the architecture are reviewed and the main restrictions that lead to the

presented algorithms are pointed out in this chapter.

2.1 The Symmetrical Array

At the heart of the ATMEL 6000 architecture is a symmetrical array of

identical cells which is shown Figure 2.1. Except for "repeaters" spaced every eight

cells; the array is continuous and completely uninterrupted from one edge to the other.

In addition to logic and storage functions, cells can also be used as wires. Buses

support fast, efficient communication over medium and long distances.

20

-:-:-:- :- :-:-: : :- :- . :- . -:- .. :-lffll lffll lffll lffll lffll lffll ;.t ...__s_xs c ___ e11_arr_ay___.

lffll lffll lffll lffll lffll lffll lffll
lffll lffll lffll lffll lffll lffll lffll
lffll lffll lffll lffll lffll lffll lffll
lffll lffll lffll lffll lffll lffll lffll

VOPads J ._______.. I
lffll lffll lffll lffll lffll lffll lffll
lffll lffll lffll lffll lffll lffll lffll
. : : . : . : . : : . : ... : . : .

Figure 2.1: Symmetric array of the ATMEL 6000 chip

2.2 The Bussing Network

The ATMEL 6000 architecture has two kinds of buses as indicated in Figure

2.2. which are:

• Local buses: They are the link between the array of cells and the global

bussing network. There are two vertical local buses for every column of

cells, and two horizontal local buses for every row of cells. Every cell in

the array has a read/write access to two vertical and two horizontal buses.

See Figure 2.3 in the next page. In addition, each cell provides the ability to

make a 90 degree tum between either of the two vertical buses and either

of the two horizontal buses.

• Express buses: They are not directly connected to the cells, they are used

for global connections via the local buses. Express busses are the fastest

way to cover long, straight-line distances within the array. Each express

21

bus is paired with a local bus, so there are two express buses for each

column and row of cells. Connective units called repeaters, spaced every

eight cells, divide each bus, both local, and express, into segments

spanning eight cells. Each "Repeater", see example in Figure 2.2, is

associated with a local/express pair.

Local Bus Express Bus

CELL CELL

CELL CELL

Repeater

Figure 2.2: Bussing network

In addition to the four local bus connections (see example in Figure 2.3), a cell

receives eight inputs and provides two outputs to its Top, Bottom, Left, and Right

neighbors. These ten inputs and outputs are divided into two classes: "A" and "B".

There are an "A" input and a "B" input for each neighbouring cell and a single "A"

22

output and single "B" output driving all four neighbours. For outside connections, an

"A" output is always connected to an "A" or a "B" output to go to "B" input.

EX1RESS
LOCM.

: i ...
1· 11 Ii I ~ 1· I, I i ! I I

; I

I I ~ti I ~ ~ IWI ;. A I i' I T I I! I,._ 1£WI a. A I
- A. A I , ,,,.. "1

. 1 ~ '• •• If ,.,. "L l 1Hst CELL 11siH ~HSI CELI. IISZ I
. I a. • I ·a. •
•: IA ◄' I• I I
: ' l A .. l'W2 I ..._Ac, I j!:'°'A&.l'W2 IA.~I
ti I . A

'. I I I I J fill ••

I I I ¢-• I i I rn a: w· - . ' . I I I

i I f •·
.. I

I I I ! I I T • .
__ _.,,,_. A, • • ,.,_ A

--: _, '• I I I I '• ••
'II ·,~,,, I l -HSI CELL HU - r,"st CE!.L HSJ

-~;-I I._ ,I I •
: I'" '• I I I'" ~

.

EXPRESS
LOCAL

lOCAL
EXPRESS

EXPRE;s
lOCAL

I I I ,. I EWI .. ,. 111 I I I ,. • E'.VI .. ,. ~

--, ~I I i ~ T ~ ~Acl 11- 11' ~ ~ r,-z ~~~;I lOCAL.

,.!::; i i (i '1 1· 1 L. 1· i i i i 1· 11' EXPRESS

! I T I T i T I T

Figure 2.3: Cell-to-cell and cell-to-bus connections

Within the cell, the four inputs for "A" and the four inputs for "B" enter two separate

and independently configurable multiplexers. The flexibility of cells is enhanced by

allowing each multiplexer to select also the logic constant 1. The two multiplexers

outputs enter the two upstream AND gates. The write access to the four local buses

are controlled by the tri-state buffer. Hence, this single cell can be programmed to

perform logic, wire and constant state.

23

2.3 The ATMEL 6000 Macorocell

ATMEL 6000 is macrocell based architecture; there are thirty five logical

functions, which can be used for implementation of circuits. Out of these functions

B

V
A, Lo 8 A, Lo 8 A, L0 8 A, L0 8 A, L0 8

Li 8 Li 8

(-d
' I

I

A, L0 8 A, Lo A, L0 A, L0 B

A, L0 8

A Li 8 A B Li 8

~ (. ~~ A. Lo B A. L0 8

A, L0

A, L0 8
A, L0 8

Figure 2.4: Combinatorial states of ATMEL macrocell

(or macro-cells), twenty of them are purely combinatorial cells which provides all

primitive logic functions like NOR, NAND, AND, OR, 2-input multiplexer, and some

24

combinations of the primitive gates as shown in Figure 2.4. AND/EXOR realization is

of special interest to us. The logic synthesis method, Permuted-Read-Muller-Tree

(PRMT) approach (which will be discussed in Chapter 3) decomposes a Boolean

function to an AND/EXOR tree. The AND/EXOR function can be realized in a logic

cell of ATMEL.

2.4 Architecture Restriction

Each cell has only one input from the local bus and at most two inputs from the

neighbor cells and one output can be either to next adjacent cell or to local bus. All

possible input configurations are shown in Figure 2.5 and can be described as follows

bellow:

.- --- --
1 I
I I
I I
I I

,_ ----~
Local Bus

(a)

.-- --- -
I I
I I
I I
I I ·--- - - ~
.- - -- --
I I
I I
I I
I I , ___ __ 2

.- - - - - - .- - - - --
I I I I
I I I I
I I I I
I I I I

·- - -- - ~ ·- - - - - ~

(c) (d)

Figure2.5: Four input/output configurations to a cell

25

(a) Two inputs from the adjacent cells; from left and right or bottom and right or

bottom and left. However, one input to a cell must be signed "A" and another

input must be signed "B". Input is from local bus.

(b) Two inputs from the adjacent cells (from left and right/ bottom and

right/bottom and left).

(c) One input is from adjacent cell (left or right or bottom) and another input is

from local bus.

(d) Only one input from local bus.

CHAPTER3

LOGIC SYNTHESIS

26

In order to understand the technology mapping method proposed in this thesis,

logic synthesis methodology will be first overviewed in this chapter. An in-depth

analysis of a binary tree approach to logic synthesis will be presented in order to

explain the connections between the logic synthesis and the proposed technology

mappmg.

3.1 Logic Synthesis Overview

The ultimate goal of automatic synthesis of a digital system is to provide the

transformation of the functional specification of the system down to the physical

implementation. It involves three major design tasks:

• Functional/behavioral modeling and definition

• Logical design

• Physical implementation

Logic synthesis (as a way of logic design) is an essential part of this design

process. It starts from the functional description of the circuit or system, and ends

with the description, typically referred to as a net-list, which depends on the particular

target technology. In general, logic synthesis consists of two steps; translation from a

Register-Transfer level representation written in a hardware description language like

VHDL to a gate-level circuit, and optimization of the gate-level circuit.

27

3.1.1 Two-Level Logic Optimization

One of the most celebrated problems in logic design of digital circuits is the

minimization of Boolean functions, i.e., the reduction of the number of logic

gates/devices needed to implement a given function. Since a Boolean function can be

conveniently represented algebraically in its two-level sum-of-products form, the

minimization of a two-level function is equivalent to the minimization of the number

of product terms in the expression. This minimization problem has been extensively

studied during the last three decades, and many important results have been obtained.

There are a variety of two-level logic implementations. The most common one is the

sum-of-products implementation as indicated above, where the first level of logic

corresponds to AND gates and the second level to OR gates. NOR-NOR structures,

NAND-NAND structures, AND-XOR structures, and OR-AND structures are also

possible all have been investigated.

The minimization of product terms is important in VLSI circuits, where two

level Boolean function can be easily implemented as a Programmable Logic Array

(PLA). PLA design is an attractive custom design methodology due to its simplicity,

regularity and flexibility. The mapping of symbolic representation of two-level logic

onto PLA structure is straightforward, and logic optimization is equivalent to the

minimization of two-level sum-of-products expression. On the other hand, another

reason is that two-level logic optimization has many applications in other areas of

logic synthesis and computer-aided design. It is used for the design of PLA's with

input and output decoders, PLA partitioning, state machine assignment, encoding of

28

micro-programmed control units, and multi-level logic synthesis. These logic

minimization techniques have become well understood, and a number of efficient

computer programs have been developed. Topological optimization methods, such as

PLA folding and partitioning, have been also developed and are being used in industry

[4,6, 12].

3.1.2 Multilevel Logic Optimization

Because multilevel logic can often result in a faster or smaller implementations

of a function than two-level logic, synthesis of multilevel logic has received

considerable attention over the past decade [14, 15]. Efficient algebraic optimization

methods were proposed [16] and successfully implemented in the MIS-II program

[15]. The program BOLD [14] uses Boolean optimization methods that exploit

external and internal "don't-care conditions. The program SOCRATES [13] uses a

rule-based approach combined with an algorithmic approach for area and timing

optimization. A comprehensive treatment of the state-of-the art in multilevel logic

optimization can be found in program. It is of great interest to analyze the algebraic

and Boolean transformations, used in the various multilevel logic optimization

programs, from the standpoint of testability. Constraining these transformations can

result in highly testable circuits. However, constraining logic optimization may

adversely affect the area and speed of the resulting design.

29

3.1.3 EXOR Based Logic Synthesis

The basic logic synthesis methods based on EXOR gates, which are very

attractive because they lead to the same functions being represented with a smaller

number of gates (which means a smaller number of logic blocks needed to implement

the circuit on the FPGA) and also because most of the FPGAs include EXOR gate in

their logic blocks. For a long time, EXOR gate has been considered not useful for

circuit implementation because its realization in silicon especially for large fan-in or

fan-out was slow compared to other simple gates. However, with introduction of

FPGAs, the delay of an EXOR gate became similar to the delay of other gates. For

some types of FPGAs, like for example LDT-based Xilinx series, the delay of the

logic block depends on the number of input variables and not on the functions realized

by that block. In CA-Type FPGAs which are based on small granularity of their logic

blocks and localized connections, the fan-in and fan-out of the EXOR gate are low

[3,4,6, 12]. Recently, EXOR gates have been more often used for the implementation

of Boolean function due to easier testability. It has been already shown that

AND/EXOR representation of linear and nearly linear functions costs less (in a

number of gates) than the inclusive (AND/OR) representation.

3.2 Binary Tree Approach for Logic Optimization

A variety of Boolean function representations have been developed. Classical

representations like sum-of-products, truth tables and Karnaugh maps are impractical

because any function of n variables has a representation of size 2°. Representations

30

like the set of prime and irredundant cubes and Boolean network are generally used.

However, such representations suffer from some critical drawbacks. First, certain

common functions may require representations of exponential size. Second, simple

operations like complementation may yield a function with exponential size. Finally,

some of these representations do not have a canonical form, i.e.; a function may have

different representations. This makes it difficult to check for equivalency and

tautology.

Binary decision diagrams (BDDs) were first proposed by Lee [19]. This

approach was further developed by Akers [17]. As such, BDDs are not canonical.

