
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2019-09

ERROR CORRECTION CODE-BASED
EMBEDDING IN ADAPTIVE RATE WIRELESS
COMMUNICATION SYSTEMS

Harley, Peter M. B.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/70984

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

ERROR CORRECTION CODE-BASED EMBEDDING
IN ADAPTIVE RATE WIRELESS COMMUNICATION

SYSTEMS

by

Peter M. B. Harley

September 2019

Dissertation Supervisors: John C. McEachen
 Murali Tummala

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2019 3. REPORT TYPE AND DATES COVERED
 Dissertation

 4. TITLE AND SUBTITLE
ERROR CORRECTION CODE-BASED EMBEDDING IN ADAPTIVE RATE
WIRELESS COMMUNICATION SYSTEMS

 5. FUNDING NUMBERS

 6. AUTHOR(S) Peter M. B. Harley

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 In this dissertation, we investigated the methods for development of embedded channels within error
correction mechanisms utilized to support adaptive rate communication systems. We developed an error
correction code-based embedding scheme suitable for application in modern wireless data communication
standards. We specifically implemented the scheme for both low-density parity check block codes and
binary convolutional codes. While error correction code-based information hiding has been previously
presented in literature, we sought to take advantage of the fact that these wireless systems have the ability to
change their modulation and coding rates in response to changing channel conditions. We utilized this
functionality to incorporate knowledge of the channel state into the scheme, which led to an increase in
embedding capacity. We conducted extensive simulations to establish the performance of our embedding
methodologies. Results from these simulations enabled the development of models to characterize the
behavior of the embedded channels and identify sources of distortion in the underlying communication
system. Finally, we developed expressions to define limitations on the capacity of these channels subject to
a variety of constraints, including the selected modulation type and coding rate of the communication
system, the current channel state, and the specific embedding implementation.

 14. SUBJECT TERMS
covert communications, information hiding, forward error correction, modulation and coding
schemes, adaptive rate wireless communication systems, wireless local area networks,
embedding, IEEE 802.11ad, directional multi-Gigabit (DMG), IEEE 802.11ac, very high
throughput (VHT), low-density parity-check codes, convolutional codes

 15. NUMBER OF
PAGES
 167
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

ERROR CORRECTION CODE-BASED EMBEDDING IN ADAPTIVE RATE
WIRELESS COMMUNICATION SYSTEMS

Peter M. B. Harley
Commander, United States Navy
BS, U.S. Naval Academy, 2003

MS, Naval Postgraduate School, 2010

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2019

Approved by: John C. McEachen Murali Tummala
 Department of Electrical Department of Electrical and
 and Computer Engineering Computer Engineering
 Dissertation Supervisor and Chair Dissertation Supervisor

 David R. Canright Frank E. Kragh
 Department of Department of Electrical
 Applied Mathematics and Computer Engineering

 John D. Roth
 Department of Electronic Systems

Engineering and Applied
Mathematic Programs Office

Approved by: Douglas J. Fouts
 Chair, Department of Electrical and Computer Engineering

 Orrin D. Moses
 Vice Provost of Academic Affairs

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 In this dissertation, we investigated the methods for development of embedded

channels within error correction mechanisms utilized to support adaptive rate

communication systems. We developed an error correction code-based embedding

scheme suitable for application in modern wireless data communication standards. We

specifically implemented the scheme for both low-density parity check block codes and

binary convolutional codes. While error correction code-based information hiding has

been previously presented in literature, we sought to take advantage of the fact that these

wireless systems have the ability to change their modulation and coding rates in response

to changing channel conditions. We utilized this functionality to incorporate knowledge

of the channel state into the scheme, which led to an increase in embedding capacity.

We conducted extensive simulations to establish the performance of our embedding

methodologies. Results from these simulations enabled the development of models to

characterize the behavior of the embedded channels and identify sources of distortion in

the underlying communication system. Finally, we developed expressions to define

limitations on the capacity of these channels subject to a variety of constraints, including

the selected modulation type and coding rate of the communication system, the current

channel state, and the specific embedding implementation.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Research Objective . 3
1.3 Related Work . 3
1.4 Outline . 8

2 Modern Wireless Communication Systems 11
2.1 Modulation and Coding Schemes 11
2.2 Modern Wireless Local Area Network Standards 13
2.3 Relevant Error Correction Codes 16
2.4 Log-Likelihood Decoding of Low-Density Parity Check Codes 22
2.5 Summary . 24

3 Embedded Channels in Adaptive Rate Communication Systems 25
3.1 Embedded Channels in Communication Systems 25
3.2 Preliminary Insight . 27
3.3 MCS-based Embedding Considerations 30
3.4 Adaptive Rate Embedded Channel Model. 34
3.5 Summary . 36

4 Error Correction-Based Embedding in Low-Density Parity Check Codes 37
4.1 Embedding with IEEE 802.11ad Directional Multi-Gigabit WLAN 37
4.2 Simulation Development . 40
4.3 Forward Error Correction of Embedded Message. 43
4.4 Improved Estimates of Embedding Capacity 48
4.5 Embedding Distortion . 52
4.6 Capacity Refinements . 54
4.7 Implementation of Multipath Fading Channel 61
4.8 Summary . 62

vii

5 Error Correction-Based Embedding in Convolutional Codes 63
5.1 Adaptive Rate Embedding Model 64
5.2 Convolutional Code Embedding 69
5.3 Forward Error Correction of Embedded Message. 75
5.4 Embedding Capacity Estimation 78
5.5 Embedding within IEEE 802.11ac VHT 79
5.6 Implementation of TGac Fading Channel 83
5.7 Summary . 84

6 Embedding Simulation Results 85
6.1 Embedding in LDPC Codes . 85
6.2 Convolutional Code Embedding 97
6.3 Embedding under Multipath Fading Channels 105
6.4 Summary . 110

7 Conclusion 111
7.1 Significant Contributions . 111
7.2 Future Work . 113

Appendix: Code Repository 117
A.1 Low-Density Parity Check Code Embedding 117
A.2 Variable Rate Embedding Analysis Tools 128
A.3 Convolutional Code Embedding 130

List of References 135

Initial Distribution List 143

viii

List of Figures

Figure 2.1 Packet error ratio versus SNR performance curves for Single Carrier
IEEE 802.11ad DMGmodulation and coding schemes; performance
average of 10000 4096-octet PSDU over AWGN channel. 12

Figure 2.2 DMG transmit and receive process. Source: [5], © 2019 IEEE. . 14

Figure 2.3 DMG MAC detail: (a) block diagram of MAC architecture and (b)
channel access and detail of beacon interval. Adapted from [44]. 15

Figure 2.4 Notional LDPC code parity check matrix and associated Tanner
graph. Adapted from [58]. 18

Figure 2.5 Rate 1/2 convolutional encoder specified by generators g0 = 133
and g1 = 171, with constraint length, K = 7. Adapted from [44]. 19

Figure 2.6 Puncturing process for convolutional codes. Adapted from [44]. . 20

Figure 2.7 Decode process for R = 2/3 punctured convolutional code with
generators g0 = 3 and g1 = 7. Adapted from [53]. 20

Figure 3.1 Classification of information hiding in communication networks.
Adapted from [1]. 26

Figure 3.2 Generalized information hiding model of a communication system
as it relates to the Shannon capacity as well as the normal operation
of the system . 27

Figure 3.3 Baseline covert channel capacity of modulation and coding scheme-
based information-hiding technique. Source: [5], © 2019 IEEE. . 29

Figure 3.4 Throughput of communication system with lower MCS intentionally
selected. Source: [5], © 2019 IEEE. 29

Figure 3.5 Increased covert channel capacity of modulation and coding scheme-
based information-hiding technique with lower MCS selected.
Source: [5], © 2019 IEEE. 30

Figure 3.6 Block diagram of notional decremented MCS implementation . . 32

ix

Figure 3.7 Block diagram of notional variable embedding implementation . 33

Figure 3.8 Rate adaptive embedding model, packet error ratio versus SNR . 35

Figure 4.1 Major components of the embedding process within 802.11ad SC
PHY. Adapted from [46]. 38

Figure 4.2 PSDU payload for simulated 802.11ad PPDU; 128 × 256 pixel
checkerboard bitmap: (a) transmitted image and (b) received im-
age with uncorrectable errors. 41

Figure 4.3 Simulated transmission of single 4096-octet PSDU in 802.11adMCS
6 over AWGN channel: (a) received embedded payload with er-
rors, no FEC and (b) received embedded payload with no errors,
LDPC(5/8) FEC. 44

Figure 4.4 Comparison of embedding method for FEC-protected hidden mes-
sage: (a) standard embedding method and (b) interleaved embedding
method. Source: [5], © 2019 IEEE. 47

Figure 4.5 Variable rate embedding trials, DMG PHY simulation under AWGN
channel. Results for MCS 6, 100000 trials per SNR, 1 to 120 em-
bedded bits per LDPC codeword. 49

Figure 4.6 Variable rate embedding trials, DMG PHY simulation under AWGN
channel. Estimated SNR requirement to achieve 1% PER for each
embedding rate. MCS 6, 100000 trials per SNR, 1 to 120 embedded
bits per LDPC codeword. 50

Figure 4.7 Estimated embedding capacity at a given SNRwhile maintaining 1%
PER. DMG PHY simulation under AWGN channel, MCS 6, 100000
PSDU per SNR point, 1 to 120 embedded bits per LDPC codeword. 50

Figure 4.8 Estimated embedding capacity at a given SNR while maintaining
1% PER with associated line of regression. DMG PHY simulation
under AWGN channel, MCS 6, 100000 PSDU per SNR point, 1 to
95 embedded bits per LDPC codeword. 51

Figure 4.9 Distortion regions for embedding in adaptive rate communication
system . 54

Figure 4.10 Visualization of practical embedding region subject to additional
constraints . 56

x

Figure 4.11 Comparison of embedding rates for DMG PHY simulation under
AWGN channel at various packet error ratio thresholds. MCS 6,
100000 PSDU per SNR, 1 to 95 embedded bits per LDPC codeword. 57

Figure 5.1 Major components of generalized convolutional code-based embed-
ding process . 64

Figure 5.2 Probability of bit error upper union bound for BSPK over AWGN
with R = 1/2 convolutional code (K = 7, g0 = 133, g1 = 171) with
punctured rates of R = 2/3, R = 3/4, and R = 5/6 68

Figure 5.3 Performance of adaptive rate model MCS indices compared to theo-
retical limits, BER versus Eb/N0, 100 trials 69

Figure 5.4 Proposed embedding scheme for unpunctured convolutional codes.
Embedding conducted on R = 1/2 code resulting in an equivalent
R = 3/4 rate code. 71

Figure 5.5 Embedding location groups proposed for puncture code rates: (a)
Requiv = 10/14 embedding positions and (b) Requiv = 12/15 embed-
ding positions. 74

Figure 5.6 Evaluation of embedding location for punctured convolutional codes;
BPSK modulation, 100 trials over AWGN: (a) Requiv = 10/14 em-
bedding on base R = 2/3 code and (b) Requiv = 12/15 embedding
on base R = 3/4 code. 74

Figure 5.7 Proposed embedding scheme for punctured convolutional codes con-
ducted on R = 3/4 code resulting in Requiv = 12/15 code 75

Figure 5.8 PER versus SNR performance curves for 8×8MIMO IEEE 802.11ac
VHT modulation and coding schemes with BW of 80 MHz; per-
formance average of 10000 trials over AWGN channel with single
4096-octet A-MPDU. 82

Figure 6.1 Packet error ratio of underlying communication channel; MCS 9, no
FEC, 10000 PSDU per SNR. DMG PHY simulation under AWGN
channel. Source: [5], © 2019 IEEE. 87

Figure 6.2 Bit error ratio for received hidden message; MCS 9, no FEC, 10000
PSDU per SNR. DMG PHY simulation under AWGN channel.
Source: [5], © 2019 IEEE. 88

xi

Figure 6.3 Bit error ratio for received hidden message; MCS 9, LDPC(7/8)
FEC, 10000 PSDU per SNR. DMG PHY simulation under AWGN
channel. Source: [5], © 2019 IEEE. 90

Figure 6.4 Packet error ratio of underlying communication channel; MCS 9with
interleaved embedding, LDPC(7/8) FEC, 10000 PSDU per SNR.
DMG PHY simulation under AWGN channel. Source: [5], © 2019
IEEE. 91

Figure 6.5 Bit error ratio for received hidden message; MCS 9 with interleaved
embedding, LDPC(7/8) FEC, 10000 PSDU per SNR. DMG PHY
simulation under AWGN channel. Source: [5], © 2019 IEEE. . . 92

Figure 6.6 Embedded bits-per-codeword versus SNR for all 802.11ad π/2-
QPSK modulated MCS indices; embedding conducted in first n
parity bits of each LDPC codeword 93

Figure 6.7 Regression lines of embedded bits per codeword versus SNR for all
802.11ad QPSK modulated MCS 94

Figure 6.8 Comparison of embedding capacity for all 802.11ad π/2-QPSKmod-
ulatedMCS indices; embedding conducted in first n parity bits versus
last n data bits of each LDPC codeword. 96

Figure 6.9 Bit error ratio versus SNR performance curves for punctured embed-
ding implementation, base code rate R = 2/3, ν = 15, and base code
rate R = 3/4, ν = 16. BPSK simulation over AWGN channel, 1200
bits per packet. 98

Figure 6.10 Bit error ratio versus SNR performance curves for variable rate em-
bedding in MCS B; BPSK modulation, R = 2/3 code, AWGN chan-
nel. 99

Figure 6.11 Bit error ratio versus SNR performance curves for variable rate em-
bedding in MCS C; BPSK modulation, R = 3/4 code, AWGN chan-
nel. 99

Figure 6.12 Unpunctured MCS embedding, VHT PHY simulation under AWGN
channel. Results for MCS 1, 10000 PSDU per SNR, 4096-octet A-
MPDU; decoder utilizing MCS 1 standard traceback depth, τ = 30. 101

xii

Figure 6.13 PERperformance comparison based on variations in τ for embedding
trial conducted at MCS 1; 10000 trials per SNR, 4096-octet A-
MPDU: (a) embedding at Requiv =2/3 [νU = 4, bν,U = 1] and (b)
embedding at Requiv=3/4 [νU =6, bν,U =2]. 102

Figure 6.14 Unpunctured MCS embedding, VHT PHY simulation under AWGN
channel. Results for MCS 1, 10000 trials per SNR, 4096-octet
A-MPDU; decoder utilizing optimized traceback depth, τ, for equiv-
alent embed rates. 102

Figure 6.15 Variable rate embedding trials, VHT PHY simulation under AWGN
channel. Results for MCS 5, 100000 trials per SNR, embedding
capacity per 4096-octet A-MPDU. 104

Figure 6.16 Variable rate embedding trials, VHT PHY simulation under AWGN
channel. Results for MCS 6, 100000 trials per SNR, embedding
capacity per 4096-octet A-MPDU. 104

Figure 6.17 Open area hotspot model utilized to simulate 60-GHz DMG multi-
path fading environment . 106

Figure 6.18 Packet error ratio versus SNR embedding trial, DMG PHY simula-
tion over TGaymultipath fading channel. Results forMCS 6, 100000
trials per SNR, 1 to 95 embedded bits per LDPC codeword. . . . 107

Figure 6.19 Estimated embedding capacity at a given SNRwhile maintaining 1%
PER with associated line of regression. DMG PHY simulation over
TGay multipath fading channel, MCS 6, 100000 PSDU per SNR
point, 1 to 95 embedded bits per LDPC codeword. 108

Figure 6.20 Unpunctured MCS embedding, VHT PHY simulation under TGac
channel Model-D, 10m, NLOS. Results for MCS 1, 10000 trials per
SNR, 4096-octet A-MPDU. 109

Figure 6.21 Variable rate embedding trials, VHT PHY simulation under TGac;
Model-D, 10m, NLOS. Results for MCS 5, 10000 trials per SNR,
embedding capacity per 4096-octet A-MPDU. 110

Figure A.1 Structure of PER simulation for 802.11ad-based embedding utilizing
MATLAB WLAN Toolbox . 119

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

List of Tables

Table 2.1 Traceback depth utilized in MATLAB for IEEE 802.11ac BCC de-
coder, K=7 . 21

Table 3.1 Summary of MCS for SC IEEE 802.11ad DMG. Adapted from [44],
[46]. 28

Table 4.1 Average column weight for embedding locations within 802.11ad
LDPC codewords . 40

Table 4.2 Estimated embedding coefficient for IEEE 802.11ad DMG MCS 6 in
AWGN at varying PER thresholds 57

Table 5.1 Code description and weight spectra of IEEE 802.11 binary convolu-
tional code. Adapted from [65]. 65

Table 5.2 Code description and weight spectra of punctured rates of IEEE
802.11 binary convolutional code. Adapted from [80]. 67

Table 5.3 Equivalent puncture rate, Requiv , achieved for appending m-puncture
periods for base code rates of R = 2/3 and R = 3/4; single embedded
bit per block. 73

Table 5.4 Required Eb/N0 for MCS indices to maintain Pp = 0.1; BPSK with
4096-octet PSDU in AWGN. 77

Table 5.5 Estimated upper bound for Pb of embedded data when Pp = 0.1;
BPSK MCS model with 4096-octet PSDU in AWGN. 77

Table 5.6 Number of databits per symbol, number of required symbols, and
associated PSDU length for MCS indices in 802.11ac; 8 × 8 MIMO,
8 spatial streams, BW of 80 MHz and A-MPDU of 4096 octets. . . 81

Table 6.1 Summary of results: DMG, single carrier, QPSK modulation, 4096-
octet PSDU, no FEC . 89

Table 6.2 Predicted embedding rates, measured in bits per LDPC codeword,
compared to simulated results, 802.11ad DMG SC QPSK MCS . . 89

xv

Table 6.3 Summary of results: DMG, single carrier, QPSK modulation, FEC
applied to embedded hidden data. 90

Table 6.4 Summary of results: DMG, single carrier, QPSK modulation, FEC
and interleaving applied to embedded hidden data 92

Table 6.5 Estimated embedding coefficient, r̂E , for 802.11ad (first n Parity Bits) 95

Table 6.6 Estimated embedding coefficient, r̂E , for 802.11ad (last n Data Bits) 96

Table 6.7 Maximum estimated embedding for 802.11ad DMG SC PHY, pre-
sented in bits-per-codeword; embedding conducted in first n parity
bits and last n data bits. 97

Table 6.8 Payload capacity of proposed embedding implementation of 802.11ac,
MCS 1; data capacity in bits-per-PPDU under varying rates of error
protection, REC . 8×8 MIMO, 8 spatial streams, 80-MHz BW, 4096-
octet A-MPDU. 103

Table 6.9 Payload capacity of proposed embedding implementation of 802.11ac,
MCS 5; data capacity in bits-per-PPDU under varying rates of error
protection, REC . 8 × 8 MIMO, 8 spatial streams, 80 MHz BW, 4096
octet A-MPDU. 105

Table 6.10 Payload capacity of proposed embedding implementation of 802.11ac,
MCS 6; data capacity in bits-per-PPDU under varying rates of error
protection, REC . 8 × 8 MIMO, 8 spatial streams, 80 MHz BW, 4096
octet A-MPDU. 105

xvi

List of Acronyms and Abbreviations

A-MPDU aggregate medium access control (MAC) Protocol Data Unit (MPDU)

AL-FEC application layer-forward error correction (FEC)

ARQ automatic repeat request

ASCII American Standard Code for Information Interchange

AWGN additive white Gaussian noise

BCC binary convolutional code

BCJR Bahl-Cocke-Jelinek-Raviv

BER bit error ratio

BPSK binary phase-shift keying

BI beacon interval

BW bandwidth

C2 command and control

CBAP contention based access period

CEF channel estimation field

CSMA/CA carrier-sense multiple access with collision avoidance

dB decibel

DCF distributed coordination function

DMG directional multi-gigabit

DOCSIS data over cable service interface specification

xvii

DVB-S digital video broadcasting – satellite

EDMG enhanced directional multi-gigabit

FEC forward error correction

FSK frequency-shift keying

Gbps gigabits-per-second

GHz gigaHertz

GI guard interval

HT high throughput

IEEE Institute of Electrical and Electronics Engineers

IP internet protocol

LDGM low-density generator matrix

LDPC low-density parity check

LLR log-likelihood ratio

LOS line-of-sight

LTE long term evolution

MAC medium access control

Mbps megabits-per-second

MCS modulation and coding scheme

MFB modulation and coding scheme (MCS) feedback

MHz megaHertz

MIMO multiple-input and multiple-output

mmWave millimeter wave

xviii

MPDU MAC Protocol Data Unit

MRQ MCS request

MU-MIMO multi-user multiple-input and multiple-output (MIMO)

NLOS non-line-of-sight

NR new radio

ns nanoseconds

OFDM orthogonal frequency-division multiplexing

OSI open systems interconnection

PER packet error ratio

PHY physical layer

PPDU physical layer (PHY) protocol data unit

PSDU PHY service data unit

PSK phase-shift keying

QAM quadrature amplitude modulation

QC-LDPC quasi-cyclic LDPC

QPSK quadrature phase-shift keying

RCPC rate-compatible punctured codes

rms root mean squared

RS Reed-Solomon

SC single carrier

SDR software defined radio

SISO single-input and single-output

xix

SU-SISO single user single-input and single-output (SISO)

SNR signal-to-noise ratio

SP service period

STA station

STF short training field

TGac Task Group ac

TGad Task Group ad

TGay Task Group ay

TGn Task Group n

URA uniform rectangular array

VHT very-high throughput

Wi-Fi wireless-fidelity

WiMAX Worldwide Interoperability for Microwave Access

WLAN wireless local area network

xx

Acknowledgments

I want to express my sincere appreciation to my advisors, Professor Murali Tummala
and Professor John McEachen, for their patience and guidance over the past three years.
This process has been an incredible learning experience, and the greatest challenge of my
academic career; thank you for keeping me on the right path.

I am also grateful to my peers in the doctoral cohort for their feedback, encouragement,
and at times, commiseration. I continue to be inspired by your insightful research and look
forward to crossing paths once we all make it back to the Fleet.

Finally, and most importantly, I would like to thank my wife, Erin, and my children, Eloise
and Finnian, for their unwavering support and understanding during this journey. I could
not have made it without you.

xxi

THIS PAGE INTENTIONALLY LEFT BLANK

xxii

CHAPTER 1:
Introduction

Information-hiding techniques seek to exploit the unused or underutilized capacity within a
given system and then pass embedded data from source to destination using available data
carriers [1]. Covert channels describe communication paths that have been implemented
through the use of these information-hiding techniques. As communications technology has
advanced, so too has the field of information hiding. While the introduction of networked
computers, digital media, and mobile communication systems have significantly increased
both the opportunities and capacity for passing hidden messages, the fundamental premise
of using data carriers to transport hidden messages has remained relatively unchanged.
Limiting the amount of degradation caused by the embedding processminimizes the adverse
impacts on the underlying data carrier and reduces the detectability of the embedded channel.

In recent years, a great deal of the focus has been on the development of covert channels
within networked communication systems. Some information-hiding techniques, to include
digital media steganography, exist entirely within the application layer and are agnostic to
the underlying communication systems and protocols [2]. Other efforts have examined
the potential to exploit available capacity across the open systems interconnection (OSI)
reference model [3]. As wireless and mobile communications devices now account for
a majority of all internet protocol (IP) traffic [4], there has been increased interest in
the development of information-hiding techniques that exploit vulnerabilities within these
systems [5]. In our work, we elected to investigate the opportunities to develop and
evaluate information embedding within data carriers based on modern wireless local area
network (WLAN) standards.1

1Portions of this chapter were previously published by IEEE [5]. Reprinted, with permission, from P. M.
B. Harley, M. Tummala and J. C. McEachen, “High-Throughput Covert Channels in Adaptive Rate Wireless
Communication Systems,” 2019 International Conference on Electronics, Information, and Communication
(ICEIC), Auckland, New Zealand, 2019, pp. 1-7. This publication is a work of the U.S. government as defined
in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United
States. IEEE will claim and protect its copyright in international jurisdictions where permission from IEEE
must be obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

1

1.1 Motivation
Our interest in the study of embedded channels was originally focused around their potential
use in cyber security applications. Information-hiding techniques utilize legitimate carriers
to transport hidden messages and provide some measure of anonymity and security [5].
Recently, there has been increased recognition of the potential for these techniques to support
cyber attacks and cyber crime [6]. When conducting cyber operations, the ability to deliver
payloads, perform command and control (C2) of malware, and recover specified content
relies upon the development of communication paths that evade cyber defenses [5]. A
variety of techniques, to include anonymization and encryption, have been used extensively
to support cyber operations [6], but these techniques still fail to completely mask the fact of
an attack. Covert channels not only obscure the content of these vital communication links,
but by also making the channels difficult to detect, they vastly complicate the defensive
efforts of computer security and forensic professionals [7], [8].

In our initial survey, we found several information-hiding techniques that were able to
develop low data rate covert channels that had little to no impact on the underlying commu-
nication system, including embedding in protocol headers [9] or using timing channels [10],
[11]. We also found techniques that achieved very high capacities through the use of specific
cover objects, but these objects were permanently distorted by the embedding process [12]–
[14]. In our work, we sought to develop a technique for wireless communication networks
that could deliver high data rates with low distortion.

While our focus was initially on the covert applications of information-hiding tech-
niques, it quickly became apparent that they are widely utilized in support of a variety of
legitimate applications to include watermarking digital media to assist with digital rights
management (DRM) [15], network flow analysis to include tracing the source of denial-of-
service attacks [16], [17], and the subversion of attempted internet censorship [18], [19].
One of the most unique uses of information-hiding techniques involves the provisioning
of security and authentication features to applications or protocols that did not originally
include that type of protection [20].

2

1.2 Research Objective
In this dissertation, we focused on exploiting redundant capacity available in wireless
networks to support a high-throughput embedded communications channel. We developed
an error correction code-based embedding scheme suitable for application in adaptive data
rate communication systems, such as those based on modern IEEE WLAN standards. We
specifically implemented the scheme for low-density parity check (LDPC) block codes as
well as a widely utilized binary convolutional code (BCC). While error correction code-
based information hiding has been previously presented in literature, we sought to take
advantage of the fact that these standards have the ability to change their modulation and
coding rates in response to changing channel conditions. We utilized this functionality to
incorporate knowledge of the channel state into the scheme, which led to an increase in the
potential embedding capacity.

The core of our work focused on the implementation and testing of these embedding
techniques via a software-enabled simulation testbed. Once the embedding techniques
had been fully implemented, we conducted extensive simulations to investigate the perfor-
mance of our novel approach while also developing models and analytical expressions to
characterize their behavior and limitations.