Bryant introduced restrictions on the ordering of variables and proposed a reduction

algorithm, which transformed BDDs to be reduced, ordered BDDs (ROBDDs) [18]

that have a canonical form. Many logic optimization methods have been developed

based on BDDs and their variations. In this thesis, we will focus on Functional

Decision Diagrams (FDDs) representations of logic functions since the input data, i.e.

the technology independent logic optimization results, are from a method called

Permuted Reed-Muller Trees (PRMT) (i.e. a form of function decision diagrams (i.e. a

form of FDD). FDDs was developed based on BDDs by substituting Shannon

Expression with Davio Expansions. In the exit section, we will discuss Davio

expansions, PRMT and a binary tree.

3.2.1 Davio Expansions

One of the most fundamental concepts for the decomposition of a logic

function is the Shannon expansion. The Shannon expansion can always be applied to

31

a logic function in contrast to other types of Boolean decompositions like the

Ashenhurt [9] or the Curtis [21] decomposition, which can be applied only to certain

· classes of functions. By applying certain rules to the Shannon expansion we can

generate the Davia I and Davio II expansions as shown below. The well-known

Davia expansion [20] is given in Figure 3 .1.

The decompositions represented by equations (2) and (3) are called Davio I

and Davia II, respectively. The circuit realization of equation (1) is given by a

multiplexer gate, while equations (2) and (3) describe and AND-EXOR gate structure,

as shown in Figure 3. 1. Since we have chosen to use ATMEL 6000 series FPGA as

our target architecture, AND-EXOR combination, which can be realized in one logic

cell of that architecture, is of special interest.

(11 I =.x·f + x·J-/ I XI I X;

(2) I = Ix, 9 X;/xj (f) I;;= Ix; 6 x;g

(3) _ f =f;; 9 XJ:r, ffil;-;=fx. 9 X;g

Figure 3.1: Shannon Davio I and Davio II expansions

Any combination of Shannon and Davia I and II expansions can be used to

produce decision diagram [l]. A Binary Decision Diagram (BDD) is a Directed

Acyclic Graph (DAG) with a single root node. The terminal (leaf) nodes represent the

values O and 1, while non-terminal nodes represent Boolean functions. The function

associated with the root node specifies the function represented by the entire BOD.

32

Each non-terminal node has an associated variable and two outgoing edges. The

function represented by the non-terminal node is specified by its cofactors with respect

to its associated expansion variable.

3.2.2 Permuted Reed-Muller Trees (PRMT)

A new decomposition method, which generates AND/EXOR tree repre

sentation, has been proposed by Perkowski [1]. The approach is called Permuted

Reed-Muller-Tree (PRMT). PRMT is the expansion tree in which all variables

appear in positive polarity but in each sub-tree the decomposing variables could be in

a different order. A given Boolean function can be decomposed using equation (2):

f = JxrtB X; gx; where gx; = fxrtB fx;

The two sub-functions /x7 and gx; are independent of the variable x;. The AND-gate

takes (x;) and gx; as its two inputs. The EXOR-gate takes (f~) and the output of the

AND-gate as its two inputs. Their relationship is shown in Figure 3.2:(1). For each

sub-functionfx, and gx;, choosing another variable, such as (x1), the Davio Expansion is

used to continue the decomposition. After the further decomposition, both functions

/x7 and gx; will be decomposed into another two sub-functions, which are connected by

an AND-gate and also EXOR-gate to extent to next level in the PRMT, see example in

Figure 3 .2:(2).

The decomposition is repeated recursively until the functions are all trivial

(0, 1,x1). After completing the decomposition, a tree representation of a circuit is

created. The output of the tree representation of a circuit is the original function f. In

33

the tree representation of the circuit, all input variables appear in positive polarity and

are connected by AND-gates and EXOR-gates. The tree representation of the circuit is

called the PRMT. The PRMT can be presented in the Blif format by the program

REMIT [1], which is as input file for our algorithm.

(])

Figure 3.2: Example of expansion tree

34

3.3 Input Data File

The objective of this thesis is to develop a technology mapping for the CA

Type FPGA. The logic optimization will not be the major concern. Instead, we will

use the results of the PRMT. The output file from the PRMT is in the Blif format

which is used as input data files to our approach. Our algorithm starts by reading Blif

format of the PRMT, next a Cell Binary Tree (CBT) is generated by using our

grouping algorithm (which will be discussed in detail in chapter 4).

In order to illustrate our approach, we'll look at an example that will show all

the steps of our algorithm. Example "Example. blif' is given most possibilities of our

algorithm and its Blifformat is given bellow in Figure 3.3 .

. Inputs a b c d e f g h names bm8m7 names m17m19 m16
Output mo 11 1 01 1
names ml mlJm0 names hm8 10 1
01 1 0 1 names m18fm17
10 1 names cem9 01 1
names m2ml0ml 11 1 10 1
01 1 names gmll mlO names hm18
10 1 11 1 0 1
names m3 m9 m2 names m12 d mil names e m20 m19
01 1 01 1 11 1
10 1 10 1 names gm20
names m4dm3 names bm12 0 1
01 1 0 1 names C m22 m21
10 1 names am14 m13 11 1
names m5em4 11 1 names fm22
01 1 names m15 m23 m14 0 1
10 1 01 1 names gfm23
names m6m7m5 10 1 11 1
01 1 names m16 m21 m15 .end
10 1 01 1
names hm6 10 1
0 1

Figure 3.3: Blif format

35

Example "Example.blif' has eight variables. In Figure 3.3, where

• Input: list input variables

• Output: list function outputs (one output only: m0)

Names: lists input name and output name, and specify a function represented by the

given name. (When 0 1 or 10 = 1 is an EXOR gate, 11 = 1 is an AND gate and 0 = 1 is

a NOT gate), and nodes connections [Example: m0 (as a Root node) is an EXOR gate

and it connects to m 1 and m 13].

CHAPTER4

TECHNOLOGY-DEPENDENT BINARY
TREE APPROACH

36

The result of logic optimization is an optimized gate-level (also called logic

level) net-list with combinational sub-circuits reintegrated with sequential memory

elements. This net-list is composed of generic components such as NORs and

NANDs. The next step is to efficiently map this net-list into a library of gates

available from the semiconductor vendor. This step is called technology mapping.

Simply translating a net-list of generic components into a cell library is not a

challenging process. The real challenge lies in maximally utilizing the components in

the library such that the resulting net-list realizes its area, speed, and testability goals.

In this chapter, a new approach for technology mapping for ATMEL 6000 is proposed

with the aim of reducing the area and routing resources. The detailed implementation

of the proposed approach will be presented in the following.

4.1 Approach Overview

In this section, we propose to use the binary tree for our approach because the

binary tree is used for most technology mapping into the different type of FPGAs

(CA-Type). However, the results of technology mapping aren't completely ideal for

CA-Type FPGAs because the important problem of routing of the same variable in the

different levels is not solved efficiently. Following our proposed approach, four major

37

steps to obtain the goal of reducing the area and the requirements of routing resources

are presented in this section. The four steps which will be discussed later in this

section are:

• Grouping and generating Cell Binary Tree (CBT)

• CBT placement.

• Bus assignment

• Variable routing in mapping area.

These steps are also illustrated in Figure 4.1. A brief introduction of these

steps is presented in the following.

------------ -------------
(Start from BlifFile)

~,_ --~ ---- ----------1--------

•
Generate CBT

(Grouping)

I
CBT Placement

I
Bus Assignment

I
Routing

I
~ r---~ I I

I I
I I

: Net-list to Programming Device : I ___ !

Figure 4.1: Approach overview

38

As shown in Figure 4. 1, we start from reading blif file, which is the result of

logic synthesis. After initializing the tree structure, a Cell Binary Tree(CBT) targeted

for ATMEL 6000 is generated by using a grouping algorithm which will be discussed

in detail in the following sections. In general, the grouping algorithm will identify the

EXOR_AND, NOT_AND, AND, EXOR and NOT cells, and group them together into

CBT form. The following limitations are applied to each cell: each cell has only one

output, and the number of inputs for each cell is limited to three. These limitations are

specified for ATMEL 6000 architecture.

A placement stage in this thesis is to map CBT onto the CA-Type cell array of

the ATMEL 6000 Series FPGA. The significance of the placement method is to line

up the cells with the same variable into the same row or column of the mapping area

when each cell is mapped. There are two different cases that need to be taken into

consideration for the CBT placement:

• Search for the same variable: In this stage, when each cell is mapped

into a cell block in the mapping array, the cell will horizontally and

vertically search whether there is a same variable on the row or column.

We will place the cell with the same variable name in the row or column

with the corresponding variable name.

• Leaf cell reposition: This procedure moves leaf cells to match the same

variable in the scatter mapping area after a CBT is completely mapped into

the CA-Type cell array. A cell can be allowed to move to the previous

39

row on the left or right column or down to the next level, if the same

variable can be found from the next level.

Considering these two situations will make variable routing much easier and

generate better results (see Chapter 5 for detail). This is because the number of local

buses with the same variable is reduced by our placement method.

The bus assignment stage is presented for the variables of cells to be assigned

to horizontal and vertical local buses. The ATMEL 6000 Series FPGA has two

vertical buses (top and bottom) and two horizontal buses (left and right) around each

cell and a signal is connected from local buses to the cells. By our bus assignment

method, the same variable needs to be connected by local buses by row line or column

line. Bus assignment consists of the following two basic methods: (1) finding the

largest number of the same variable from a row or a column. (2) Selecting the buses

from row line to assign the same variable name with the largest number of cell, if

horizontal buses are free (top or bottom), otherwise, select column line buses.

The routing stage is introduced to connect variables, which are not connected

by bus assignment, with the same variable name in different place in the placement

array. There are three basic ways to interconnect the same variable buses from the

different comports of the mapping area:

• row to row

• column to column

• row and column

56

groupings are executed until all is done. A detailed illustration of this process is given

in Figure 4.10.

The Cell Binary Tree (CBT) is constructed from input file (Blif format) and

built by starting at root node (output of the logic function, i.e. m0), the connectivity of

the left side of the node is traced and grouped as needed until all branches in the left

side become exhausted. Then the connectivity of the right branches is explored and

groupings are executed until all is done. A detailed illustration of this process is given

in Figure 4.10. In Figure 4.10, some of the nodes can be grouped into EXOR_ AND

cells by the following order: m0/m13 to cell 0EA.a, ml/mlO to cell IEA.f, m2/m9 to

cell 2EA.c, m5/m7 to cell SEA.g, ml4/m23 to cell 14EA.d, ml5/m21 to cell 15EA.g

and ml6/ml9 to cell 16EA.e. Also, two NOT gates (m6 and m8) can be grouped into

one cell block 6N.h, which has two outputs to SEA.g. In addition, a "sw" needs to be

added between two EXOR cells or EXOR and EXOR AND. Also, an Extend Cell

(ec) needs to be added for a variable of m2 and ml4 nodes to extend to the next row.

4.2.2 Description of Placement

The objective of the placement algorithm is to map the CBT onto the CA-Type

cell array (i.e. ATMEL 6000). The significance of the placement method in this thesis

is to line-up the cells with the same variable into the same row in the mapping area.

Two different cases need to be taken into consideration:

• Search for the same variable name: When each cell is mapped into a cell

block in the array, the mapping algorithm will horizontally and vertically

search for the row or column with the same variable name. It will place the

57

cell with the same variable name in the row or column with corresponding

variable name.

• Leaf cell reposition after CDT is mapped: It moves leaf cells to match

the same variable in the scatter mapping area after a CBT is completely

mapped into CA-Type cell array. It can only be allowed to move the

previous row or to the left or to the right column or down to the next level,

where the same variable can be matched.

By considering these two situations, Leaf cell reposition will make variable

routings much easier. Due to that the fact that the number of local buses with the

same variable names is reduced by our placement method.

4.2.2.1 Three Types of Tree Form in CBT

There are three types of tree forms in CBT. See example in Figure 4.11. The

explanations for all types are given below:

• Full Tree Form (FTF): a cell in a branch has two inputs from adjacent cells

in the CBT and one variable input is from a local bus.