1.3 Related Work
Our initial research into covert communication methods took a broad look at the field to
include traditional stenographic techniques, covert channels developed at various layers of
existing communications protocols, and even out-of-band communications, which are often
utilized to bridge air-gapped computer networks by exploiting thermal, acoustic, and optical
signatures. From the outset, we have viewed covert communications as a channel embedded
within an existing communication system or data carrier. This perspective developed into
two primary insights that have focused our view of the research area. The first is that the
embedding of a hidden payload in an existing communications channel is analogous to the
addition of another noise source. The second is that the capacity of the covert channel is
limited by the amount of distortion that the underlying communication system can accept.

Based on these observations, there are two methods that would enable the underlying
communication system to carry covert data; we could either increase the capacity of the

3

channel, thereby providing additional space for the embedded information, or decrease
the robustness of the channel, utilizing some of that available capacity to store the covert
payload. The following areas of related work supported our development of error correction
code-based embedding in wireless communication systems.

1.3.1 Steganography
One of the earliest terms used to describe information hiding was steganography, which
encompasses a wide range of techniques in which a secret message is embedded into a data
carrier or a cover object in such a way that the modification is not noticeable [21]. The
first information-hiding techniques sought to conceal the presence of communications in a
manner that avoided detection by human senses to include sight, touch, or hearing [1].

A general observation from even the earliest information-hiding techniques is that the
selection of the data carrier was as important as the information-hiding methodology. The
more data an object is able to accept without revealing the presence of the secret message,
the more effective it will be as a data carrier. In addition, it is also important that the chosen
data carrier be common enough to not be considered abnormal [1]. In a steganographic
channel, there already exists a non-deterministic cover source that has some measure of
probabilistic variability [22]. Possible covers with this type of random distribution include
digital media, the payload of packets that contain normal network traffic, or physical layer
transmissions that traverse a noisy channel [22].

In modern networked communication systems, a popular high-throughput information-
hiding technique is digital media steganography in which a cover object is subsequently
embeddedwith a designated payload in such amanner that is imperceptible to both unwitting
users and potential eavesdroppers [23]. The cover objects employed in digital media
steganography are considered to be expendable, and therefore, the permanent degradation
of the object is not considered to be a negative attribute. While these techniques can deliver
high throughput with low distortion, there are some drawbacks that could limit their utility
in support of cyber operations. Specifically, it is necessary to select an appropriate cover
object that must be tolerant of the embedding distortion without exhibiting any obvious
changes. Accordingly, the selection of cover objects for digital-media steganography is
normally limited to images, video, or audio and requires the generation of specific traffic

4

from the source computer, which may not conform to expected network activity.

1.3.2 Covert Channels in Wireless Networks
With the popularity of wireless networks, there has been extensive research conducted
into information-hiding techniques that exploit these protocols, resulting in a wide range
of proposed methods that implement both storage and timing channels [9], [24]–[26].
Additionally, there have been other interesting applications that attempted to exploit the
physical layer (PHY) characteristics of the wireless channel and conduct information hiding
in a manner that did not significantly degrade channel performance.

One of the most comprehensive discussions of PHY information hiding is discussed
in [27], where they developed, implemented, and tested wireless covert channels under the
802.11a/g standard. This effort was particularly notable as it utilized a software defined
radio (SDR) to conduct real-world testing of their techniques as opposed to purely relying on
simulation. Four specific covert channelswere evaluated including phase-shift keying (PSK)
modulation within the short training field (STF), frequency-shift keying (FSK) modulation
within the carrier frequency offset, transmission of additional subcarriers, and embedding
in the cyclic prefix. Another notable example explored two methods of developing covert
channels within the Worldwide Interoperability for Microwave Access (WiMAX) standard
[28]. The first derived capacity from frame padding while the second, a forward error
correction (FEC)-based implementation, leveraged the error correction capacity of a Reed-
Solomon (RS) code to carry a limited embedded payload. Finally, [29] looked at the
development of a covert channel in the 802.11n standard; this implementation also relied on
modifications to the cyclic prefix of orthogonal frequency-division multiplexing (OFDM)
symbols. Of note, this technique advertised the highest covert channel capacity of any of
these PHY techniques with a data rate of up to 19.5 megabits-per-second (Mbps).

1.3.3 Application of Error Correction Coding in Information Hiding
The use of error correction codes in information hiding can be divided into three focus
areas: to protect the embedded information, to support digital media steganography, and
to enable physical-layer embedding of hidden data. The most common application of
error correction codes is to protect the hidden data being transmitted across the covert
channel. As in standard communication systems, the use of these techniques is governed by

5

channel conditions and the desire to have the hidden data arrive without error [15]. In some
respects, an information-hiding implementation may place an even greater emphasis on the
need for the delivery of error-free data than a normal communication channel; depending
on the specific implementation, it may not be possible for the receiving station to request
retransmission for lost or corrupted data [22].

Another popular application for error correction codes in information hiding is digital
media steganography; specifically, the use of structures initially developed for error cor-
rection in a technique known as matrix embedding [23]. Matrix embedding utilizes the
properties of random linear block codes to embed hidden data in objects before transmission;
specific codes utilized in matrix embedding steganography include simplex codes (which
are duals of Hamming codes) [23], [30], low-density generator matrix (LDGM) codes
(which are duals of LDPC codes) [31], and quasi-cyclic LDPC (QC-LDPC) codes [32].

The final application exploits the functionality of FEC codes to carry hidden information
and develop covert communication channels [28], [33], [34]. FEC is an attractive avenue for
information hiding as these codes often provide more redundancy than required by channel
conditions; this redundancy can be used to carry hidden data [5]. Additionally, most modern
communication protocols also include retransmission mechanisms that can resend lost or
corrupted data if the embedded FEC fails to correct all bit errors [34] [5]. Unlike traditional
stenographic schemes in which the cover object is irreparably degraded by the insertion
of the hidden payload, FEC-based embedding schemes can avoid permanent corruption of
the legitimate data. Despite there being numerous examples of error correction code-based
embedding, there was no recognition of the potential to exploit the relationship between the
selection of alternate modulation and coding rates and increased capacity.

1.3.4 Error Correction Code Embedding
Many information-hiding techniques are focused on simply developing proof-of-concept
implementations. That said, during our initial investigation of information-hiding tech-
niques, we were able to gain some valuable insight into previous analysis conducted on
notional error correction code-based information hiding that helped establish the behavior
of these techniques.

Yan et al. focused on the derivation of capacity for an error correction code-based

6

information-hiding scheme; specifically, they completed a theoretical derivation of channel
capacity based on both an ideal state where all errors were corrected and a non-ideal state
where errors remained after decoding [33]. From these generalized cases, the authors made
some initial observations including that the maximum size of the hidden message increases
as the channel noise decreases, the length of the source data increases, and the error-
correcting capability of the selected FEC increases. While these results completely align
with our intuition on the subject, they also helped to inform the development of our initial
embeddingmethodology, which sought to utilize information about the current channel state
to increase the embedding capacity without introducing additional uncorrectable errors in
the underlying communication system.

Safir et al. examined stenographic embedding at the physical layer of a baseband
communication channel [35]. Similar to our initial insights on embedding in error correction
codes, this work concluded that by controlling the number of embedding modifications,
this form of steganography could be accomplished without permanent degradation of the
underlying message. Additionally, there was a focus on determining the ability of an
eavesdropper to distinguish the noise component due to the embedding of data from the
normal channel noise. These observations related directly to the distortion considerations
of our proposed channel and the recognition that the channel estimation methods utilized
by the underlying communication system could potentially identify the distortion caused by
our techniques.

1.3.5 Desirable Features of Information-Hiding Techniques
In considering the development of a new embedding methodology, we also gained valuable
insights into relevant characteristics of information-hiding techniques. A comprehensive
set of information-hiding attributes was initially described in [15], and although the focus
of their work was watermarking, the general insights on restrictions and features remain
relevant to modern information-hiding schemes. The work stressed the importance that
the selected embedding technique should minimize any degradation on the underlying data
carrier to ensure that the presence of the hidden data remains undetected, even if it is visible
upon close inspection [15]. There was also a significant focus on ensuring the integrity of
the hidden data. Specifically, [15] addressed the use of error correction codes, making the
embedded data resistant to manipulation and ensuring that the data would be recoverable if

7

only a fragment of the host signal was available. This final feature seemed applicable when
looking at the segmentation of data before it is transmitted over a wireless network, and
how to minimize the impact on the embedded channel in the event of the loss or corruption
of a frame and its associated embedded payload.

An alternate view of these design considerations was provided by the efforts in [22] to
develop a comprehensive taxonomy for covert channels. Themost significant considerations
from this work related to the need to define the level of exploit required to implement the
proposed channel and whether the channel is likely to support bidirectional communication.
While the level of exploit does not directly influence the capacity of the proposed channel,
it does speak to the level of difficulty in implementing a particular information-hiding
technique and whether physical access or hardware modifications are required. The second
consideration, which is in some ways tied to the required level of exploit, is critical in
determining the level of error correction and protection thatmust be applied to the underlying
embedded payload. If the proposed implementation has the ability to support duplex
signaling, then a variety of options exist to recover a corrupted payload by employing
techniques similar to automatic repeat request (ARQ). On the other hand, if only simplex
communication is likely, then the aggressive use of FEC techniques are required; these
codes will greatly improve reliability at the cost of throughput.

In this section, we examined information-hiding research which was relevant to our
objective. We identified shortcomings of previous work with respect to low data rates,
restrictive selection of data carriers, or permanent distortion of the underlying commu-
nications channel. Our work focused on maximizing the potential capacity of an error
correction-based embedding technique for adaptive rate wireless communication systems;
these techniques do not require the selection of a particular data carrier and minimize the
possibility of permanently altering the underlying payload.

1.4 Outline
This dissertation is organized as follows. Chapter 2 provides background information on
topics related to modern wireless-fidelity (Wi-Fi) standards. Concepts for the development
of embedded channels in adaptive rate wireless communication systems are then presented
in Chapter 3. The specific implementation of the embedding concepts for LDPC and

8

convolutional codes are presented in Chapters 4 and 5, respectively. Results from the
embedding simulations for LDPC and convolutional codes are presented in Chapter 6 under
both additive white Gaussian noise (AWGN) and fading channel conditions. Significant
contributions from this research, and potential future work, are presented in Chapter 7.
Finally, a sample of the code utilized to implement embedding simulations is provided in
the Appendix.

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

CHAPTER 2:
Modern Wireless Communication Systems

The focus of our research was the development and analysis of embedding techniques within
the error correction codes of modern wireless communication systems. The purpose of this
chapter is to provide an overview on some of the fundamental concepts that support our
work.2

2.1 Modulation and Coding Schemes
All modern IEEE 802.11 protocols, as well as other modern wireless communication
systems including long term evolution (LTE), rely on a predetermined set of modulation
types and coding rates to facilitate communication across a range of channel conditions [36],
[37]. These modulation and coding schemes (MCSs) are assigned an index value to
enable easy coordination between the transmitting and receiving station. The flexibility of
MCS-based systems enable wireless networks to optimize throughput while maintaining an
acceptable error performance [36].

The range of performance offered by these systems is well illustrated through the results
of a PER simulation for the 802.11ad directional multi-gigabit (DMG) single carrier (SC)
PHY as shown in Figure 2.1. In this standard, a total of 19 separate MCS not only
allow the system to maintain communications over a wide range of channel conditions,
but also support multiple data rates. A critical function of MCS-based systems is the
ability to transition between MCS indices in response to changing channel conditions; link
adaptation is the process that allows stations to select the optimal MCS for the current
channel state. There is no standard implementation for link adaptation, but packet error
ratio (PER) is a common metric utilized to characterize the performance of a channel, and
therefore evaluate the selection of an MCS [36]. PER represents a measure of performance
based on the number of packets that are not correctly received after transmission. The

2Portions of this chapter were previously published by IEEE [5]. Reprinted, with permission, from P. M.
B. Harley, M. Tummala and J. C. McEachen, “High-Throughput Covert Channels in Adaptive Rate Wireless
Communication Systems,” 2019 International Conference on Electronics, Information, and Communication
(ICEIC), Auckland, New Zealand, 2019, pp. 1-7.

11

-4 0 4 8 12 16 20 24 28

SNR (dB)

10-3

10-2

10-1

100

P
a
c
k
e
t
E

rr
o
r

R
a
te

 (
P

E
R

)

MCS 1

MCS 2

MCS 3

MCS 4

MCS 5

MCS 6

MCS 7

MCS 8

MCS 9

MCS 9.1

MCS 10

MCS 11

MCS 12

MCS 12.1

MCS 12.2

MCS 12.3

MCS 12.4

MCS 12.5

MCS 12.6

Figure 2.1. Packet error ratio versus SNR performance curves for Single
Carrier IEEE 802.11ad DMG modulation and coding schemes; performance
average of 10000 4096-octet PSDU over AWGN channel.

selection of the MCS by the link adaptation scheme is intended to maximize throughput
while maintaining PER below an acceptable limit. One method for selecting the MCS is to
simply measure the PER over time and adjust the selected MCS value to keep errors below
a prescribed threshold. A more dynamic approach, which would achieve higher throughput,
is to dynamically select an MCS that is optimized for changes in the channel condition.

If we generalize rate adaptation algorithms, they can be separated into two categories,
loss-based algorithms or signal-to-noise ratio (SNR)-based algorithms [38]. For the purpose
of our research, we were primarily interested in the viability and evaluation of SNR-based
approaches [39]–[43]. While these efforts have validated that SNR is a good indicator
of channel quality, they have identified a number of challenges including asymmetric
performance in the channel [43], the need to account for differences in SNR thresholds
due to the use of uncalibrated equipment, and the existence of other interference that
can increase the predicted PER [42]. Despite these challenges, it has been observed that
SNR-based algorithms can provide performance improvements over traditional loss-based
algorithms [40], [42].