• Single Tree Form (STF): a cell has only one input from an adjacent cell in the

CBT and another input is a variable from a local bus.

• Leaf Tree Form (LTF): a cell is the last node in a branch of the CB T and has

only one input variable from a local bus.

58

All three forms are very important for CBT placement because each form has

the different rules of placement algorithm. More details are described in the next

sections.

FTF

(l)FTF

STF

2

STF

(2)STF

Figure 4.11: Three tree forms in the CBT

4.2.2.2 CBT Placement

4.2.2.2.1 Full-Tree Form (FTF) Placement

(3)LTF

There are three ways to map FTF into a CA-Type of ATMEL 6000 FPGA. An

example is presented in Figure 4 .12.

These three cases are:

• Figure 4 .12 (1) shows that if the FTF is the root of CB T, three cells of the

FTF are horizontally mapped into the first row of the cell array.

• Figure 4.12 (2) shows the case when the FTF is the inside of the CBT. The

left cell (L) of the FTF can be vertically placed next to the branch cell (B)

of the FTF (left column). The right cell (R) of the FTF can be horizontally

placed in the same column of the branch cell (B) of the FTF (next row).

59

• Figure 4.12 (3) also shows that the right cell (R) of the FTF can be

vertically placed next to the branch cell (B) of the FTF (right column). The

left cell (L) of the FTF can vertically be placed in the same column of the

branch cell (B) of the FTF (next row).

Left cell of FfF

inCBT

FfF

L

FfF

L

FfF

B

FfF

R

(1)

.-----,FIT)

B

FfF

B

FfF

L

Right cell of FfF

inCBT

FfF

R

Figure 4.12: Mapping FTF cells in three ways

4.2.2.2.2 Single-Tree Form (STF)

The STF also has three ways to be mapped. See examples in Figure 4.13.

Since the STF has one input from an adjacent cell and one from a local bus, in

example Figure 4.13, the cell "I" is a previously mapped cell and the cell "2" is given

three possible ways to be mapped. All three mapping methods depend on the row and

column space and the variable names.

60

• Cell 2 can be horizontally placed next to the left column of cell 1 if the

variable on the row of cell 1 is the same and a left side space is available.

• Cell 2 is vertically placed down to the next level of cell 1 if the space is

available.

• The same as (a) in Figure 4.13, but its placement is horizontal and directed to

the right column if the variable on the row of cell 1 is the same and a right side

space is available.

(a)
~
:- -c~ii-:

1 :

-----~

left
~

,- -----
: cell :

: 1 :

~~i_-__ , ~\
: cell :

: 1 :
,_ - - - - ~

down dJ right

Figure 4.13: STF placement

~
(c)

►

LTF placement follows STF methods to map onto the cell array. If LTF has

the same shape as the STF, the placement method is similer to the STF description.

See STF example in Figure 4.13.

4.2.2.2.3 Placement Algorithm with the Same Variable Search

The basic rules of CBT placement algorithm are as follows:

• Start by mapping the root cell (output of function, i.e. Cell_ 0).

61

• Compare the numbers of cells on both sides of the branch cell to find the

longest branch in the CBT.

• Map the CBT cells into ATMEL arrays

(a) If a cell has two inputs from the left and right cells, then mapping

this cell follows the FTF placement.

(b) If a cell has the input from an adjacent cell or it is the last cell in the

branch of the CBT, then perform the mapping following the STF

placement.

• Stop mapping, when the mapping cell has no where to go in the mapping

array. Then select a bigger size of array and start from the beginning.

The pseudo code for CBT placement is given by the programming function

mapping(node). The mapping(node) starts by assigning the ROOT node (cell) of the

CBT into CA-Type array (i.e. 8x8 array).

Assign the ROOT cell to the matrix based on the size of nodes on each side.

The rules are as follows:

• If the number of nodes in the left side of the tree is two times greater (or equal)

than in the right side of the tree, the ROOT cell is put on the first row in cells

array (Example: root cell position is on [0][5] for the 8x8 array).

• if the numbers of nodes in the left tree are greater or equal to the right tree, but

also less than two times right nodes, then the ROOT cell is put on the first row

in cells array (Example: root cell position is in [0][4] for the 8x8 array).

• If the numbers of nodes in the right of tree are two times greater (or equal) than

62

the left of the tree, the ROOT cell is put first row in cells array (Example: root

cell position is in [0][2] for the 8x8 array).

Mapping(node)
NODE_PTR node;
{

NODE _PTR ptr;
factor Jlag = 0, exit Jlag = 0;
node -> flag = 1;
if (compare_left_right(node) == TRUE){

}

if (factor _flag == 1) I* left nodes > right nodes *I
{

Roof_!1ode position: matrix[0J[5] if lefty>= 2*righty
and matrix[0J[4] if righty <=lefty, 2*righty;

do _left_ first(node, prt)}
else
{
if (factor _flag = = -1) I* right nodes > left nodes *I

{

}

Root_Jwde position: matrix[0][2] if righyt >= 2*lefty
and matrix[0J[3] if lefty<= righty < 2*lefty;

do _right _first(node, prt)}

Pseudo-Code of Root Node Placement

• If the numbers of nodes in the let size tree are greater than and equal to the left

of the tree, and also less than two times the number of left nodes. Then, the

ROOT cell is put first row in cells array (Example: root cell position is in

[0][3] for the 8x8 array).

After the ROOT cell is mapped, the children of the ROOT on the two sides of

the ROOT cell are placed into the same row of the ROOT cell. The mapping(node) is

called.

The routines in the function mapping(node) are as follows:

• compare _left _right(node) compares the number of nodes on the left and right. If

the numbers of nodes are greater or equal to the right size nodes on the left then

63

left size node maps first. Otherwise, right node maps first.

• do _right _first(node, ptr) and do _left _first(node,ptr) are the two major functions

being used for mapping technology, they are both recursive functions in the

program. The difference between do _left _first(node,ptr) and do _right _first

(node,ptr) is when the order is called from mapping(node,optr) that if left nodes'

number are greater than right, the do _left _first(node,ptr) is called, otherwise,

do _right _first(node, ptr) is called.

void do _right_jirst(node, ptr)
NODE _PTR node, ptr;
{

if (ptr -> left == NULL && ptr -> right == NULL); return;
else
{

ptr = do _ylacement (node, ptr); I* do nodes mapping *I
if (ptr == NULL)
{

if (ptr == node); return}
if (compare _left _right(node) == TRUE)
{

if(ptr ->flag== OJ
{
do _left _jirst(node, ptr)}
if(exit_jlag == 1)
{
end mapping. return;}}

else
{

if(ptr -> flag == OJ
{
do _right_jirst(node, ptr)
}
if(exit_jlag == 1)
{
end mapping. return;}}}

return

} Pseudo-Code of Right Node Placement

An example for do _right _first(node, ptr), gives in pseudo-code, is on the last

page. The routines in the function do _right _first(node, ptr): do _placement(node,ptr)

64

shows that if ptr (ptr -> node type) is a full-tree node, do Juli _placement(node,ptr) is

called. Otherwise, call function do_ single _placement(node,ptr). The do _right _first

(node,ptr) and do_left_Jirst(node,ptr) are the same in function mapping(node)

The pseudo-code for do _placement(node, ptr) is given below. The routines in

the function do_placement(node, ptr) are:

NODE _PTR do _placement(node, ptr)
NODE_PTR node, ptr;
{

}

if (is _it Juli _tree(ptr) = = TRUE)
{

}
else
{

}

ptr = do Juli _placement(node, ptr);
./flush(stdout);

ptr = do _single _placement(node, ptr);
./flush(stdout);

/* Pointer has been updated. *I
return (ptr);

Pseudo-Code of Cells Placement

• do Juli _placement(node, ptr): Get the variables of the left node, also get

the variables of the right node. There are three possibilities to place the full

tree nodes.

(1) left-left, right-right

(2) left-left, right-down

(3) left-down, right-right

The way of putting the cell into the position of matrix [i][j], where i is row

65

number from O to Ni and j is column number from O to NJ (Ni and NJ are

matrix size from 8 to 56/or ATMEL chip), is based on the rule, which the same

variable goes to the same row (horizontal line) or column (vertical line). After

the node is placed, checking whether the node number on the left side of the

parent node is bigger than the right side. Then return the left node pointer for

future use. Otherwise, return the right node.

• do _single _placement(node, ptr) :Node is not a full tree. If both left and

right are NULL, return NULL, otherwise, do placement based on the same

variable rule.

(1) left-left or left-down

(2) right-right or right-down

If left is not NULL, return the left of the parent node. If the right is not

NULL, return right of the parent node.

4.2.2.2.4 Placement Example

In order to understand our placement algorithm, a complete example is given

in Figure 4.14. In the example we realize the physical layout of the CBT into the 8x8

cell array layout of the ATMEL 6000 FPGA by following our placement algorithm. A

step by step description is given in the following (all the node names are referred to

Figure 4.10):

66

0 1 2 3 4 5 6 7 r---------r---------r---------r---------r---------r---------r---------r-------,
I I I I ----, I ---- I .----~ I .----~ I I o: : : : SW I

OEA
1

14EA
1

14EC : :

: : : : a : d : :
I I I I ,_,.___ _ __ _, I .______ _ __ ___. I I
I I I I I I I I I L---------L---------L---------L-- ------L---------L------ __ L _________ L _______ J
I I I .---~ I ,-,..--~ I I __ __.__, I I I
I I I I I I I I I
I I I lEA I I I I I

1: : : g : : SW : : :
I I I I I I I I
I I I ,__ __ ~ -...------' I I '----.-~ I I I
I I I I I I I I r---------r---------r-- ------r---------r------ --r---------r-------,
I ---- I ---- I ,_..._ __ _, .,.._.__ _ __, I I ,--......&.~ I .----~ I I

: 3E
I SW I

llE : : 15EA
1

22N : :

2: d d : : c : :
I I I I I
I '"---~I'---~ I'"---~ I'"---~ I I'----.-~ I._ ___ I I

r-- ------r---------r-- ------r-- ------r---------r------ --r---------r-------, I ,_..._ __ _, I I ,_..._ __ _, I ,_..._ __ _, I I __,- I I I

: SW : : : 12
N : : SW : : : 3: : : : b : : : : :

I '-r--~ I I '----~ I '----~ I I ----.-- I I I
I I I I I I I I I
I I I I I I I I I

r-- ------r---------r---------r---------r---------r------ --r---------r-------,
I ,-,..--~ I I I I I ,--......&.~ I .-----, I I
I 4E I I I I I l 6EA 20N I I

4 : e : : : : : e g : :
I I I I I I I I I ,__ __ ~ I I I I I .______ _ __ _, I I
I I I I I I I I
I I I I I I I I I

r-- ------r---------r---------r---------r---------r------ --r---------r-------, I ,_..._ __ _, I I I I I .-------~ I I I

s: SW : : : : : SW : : :
I I I I I I I I I
I I I I I I I I I
I ,_,.___ I I I I I '----.-~ I I I
I I I I I I I I I

~-- ------~---------~---------~---------~---------~------ --~---------~-------~ I ,....._ __ ~ I I I I I .----- I I I
I I I I I I I I I

6: SEA : : : : : l 7E : : :

I I I I I I b I I I
I I I I I I I I I I ,__ __ ~ I I I I I ._____ I I I

I I I I I I I I I r-- ------r---------r---------r---------r---------r------ --r---------r-------7
I,_..._ __ _, I I I I I ------~I I I
I 6N I I I I I 18N I I I

7: h : : : : : h : : :
I I I I I I I I I

I ---- I I I I I '---~ I I I I I I I I I I I I
L---------L---------L---------L---------L---------L---------L---------L-------~

Figure 4.14: CBT placement

Stepl: Root cell placement: Node "OBA.a" is placed onto matrix[0][4] (i.e. ATMEL

8x8 array), a "sw" is placed onto matrix[0][3] and node "14EA.d is assigned to

matrix[O][S] because the numbers of cell nodes in the left tree are greater or equal the

right of the tree, and also less than two times the right nodes.