12

Recent WLAN standards have recognized the need for transmitting and receiving sta-
tions to coordinate in the link adaptation process. In 802.11n, this functionality was
formalized through the inclusion of a Link Adaptation Control field as part of the HT
Control field; 802.11ac performs a similar function using the very-high throughput (VHT)
variant of the HT Control field with the contents of the MCS request (MRQ) and MCS
feedback (MFB) fields. In 802.11ad DMG, link adaptation is accomplished through the use
of Link Measurement Request and Link Measurement Report frames [44]. These mecha-
nisms allow the receiving station to monitor the received transmissions and make reports
to the transmitter that can be used to select the appropriate MCS for the current channel
state. Information about the quality of the channel for this MCS recommendation can be
derived from measurements made by the receiving station itself as well as information
about the reliability of received transmissions [36]. The channel measurements made at
the receiver are likely to exploit the ability of modern communication systems to conduct
accurate channel estimation. This channel estimation is critical for the proper operation
of these communication systems as it is required to assist with synchronization, measure
fading, and also provide a noise variance estimate that is utilized to perform soft decision
demodulation [45].

2.2 Modern Wireless Local Area Network Standards
While the embedding methodology presented in this dissertation could be applied to a wide
range of error correction coding applications, we specifically focused on two of the most
recent Wi-Fi standards, 802.11ac VHT, and 802.11ad DMG. While these standards have
been optimized for very different use cases, they both have the potential to achieve extremely
high data rates in excess of 1 gigabits-per-second (Gbps); as a result, both standards could
support extremely high throughput embedded channels.

2.2.1 Directional Multi-Gigabit (DMG), IEEE 802.11ad
The IEEE 802.11ad PHY and medium access control (MAC) amendment for millimeter
wave (mmWave) WLANs was formally adopted as the DMG specification in 2012. While
IEEE 802.11ad operates in one of six 2.16-gigaHertz (GHz) channels in the 60 GHz range,
DMG is a term that is applied to anyWLAN operating in channels with a starting frequency
above 45 GHz [44]. The combination of high frequency and high channel bandwidth allows

13

DMG to achieve data rates in excess of 8 Gbps [46]. The standard originally specified
three different PHY modes: control, SC, and OFDM [5]. The control and SC PHY
are mandatory for all devices with an optional low-power SC PHY for power-constrained
applications; the OFDM PHY is now obsolete [46]. Baseband processing for all SC PHY
involves a scrambler, encoder, modulator and insertion of guard intervals (GIs) [5]. A
simplified block diagram of the transmit and receive process is shown in Figure 2.2 [5].

Original figure adapted from [46].

Figure 2.2. DMG transmit and receive process. Source: [5], © 2019 IEEE.

IEEE 802.11ad is intended for use in high-bandwidth, short-range, line-of-sight (LOS)
applications to include wireless cable replacement for high definition video [46], wireless
peripherals and docking stations [47], or other traditional WLAN implementations [5]. The
low latency and characteristics of the DMG PHY, have led to the development of additional
use cases to include wireless virtual reality hardware [48] and a variety of mobile com-
munication and sensing applications [49]. Development of a follow-on mmWave WLAN
implementation continues through the IEEE P802.11 Task Group ay (TGay); enhanced
directional multi-gigabit (EDMG) will remain backward compatible with DMG, but will
utilize channel bonding and aggregation to achieve even higher data rates [50]. Potential
EDMG applications include IEEE 802.3 Ethernet replacement or high-capacity backhauls
for data centers and telecommunications [50].

The MAC layer of DMG also marks a departure from previous Wi-Fi protocols. The
primary difference with the DMG MAC is that it does not solely rely upon the distributed
coordination function (DCF) present in other IEEE 802.11 implementations. This change
is primarily due to the unique constraints of mmWave and the fact that traditional carrier-

14

sense multiple access with collision avoidance (CSMA/CA) is difficult in DMG due to
higher attenuation and the use of highly directional links [51]. The use of beamforming
techniques on these links improve SNR and allow for spatial reuse of frequency bands [47].
In lieu of traditional DCF, DMG relies upon a combination of scheduled access, similar in
implementation to time division multiple access (TDMA), while retaining some elements
of CSMA/CA [52]. The primary method for a DMG station (STA) to gain access to the
communication medium is through the use of a scheduled service period (SP). A diagram of
the DMGMAC architecture is shown in Figure 2.3a with a representation of DMG channel
access in Figure 2.3b. The contention based access periods (CBAPs), which can be used
to provide access for stations that do not have an assigned SP, does support CSMA/CA
but prevents participating stations from utilizing beamforming. The use of an SP is the
preferred method for gaining channel access, while CBAPs are generally used by STA to
request SP assignments [51].

(a)

(b)

Figure 2.3. DMG MAC detail: (a) block diagram of MAC architecture and
(b) channel access and detail of beacon interval. Adapted from [44].

15

2.2.2 Very-High Throughput (VHT), IEEE 802.11ac
The second modern Wi-Fi standard we have elected to investigate is IEEE 802.11ac VHT.
In many ways, VHT is simply an extension of the existing 802.11n high throughput (HT)
standard with enhancements that were intended to deliver wireless gigabit network speeds.
The key attributes of the VHT specification that account for this improved performance
are increased channel bandwidth, increased number of multiple-input and multiple-output
(MIMO) spatial streams, downlink multi-user MIMO, and the addition of 256-quadrature
amplitude modulation (QAM). The VHT specification was formally adopted in 2012 and
operates in 20, 40, 80, or 160 megaHertz (MHz) channels in the 5 GHz band [44]; it also
supports up to eight spatial streams as well as 8 × 8 MIMO.

Beyond the PHY enhancements, the remainder of the VHT specification is quite similar
to that of HT. One major shift involved the assignment of MCS index values. In HT, MCS
values were assigned for all of the different combinations of modulation type, coding rate,
spatial streams and channel bandwidth; for VHT this has been greatly simplified with only
ten MCS indices (0-9). The VHT protocol supports both a BCC and a LDPC code; for the
purposes of this research, we have focused only on the use of the BCC in VHT, which is
part of the mandatory protocol implementation [44]. The BCC utilized by this scheme is a
constraint length, K = 7, with generator polynomials g0 = 133 and g1 = 171; we will also
use the notation (7, [133, 171]) to reference this specific convolutional code. All available
code rates utilized by VHT are developed by puncturing the output from the 1/2 rate BCC
encoder.

2.3 Relevant Error Correction Codes
Error correction coding is an essential component of modern communication protocols.
These techniques provide error detection and correction capabilities which minimize the
retransmission of data, facilitating increased throughput and reduced latency. Our research
into embedding within error correction codes focused on both LDPC and convolutional
codes.

16

2.3.1 Low-Density Parity Check Codes
LDPCcodes are a class of channel capacity approaching codes first discovered byGallager in
the early 1960s [53]. Although these codes have achieved broad application in awide variety
of modern digital communication systems including Wi-Fi [44], digital video broadcasting
– satellite (DVB-S) [54], data over cable service interface specification (DOCSIS) 3.1 [55],
and 5G new radio (NR) [56], they were not fully explored for more than 40 years; the slow
adoption was mainly due to the computational complexity required for implementation, and
the fact that the algebraic block codes and convolutional codes in use during the 1960s were
more than sufficient to meet demand [57]. Interest in LDPC codes was revived following the
discovery of turbo codes in the early 1990’s. Due to the proprietary nature of the published
turbo codes, researchers returned to Gallager’s original work [58]. This coding technique,
which could now be supported by modern computing resources, delivered extremely high
performance but had significantly lower decoding complexity than turbo codes [57].

LDPC codes are linear block codes, that can be fully specified by either their generator
matrix, G, or parity-check matrix H . A resulting LDPC codeword, v, of length q, must
satisfy the parity-check equations specified by H such that [59]

vHT = 0 . (2.1)

The unique structure of LDPC codes was originally defined so that each row and column
of H contained a small fixed number of 1’s [60]; it has been found that irregular codes,
where the number of 1’s in each column can vary, outperform the original regular code
specification [58]. LDPC codes are often visualized through the use a bipartite graph
introduced in [61], a construct now known as a Tanner graph. This representation is
particularly useful when thinking about the LDPC decode process as it clearly identifies
the relationship between the message (or variable) nodes and their associated check nodes.
A simplified LDPC parity check matrix and associated Tanner graph are shown in Figure
2.4; in the Tanner graph, the message nodes, ci, are represented by circles while the check
nodes, fi, are represented by squares. The message nodes represent all of the codeword
symbols from the LDPC code and include both the original data as well as the parity bits
that were appended during the encode process. The relationship between the parity check
matrix and Tanner graph in Figure 2.4 is represented by the color-coded edges, or paths,

17

that connect the message and check nodes.

Figure 2.4. Notional LDPC code parity check matrix and associated Tanner
graph. Adapted from [58].

LDPC codes are known as sparse graph codes; they are sparse due to the relatively
small number of edges when compared to what would be expected for a fully connected
graph. As a result, decoding complexity remains linear even as the size of the parity check
matrix increases [62]. In the example matrix provided in Figure 2.4, each column only
contains three 1’s; the fact that the weight of each column is the same means that this would
be considered to be a regular LDPC matrix. Unlike the syndrome decoding utilized for
simpler linear block codes, LDPC codes utilize iterative message passing algorithms [58].
In the most basic hard-decision decoding example, check nodes receive inputs from all of
their connected message nodes and then decide whether any of the bits are in error based
on whether the message bit contributions pass the appropriate parity check [58]. The check
node then returns this feedback to the message nodes; the message nodes combine all of the
received check node feedback with the received message bit to determine if the received bit
value was in error. This process can then be continued until either the parity check equation
is satisfied or the maximum number of message passing iterations is reached [62].

2.3.2 Convolutional Codes
Convolutional codes were first discovered by Elias in 1955 [57]. Unlike the block codes
previously discussed in this section, the convolutional encoder contains ’memory’ and
therefore the encoded bit stream depends not only on the current input but also previous
inputs [57]. As a result, the coder for a rate R = k/n convolutional code with a memory of

18

M can be realized utilizing a k-input, n-output linear sequential circuit [59]; although there
is often competing nomenclature in literature, the memory of the code, M , is often specified
as a constraint length, K , where K = M + 1. The constraint length represents the number
of total bits that contribute to the output of the encoder; in the case of the primary BCC
examined in this dissertation, the constraint length of K = 7 means that a total of seven
bits, the current input bit plus the six previous inputs stored in memory, all contribute to the
determination of the output. An example 1/2-rate BCC encoder is shown in Figure 2.5.

Figure 2.5. Rate 1/2 convolutional encoder specified by generators g0 = 133
and g1 = 171, with constraint length, K = 7. Adapted from [44].

Important contributions to develop efficient decoding methods for convolutional codes
include work by Wozencraft and Reiffen, Massey, Viterbi and Bahl-Cocke-Jelinek-Raviv
(BCJR) [57]. Applications of convolutional codes include satellite communication, radio,
mobile communications, and digital video. A common technique to extend the performance
of a parent convolutional code is to use puncturing techniques to create a series of higher
rate codes. The puncture process for a R = 1/2 parent code is illustrated in Figure 2.6.

One of the features that makes punctured convolutional codes attractive is that the same
encoders and decoders can be utilized for both the parent and punctured codes. While the
same decoder structure is used, methods must be employed to handle the bit locations that
have been punctured. An example of the trellis of a punctured code is shown in Figure 2.7,
where the punctured bit locations are indicated by an “X.” These puncture locations are
handled by stuffing dummy bits into the punctured locations at the receiver [53], [63] or by
simply ignoring the puncture bit locations in the decoder [59].

A variation on puncturing that influenced the development of our convolutional code

19

Figure 2.6. Puncturing process for convolutional codes. Adapted from [44].

Figure 2.7. Decode process for R = 2/3 punctured convolutional code with
generators g0 = 3 and g1 = 7. Adapted from [53].

embedding technique was the concept of rate-compatible punctured codes (RCPC). First
proposed in [64], RCPC are utilized in applications where unequal levels of error protection
are required within a particular information block. As a result, their unique structure enables
the rapid switching between code rates within a single frame. To accommodate this type
of application, the development of these codes require a specific search technique; starting
with the highest rate code, all of the subsequent lower rate codes must utilize the same bit
locations while including one or more additional parity bits [65].

20

Traceback Depth
In order to achieve the maximum performance for the Viterbi decoding of a convolutional
code, it is necessary to maintain a sufficient path history [66]. In practical application,
however, there is a desire to minimize the storage requirements for the path histories while
maintaining sufficient information to achieve good decoding performance. This limit, or
traceback depth, τ, describes the number of trellis stages that are stored within memory.

For unpunctured codes, a traceback depth of five times the constraint length is generally
considered adequate [63]; for punctured codes, the traceback depth must be increased and
the extent of this increase is generally determined experimentally for each puncturing rate
and pattern. Alternatively, there has been work presented to provide an estimate for the
required τ for various puncturing rates based on both the code rate itself and the encoder
memory length, M; an expression to estimate the required traceback depth, τ̂, was presented
in [66]

τ̂ ≥
5M

2 (1 − R)
=

5 (K − 1)
2 (1 − R)

, (2.2)

where R is the rate of the code. The memory of the encoder can also be defined in terms
of the constraint length, K , with M = K − 1. This estimate is utilized within MATLAB to
determine the τ utilized by the implementation of the soft-decision Viterbi decoder for the
BCC; the resulting traceback depth requirements are provided in Table 2.1 for each BCC
code rate.

Table 2.1. Traceback depth utilized in MATLAB for IEEE 802.11ac BCC
decoder, K=7

BCC Code Rate Traceback Depth, τ
R = 1/2 30
R = 2/3 45
R = 3/4 60
R = 5/6 90

The selection of τ is important to our area of embedding research because our proposed
embedding mechanisms mimic the impact of puncturing on a received code; specifically,
we are removing the information contained in these bit locations and thereby reducing the

21

information available to make path selections.

2.4 Log-LikelihoodDecoding ofLow-DensityParityCheck
Codes

Although hard decision decoding is often utilized in academic environments, in practice soft-
decision decoding is utilized to improve the performance of the communications channel.
The use of log-likelihood ratio (LLR) is an attractive option for real-world soft decision
demodulators because it provides similar performance as soft decision probabilities, but can
be represented as a fixed point valuewithout the need to accept floating-point representations
[53]. The following section provides a brief description of LLR as well as describes LDPC
decoding using LLR values.

2.4.1 Log-Likelihood Ratio
The LLR output values of the receiving station demodulator represent both a bit value and
a confidence level. In general terms, the LLR of x̃ is a ratio of probabilities [53]

λ (x̃) = log
[

P (x̃ = 1)
P (x̃ = −1)

]
, (2.3)

where log is a natural logarithm. To interpret the meaning of an LLR value, we can take
the example of representing the probability that x̃ = 1 in terms of λ (x̃) [53]

P (x̃ = 1) =
eλ(x̃)

1 + eλ(x̃)
. (2.4)

We find that the sign of the LLR provides an indication of the bit value, while the magnitude,
|λ (x̃) |, provides an indication of the reliability [53]. This measure of reliability is of partic-
ular importance to our proposed embedding scheme; to facilitate high rates of embedding
in systems that utilize LLR demodulated values, it necessary to set these values to zero
at the embedding locations. Similar to an erasure, an LLR = 0 represents a level of zero
confidence (or complete uncertainly) and therefore these bit locations are less detrimental
to the decode process. In the MATLAB implementations described in Chapters 4 and 5,

22

the LLR values are the result of an approximation [67]. This approximation, which only
accounts for the nearest symbol location as opposed to the distance from all symbols, has
been found to significantly reduce processing requirements without significantly impacting
performance [68].

2.4.2 Log-Likelihood LDPC Decoding
As described in our earlier example, the iterative decoding for LDPC codes is a series of
updates performed to the message and check nodes based on the propagation of beliefs,
or probabilities, across the edges described in the Tanner graph [59]. This process can
also be performed in a similar manner using LLR values in lieu of hard decision values or
probabilities. Starting with the LLR values received from the demodulator, λ(cn |r), which
are based on the channel reliability, the iterative decode process conducts a series of check
node and bit node updates. First, the check node updates are performed using [53]

η
[l]
m,n = −2 tanh−1 ©«

∏
j∈Nm,n

tanh ©«−
λ
[l−1]
j − η

[l−1]
m, j

2
ª®¬ª®¬ , (2.5)

where l is the loop counter, which begins with l = 1 on the first cycle, λ[l−1]
j are all of the

contributing LLR values for check node m where j , n, and η[l]m,n is the check node update,
for positions where H(m, n) = 1. For the first cycle, all positions in η[0]m,n are initialized at 0.
These check node updates are then utilized to compute bit node updates [53]

λ
[l]
n = Lcrn +

∑
m∈Mn

η
[l]
m,n , (2.6)

where rn is the received bit probability, and Lc is the channel reliability. Beyond describing
the behavior of the LLR-based LDPC decoders that are utilized in our simulated results,
this algorithm provides insight into how the LDPC decoder will deal with the introduction
of LLR = 0 into the representation of the received message bits, λ[0]. It becomes clear
that in the first computation of the check node update using (2.5), any λ[0]n = 0, which
indicates the presence of a puncture (or embedded) bit location, η[1]m, j = 0 where j , n. This
mechanism effectively prevents the LLR = 0 from corrupting the other message bits that

23

participate in the impacted check nodes. After the bit update at the end of the first cycle,
however, the punctured message location, λ[1]p , will have obtained a value estimate from the
input provided by the check nodes, and consequently will participate in the next cycle of
the check node update.

2.5 Summary
In this chapter, we presented relevant foundational concepts related to modern wireless
communications systems that influenced our research. Understanding key characteristics
of these specific WLAN standards, and details of their error correction codes, provided
sufficient insight to propose the framework for our embedding methodologies.

24

CHAPTER 3:
Embedded Channels in Adaptive Rate Communication

Systems

In this chapter, we outline our development of the error correction code-based embedding
technique that is at the core of our research. Although heavily based on previous information-
hiding techniques, we chose to classify our research as the development of an embedded
channel; this classification was due to the fact that these channels have other potential
applications beyond covert communications, and the fact that our research did not explicitly
evaluate the covert nature of our proposed scheme.

Our research has been focused on wireless communications, and in particular current
IEEE 802.11 WLAN protocols. This focus is not only due to the ubiquitous nature of these
systems, but also the fact that they possess characteristics, like variable error correction
coding rates and multiple modulation types, that we exploited to develop high capacity
embedded channels.3

3.1 Embedded Channels in Communication Systems
In [1], the authors present a characterization of information hiding when viewed against
the backdrop of all possible methods to conceal data in communication networks. As
shown in Figure 3.1, information hiding makes up just one of three concealment techniques.
Distinct from anonymity techniques that obscure the identities of the parties involved in
the communication exchange or cryptographic techniques that protect the communication
content from unauthorized disclosure, information hiding is concerned with concealing the
communications process itself.

Under this rubric, our proposed embedding methodology, which would be invisi-
ble to the legitimate users of the communication system under most conditions, is most

3Portions of this chapter were previously published by IEEE [5]. Reprinted, with permission, from P. M.
B. Harley, M. Tummala and J. C. McEachen, “High-Throughput Covert Channels in Adaptive Rate Wireless
Communication Systems,” 2019 International Conference on Electronics, Information, and Communication
(ICEIC), Auckland, New Zealand, 2019, pp. 1-7.

25

Figure 3.1. Classification of information hiding in communication networks.
Adapted from [1].

closely aligned with information hiding. We began our conceptual development of em-
bedding in wireless communication systems by considering the simple implementation of
an information-hiding technique in a notional communication channel. The performance
of a communications system under normal conditions, DNorm, measured in terms of data
rate, is shown in Figure 3.2. We then established an upper and lower bound, identified
as the upper rate limit, DU , and the lower rate limit, DL . This system is ultimately con-
strained by Shannon capacity, C, which establishes the maximum theoretical capacity for
the channel [5].

The upper rate limit, DU , represents the case where technical measures, possibly
an alternate error correction code, increase the potential data rate of the communication
system; this increased performance could then be utilized to support a covert channel
with a maximum data rate represented by the difference between curves DU and DNorm [5].
Alternatively, DL represents a situationwhere the performance of the communication system
is intentionally degraded; this lower-bound would be further limited by the threshold of
minimum acceptable performance, DReq, or other detection considerations [5]. In this case,
the capacity of the covert channel is the difference between the normal operation, DNorm,
and either the degraded condition, DL , or other required performance bounds [5]. In both
cases, the difference between DNorm and DU , DL , or DReq represents distortion. Minimizing
distortion will reduce the impact on the underlying system while limiting detectability of
the covert channel. In the next section, we will discuss a scheme that leverages the capacity

26

Figure 3.2. Generalized information hiding model of a communication system
as it relates to the Shannon capacity as well as the normal operation of the
system

between the DNorm and DL curves [5].

3.2 Preliminary Insight
Our preliminary insights into our proposed embedding technique were gained during a
review of the DMG PHY specification within the IEEE 802.11-2016 standard; this review
was intended to identify any attributes that could be readily exploited for the development
of a covert communications channel.

We identified a number of potential techniques, which ranged from simple bit stuffing in
unused header fields, to dirty constellation coding of transmitted symbols, to even possible
exploitation of the Golay sequences that were utilized in the STF and channel estimation
field (CEF) of the PHY header to facilitate synchronization and channel estimation. The
most intriguing opportunity, however, was related to a revision that had been made to
the DMG SC PHY when it was determined that the OFDM PHY was obsolete [46]. To
increase the maximum data rate of the SC PHY, seven additional MCS indices (9.1 and 12.1
- 12.6) were added to the specification. The higher data rates were achieved through the
introduction of a new modulation type, 64-QAM, and by the implementation of a 7/8-rate
LDPC code. The characteristics of the SC MCS indices, to include error correction coding

27

scheme and rate, modulation type, number of bits per symbol, NCBPS, repetition factor, ρ,
and the maximum data rate are contained in Table 3.1.

Table 3.1. Summary of MCS for SC IEEE 802.11ad DMG. Adapted from [44],
[46].

MCS Index Modulation NCBPS LDPC Rate Repetition Data Rate (Mbps)
1 π/2-BPSK 1 1/2 2 385
2 1/2 1 770
3 5/8 962.5
4 3/4 1155
5 13/16 1251.25
6 π/2-QPSK 2 1/2 1540
7 5/8 1925
8 3/4 2310
9 13/16 2502.5
9.1 7/8 2695
10 π/2-16QAM 4 1/2 3080
11 5/8 3850
12 3/4 4620
12.1 13/16 5005
12.2 7/8 5390
12.3 π/2-64QAM 6 5/8 5775
12.4 3/4 6390
12.5 13/16 7507.5
12.6 7/8 8085

Although distinct H were specified for all of the existing DMG LDPC rates, the new
7/8-rate code was achieved by passing data through the existing 13/16-rate encoder and
then puncturing the first 48 parity bits [5]. We theorized that if an SC DMG system was
operating under channel conditions that supported a 7/8-rate code MCS (i.e., MCS 9.1),
the 48 parity bits that would normally be punctured might be able to carry an embedded
payload if a user intentionally selected an MCS that utilized the 13/16-rate code (i.e., MCS
9) [5]. Our novel approach would therefore leverage the MCS construct and link adaptation
functionality to increase the potential embedding capacity of a technique similar to those
used in FEC-based information hiding.

Under normal operation with an MCS determined by the channel state, the payload of
a FEC-based information-hiding scheme can be represented by the shaded area of Figure
3.3, where the embedded channel capacity is the difference between the two curves.

28

Original figure adapted from [36].

Figure 3.3. Baseline covert channel capacity of modulation and coding
scheme-based information-hiding technique. Source: [5], © 2019 IEEE.

Attempting to increase the throughput of the information-hiding scheme will exceed
the instantaneous channel capacity and result in data from the underlying system being
delivered with an increased probability of error [5]. Our proposal would first change the
performance of the underlying communication channel as shown in Figure 3.4 through the
intentional selection of a lower MCS index.

Original figure adapted from [36].

Figure 3.4. Throughput of communication system with lower MCS inten-
tionally selected. Source: [5], © 2019 IEEE.

29

This action would increase the embedded channel capacity, illustrated in Figure 3.5,
without causing increased error rates to the underlying communications channel.

Original figure adapted from [36].

Figure 3.5. Increased covert channel capacity of modulation and cod-
ing scheme-based information-hiding technique with lower MCS selected.
Source: [5], © 2019 IEEE.

Since our proposed method involved an embedding technique that is similar to punc-
turing, implementation would require access to both the transmitting and receiving station.
The specific modifications to the transmitter and receiver were not rigorously explored in
our work, but both stations would likely require changes to the firmware and/or hardware.

3.3 MCS-based Embedding Considerations
Traditional error correction based information-hiding implementations exploit the avail-
ability of excess error correction capacity to support the embedding of hidden data. In this
work, we found that we were able to demonstrate significantly higher embedding capacity
by making two reasonable assumptions.

The first assumption is that we would acquire sufficient access to the PHY to facilitate
the removal of the embedded data from the received codeword before decoding. In our
view, this is reasonable as punctured bit locations must be dealt with similarly as to not
interfere with the decoding process. We would use these existing mechanisms to exclude
the values of our embedded bit locations from the decoding process, and as a result, each

30

embedded bit would have significantly less impact on the underlying channel. While these
bit locations would not contribute information to the decoding process, they also would not
impart additional errors to the legitimate bits.

The second assumption is that our embedding scheme would have some level of insight
into the current channel conditions. This was also deemed reasonable. Modern wireless
communication systems already maintain some sense of the channel state through their
normal operation. This insight can either be explicitly determined using channel estimation
as a means to assist with decoding, synchronization or link adaptation, or implicitly through
the selection of an MCS index.

With these considerations in mind, we investigated two distinct modes in this work.
The first relies upon decrementing the MCS, while the second attempts to utilize existing
excess capacity to support the embedded channel. We also briefly discuss some of the
considerations associated with the use of FEC techniques to ensure reliable delivery of our
embedded payload.

3.3.1 Decremented MCS Embedding Implementation
In this first case, we propose intentionally selecting the next lower MCS index, or decre-
menting the MCS, in order to increase the effective redundancy of the error correction code.
Through this process, we obtain useful information about the channel state without having to
explicitly take measurements. If the channel was supporting a specific MCS index, it would
certainly support the next lower MCS index, which by design provides more redundancy at
the expense of data rate.