Step2: Place the left CBT first:

67

1. Parent node "lEA.g" is placed into matrix [1][3] and its two children nodes

"sw" (left to left) and "l lE.d" (right to down) are placed into matrix [1][2] and

matrix [2][3].

2. Parent node "2EA.c" is placed into matrix [2][2] and its two children nodes

"sw" (left to left) and "9EC.e" are placed into matrix [2][1] and matrix [3][2].

3. "3E.d" is placed into matrix [2][0] because on the same line in row "2", it has

the same variable "d".

4. Placed "sw", "4E.e", "sw", "5EA.b" and 6N.h" cells into the same column of

"3E.d" because there are not any other parent nodes and variable compression.

5. Back to place cell "12N.b" into matrix [3][3] (it is the right node of parent

nodes in the left side of CBT).

Step3: Do right after left is finished:

1. "sw" and "14EC.f' must be placed as left to down and right to right because

this is only way they can be placed, so "sw" is placed into matrix [1][5] and

"14EC.f' is into matrix [0][6] after "14EA.d" was placed to matrix [0][5] in

Step 1.

2. "15EA.c" is a parent node and it is placed into matrix [2][5] because the same

variable "c" is found in the same row "2". Two children nodes, "22N.f' is

placed into matrix [2][6] because the same variable "f' is found in the column

"6" and "sw" is placed into matrix [3][5].

3. "16EA.e" is also a parent cell and placed into matrix [4][5] because the same

68

variable "e" is found in the row "4". Two children nodes are placed as

following right to right and left to down, so "20N.g" is placed into matrix

[4][6] and d "sw" is placed into matrix [5][5].

4. "l 7E.b" and "18N.h" are SFT and they cannot find any comparison so they

are placed into the same column "5". Here the placement is terminated after

all right side of CBT is done.

4.2.2.3 Leaf Cell Reposition (LCR)

In this section, Leaf Cell Reposition (LCR) method, which is for inducing

numbers of the same variable name in the dispersing mapping area, is presented. The

method allows us to move a leaf cell to another row or column if the same variable can

be matched. There are also three ways to reposition the leaf cell. See example in

Figure 4.15.

From the example in Figure 4.15, we assume that cell "2" is a leaf cell in the

CBT and it can be moved in one of the following three ways:

I
I
I

~
CT]
leaf cell

,- - - - -- ,- - - - - -
: Cell : Cell I Cell :

:21-+1~2:
,_ - --- ~____, :_ - - - - ~ g (a)

;
1 Cell :

(C) : 2 I
I I

,_ -- - - ~

(b)

Connection
cell

Figure 4.15: Three ways to reposition leaf cell

69

• Move up one row to the left column of cell "1 ", if that row has a matching

variable name.

• Move up one row to the right column of cell "l ", if that row has a matching

variable name.

• Move down to next row along the same column if the row is matching

variable name. In this move, the connection cells must be added between

cell "1" and cell "2". The numbers of connection cells need to be added

that depend how many steps cell "2" is to be moved down.

The example of the leaf cell reposition is given in Figure 4.16, which continues the

example of the CBT placement from Figure 4.14 on the page 47.

After the placement is completed, the leaf cells can be moved if the same

variable that can be matched in another row. In Figure 4.16, "2EC.e" can be moved

down to matrix[4][2] from matrix[3][2] and "12N.b" can be moved down to

matrix[6] [3] from matrix[3] [3]. After leaf cells are moved, Connection cells "Conn"

need to be inserted.

The result of cell reposition reduced the number of the same variables on the rows.

This process is important for bus assignment and routing because it can make easier

progress for both algorithms. The basic rules for repositioning of the leaf cell are: (1)

The leaf cells can be replaced in three ways such as left, right and down when the

same variable names that can be found and space is available. (2) Only one level can

be moved up to the left or to the right. (3) Leaf cells can be moved down to the next

rows in the inside of the mapping area. (4) Leaf cell can not be removed if it has

matched the same variable name on the column.

70

r _____ Q ___ r ____ l ____ r ___ 2 _____ r ___ J _____ r ____ 4 ____ r ____ .5 ____ r----~----r ___ J __ ,
I I I I .---~ I ,----- I .---~ I .---- I I

: : 0 : : SW I
SEA

1
14EA

1
14EC : l

: : : : : a d f : : I I I , ____ ,.____ I I
I I I I I I '---.-- I .____ I I

L---------L---------L---------L-- ------L---------L------ --L---------L------J
I I I .---~ I ..---~ I I .------ I I I I I I I I I I I I

: : : SW I IEA : : SW : : :
I I I I I I I I I

1: : : ---- : g : : '---.-- : : :
I I I I I I I I I r---------r---------r-- ------r----- ---r---------r------ --r---------r------1
I .---~ I .---- I ,.....____ I __ _.__ I I .------- I .---~ I I

: 3E
I SW 1

2EA : I IE : : I SEA
1

22N : :

: d : : d : : c f : :
I I I I I I I
I ---~ I .____ I ---- I ---- I I ._____ I .____ I I L-- ______ L _________ L __ ------L-- ------L---------L------ __ L _________ L ______ J
I I I I I I I I I
I ..---~ I I ..---~ I ..---- I I .------ I I I

l SW l : l l : SW l : :
I I I I I I I I
I I I I I I I I
I "-T"---,1 I ..._ ___ I ---'"" I I '---.-- I I I
I I I I I I I I ~-- ------~-------- ------r-- r---------r------ --r---------r------ ◄ I I I I I I I I
I I I I I I I I
I ..---~ I ,,____ I _,____ I .----- I .---- I I
I 4E I I I 16EA 20N I I
I I I I I I

l : e : : e g l l
I ---- I ---~ I --~- I ,______ ~---' I I I I I I I I I I r-- ------r---------r---------r-- --------r------ --r---------r------ ◄ l,....._ __ ~1 I I,.....____ I I I I
I I I I I .----- I I I

l SW l l l l SW l l l
I I I I I I I I
I I I I I I I I
,..._ ___ , I •---- I I I I
I I I I I ,______ I I I

L-- ----5-L---------L---------L-- L---------L------ --L---------L------~
I..---~ I I I.----..• I.------- I I I

: SEA : : : : : 17E : : :
I I I I I I I I I
I b I I I b I I I I I
I I I I I I I I I I---- I I I ____ , I._ ____ I I I

~-- ------~---------t---------t---------t---------t------ --~---------~------~
I..---~ I I I I I .-----~I I I

: 6N : : : : : 18N : : :

: h : : : : : h : : :
I .,____ I I I I I .____ I I I
I I I I I I I I I
L---------L---------L---------L---------L---------L---------L---------~------J

Figure 4.16: Leaf cell reposition result

4.2.3 Bus Assignment

The bus assignment algorithm is used for the connection between variables and

local buses (horizontal and vertical) with assignment of variables. The ATMEL 6000

FPGA has two horizontal buses and two vertical buses. A signal can be connected

from local buses to the cells, and each input variable needs to be connected in the

71

mapping area. The assignment methods are discussed in the following section and

followed by an example to further explain the methods.

4.2.3.1 Basic Rules of Bus Assignment

The basic rule of bus assignment is following the inverted-pyramid method,

which starts by searching the same variable name with the largest number of cells

from rows or columns. This is very important for our bus assignment methodology

because we start to select a row that has the largest number of the same variable

names, then to assign this row first. And then, find second largest number of the same

variable names to assign and so on. This way can decrease the number of the routing

buses. When the variable is found on a row, the top local bus should be selected to

assign first if it is free, otherwise, it is assigned to the bottom local bus. On the other

hand, if the variable is found on a column, the left local bus should be selected first if

it is free, otherwise, it is assigned to the right local bus. If two different variables have

the same number of cells, we select the first searched variable from the left on a row

and assign it to the top local bus and the next to the bottom local bus if both are free.

In summary, the bus assignment rules are as follows:

1. Start to search the variable, which has the largest number of cells with the

same variable name from rows and columns in the mapping array.

2. When above indicated variable has been found from a row or a column, then

assign that variable to the local bus to follow order: top and bottom or left and right.

3. If two different variables with the same number of cells have been found on

the row or column, the rule for this case, which is searched first and assigned first.

72

4.2.3.2 Bus Assignment Example

Following our bus assignment rules, first find and rank the variables with the

number of cells connected, and then assign variables to the local bus in the order of

number of cells connected to the local bus. See the example in Figure 4.17 (which

continues from Figure 4.16) in the next page. The following provides step by step

explanation of how the bus assignment is carried out:

0

1

2

3

4

5

6

7

0 1 2

I I ,------,-
1 I I I I
I I I I I
I I I I I
I I I I I
I I I I I

I I I I - ,------,-r------r

3 4

I
I
I

I I

-t------t

5

Figure 4.17: Bus assignment result

6 7

----+~-
' I

"e" 1st
----,-r-

73

Stepl: Variable "e" (3 cells) has the largest number of cells, found in "R4", and it is

assigned to the top local bus of row "R4".

Step2 and 3: Variables "d" and "c" with the next largest number of cells (2 cells) are

found in the same row "2". Variable "d" is assigned first to the top bus of row "2",

because it is searched form the left, and then "c" can be assigned to the bottom bus of

row "2".

Step4: Variable "b" (2 cells) is found in "6" and assigned to the top local bus of row

"6".

Step5: Variable "h" (2 cells) is found in "7" and assigned to the top local bus of row

"7".

Step 6: Variable "f' (2 cells) is found in "6" and assigned to the left local bus of

Column "6".

Step7: Variable "a" (1 cell) is found in "l" and assigned to the top local bus of row

"l".

Step8: Variable "d" (1 cell) is found in "O" and assigned to the bottom local bus of

row "O".

Step9: Variable "g" (1 cell) is found in "l" and assigned to the top local bus of row

"l".

SteplO: Variable "g" (1 cell) is found in "4" and assigned to the bottom local bus of

row "4" because the top bus has been taken by variable "e" in Stepl.

Stepll: Variable "f' (1 cell) is found in "4" and assigned to bottom local bus of row

"4" because the top bus has been taken by variable "b" in Step4.

74

The results of the bus assignment are illustrated in Figure 4 .17. Three

variables, "d" in rowO and rowl, "f' in column6 and row6, and "g" in rowl and row4,

are not completely connected. How to connect them will be discussed in the next

section, and we will use our routing algorithm to solve this problem.

4.2.4 ROUTING

In this section a routing algorithm is presented to connect buses which have

been assigned variables in different levels of mapping area. There are three major

ways for variable connections between buses:

• row to row (vertical connection)

• column to column (horizontal connection)

• row and column (horizontal and vertical connection)

To accomplish the above connections, two methods are presented, Parallel

Wire (PW) and Cross Wire (CW). Both methods use free cells in the mapping area to

combine two buses, which have been assigned with a variable, and link them together

using the shortest path if it is possible. Both PW and CW can easily find free cells in

the mapping area and use them to connect buses. Both methods will be introduced in

the following sections.

4.2.4.1 Parallel Wire

In this section, Parallel Wire (PW) means that there are buses with the same

variable, which occupy more than one row or column. We can use free cells (as a

75

routing cell "R") to interconnect two local buses that have the same input variables.

There are two ways of parallel routing:

1. Horizontally connect two column buses,

3. Vertically connect two row buses.

Connections among buses are realized by using routing cells ("R") to interconnect

them together from different mapping areas. See the example in Figure 4.18(1) for

two-level parallel routing, we used a step-wise method to connect the same bus name

together with routing cells. See the example from Figure 4.18(2) for three levels

parallel routing.