We then propose using this extra redundancy to support our hidden channel. Because of
the known relationship between these two MCSs, we also assert that it would be possible to
characterize the amount of data we could embed while maintaining the same channel error
performance, measured in PER. Due to these known characteristics, this proposed imple-
mentation would only be required to pre-coordinate the specific location of the embedding,
and the number of bits that would be embedded in a given codeword or frame. As shown
in Figure 3.6, an embedding control block would consider both the current MCS, as well as
any MCS feedback provided within the protocol standard, before selecting a decremented
MCS index along with the appropriate embedding rate. This fixed embedding rate would

31

be predetermined based on the known differences between adjacent MCS indices.

Figure 3.6. Block diagram of notional decremented MCS implementation

One major issue with this approach, particularly in terms of any potential covert ap-
plication, is that it lowers the data rate of the underlying communication channel. While
this reduction may not be apparent to the user without detailed information about current
channel conditions, it is a potentially noticeable performance impact.

3.3.2 Variable Rate Embedding
The second proposed implementation is considerably more complex from both a channel
estimation standpoint but also in the coordination of the embedding location. Although
MCS indices cover a range of operating conditions, there are channel states that fall between
adjacent indices. We would aim to leverage previous research into channel estimation and
SNR-based link adaptation to exploit these regions to support an embedded channel. Not
only would this scheme require an accurate estimation of the margin between the current
channel conditions and the minimum required to support the desired performance at the
current MCS index, but also a method to equate that channel margin into an embedding
capacity. A simplified block diagram representing this implementation is shown in Figure
3.7. Furthermore, successful extraction of the embedded bits prior to decoding would
require coordination of the resulting embedding rate and location with the receiver.

Implementation in conjunction with the decremented MCS approach described above
would require the development of decision logic at the transmitter to determine whether
the available channel state could support the embedded channel requirements or whether it
would be necessary to decrement the MCS index to facilitate a higher throughput. While

32

Figure 3.7. Block diagram of notional variable embedding implementation

this implementation is considerably more complex, it would allow the development of the
embedded channel without significantly impacting the data rate of the underlying system.

3.3.3 Error Protection of Embedded Payload
The final consideration of implementing this embedding scheme is ensuring that the em-
bedded payload can be reliably delivered. In evaluating options for information-hiding
techniques, it is important to determine whether the proposed channel will support unidi-
rectional (simplex) or bidirectional communications. In a full or half-duplex channel, errors
can be corrected through the use of retransmission protocols; if the channel only supports
simplex communication, the embedding scheme must rely entirely on FEC mechanisms to
correct errors encountered in the channel [22]. Given the challenges expected with imple-
menting this type of embedded channel, we must assume the worst case of simplex-only
communication.

As a result, the selection of an appropriate error correction mechanism is critical to
channel performance. In general, if we are embedding in an underlying channel with
coding rate R, we can select the same rate for our embedded data, a rate that provides more
redundancy than the underlying channel at the expense of data rate, or a higher rate code
that provides less redundancy than the underlying channel but increases the embedding
payload. In the case where we have intentionally decremented the MCS of the underlying
communication system to support our embedded channel, we could comfortably select a
higher rate FEC code based on our knowledge that the channel is better than implied by the
MCS index in use.

33

3.4 Adaptive Rate Embedded Channel Model
If we consider a general MCS-based communication system, each modulation and coding
rate pair support a different data rate. A description of the available channel throughput
is characterized by the relationship between the current channel condition and the number
of errors observed at the receiver. An important component to MCS-based systems is the
ability to estimate the current channel conditions and select an appropriate MCS index.
While specific rate-adaptation implementations vary, in most cases, the selection of an
MCS acts like a floor-function; the channel state may exceed the minimum SNR required
to support a given MCS index, but the system must select that lower rate to maintain the
desired error performance. This error threshold is often defined as a PER for a given length
PHY service data unit (PSDU). For 802.11ad, this performance threshold is considered to
be 1% PER for a 4096-octet PSDU [44] [5].

We developed a simplified model to better understand the relationship between the
selected MCS, the current channel state, and the available capacity that could be utilized
to support FEC-based embedding. In Figure 3.8, the curves labeled IC−1, IC , and IC+1

represent the PER performance of three MCS indices across a range of SNR values. The
MCS index, IC , is selected based on the current channel state and resulting signal-to-noise
ratio, SNRcurr . In our scenario, the available SNR exceeds the minimum requirements of
the communication system, and as a result, some of the error correction capability provided
by the selected FEC is redundant; this excess capability could then be utilized to support
the embedding of information within the FEC codewords.

The embedding capacity of each codeword could be increased so long as the PER
performance of the communication system remained at or below the specified protocol
threshold; this threshold is designated as PE RT and represents the maximum acceptable
PER for a given length PSDU. At maximum embedding capacity, the performance of
the communication system would be represented by the dashed curve ICE . This curve
would intersect the specified performance threshold, PE RT at SNRcurr . The difference
between the SNR value at this intersection and the SNR required to maintain PE RT with
an unembedded MCS is defined as the embedding margin, labeled ME .

The proposed model also provides some insight into both the capacity of our notional
embedded channel as well as a measure of distortion that occurs as a result of the embedding

34

Figure 3.8. Rate adaptive embedding model, packet error ratio versus SNR

implementation. The distortion, labeled as DE , represents the difference between the
expected PER for a given MCS at the current channel state and PSDU size, and the PER
observed when the channel is embedded; this distortion has a range between zero and the
threshold limit PE RT . We also proposed a lower bound for the embedding capacity, CCW ,
in bits per codeword, where rC and rC+1 are the number of redundant bits for the MCS
indices C and C +1 respectively, and SNRIC and SNRIC+1 are the SNR required to maintain
the specified PER error threshold for those same MCS indices. Assuming that the available
space was fully embedded, or ME = SNRIC+1 − SNRIC , then we would expect that CCW

would be greater than or equal to the difference in redundancy between the twoMCS indices

CCW ≥
ME (rC − rC+1)

SNRIC+1 − SNRIC
. (3.1)

If we look more broadly at our FEC-based embedded channel implementation, it is
possible to propose an absolute upper bound for the resulting covert channel based on
Shannon capacity, C. The capacity limit for the underlying communication system can be
determined as [69]

C = W log2

(
1 +

S
N

)
(3.2)

35

where W is the channel bandwidth, S is the signal power, and N is the noise power. Since
our FEC-based scheme occupies a known proportion of the total number of coded bits
transmitted by the underlying communication system, it is reasonable to assume that these
bits occupy an equivalent component of the total bandwidth. If we define this fractional
component, µ, as a ratio of the number of embedded bits to the total number of bits in the
coded bitstream, it is possible to rewrite (3.2) as

CE ≤ µW log2

(
1 +

S
N

)
(3.3)

to specify an upper limit of our embedding capacity, CE , for our current channel state.
Since C for a given SNR is finite, the resulting capacity of the legitimate communications
channel, CL would be reduced by an equivalent amount

CL = C − CE ≤ W (1 − µ) log2

(
1 +

S
N

)
. (3.4)

3.5 Summary
In this chapter, we presented our proposed embedding implementation for adaptive rate
communication systems. We explored some of the assumptions that were required to
support the increased data rate provided by this proposed method as well as presented two
distinctmodes of implementation. Finally, we presented amodel of our proposed embedding
methodology as it relates to the operation of an adaptive rate MCS-based communication
system.

36

CHAPTER 4:
Error Correction-Based Embedding in Low-Density

Parity Check Codes

Our initial efforts to conduct embedding in an adaptive rate wireless communication system
focused on IEEE 802.11ad DMG. As discussed in Chapter 3, we elected to investigate two
potential embedding methodologies during our research. The first method would exploit
the multiple MCS indices in the adaptive rate communication system by intentionally
decrementing the selected MCS index prior to embedding. The second implementation,
which did not impact the MCS selection, was developed to utilize available information
about the current channel state to exploit the additional redundancy within the existing
MCS. Our development of embedding in the LDPC codes utilized by 802.11ad evolved from
simple proof-of-concept demonstrations. Wegradually increased the complexity, examining
the application of forward error correction to the embedded payload, investigating multiple
embedding locations within the LDPC codewords, developing analytical tools and methods,
and extending our simulations to validate performance under multipath fading channels.4,5

4.1 Embedding with IEEE 802.11ad Directional Multi-
Gigabit WLAN

The core functionality of our proposed embedding technique depends upon the ability
to embed hidden data within the error correction mechanisms of an MCS-based wireless
communication system. Data embedding occurs at baseband after the LDPC encoder. Due
to the proposed implementation, embedding locations must be coordinated between the
transmitter and receiver through a pre-shared key. The embedding location can be selected
at any bit location; to align with the method used to implement the 7/8-rate puncturing
scheme, the initial location selected to embed the payload bits was in the first n parity bits of

4Portions of this chapter were previously published by IEEE [5]. Reprinted, with permission, from P. M.
B. Harley, M. Tummala and J. C. McEachen, “High-Throughput Covert Channels in Adaptive Rate Wireless
Communication Systems,” 2019 International Conference on Electronics, Information, and Communication
(ICEIC), Auckland, New Zealand, 2019, pp. 1-7.

5Portions of this chapter were used in an upcoming paper submission for the 53rd Hawaii International
Conference on System Sciences (HICSS), slated for January, 2020.

37

each codeword. Once the embedding process was complete, the modified LDPC codeword
was passed to the modulator before completing the rest of the transmit process. At the
destination, the embedded message was recovered after demodulation [5].

The output of the receiving station demodulator are LLR values. After extraction of the
embedded message, the bit positions that carried the hidden data are assigned a value of 0
before being sent to the LDPC decoder. In [44], it specifies that for punctured codes, LLR
values of 0 are used at the decoder to prevent the stuffed bits from introducing unnecessary
errors in the decoding process; this recommendation aligns with our analysis on how the
LLR-based LDPC decoder handles 0 values during the first iteration of the message passing
algorithm. This same principle is leveraged to prevent the LLR values of the embedded
hidden data from corrupting the legitimate payload. A block diagram of the information
hiding architecture, including the proposed use of FEC to protect the hidden data, is shown
in Figure 4.1.

Figure 4.1. Major components of the embedding process within 802.11ad
SC PHY. Adapted from [46].

38

The LDPC codes utilized in DMG are systematic and the embedded bits were initially
inserted into the first n parity bits of the LDPC codewords. This embedding location was
initially selected as it mirrored the puncturing location specified in [44] to generate the
R = 7/8 code needed to support MCS 9.1, 12.3 and 12.6. As the mechanism utilized to
embed data in FEC codewords mimics the method used for puncturing, it is reasonable to
assume that optimized puncturing locations would yield the highest possible embedding
rates. Although many methods exist to develop optimized puncturing patterns through the
application of algorithms or computer search [70]–[73], devoting significant time to this
effort was beyond the scope of our work.

We did, however, conduct embedding trials at multiple locations within the LDPC
codewords in an attempt to identify alternate locations that may yield improved payload
capacity over the original embedding locations. Specifically, we explored embedding
locations at the beginning, middle, and end of the data and parity bit sections of the LDPC
codeword. Despite the fact that these specific codes are systematic, the method for decoding
LDPC means that it does not expressly matter if data bits or parity bits are punctured (or
embedded). The most critical factor appears to be related to the column weight, wc, of H
in the specified embedding locations.

The importance of wc in the selection of the embedding locations is most likely due
to the observations of the iterative decoding process for LDPC with LLR inputs presented
in Section 2.4.2. With an LLR = 0, the punctured (or embedded) bit location relies upon
the aggregated inputs from the other received symbols to recover the transmitted value;
wc indicates the number of message bits participating in the decode process at each check
node [59]. To maximize the amount of information which contributes to the recovery of the
data lost during puncturing, or the transmission of an embedded payload, locations should
be selected that maximize wc.

Although we did not conduct an exhaustive search, we determined that embedding in
the last n data bits of each codeword generally returned a performance gain over embedding
in the first n parity bits. The only exception to this trend was for embedding in the already
punctured R = 7/8 code; in this case the original location returned better performance,
with higher embedding rates achieved at lower PER. If we examine the selected embedding
locations in terms of wc, we do find that our observations on column weight are supported

39

by the simulated results. The average column weight, w̄c, of the embedded bit locations for
each of the LDPC code rates is shown in Table 4.1. The number of embedding locations
participating in the average, n, is based on the maximum embedding capacity observed for
the first n parity bits in the quadrature phase-shift keying (QPSK) MCS.

Table 4.1. Average column weight for embedding locations within 802.11ad
LDPC codewords

LDPC Code Rate n
Last n Data Bits First n Parity Bits

Avg Column Weight, w̄c Avg Column Weight, w̄c

R = 1/2 95 4 3.4421
R = 5/6 85 3.506 2.9882
R = 3/4 48 4 3

R = 13/16 48 3 2.875
R = 7/8 21 3 2

The only case where w̄c did not accurately predict the embedding performance was for
the R = 7/8 LDPC code; that said, this code is a special case as it had already lost 48 parity
bits to puncturing prior to embedding. The full comparison of embedding capacity based
on location is presented in Section 6.1.1.

4.2 Simulation Development
Experimental trials of this proposed techniquewere conducted inMATLAB. The simulation
was adapted from aMATLAB-developed script to measure PER; embedding and extraction
of the hidden message required modifications to existing encode and decode functions used
within the MATLAB WLAN Toolbox [5]. An example of the required modifications can
be found in the Appendix A.1. Our simulation implemented the transmission of a single
DMG PHY protocol data unit (PPDU) which contained a 4096-octet PSDU [5]. This PSDU
length was selected based on receiver sensitivity validation criteria outlined in [44], which
specified that the PER for each SC MCS index be no more than 1% given a PSDU length of
4096 octets [5]. This PER value would also be extensively used in our research to establish
the minimum performance threshold for our embedding scheme and enable comparison
with embedded MCS indices.