(1) (2)

Cell to be connected

Figure 4.18: Parallel wire

There are three types of routing cells to be used for PW method, which are (in

Figure 4.19):

(1) "Re'' is as an interconnection cell and used between two routing cells ("R;,,"

and "Rout") and its input and output can be assigned to "B".

(2) "R;,," is a NOT cell type and used for a signal from a local bus. Its input

comes from a local bus (Top, Bottom, left and right) and the output goes to

the next cell "Re'' and it is assigned to "B".

76

(3) "Rout" is a NOT cell type and used for a signal out from the cell to a local

bus. Its input is from "Re" and assigned to "B". The output goes to the

local bus.

All three cells connection is presented in Figure 4 .19.

Local Bus

Rout

(1) (2) (3)

Figure 4.19: Routing cells connection

4.2.4.2 Cross Wire (CW)

The CW method is used to connect row and column buses when these buses

have been assigned to the same variable. CW is realized by using a routing cell ("R")

to join both horizontal and vertical buses. CW can be used when only a cross block is

free, otherwise, both horizontal and vertical buses cannot be connected. See examples

in Figure 4.20.

Figure 4.20: Cross Wire

"R" at cross
black.

There is one routing cell (R) that can be used for CW to connect two buses,

both input and output signals of "R" cell connect to local buses.

4.2.4.3 The Basic Rules of the Routing Algorithm

The routing algorithm is presented in the following steps:

77

Stepl: Find a variable which is incompletely routed after the bus assignment stage:

start from a bus which has the largest number of cells connected to it, then find the

next bus which has the same variable.

Step2: Routing type is chosen as follows:

If both buses are parallel then go to Step3 to do PW.

If both buses are cross then go to Step4 to do CW.

Step3: PW routing of a given variable: (1) find numbers of levels between the two

buses (horizontal or vertical) which have the same variable. (2) Find free cells

between the two buses to the left of the Root node first, and then search to the right if

it is not found in the left. (3) if it found free cells from the inside of the mapping array

in the left or right, it uses R;,,, Re and Ro,,, cells to connect the two buses. (4) If it

cannot find free space from inside of the mapping array between the two buses then

check outside of the mapping array for free space.

Step4: CW routing for a given variable: (1) if cross block is free, using "R" (both

input and output are connected to a local bus) to connect both horizontal and vertical

buses. (2) If cross block is not free, this variable cannot be connected.

The principle of our algorithm is to use space inside the mapping array to

connect variable, if space is available. If we cannot find free space from inside, then

78

we use outside cells of mapping array to make possible connections for buses with the

same variable.

4.2.4.4 Routing Example

The routing example in Figure 4.21 (continue from Figure 4.17) demonstrates our

routing algorithm. The explanation in the following is to show steps, in order, how to

connect variable "d", "f' and "g":

0

1

2

3

4

5

6

7

0 1 2

I

-
I I
I I
I I
I I
I I
I I - -r------r

I I -r------r
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I - -r------r,------,-

I
I
I
I
I
I

3 4 5 6

I I
I I
I I
I I
I I
I I -.-------,

7

I
I
I
I
I

I I

-

,------,-

I I ,------,-
' I I I
I I
I I
I I
I I ,------,-

-~------ -~--------------~- -------~-------~-------·- ------~~--------

Figure 21: Routing example

79

Step]: Find that Variable "d" is the variable with the largest number of cells

connected to it, which is located at the top bus of row (R2) and the bottom bus of row

"RO". Both "d" buses are in rows so they can be connected by the PW method.

Step2: Find that Variable "f' is the variable with the largest number of cells connected

to it, which is located at the left bus of column (C6) and the bottom bus of row "R6".

Because two "d" buses are crossed, they can be connected by the CW method.

Step3: Find that variable "g" is at the end from the Top bus of row (RI) and from the

bottom bus of row "R4". Both "g" buses are in rows so they can also be connected by

the PW method.

80

CHAPTERS

COMPARISON AND RESULTS EVALUATION

In this Chapter, the Modified Squashed Binary Tree (MSBT) is illustrated and

compared with our algorithm. We choose MSBT to be a main comparison with the

results due to of the following reasons:

1. Similarly to our approach, the MSBT is based on the Cellular-type architecture

FPGAs and the layout results are targeted on the ATMEL architecture.

2. MSBT used the grouping algorithm presented in this thesis for its placement.

3. MSBT used the same logic cells from ATMEL 6000 cell states that we selected.

In order to compare, a brief introduction of the Modified Squashed Binary

Tree (MSBT) will also be presented. All testing results are focused on the ATMEL

6000 architecture for both our technology placement algorithm and the MSBT

algorithm, and the results are presented in the form of tables. Furthermore, we also

compare our placement and routing results with the layout results created with

ATMEL tools in [12].

5.1 Comparison

5.1.1 Comparison with Modified Squashed Binary Tree

In this section, we introduce a method, which is called the Modified Squashed

Binary Tree (MSBT). The MSBT is formed by projecting nodes of the

(Oa,sw. l g,sw,2c,sw,

3d,sw,4e,sw,5f,6h)
Tl

(9ec.e) (lld,12b) (14d,sw,15c,sw,16e,

sw,17e,18h)
T2 TJ T4

(20g) (22f) (14Ec.f)

TS T6 T7

Figure 5.1: Modified Squashed Binary Tree

-~--------~-------~--------~--------h~------~--------~-------~---1 I I I I I I I
I I
I I
I I
I I

-;-- ;---
1 I
I I
I I
I I
I I -,-- -------,---
' I I I
I I
I I _j__ _ ______ j __ _

I I I
I I I
I I I
I I I
I I I

-➔-- - --------~-------➔---
' I I I
I I I I
I I I I
I I I I
I I I I -,-- --------r --------,-------,---
, I I I I I
I I I I I I
I I I I I I
I I I I I I

-➔-- -------,--------t -------+--------r-------➔---
, I I I I I
I I I I I I
I I I I I I
I I I I I I

-~-- -------~--------~ -------~--------~-------~---' I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I -;-- -------4--------r -------~--------r-------;---
1 I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I -,-- -------,--------r-------,--------T--------r-------,---
1 I
I I
I I
I I _j__ _ ______ J ___ _
I I
I I
I I
I I
I I

-➔-- -------~----
' I I I
I I
I I

SW- switch cell
R - routing cell
Mapping size: 12x7
Bus used: 15
Variables (b, c, d, e, f, g and h) need to be connected

I I I I I I I I -,--------r-------,--------r-------,--------T--------,-------,---
Figure 5.2: MSBT placement example

binary tree onto its leaves in the depth-first manner [8].

81

82

In general, the modified squashed binary tree T b(V b,Eb) consists of the set of

vertices Vb and the set of directed Eb. Where Vb = [vblvb represents the vertices of the

tree Tb(V,E), projected onto the same leaf] and Eb= [~I~ represents the directed edge

from Vbi to Vbj if any of the vertices of the tree T(V,E) which were collapsed to vertex

Vbi is connected to any of the vertices of the tree T(V,E) which are collapsed to vertex

Vbj], here the directed edge represents the direction of input signal flow [8, 7].

The example for MSBT is given in Figure 5.1. This example uses the same

input as our example that is shown on the page 70 of this thesis.

The MSBT is mapped into the cellular array by following the order of placing

nodes group (example as notes group of T 1 to T 1 in Figure 5 .1) from left to right.

Therefore, T 1 is mapped into the first column, and then T 2 is mapped into the second

column and so on until the placement is finished. In addition, the routing cell (R) is

inserted between the first column and the third column when they are connected. See

the example in Figure 5.2, which shows the mapping of the MSBT from Figure 5.1 to

the cellular array.

The result of the MSBT placement, which is in Figure 5.2, has two major

problems:

1. MSBT uses many local buses for the assignment of the same variable

name. The example of Figure 5 .2 has totally spent 16 local buses for 8

variables bus assignment.

83

2. The size of the mapping matrix is 12x7, and it could be extended to very

large size if the MSBT has more branches, because the MSBT needs to use

many routing cells (R) to connect nodes between columns.

The above indicated problems can give difficulty to routing because large

numbers of local buses and cells are needed by the bus connections with the same

variable name. On the other hand, the result of our placement is presented in Figure

5.3, which is the same in Figure 4.16 from Chapter 4.

0 1 2 3 4 5 6
0 r---------r---------r---------r---------r---------, ---------, ---------,----

I I I I I I I I
I I I I I OEA I 14EA I 14EC I
I I I I SW I
I I I I I I
I I I I a I d I
I I I I I I
I I I I I I I I L---------L---------L---------~-- ------~---------~------ --~---------~----1 I I I I I I I I
I I I I I I I I
I I I SW IEA I I SW I I
I I I I I I I I
I I I I g I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I r---------r---------r--- ------r--- ------r---------r------ --r---------r----

2 I I I I I I I I
I 3E I I I llE I I 15EA I 22N I
I SW I I I I
I I I I I I
I d I C I d I I C f I
I I I I I I
I I I I I I I I
L-- ------L---------L-- ------L-- ------L---------L------ --~---------~----I I I I I I I I

3 I I I I I I I I
I I I 2 I 12 I I I I
I I I I I I I I
I I I Conn I Conn I I SW I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
L-- ------L---------L-- ------L-- ------L---------L------ --~---------~----

4
I I I I I I I I
I I I I I I I I
I 4E I I 2EC I 12 I I 16EA 20N I
I I I I I I I
I I I e I Conn I I e g I
I I I I I I I
I I I I I I I
I I I I I I I I ~-- ------~---------~---------~-- ------r----------r------- --r----------r----

5
I I I I I I I I
I I I I

12
I I I I

I SW I I I I I I I
I I I I I I SW I I
I I I I Conn I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I ~-- ------~---------~---------~-- ------r----------r------- --r----------r-----6 I I I I I I I I
I

SEA
I I I

12N
I I

17E
I I

I I I I I I I I
I I I I I I I I
I I I I b I I b I I
I I I I I I I I
I I I I I I I I
I ------r---------r---------r---------r---------r------ --L---------L----r-- I I

7 I I I I I I I I
I 6N I I I I I 18N I I
I I I I I I I I
I h I I I I I h I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
L---------L---------L---------~---------►---------►---------►---------~----

Figure 5.3: CBT placement example

84

Comparing with MSBT, two problems indicated in the above from MSBT

have been greatly improved in our placement algorithm, which are: a total of 11 local

buses are used for 8 input variables and the 8x7 array is spent.

Both results of placement are obtained from the same testing input file

"Example. blif'. The results of final layouts for MSBT and our approaches are shown

in Figure 5.2 and Figure 5.3 respectively. The comparison is given in Table5. l.

COMPARISONS ALGORITHMS

MSBT Our

Number of Variable disconnected 7 3

Mapping size 12x7 8x7

Buses used 15 11

Table 5.1: Comparison with MSBT

The comparison column lists items to be compared and the algorithm column

lists all results from both placements. See more comparisons with the MSBT results in

the next section.

5.1.2 Comparison with ATMEL Place&Route Tools

In this section, the difference between the results of our approach and the

results the ATMEL tools, which placement and routing methods are based on

Simulated Annealing [41] as cost driven, for the placement and routing are illustrated.

The input files are the same for both methods, which are from the MCNC benchmark.

They are also represented by the PRMT, which was listed in the Table 5.2 (MCNC

85

column). The results of the final layouts created by the ATMEL tools are from [12].

The comparison results between both methods and also including the results of the

MSBT are presented in Table 5.2.

MCNC MSBT ATMEL OUR ALGORITHM
TOOLSU21

LB LC Cn As LB LC Cn As LB LC Cn As

5x10 19 15 6 27 46 17 23 90 8 15 3 25
misex54 19 18 13 35 58 24 27 180 7 23 1 30

f5 10 8 6 12 28 11 12 45 6 8 3 12

Table 5.2: Our algorithm Vs. ATMEL tools and MSBT
Where:

• LB column is the total number of buses is used.

• LC column is the total number of logic blocks that are used for implementing

logic.

• Cn column is the total number of routing cells, which is used for interconnections

during the mapping.

• As column represents the rectangular area, which is occupied by the core of the

design because the ATMEL tools perform bus assignment in an inefficient way,

only the core area with mapping design is compared [3].

In Table 5.2, comparing between OUR ALGORITHM and the ATMEL

TOOLS is presented using the MCNC benchmarks and MSBT as well. As it can be

seen the results that OUR ALGORITHM gives much more compact layouts than the

ATMEL tools and also better compact layouts than MSBT. The number of local

86

buses, logic blocks used for routing and the rectangular area are much smaller than

ATMEL tools and also smaller than MSBT.

5.2 Results Evaluation

5.2.1 Results

In the above comparisons, an example has been completely given to compare

the results of placement from the MSBT and the method presented in the chapter 4. In

this section, more results of examples from both our algorithm and MSBT algorithms

will be presented. The results from the comparison of both algorithms are given in

Table 5 .3. The definition of columns from Table 5 .3 is as follows:

I column: The number of input variables.

IN column: The number of the input nodes from the blif format (as our input file).

Gp. column:

L: The number of the logic blocks in CBT after grouping.

C: The number of connection type cells, which are included

-Switch Cell -Extend Cell

MSBT and Our Algorithm columns:

R: The number of routing cells (MSB T) and connection cells (Ours) used.

T: The total number of cells used after the placement, which include L and C

from Gp, and R.

As: The matrix size of the smallest rectangle enclosing the mapped circuit

after placement is finished.

TB: The numbers of total local buses used during bus assignment after

87

placement is done.

MCNC I IN GP. MSBT OUR ALGORITHM
L C R T As TB R T As TB

5xl 7 29 21 5 2 28 48(8x6) 12 3 29 28(4x7) 12

5x10 7 17 15 0 0 15 27(9x3) 11 3 18 25(5x5) 8

conll 7 18 15 7 1 23 36(9x4) 12 0 22 42(7x6) 10

con12 7 12 9 4 0 13 l8(9x2) 10 0 13 25(5x5) 8

misex21 6 25 17 3 1 20 54(6x9) 13 16 36 64(8x8) 6

misex22 6 20 16 1 0 17 24(3x8) 11 1 18 24(4x6) 8

misex23 6 19 13 1 0 14 27(9x3) 10 9 23 32(8x4) 7

misex48 6 25 16 3 0 17 45(5x9) 12 6 25 64(8x8) 11

misex49 6 20 16 1 0 17 28(4x7) 10 0 17 30(5x6) 10

misex50 6 21 14 1 1 16 32(4x8) 12 8 24 24(6x4) 8

misex52 6 20 16 7 1 24 45(5x9) 11 8 31 49(7x7) 12

misex53 6 15 10 2 1 13 24(4x6) 10 1 13 24(6x4) 7

misex54 6 24 18 4 1 23 35(5x7) 11 1 23 21(7x3) 7

misex56 6 21 14 2 1 16 32(4x8) 11 8 24 24(6x4) 8

misex57 6 20 17 3 1 21 27(3x9) 12 0 20 36(4x9) 10

sao21 10 551 337 105 151 595 1792

(16xl 12)

sao22 10 779 408 108 175 691 2025

(15x135)

sao23 10 846 475 125 205 805 2422

(14x173)

majority 5 20 15 5 0 20 32(4x8) 9 6 26 42(6x7) 6

Table 5.3: MSBT Vs. our algorithm

Overall, the above results from Table 5.3 has shown two major parts in which

our approach can give better results than MSBT such as reducing the total number of

buses and reducing the total number of eight-cell arrays (see Figure 2.1) of the

AMTEL architecture. Also, the area of our placement could be smaller than MSBT if

88

a CBT has more branches. The details of description for the result comparisons from

both algorithms will be described in the next section.

5.2.2 Results Description

In this section, we describe and discuss the placement results of both our

algorithm and MSBT algorithm in more details by using Table 5.3, which include the

comparisons of number of buses used, number of eight-cell arrays used and the

mapping size in the mapping areas of ATMEL architecture.

Reducing bus numbers: The comparisons are with TB columns between both

algorithms in Table 5.3, most of the examples from MSBT used more buses than ours.

The "misex21" in Table 5.3 is a very good example to show the difference between

both results. MSBT shows that 13 buses are used to connect the variables of the cells

after placement with incomplete routing. The algorithm presented in this thesis used

only 6 buses with complete routing when placement was done. The reason is that

MSBT algorithm minimizes the size of placement in the mapping area. However, the

results are not taken into the consideration about reducing the number of buses for the

variables routing. In fact, MSBT can do largest areas' mapping in the CA-Type cell

array. On the other hand, our placement not only considered to place CBT onto a

smaller cells array, but it also consider the variable routing by lining up the same

variable names using leaf cell reposition methods. Therefore, our placement results

for variables routing after CBT mapping for small examples and better than MSBT.

Reducing the total number of eight-cell a"ays of the AMTEL: In this case,

we have known the symmetrical array of ATMEL 6000 architecture from the previous

89

chapter (see Figure 2.1 and 2.2), the express buses using "repeaters" connect every

eight-cell array. We follow example "misex21'' to compare the "As" column of both

results from Table 5.3. The results show that MSBT can have smaller placing size

than our algorithm (MSBT is 6x9 and ours is 8x8). Therefore, the MSBT vertically

takes two eight-cell arrays of ATMEL 6000 architecture to complete placement, which

means that the MSBT placement algorithm has to use "Repeater" to associate with a

local/express buses to connect cells between two eight-cell arrays which can result in

increasing delays for the routing. However, our placement algorithm just used a single

eight-cell array, which means that our algorithm can place more cells into an eight-cell

array than MSBT.

Size of mapping area: For this issue, the results of "As" columns from Table

5.3 show that MSBT gives better results for most files than ours, it also can run any

size examples. Unlike MSBT, our mapping is limited to run the larger examples.

However, in the some cases, if an input tree is reformed to take the advantage of our

algorithm, For example, if we reformed a CBT to add some branches (especially, if

branches only have a few nodes), our placement algorithm can get better results than

MSBT. For this improvement, we give some physical layout printouts in the

Appendix, which examples are manually generated, and they show the difference

between both algorithms. See the results of comparison for both algorithms from

Table 5.4. The input file column lists the manual examples, which are based on the

blifformat of PRMT and the definition of other columns are as same as Table 5.3 (see

90

columns' definition on page 87). We compare the "As" column of both algorithms

from Table 5 .4 and find that MSBT used more mapping space than ours.

INPUT I IN GP. MSBT OUR ALGORITHM
FILES L C R T As TB R T As TB

testrfl. blif 6 20 16 0 4 20 36(6x6) 11 l 17 18(3x6) 9

testrf2.blif 7 18 13 7 4 24 48(8x6) 16 4 24 35(5x7) 10

testrfl. blif 6 15 11 4 4 19 42(7x6) 11 2 17 32(4x8) 8

testrf 4. blif 6 18 13 4 6 23 35(5x7) 12 l 18 24(3x8) 9

Table 5.4: MSBT Vs. our algorithm with manual examples

5.2.3 Limitations

As introduced and explained earlier in this thesis, our approach is to restructure

the net-list of the cell binary tree (CBT), and place it on the ATMEL 6000 FPGA.

Therefore, our methodology is suitable only for the CA-Type cell array. The

following are the major limitations of our placement and routing algorithms, which

may limit its usefulness and applicability in some cases.

Our placement algorithm depends on input files: For this limitation, we give

some examples in Table 5.3 such as sao21 (10 input variables with 551 nodes), sao22

(10 variables with 779 nodes) and aso23 (10 variables with 846 nodes). Unlike

MSBT, our automatic placement cannot run those files because those files have many

cells with only few input variables. However, if a larger file has the 70 cells with 13

input variables, it could be run through. Of course, this is a major problem with our

mapping application because our placement used lining up method to match the same

91

variable into the same row or column, so this way can reduce the number of the

interconnected buses but it cannot run for a larger file that.

Routing is limited: In the CW method, the two local buses with the same

variable name cannot be connected when the cell of Cross-Block is not freed (taken by

another variable). This cell is named a "Dead-Block", see example (a) in Figure 5.5.

For this issue, two local buses with the same variable name can be connected with PW

and CW combination. See examples in Figure 5. 5.

Cross block is a
Dead-Block

b

(b)

Adding a
Local Bus

CW Routing
Cell in free
Cross-Block

a
(a)

Cell needs
to be routed

(c)

Routing Cell

Figure 5.4: PW and CW combination routing

Figure 5. 5 shows two possible ways for routing variables, which connect two

buses from the different directions for the same variable, where;

(b) Shows that PW connects CW in horizontal way.

(c) Shows that PW connects CW in Vertical way.

92

In both ways, the free Cross-Block needs to be found in the short path. If the

free Cross-Block is found in the row, the same variable name should be interconnected

as (c) in Figure 5. 5, otherwise, the same variable name should be interconnected as in

(b). Also, a local bus needs to be added to interconnect both PW and CW for the

variable routing.

These limitations can be overcome with the right solutions. For example, the

architecture of CA-type FPGAs can be changed with multiple local buses in any given

direction.

5.3 Summary

In general, the objectives for MSBT and our algorithm are different. MSBT

algorithm focuses on placing the largest size of logic into the architecture of CA-type

FPGA, which is ATMEL 6000 architecture. However, the MSBT doesn't consider the

number of the local buses to be used for the routing. Our placement algorithm is also

targeted on the ATMEL 6000 architecture but we started by focusing on the eight-cell

array for the placement, and then extended to larger array. Therefore, some larger

files limit our placement algorithm. For example, a larger file with the small number

of the input variables cannot be successfully run by our placement. Another point is,

unlike MSBT, our placement results take into consideration the routing by lining up

the same variable name and leaf cell reposition methods. Therefore, in this case, our

results can be better than MSBT in two major areas: smaller number of buses and

smaller number of eight-cell arrays, but only for small examples.

CHAPTER6

CONCLUSIONS

93

In this thesis, a new technology mapping system is proposed in following four

major stages: restructuring the PMRT to the CBT for the mapping combinatorial

circuits onto CA-Type FPGAs, the CBT placement, bus assignment and routing. We

presented those algorithms, which are targeted at combinatorial logic and the ATMEL

6000 architecture FPGAs. The mapping used to line up method to reduce the number

of local buses, which is a very important advantage for the local connectivity in this

approach.

A new technique based on the concept of Cell Binary Tree (CBT) for mapping

combination circuits into ATMEL 6000 Architecture FPGAs is presented in this

thesis. Cell Binary Tree (CBT) is a net-list representation of combinational circuits.

For each node of CBT there is a distinguished variable associated with it, the node

itself represents a certain logic function, which is selected according to target FPGA

architecture. As we pointed out, the significance of the placement method is to line up

the same variable name into the same row or column in the mapping array. This way

the interconnections among buses can be reduced. The algorithm further reduces the

area by the process of leaf cell repositioning. Therefore, the main focus of our

placement method is to reduce the number of local buses and the size of the mapping

array; these in turn can make routing much easier. The bus assignment is a very

important step to reduce the overall area. The bus assignment method is based on the

94

number of times a variable appears in a row or column. After the CBT placement,

there are two kinds of routing, PW and CW, considered and presented to connect

buses with the same variable name in the interconnection path after placement is done.

For future works, we should consider and improve the problem of limitations

in our mapping algorithm, which can allow running any larger without considering the

number of input variables. The minimization of mapping area needs to be obtained,

when the placement is improved. Also, the routing heuristic needs to be improved.

Another further improvement could be achieved by global connectivity to interconnect

eight-cell arrays with "express" buses on ATMEL architecture FPGAs.