In order to assess the performance of these embedding techniques, we needed to specify

40

a payload for both the PSDU of the underlying communication system as well as a payload
for the embedded data. For the 4096-octet PSDU, we generated a 128 × 256 pixel bitmap
image in a checkerboard pattern; the black pixelswere encoded as 1 andwhite pixels encoded
as 0. We then selected text from Chapter 1 of Alice’s Adventures in Wonderland to be used
as the embedded payload for our simulations. In both cases, the selected payload facilitated
rapid visual confirmation of received bit errors as we developed our initial simulations. An
example of this can be seen in Figure 4.2 where bit errors in our PSDU are easily identified.

(a) (b)

Figure 4.2. PSDU payload for simulated 802.11ad PPDU; 128 × 256 pixel
checkerboard bitmap: (a) transmitted image and (b) received image with
uncorrectable errors.

While we rapidly transitioned to other metrics to assess the performance of the em-
bedding method, we retained the original PSDU and embedded payload for the majority of
our simulated trials. As a control, we repeated our original trials for the QPSK MCS and
obtained consistent results when utilizing randomly generated binary sequences for both
the PSDU and the embedded payload.

All of our initial trials utilizedAWGN to simulate interference in the channel. The use of
a consistent seed value during AWGN generation ensured the noise environment remained
consistent for each series of trials. This consistent channel allowed direct comparison of
changing embedding rates on the underlying channel as the only variable impacting system
performance was the amount of data embedded in each codeword.

41

4.2.1 Performance Metrics
Once the embedding and extraction techniques were developed and implemented in the soft-
ware simulation, it became necessary to identify metrics to effectively assess the behavior
and performance of the proposed methodology. Keeping in mind the information-hiding
features proposed by [15], and previously discussed in Section 1.3.5, it became clear that in
addition to collecting information about the embedding capacity, we also needed the ability
to characterize the reliability of the embedded channel as well as assess the impact of our
embedding on the performance of the underlying communications system.

The performance of our proposed techniques was assessed by measuring the PER
of the underlying system as well as the bit error ratio (BER) of the received embedded
payload. PER is an important performance metric as uncorrectable packet errors can result
in significant reduction of channel throughput due to the requirement for retransmissions. As
a result, PER served as our critical indicator of the health of the underlying communication
system and provided an indication of the impact of specified embedding rates at given
channel conditions. The second factor in evaluating our embedding methodology was
providing an estimate of expected errors in our embedded payload. As we could not assume
the availability of duplex communication for our embedded channel, it was highly desirable
to minimize the BER of the embedded payload. We elected not to measure embedded
payload performance in terms of a block error rate due to the fact these metrics are a
function of block length. Therefore, changes in the embedding rate, and the corresponding
changes to the size of the embedded payload, would make it difficult to perform direct
performance comparisons.

Multiple trials were conducted to develop an accurate representation for the PER and
BER at each specified SNR value; a minimum of 10000 trials were conducted to evaluate
MCS and embedding combinations. In some cases the number of trials was increased to
100000 PSDU per SNR point to improve the fidelity of the results.

4.2.2 Preliminary Capacity Analysis of Decremented Embedding
Our embeddingmethodology looked at the transmission of data within 802.11ad as it related
to both the total length of the PSDU as well as the number of embedded bits contained
in each LDPC codeword. The length of the PSDU, LP, measured in octets, not only

42

influenced PER performance of the underlying system but also determined the number of
LDPC codewords, NCW , available for embedding. The embedding capacity of each PSDU,
CPSDU , was determined by

CPSDU = CCW NCW , (4.1)

where CCW is the embedding capacity of each LDPC codeword. We then determined the
number of LDPC codewords, NCW , for a specified length PSDU (in octets), LP, [44]

NCW =

⌈
8ρLP

LCW RC

⌉
, (4.2)

provided we have information about the selected MCS to include the length of the LDPC
codeword in bits, LCW , the code rate, RC , and the repetition factor of the code, ρ. As
noted in [44], LCW will be 672 for all 802.11ad SC DMG MCS except those utilizing the
punctured R = 7/8 code; for those MCS indices, LCW = 624. Combining (4.1) and (4.2)
yields an alternate form

CPSDU = CCW

⌈
8ρLP

LCW RC

⌉
. (4.3)

It is important to note that CPSDU is only an indication of raw embedding capacity and
does not address the overhead required to implement an error correction technique on the
embedded payload.

4.3 Forward Error Correction of Embedded Message
Initial embedding trials did not implement an error correction scheme for the embedded
payload. Instead, a simple hard decision technique was utilized on the raw LLR values;
negative LLR values provided by the 802.11ad demodulator were decoded as a bit value
of 1, and positive values as 0. While it was possible to make decoding decisions for
each bit position, our embedding implementation does not allow us to take advantage of
the inherent data protection mechanisms used on the underlying communication system.

43

Consequently, the error performance of our embedded payload was similar to that of an
uncoded communication system operating with the same modulation type and rate.

Although implementing error correction mechanisms on our embedded data reduced
the overall capacity, in practice the use of an FEC technique would be critical. The trade-off
between capacity and error correction can be clearly observed in the following case where a
single 4096-octet PSDUwas transmitted with characteristics fromMCS 6 across an AWGN
channel. Before transmission, the underlying PSDUwas embedded with a 9310-bit payload
which contained the binary representation of 1163 ASCII characters. Upon receipt, the
embedded payload was extracted and decoded per our standard embedding implementation;
the underlying PSDU, which utilized a R = 1/2 FEC code was received without error.
Unfortunately, as shown in Figure 4.3a, the uncoded embedded payload was received with
a large number of uncorrectable errors which are highlighted in red.

(a) (b)

Figure 4.3. Simulated transmission of single 4096-octet PSDU in 802.11ad
MCS 6 over AWGN channel: (a) received embedded payload with errors, no
FEC and (b) received embedded payload with no errors, LDPC(5/8) FEC.

This scenario was then repeated under the same channel conditions utilizing a R = 5/8
LDPCcode to protect the embedded payload; although the capacity of the embedded channel
was significantly reduced, to 5460 bits or 682 ASCII characters, the error performance
improved dramatically. As shown in Figure 4.3b, in this second case, the embedded

44

payload was also recovered without error.

4.3.1 Capacity Analysis FEC-Protected Payload
To improve the reliability of our embedded channel, we encoded our embedded payloadwith
the same LDPC codes employed by the underlying channel. As expected, the application
of error correction techniques resulted in significant reductions in the amount of embedded
payload that could be carried in each PSDU.

The reduction in capacity was not only due to the need to embed FEC parity bits, but
also the fact that only complete FEC codewords could be embedded in the PSDU. While
the limitation on embedding complete FEC codewords was originally a product of the
simulation environment, which was only configured to transmit a single PSDU, justification
for such an implementation exists within best practices described for information-hiding
techniques in [15]. Specifically, if the encoded embedded data was spread across multiple
PSDU, the loss of any one PSDU could corrupt portions of the embedded channel carried
on adjacent frames.

For our initial implementation of FEC, we conducted simulated trials to explore the
capacity limits of the embedding methodology where the MCS index selected for the under-
lying communications system had been intentionally decremented. This implementation
provided an opportunity to select a higher-rate FEC code for the embedded data than was
being utilized on the underlying channel; this was possible due to the fact that we understood
that the channel conditions would require a code with less redundancy.

The total size of the FEC-protected embedded payload, LE , that could be embedded
into a given PSDU is determined by

LE = NECW DECW , (4.4)

where NECW is the number of complete LDPC codewords that can be embedded in each
PSDU, and DECW is the amount of data carried by each codeword. DECW is based on the
FEC selected to protect the embedded payload

45

DECW = LECW REC , (4.5)

where REC is the code rate, and LECW is the overall codeword length. Due to the possibility
of selecting unequal error protection for the embedded payload, REC may not equal the
coding rate of the underlying channel. The number of complete codewords in each PSDU
could then determined based on the total embedding capacity of each PSDU from (4.3)

NECW =

⌊
CPSDU

LECW

⌋
. (4.6)

By combining (4.4), (4.5), and (4.6), we derive an updated equation for LE

LE = LECW REC

⌊
CPSDU

LECW

⌋
, (4.7)

which can also be expressed in terms of CCW as

LE = LECW REC

⌊
CCW NCW

LECW

⌋
. (4.8)

4.3.2 Interleaving of Embedded Data
Evaluation of the embedded channel with forward error correction led to the development
of an alternate embedding technique that aimed to reduce the performance impact to the
underlying communications channel without sacrificing the throughput of the embedded
channel [5]. In the original implementation, the FEC-protected payload was embedded into
the underlying communications channel in such a way that the full n-bit embedding capacity
was utilized in the first f codewords, before embedding the remainder rs bits of data in the
codeword in codeword (f + 1) [5]. A representation of this method is shown in Figure 4.4a
with the number of fully embedded codewords, f , calculated as [5]

f =
⌊

LE

n

⌋
, (4.9)

46

where LE is the total number of embedded payload bits [5].

(a)

(b)

Figure 4.4. Comparison of embedding method for FEC-protected hidden
message: (a) standard embedding method and (b) interleaved embedding
method. Source: [5], © 2019 IEEE.

The number of bits embedded in the final codeword that contains the payload data, rs,
is determined using the following formula [5]:

rs = LE − n f = LE − n
⌊

LE

n

⌋
. (4.10)

Since the total number of locations available for embeddingwas greater than the number
of bits being embedded, this method resulted in some legitimate codewords having all n

parity bits embedded, while others carried 0 embedded bits [5]. This uneven embedding
was suboptimal as codewords that were fully embedded are more likely to experience an
uncorrectable error, and any codeword errors would ultimately result in a packet error [5].

The new method utilized a process similar to interleaving where the hidden data was
distributed equally across all NCW codewords [5]. This method is illustrated in Figure 4.4b
where the total number of codewords w, is equal to NCW . Every codeword was embedded
with a minimum of p bits [5],

p =
⌊

LE

w

⌋
, (4.11)

where LE remains the total number of bits being embedded [5]. While all codewords
contain at least p-bits, the first ri codewords will contain (p + 1) bits; ri is calculated by [5]

ri = LE − wp = LE − w

⌊
LE

w

⌋
. (4.12)

47

4.4 Improved Estimates of Embedding Capacity
Initial proof of concept trials were conducted to validate the performance of the proposed
embedding scheme when operating in the decremented MCS implementation. Since these
trials were focused on establishing the performance of our embedding scheme in cases
where the selected MCS was intentionally decremented, the focus of the simulations was
to determine the maximum level of embedding, measured as bits-per-codeword. The
maximum embedding rate was determined by comparing the average PER of the embedded
MCS, IC , at a given channel state to the unembedded performance of the next higher MCS
index, IC+1. The embedding rate could be increased so long as the average PER for the
embedded MCS did not exceed that of the unembedded MCS for a given SNR. While the
data collected from these early trials provided valuable information about the capacity of
this specific embedding implementation, it did not provide sufficient granularity to perform
mathematical analysis or draw strong conclusions on the behavior of these embedding
schemes.

In order to support analysis of our second embedding method, which sought to utilize
available ME within the existing MCS index, it was necessary to significantly expand the
number of simulated trials as well as develop a series of analytical techniques to identify
the relationship between the channel state, characterized in terms of SNR, and the available
embedding capacity. Embedding trials were therefore conducted for all SC DMG MCS
at every embedding rate starting at 1-bit-per-codeword up to a maximum rate that was
25% greater than observed during our initial trials; the increased maximum was selected to
ensure that we fully explored the embedding range. An example of the results from these
embedding trials can be seen in Figure 4.5 where the PER threshold for 802.11ad at the
given PSDU-length is indicated by the red-dashed line.

The next step was to determine the SNR required to support each of the embedding
rates. Although we could not run a sufficient number of trials to experimentally determine
these values, we did note that while the PER manifests as a curve with exponential decay,
when viewed on a semi-logarithmic (log-lin) plot, the area of interest around the designated
PER threshold appears to be approximately linear. As a result, we were able to utilize
a semi-log interpolation technique to estimate the minimum SNR required to achieve a
specified PER for a given embedding rate; this interpolation was conducted in MATLAB
with the resulting estimated SNR values plotted in Figure 4.6 against the simulated PER

48

2.5 3 3.5 4 4.5 5 5.5

SNR (dB)

10-3

10-2

10-1

100

P
a
c
k
e
t
E

rr
o
r

R
a
te

 (
P

E
R

)

MCS 6 - No Embedding

MCS 7 - No Embedding

PER 0.01 Threshold

Figure 4.5. Variable rate embedding trials, DMG PHY simulation under
AWGN channel. Results for MCS 6, 100000 trials per SNR, 1 to 120 em-
bedded bits per LDPC codeword.

curves. The code utilized to conduct this interpolation can be found in Appendix A.2.
The embedding rates obtained from this interpolation, in terms of bits-per-codeword, were
then plotted against these SNR estimates in an attempt to quantify the performance of our
embedding methodology; an example of the resulting plot is shown in Figure 4.7.

The vertical lines in Figure 4.7 represent the minimum estimated SNR required to main-
tain the designated PER threshold for MCS 6 and 7. These bounds, which were estimated
by performing the same semi-log interpolation technique on the results of simulations
conducted against unembedded MCS indices, provide an excellent representation of the
performance bounds of our embedding technique for MCS 6. As the number of embedded
bits increases, the SNR required to maintain the specified 1% PER also increases. This
graphical representation also makes it easy to identify the specific embedding rate where the
performance of an embedded channel operating at the current MCS index, IC , is equivalent
to that of the next higher MCS index, IC+1.