In summary, my contribution to this thesis is that I investigated, proposed and

implemented a heuristic placement and routing approach for ATMEL 6000

architecture FPGAs. The important parts of the methods consist of logic grouping,

placement, bus assignment and routing with considerations. The results compared

with MSBT and AMTEL Tools, we used the smaller number of the local buses for

variable routing.

95

BIBLIOGRAPHY

[1] L. Wu, and M. A. Perkowski, "Minimization of Permuted Reed-Muller Trees

for Cellular Logic Programmable Gate Arrays," In H. Gruenbacher and R.

Hartenstein (eds.), LNCS, No. 705, Springier Verlag, pp. 78-87, 1993.

[2] ATMEL Corporation CMOS Integrated Circuit Data Book, 1993:94. 2125

O'Neil Drive, San Jose, CA, 95131.

[3] N. Ramineni, and M. Chrzanowska-Jeske, "A Routing-Driven Mapping For

Cellular-Architecture FPGA's", 36th Midwest Symposium On Circuits &

Systems pp.308-311, Aug 1993.

[4] M. Chrzanowska-Jeske, "Architecture and Synthesis Issues in FPGAs," Proc.

of Northcon, pp. 102-105, October 1993.

[5] N. B. Bhat and D. D. Hill, "Routable Technology Mapping for FPGA's," 1992

ACM First International Workshop 011 FPGAs, pp. 143-148, 1992.

[6] A. Sarabi, N. Song, M. Chrzanowska-Jeske, M. Perkowski, "A

Comprehensive Approach to Logic Synthesis and Physical Design for Two

dimensional Logic Arrays", Proc. of 31st DAC, pp. 321-326, June 1994.

[7] A. K. Dasari, N. Song, M. Chrzanowska-Jeske, "Layout Driven Factorization

and Fitting for Cellular Architecture FPGAs", Proc. Of Northcon, pp. 106-

111, 1993.

[8] N. Woo, "A Heuristic Method for FPGA Technology Mapping Based on the

Edge Visibility", 28th ACM/IEEE Design Automation Conference, pp. 248-

251, 1991.

[9] M. A. Perkowski, A. Sarabi, and F. R. Beyl, "XOR Canonical Forms of

Switching Functions," Proc. of the IFIP WG 10.5 Workshop 011 Applications of

the Reed-Muller Expansion in Circuit Design, Hamburg, Germany, pp. 27-32,

September 1993.

[1 O] R. C. Minnick, "Cutpoint Cellular Logic," IEEE Trans. 011 Electron. Comput.

EC-13, pp. 685-698, 1964.

96

[11] E. A Walkup, and S. Hauck, "Routing-Directed Placement for the TRIPTYCH

FPGA", Department of Computer Science and Engineering, FR-35, University

of Washington, pp 33-38, 1992.

[12] N. Ramineni, Thesis: "Restructuring Approach to Mapping Problem in

Cellular-Architecture FPGAs", Department of Electrical and Computer

Engineering, Portland State University, 1995

[13] K. Bartlett, W. Cohen, A J. De Geus, and G. D. Hachtel. "Synthesis of

Multilevel Logic under Timing Constraints", IEEE Transactions on computer

Aided Design of Integrated Circuits, CAD-5(4): pp. 582-595, October 1986.

[14] D. Bostick, G.D. Hachtel, and R. Jacoby, "The Boulder Optimal Logic Design

System", In Proceedings of the International Conference on Computer-Aided

Design, pp. 62-65, November 1987.

[15] R. Brayton and R. Rudell, "MIS: A Multiple-Level Logic Optimization

System", IEEE Transactions on computer-Aided Design of Integrated Circuits,

CAD-6(6): pp 1062-1081, November 1987.

[16] R. K. Brayton and C. McMullen, "The Decomposition and Factorization of

Boolean Expressions", In Proceedings of the International Symposium on

Circuits and Systems, pp. 49-54, Rome, May 1982.

[17] S.B. Akers. "Binary Decision Diagrams", IEEE Transactions 011 Computers,

C-27(6):pp.509-516, June 1978.

[18] R. Bryant. "Graph-Based Algorithms for Boolean Function Manipulation",

IEEE Transactions on Computers, C-35(8):pp.677-691, August 1986.

[19] C. Y. Lee. "Representation of Switching Circuits by Binary-Decision

Programs", Bell Systems Technical Journal, 38(4):pp.985-999, June 1959.

[20] U. Kebschull, E. Schubert, "Multilevel Logic Synthesis Based on Functional

Decision Diagrams", Proc. IEEE European Design Automation Conference,

pp.43-47, 1992.

[21] I. Schaefer, M. A. Perkowski, H. Wu, "Multilevel Logic Synthesis for Cellular

FPGAs Based on Orthogonal Expansions", Proc. IFIP WG 105 Workshop on

97

Applications of the Reed-Muller Expansion in Circuit Design, Hamburg,

Germany, pp. 42-51, Sept. 1993.

[22] N. Song and M. A. Perkowski. "A New Design Methodology for Two

Dimensional Logic Arrays". Proc. Of IWLS, Tahoe City, CA, pp.132-137,

May 1993.

[23] K. K. Maitra. "Cascaded Switching Networks of Two-Input Flexible Cells".

IRE Trans. Electron. Comput., pp. 136-143, 1962.

[24] Robert Francis, Jonathan Rose, and Zvonko Vranesic, "Chortle-Crf: Fast

Technology Mapping for Lookup Table-Based FPGAs," Proc. 28h ACM/IEEE

Design Automation Conj., San Francisco, CA,pp. 227-233, June 1991.

[25] Rajeev Murgai, Narendra Shenoy and Robert K. Brayton, " Improved Logic

Synthesis Algorithms for Table Look Up Architectures", ICCAD 1991, Santa

Clara, CA, pp. 564-567, Nov. 1991.

[26] Wei Wan and Marek A Perkowski, "TRADE: A Lookup Table FPGA Mapper

Based on a Generalized Boolean Decomposition", ICCAD, Santa Clara, CA,

pp. 362-367, Nov. 1992.

[27] Robert Francis, Jonathan Rose, and Kevin Chung, "Chortle: A Technology

Mapping for Lookup Table-Based Field Programmable Gate Array," Proc. 21h

ACM/IEEE Design Automation Conj., San Francisco, pp. 613-619, CA, June

1991.

[28] Ebeling, Carl; Mcmurchie, Larry; Hauck, Scott A; Burns, Steven, "Placement

and Routing Tools for the Triptych FPGA", IEEE Trans. On Very Large Scale

Integration (VLSI) Systems v3 114, pp. 473-482, Dec. 1995.

[29] Hoffman, Stephen C, "Automatic Gate Allocation Placement and Routing",

Proc of a Symp on Computer-Aided Design of Digital Electron Circuits and

Syst, Amsterdam, Neth, pp. 645-642, Nov 1978-1979

[30] Opitz, Frank Voelker, "Aulis-Automatic Placement and Routing of Date

Array" Circuit Theory and Design, Proceedings of the rJh European

Conference, pp. 331-337, 1983.

98

[31] Kelly, John, "Placement and Routing Techniques for Gate Arrays", New

Electron vl8 115, p47-48, March 5, 1985.

[32] Lauther. Ulrich, "Overview of Placement and Routing Techniques", IEEE

Electron Devices Soc, New York, NY, pp. 615-620, 1987.

[33] Chrzanowska-Jeske, Malgorzata, "Regular Repesentation for Mapping to Fine

Grain, Locally-Connected FPGAs", IEEE International Symposium 011

Circuits and Systems, pp. 2749-2752, ISCAS, June 9-12, 1997.

[34] Swartz, William, "New Algorithms for the Placement and Routing of Macro

Cells ", IEEE International Conference 011 Computer-Aided Design., ICCAD-

90, pp. 336-339, Nov 11-15, 1990

[35] Brown, Stephen; Rose, Jonathan and Vranesic Zvonko, "A Detailed Router for

Field-Programmable Gate Arrays", IEEE Transactions 011 Computer-Aided

Design of Integrated Circuits and Systems, Vol. 11, pp. 620-628, May 1992.

[36] Wu, Yu-Liang and Marek-Sadowska, Malgorzata, "Routing for Array-Type

FPGA's", IEEE Transactions 011 Computer-Aided Design of Integrated

Circuits and Systems, Vol. 16, No. 5, pp. 506-516, May 1997.

[37] Alexander, Michael and Robins Gabriel, "New Performance-Driven FPGA

Routing Algorithms", IEEE Transactions 011 Computer-Aided Design. of

Integrated Circuits and Systems, Vol. 15, No. 12, pp. 1505-1515, December

1996.

[38] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, "Provably

Good Performance-Driven Global Routing", IEEE Transactions 011 Computer

Aided Design of Integrated Circuits and Systems, Vol. 11, pp. 739-752, 1992.

[39] J. Cong, K. S. Leung, and D. Zhou, "Performance-Driven Interconnection

Design Based on Distributed RC Delay Model", in Proc. A CM/IEEE Design

Automation Conj, Dallas, TX, pp. 314-318, June 1993.

[40] E. W. Dijkstra, A Note on Two Problems in Connection with Graphs,

Numerische Mathematik, Vol. 1, pp. 269-271, 1959.

99

[41] S. Kirkpatrick, C. Gelatt and M. Vecchi, "Optimization by Simulated

Annealing", IBM Computer Science/Engineering Technology Watson Res.

Center, Yorktown Heights, NY, Tech. Rep., 1982.

[42] T. Gao, P. M. Vaidya, and C. L. Liu, "A New Performance Driven Placement

Algorithm", in Proc. ICCAD, pp. 44-47, 1991.

[43] Chrzanowska-Jeske, Malgorzata and Xu, Yang, "Optimized Embedding of an

Incomplete Binary Tree in a Two-Dimensional Array of Programmable Logic

Blocks", 39h IEEE Midwest Symposium on Circuits and Systems Proceedings,

pp. 353-356, 1996.

[44] F. T. Leighton, "Introduction to Parallel Algorithms and Architectures"

Morgon Kaufmann Publishers, Inc., San Mateo, CA, 1992.

100

APPENDIX.

Comparison of our approach Vs MSBT

101

- ------~--------~-------~--------~--------~-------~--------~-------~----
' .------, I .------, I .------, I ,------, I ,---, I I I
I I I I I I I I

I I I
I I I R R R C d
I I I I '---'I __ _, I ----'I ___ _, I I I I

_______ J ________ L _______ J ________ i _______ L ______ J ________ L _______ J ___ _

I .------, I .------, I .----, I .------, I ,__.__, I I I
I I I I I I I I

R e b l l e l l l
I I I I I I ,.._ _ _, I __ _, I ._ _ _, I .__,__, I ,.._ _ _, I I I

---- ----1--------t--- ---:--------+--- ----l-------- ➔--------~--------1----
1 I _ _.___, I I .--------. I I I I

: : C : : f : : : :
I I I I I I I I
I I ._ _ _, I I ._ _ _. I I I I
I I I I I I I I ---- ---,--------r-------,--------T--------r-------,--------r-------,----
1 I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I ---- ---,--------r-------,--------T--------r-------,--------r-------,----
1 --- I I I I I I I

I d : : : : : : :
I I I I I I I
I I I I I I I

I I I I I I I I ---- ---~---- ---~-------4--------T--------r-------;--------~-------~----I _.....___ I I I I I I I

b
I I I I I I I I
I f I I I I I I I
I I I I I I I I
I ._ _ _, I I I I I I I
I I I I I I I I

--------~--------~-------~--------+--------~-------➔--------~-------~----' I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I --------~--------~--------1--------~--------~-------~--------~-------~----I I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I MSBT
I I I I I I I
I I I I I I I , ________ J ________ L _______ J ________ i ________ L _______ J ________ L _______ J ___ _

--------,-------,--------,-------- - ------r-------,--------r-------,----
1 .------, I .------, I .------, I .----, I --- I I

l I
c

I
b a

I
c

I
d l CBT

I I
I ._ _ _, ._-.--_. I ._ _ _. '--.--' ._ _ _, I
I I I I I I I I --------~---- --;--------,---- ---T--------r--- ---;--- ----~-------~----
! .--......_--, I ,------, I ,--'--, I ,---, I ,___.__, I _ _.__ I I
I I I I I I I I
1 d 1 1 1 e , ,
I I I I I I
I._ _ _, .__._.I,..__,..._, ,..__,__, 1.__._,1 ._ _ _,I I
I I I I I I I I

--------~---- --➔---- ---~---- --. +--- ----~--- ---➔--------~-------~----
' _ _.___, I .--'-----, I .-------. I _ _....__, I .--'-----, I I I
I I I I I I I I

: : f : : : f : : :
I .__ _ ___, I ,.._ _ _, I ,.._ _ _, I ,.._ _ _, I ._ _ _, I I I
I I I I I I I I --------~-------~--------~--------~--------~-------~--------~-------~----1 I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I ________ J _______ J ________ J ________ i ________ L _______ J ________ L _______ J ___ _

I I I I I I I I
I I
I I
I I
I I
I I

---------!-------➔-
' I I I
I I
I I
I I
I I --------,-------,-
' I I I

testrf.~lif 1 I-
I
I
I
I

Algorithm As T TB

MSBT 36(6x6) 20 11
CBTMap 18(3x6) 17 9

Input: a,b,c,d,e,f
T: number cells used in the mapping array.
TB: number buses are used
AS: mapping size

I I I I I I

I I I I I I I I

~

--------~-------~--------~--------~--------~-------~--------~-------~----

102

--------~--------~-------~--------~--------~-------J--------~-------~----1 I .-----, I .-----, I ..------, I ..----, I I I
I I I I I I I I

1 1 R g R SW : : :
I I I I I
I '---' I ,_ _ _. I ,_ __ _. I ._ _ _. I ._--,-_. I I I _______ J ________ L _______ J _______ i ________ L ______ J ________ L _______ J ___ _

I ..------, I .---, I ..------. I I ,-_.__, I I I
I I I I I I I I

R : : : f : : :
I I I I I I

I .,_ _ _. I ._--,-_. I ,_"""T""_. I I ,_ _ _. I I I

---- ---,--------t--- ---: --- ---+--------r-------➔--------1--------,----
, ,---, I .,_.....___, I .,__._--, I .---. I I I I

g : : g : : : :
I I I I I I

I ._--,-_.1._ _ _., '--.--' '---'I I I I
I I I I I I I I ---- ---,---- ---r-------,---- ---T--------r-------,--------r-------,----
1 ,-_.__, I I .--'----, I I I I I

: Ec.c : : : : : : :
I I I I I I I I
I ._ _ _. I I '--.--' I I I I I
I I I I I I I I ---- ---,--------r--------,---- ---T--------r-------,--------r-------,----
1 I I .,__._--, I I I I I

: : : Ec.f : : : : :
I I I I I I I I
I I I ,_ _ _, I I I I I
I I I I I I I I ---- ---4--------~-------,--------~--------r-------➔--------~-------4----1 I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I ---- ---~--------+-------~--------+--------~-------➔--------~-------~----' I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I ---- ---~--------~-------~--------~--------~-------J--------~-------~----1 I I I I I I I
I I I I I I I

Ec.g : I : : : I : MSBT
I I I I I I I
I I I I I I I a ________ J ________ L _______ J ________ i ________ L _______ J ________ L _______ J ___ _

--------,-------,---------,-------- --r-------,--------r-------,----
1 ,---, ,---, .-----, I .-----, I .----... I ,---, I

: SW e d a
I

g
I

e
I

SW I
I I
I ._-.-_, ._-.-_. ,_.....,.._. ._ _ _. ._ _ _. ._--,-_, ._--,-_, I
I I I I --------4--- - -- - - ---~--------r-------➔--- - - ---4----
1 .----. ..------. ,--....... -, I I .-----, ,-__._--, ..-----. I

I : : b :
I I I I
I ,__ _ _. ,__ __ _, ._ __ _. I I ._--,-_. ,__ __ _. ._ __ _. I
I I I I ----------~--- - - - -- --~--------+--- -- - -- - ---~--
1 .----. .------. ...----. I I ,-_._-, .-----. .-----. I

: Ec.f : : Ec.f f :
I I I I
I ._--,-_. ,__--,-__. ._ _ __. I I ._ _ _, ,__ __ _. ,__ _ _. I
I I I I --------~--- - -- --~--------~--------~-------J--- ---~-------~----' ,__.__, .------. I I I I ,___.___,I I
I I I I I I I
I Ec.c I I I I I I
I I I I I I I
I I I I I '--.--'I I I'--,-_. ._ _ __. I I I I I I ________ J _____ J ________ J ________ i ________ L _______ J ______ L _______ J ___ _

I .-----. I I I I I ,___.___, I I
I I I I I I I

: Ec.g : : : : : g : CDT
I I I I I I I
I '---'I I I I I ._ _ _. I

--------,-------➔
I I I I I I

I I
I I
I I

ALGORITHM As T TB
I I
I I
I I

MSBT 48(8x6) 24 16
--------,-------,-

' I I I
CBTMap 35(5x7) 24 10

I I
I I

testrf.b~if 2 ,-

Input: a,b,c,d,e,f,g
T: number cells used in the mapping array.
TB: number buses are used

' I I I ________ J _______ J AS: mapping size

103

- ------~--------~--------1--------·--------~-------J--------~-------~----: .---, : .---, : ,---, : --- : .----, : : :
a R I R I R d f l l l

I I I I I I ,_ _ _. I ,_ _ _. I ,_ _ _. I ._-,-_. I __ _. I I I
_______ J ________ L _______ J ________ i _______ L _______ J ________ L _______ J ___ _

: : : : ,_ ---, : : : :
I I I I Ec.e I I I I
I I I I I I I I
I I I I I I I I
I I I I ,_ _ _. I I I I

---- ---~--------t------~ ~-------+--------~-------➔--------~-------~----
' I .---, I I I I I I

I I I I I I
I e I I I I I I
I I I I I I I
I ,_ __ _. I I I I I I

I I I I I I I I ---,--------r--- ---,--------T--------r-------,--------r-------,----
,__.__, I I .--.---, I .---. I I I I I

: : Ec.e : : : l :
I I I I I I I
I I._-,-_. ,_ _ _,I I I I I
I I I I I I I I ---- ---,--------r--- ---,--------T--------,-------,--------r-------,----
1 .---, I .-----, I I I I I I
1

b : c : : : : : :
I I I I I I I

I : ._ _ _. : : : : : : ---- ---4--------~-------4--------T--------r-------~--------~-------4----I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I

---~--------~-------~--------+--------~-------➔--------~-------~----' I I I I I I I
I I I I I I I I

a I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I --------~--------~-------~--------·--------~-------J--------~-------~----1 I I I I I I I
I I I I I I I

l l l l l l l MSBT
I I I I I I I
I I I I I I I ; ________ J ________ L _______ J ________ i ________ L _______ J ________ L _______ J ___ _

--------,---------,------,--------T-------- --,--------r-------,----
1 .----. I.---, I .---, I ,---, I ,---, I ,-----, I
1

f
I

SW
I

c
I

SW a
I

d
I f l

I I
d

I I : ,__ _ _. ,__ _ _. I_ ___ _. I_ _ _, :

---- ----r------4---- ---T--------r-------~--- ---~-------4----1 I ,--.---, I I I ,__.___, I I

l l l l l Ec.e l l
I I I I I I I

I : :-.-r-__.: : :---: : ---- ---~---- ----~------~--- ---+--------~-------➔--------~-------~----
'II I I I 18 I I I I I I I

: : l : l : CBT
: _ _.: :----,---: : : --------~---------~------~---- ---·--------~-------J--------~-------~----: : : .-----, : : : : :
: : : C : : : : :
I I I I I I I I
I I I .__ _ _. I I I I I ________ J _________ L ______ J ________ i ________ L _______ J ________ L _______ J ___ _

I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I

--------1---------
1
I
I
I
I
I --------,---------
' I
I
I

....___te_st_rr._.h_I..-~-3--~--

' I

ALGORITHM AS T
MSBT 42(7x6) 19
CBTMap 32(4x8) 17

Input: a,b,c,d,e,f
T: number cells used in the mapping array .
TB: number buses are used
AS: mapping size

TB
11
8

________ J _________ L!:::::=============================~

104

--------~--------~-------~--------•--------~-------~--------~-------~----: --- : .----, : --- : --- : --- : --- : :
a R R R e c el l

I I
I I I I I I I I _______ J ________ ~ _______ J ________ i ___ ----L--- ___ J ________ L _______ J ___ _

: --- : ,------, : .---- : .----- : .-----. : : :
R R l : d l l l

I I I I I
I ,..._ _ _, I ,..._ _ _, I ._-,-_. I ._-,-_. I ,..._ _ _, I I I

---- ----1--------t-------:---- ---+--- ----l--------➔--------~--------1----
1 I I I I I I I

1 R d l : : : : :
I I I I I I I
I.,__ _ __. ,__--r-__. I,__ _ __. I,__ _ __. I I I I
I I I I I I I I ---- ---,--------r--- ---,--------T--------r-------,--------r-------,----
1 ,---, I .-----. I I I I I I

a l Ec.e l : l l l l
I I I I I I I
I ._ _ __. I I I I I I

I I I I I I I I ---- ---,---- ---r-------,--------T--------r-------,--------r-------,----
1 .-----. I I I I I I I

b l Ec.d l l l l l l l
I I I I I I I I : ._ _ _. : : : : : : :

--------4--------~---------i--------T--------~------- ➔--------r-------4----I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I

--------~--------+-------~--------+--------~-------➔--------~-------~----' I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I

--------1--------t-------~--------f--------~-------1--------n MSBT r-
1 I I I I I I~-----.--'·
I I I I I I I
I I I I I I I
I I I I I I I I ________ J ________ ~ _______ J_ _______ i ________ L _______ J ________ L _______ J ___ _

--------,--------r-------,-------- --r-------,--------r-------,----
1 .----.1.----.1 .---, l,---,1.----.1.----.1
I I I I I I

c e c a e c e l Cn

I : '---.----' I '----r---' : .__ _ _, I .__ __ __. I '---r---' I ._ _ _, :

---4---- ---r--- ---~---- ---T--------~--- ---➔--- ----r-------4----
b

1 ,__._-, I ,-_.__, I ,__.__-, I I ,__._-, I ,-_.___, I I

: : l l l l d l l
I I I I I I I I : ._ __ ___, : ---- : ---- : :_ __ ___, :_ _ ___, : :

----------~--- ---4---- ---+--- ---~--------+--- ----~-------➔--------~--
' ,__._-, I .------. I .------. I I ,__._-. I I I

l : l Ec .. a l l Ec.f l l l
I I I I I I I I
I ,__ _ __. I ,__ _ __. I ,__ _ __. I I ,__ _ __. I I I

--------1--------t-------i--------f--------~-------1--------n CDT 1--
, I I I I I I~--------.--'·
I I I I I I I I
I I I I I I I I
I I I I I I I I ________ J ________ ~ _______ J ________ i ________ L _______ J ________ L _______ J ___ _

I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I

---------1--------t
I I ALGORITHM AS T TB
I I
I I
I I MSBT 35(5x7) 23 12
I I

--------i--------t CBTMap 24(3x8) 18 9
I I
I I
I I Input: a,b,c,d,e,f
I I

testrf.b~if 4 It
I '
I

T: number cells used in the mapping array.
TB: number buses are used

~

AS: mapping size
I --------~---------

	Routing, Driven Placement for ATMEL 6000 Architecture FPGAs
	Let us know how access to this document benefits you.
	Recommended Citation

	Routing, Driven Placement for ATMEL 6000 Architecture FPGAs