Since we are primarily concerned with the embedding capacity between adjacent MCS,
we can use the information from Figure 4.7 to identify the upper embedding limit in this trial

49

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

SNR (dB)

10-2

10-1

P
a
c
k
e
t
E

rr
o
r

R
a
te

 (
P

E
R

)

Figure 4.6. Variable rate embedding trials, DMG PHY simulation under
AWGN channel. Estimated SNR requirement to achieve 1% PER for each
embedding rate. MCS 6, 100000 trials per SNR, 1 to 120 embedded bits
per LDPC codeword.

3.5 4 4.5 5 5.5 6

SNR (dB)

0

20

40

60

80

100

120

E
m

b
e
d
d
e
d
 B

it
s
 (

p
e
r

C
o
d
e
w

o
rd

)

MCS 6 Embedded

MCS 6 at PER 0.01

MCS 7 at PER 0.01

Figure 4.7. Estimated embedding capacity at a given SNR while maintaining
1% PER. DMG PHY simulation under AWGN channel, MCS 6, 100000
PSDU per SNR point, 1 to 120 embedded bits per LDPC codeword.

50

as 95-bits-per codeword. In an effort to characterize the embedding capacity for each MCS,
a linear regression was run against the result of each trial up to this maximum embedding
capacity. The results were presented in the standard slope-intercept form

y = mx + b , (4.13)

where y represents the number of embedded bits per codeword, m is the coefficient that
describes the slope of the regression, x represents the channel conditions as described by
the SNR, and the constant b provides the y-axis intercept and completes the mathematical
description of the line. The resulting line of regression is displayed in Figure 4.8.

3.5 4 4.5 5 5.5 6

SNR (dB)

0

20

40

60

80

100

120

E
m

b
e
d
d
e
d
 B

it
s
 (

p
e
r

C
o
d
e
w

o
rd

)

MCS 6 Embedded

Regression Line

MCS 6 at PER 0.01

MCS 7 at PER 0.01

Figure 4.8. Estimated embedding capacity at a given SNR while maintaining
1% PER with associated line of regression. DMG PHY simulation under
AWGN channel, MCS 6, 100000 PSDU per SNR point, 1 to 95 embedded
bits per LDPC codeword.

When considering the embedding capacity of each MCS, the most significant element
of the linear regression is the slope, which represents the number of bits per LDPC codeword
that can be embedded for every dB increase in SNR; from this point, we will reference this
slope as the estimated embedding coefficient, or r̂E .

Once calculated, the estimated embedding coefficient can be utilized to develop the
estimated capacity of each codeword, ĈCW , expressed in bits-per-codeword, where

51

ĈCW = br̂E MEc , (4.14)

and the embedding margin, ME , is a measure of the difference in SNR between the current
channel conditions and the minimum SNR required to maintain the specified PER threshold
at the current MCS index for an unembedded PSDU.

Substituting the expression for ĈCW into (4.1) allows us to calculate ĈPSDU , an estimated
embedding capacity measured in bits-per-PSDU

ĈPSDU = NCW
⌊
r̂E ME

⌋
(4.15)

which is a function of ME . Substituting into (4.3) allowed us to obtain an alternate form of
the same capacity estimate

ĈPSDU = br̂E MEc

⌈
8ρLP

LCW RC

⌉
. (4.16)

While this estimated embedding capacity represents the raw number of bits that can be
embedded in a given PSDU, it does not factor in the overhead required to support the error
protection for the embedded payload. Finding the length of the estimated FEC-protected
embedded payload, L̂E , that can be carried in a single PSDU for a given ME and r̂E can be
found by substituting the results of (4.14) into (4.8)

L̂E = LECW REC

⌊
br̂E MEc NCW

LECW

⌋
. (4.17)

4.5 Embedding Distortion
In addition to the capacity of the embedding payload, another important consideration is
the impact these techniques have on the underlying communications channel. Similar to
the concept of distortion in traditional steganography, which is a measure of the amount of
modification that has been performed on the cover object [23], we will examine the impact

52

of our embedding process in terms of observable changes to the performance of the wireless
communication system.

4.5.1 Distortion Types
Our proposed embedding occurs at the physical layer and all traces of our embedded data
should be removed from the legitimate information bits before they are passed from the
PHY. With this in mind, we have identified three potential impacts that would still be
observed even if the embedded data is successfully removed at the receiver.

The first impact, designated as Type 1, is the least significant and occurs when embed-
ding is conducted without decrementing the MCS index. In this case, the measured PER
is higher than expected for a given SNR; this distortion, previously identified in Figure 3.8
was labeled as DE . The second type of distortion, Type 2, is a direct result of the intentional
MCS degradation. In this case, the underlying communication system will be operating at
a lower throughput than would be expected for the current channel conditions. The final
distortion, Type 3, occurs if the embedding impacts the system to such an extent that the
PER consistently exceeds the established protocol thresholds. While each vendor imple-
mentation of link adaptation methodology is different, if the PER exceeds the prescribed
threshold, the communication system will experience excessive retransmissions and lower
overall throughput. It is worth noting that the ability to recognize the presence of Type 1
or Type 2 distortion requires access to accurate channel state information or the ability to
estimate the current SNR of the received signal.

4.5.2 Distortion Regions
Examining the embedding model outlined in Section 3.4, it is possible to delineate regions
that correspond to each type of distortion described above. These regions, identified in
Figure 4.9, provide insight into both the amount and types of impact that can be expected on
the underlying communication system. If the embedding is being utilized for the purposes
of developing a covert channel, the level of distortion can also be an indicator of how
vulnerable the channel will be to detection.

The most advantageous region, highlighted in green, is the triangular region where only
Type 1 distortion is present. This region offers a lower embedding margin, ME , than the

53

Figure 4.9. Distortion regions for embedding in adaptive rate communication
system

case where the MCS is decremented, but results in minimal impact on the channel. In this
particular case, the embedding point, identified as the intersection of the embedding PER,
PE RE , and SNRcurr was selected in a location that reduces the magnitude of distortion,
DE , at the expense of ME and therefore embedding capacity.

If a higher embedded throughput is required, and the MCS is decremented, the channel
will move into the yellow region that contains not only Type 1 distortion but also results
in a lower throughput of the underlying channel (Type 2). The final cases, identified as
the blue and red regions, occur when the overall PER exceeds the established protocol
thresholds. Both of these regions represent the most significant distortion contribution, as
the underlying system will suffer significant disruption and loss of throughput.

4.6 Capacity Refinements
This section aims to conduct a closer examination of the constraints associatedwith selecting
an embedding ratewithin the region of themodel that only contains Type 1 distortion. Before
being subject to additional constraints, this region is defined by three distinct bounds. The
upper horizontal bound, PE RT , represents the protocol threshold for packet error ratio.

54

The vertical bound along the right-side of the region is defined by the current channel
state, SNRcurr . Finally, the diagonal bound on the left-hand edge is the performance of
the current MCS index, IC . While these limits adequately describe the region, there are
additional constraints that serve to further limit embedding.

It is important to recognize that our ability to move within this region is entirely
dependent upon the selection of an embedding rate. Increasing the embedding rate will
cause the performance curve of the current MCS index, to move in the direction of the
intersection between PE RT and SNRcurr . This curve will remain approximately parallel to
IC and will be used to describe the expected PER of the underlying system, quantify the
type and magnitude of distortion which results from the embedding, and define ME which
is used to find the embedded channel capacity.

4.6.1 Constraints
An enlarged version of the embedding region subject to Type 1 distortion is shown in Figure
4.10. This triangular region, described by the vertices D, E , and F, is subject to three
constraints that serve to reduce the size of the embedding region.

The first constraint is based on the inherent limitations of channel estimation and the
impact of this uncertainty on our embedding limits. The IEEE 802.11ad DMG PHY utilizes
a preamble composed of a STF and a CEF; these fields employ Golay sequences to perform
synchronization, automatic gain control and channel estimation in the time and frequency
domain [46]. While the use of Golay sequences provides robust channel estimation, as
noted in Chapter 2, there are also SNR estimation considerations related to the specific
channel environment [39] and equipment calibration [42]. As a result, when evaluating
the embedding region we propose establishing an offset, ε , from the estimated SNRcurr .
While this offset will reduce both ME and the maximum embedding capacity, it will also
reduce the chance of unintentionally introducing uncorrectable errors. Revisiting (4.14),
the estimated embedding capacity per codeword due to this offset, ĈCWε , can be represented
as

ĈCWε = br̂E (ME − ε)c . (4.18)

55

Figure 4.10. Visualization of practical embedding region subject to additional
constraints

The second constraint is a user-defined factor of safety that imposes a more restrictive
packet error threshold than that specified by the protocol standard, PE RT . Lowering the
upper acceptable PER limit by ζ reduces the embedding capacity of the channel but also
reduces the likelihood that embedding will cause the underlying system to exceed the
established PER limits.

The PER performance of the underlying channel in the vicinity of the specified PE RT

has been shown to be approximately linear on a semi-logarithmic plot; as long as the
updated PE RT−ζ remains within this log-linear region, the estimated embedding coefficient
will remain relatively consistent. This behavior can be observed in Figure 4.11 where
embedding results are plotted for thresholds of PER = 0.01, PER = 0.005, and PER
= 0.0025. While the minimum required SNR increases as the PER threshold is decreased,
the slope of the resulting r̂E remains relatively unchanged. The r̂E derived from the example
in Figure 4.11 are shown below in Table 4.2.

56

3.5 4 4.5 5 5.5 6 6.5 7

SNR (dB)

0

20

40

60

80

100

120

E
m

b
e
d
d
e
d
 B

it
s
 (

p
e
r

C
o
d
e
w

o
rd

)

MCS 6 Embedded at PER 0.01

MCS 6 at PER 0.01

MCS 7 at PER 0.01

MCS 6 Embedded at PER 0.005

MCS 6 at PER 0.005

MCS 7 at PER 0.005

MCS 6 Embedded at PER 0.0025

MCS 6 at PER 0.0025

MCS 7 at PER 0.0025

Figure 4.11. Comparison of embedding rates for DMG PHY simulation under
AWGN channel at various packet error ratio thresholds. MCS 6, 100000
PSDU per SNR, 1 to 95 embedded bits per LDPC codeword.

Table 4.2. Estimated embedding coefficient for IEEE 802.11ad DMG MCS
6 in AWGN at varying PER thresholds

PER Threshold Estimated Coefficient of
Embedding, r̂E

0.01 72.33
0.005 71.49
0.0025 70.59

Assuming a consistent value for r̂E , we can update (4.18) to reflect the reduced margin
of embedding, MEζ , at the new PER threshold, PE RT−ζ

ĈCWmax =
⌊
r̂E

(
MEζ − ε)

)⌋
, (4.19)

and provide an estimated maximum capacity per codeword, ĈCWmax , which accounts for the
offsets of ζ and ε .

The final constraint on the embedding region, δ, represents the minimum embedding
margin, ME,min, required to support the required throughput for the embedded channel,

57

UE , measured in bits-per-second. To develop our estimate for δ, we need to make the
following assumptions about our visibility into the MAC-layer to include the number of
PSDU, NPSDU , transmitted to the destination STA during each DMG beacon interval (BI),
and the duration of the BI, TBI , in seconds. Given this information, we can determine
minimum FEC-protected payload, LE,min, that must be carried by each PSDU:

LE,min =

⌈
UETBI

NPSDU

⌉
. (4.20)

We must next determine the minimum capacity, CPSDU,min, measured in bits-per-PSDU,
required to successfully embed our payload

CPSDU,min = LECW

⌈
LE,min

LECW RECW

⌉
, (4.21)

using a RECW -rate LDPC code with LECW -bit codewords. It is important to note that this
equation ensures that the minimum embedding capacity is sufficient to embed at least one
FEC codeword independent of the required UE .

Using insight from (4.1), we can determine the minimum embedding capacity, CCW,min,
measured in bits per codeword

CCW,min =

⌈
CPSDU,min

NCW

⌉
, (4.22)

given the number LDPC codewords in each PSDU, NCW , which is a function of both the
selected MCS index as well as the PSDU length, LP. Using (4.14), we established the
relationship of (4.22) with ME,min

CCW,min =
⌊
r̂E ME,min

⌋
(4.23)

and the estimated embedding coefficient r̂E . Since CCW,min was an integer value we can
transform the equation

58

CCW,min ≤ r̂E ME,min < CCW,min + 1 , (4.24)

which can be further simplified given that r̂E > 0 as

CCW,min

r̂E
≤ ME,min <

CCW,min + 1
r̂E

, (4.25)

where ME,min could be any value on the interval

[
CCW,min

r̂E
,

CCW,min + 1
r̂E

)
. (4.26)

Considering the intent of the offset, δ, as it relates to the concept of ME,min, we selected
the upper bound to ensure we maintained sufficient capacity to support UE ; therefore,

δ = ME,min =
CCW,min + 1

r̂E
, (4.27)

or

δ =
1
r̂E

(
CCW,min + 1

)
. (4.28)

We then sought to derive an equation for δ as an expression of UE , as well as attributes
of the current MCS index and the FEC code selected to protect the embedded payload. We
first substituted values from (4.22) for CCW,min to obtain

δ =
1
r̂E

⌈
CPSDU,min

NCW

⌉
+

1
r̂E
, (4.29)

replacing CPSDU,min with the expression from (4.21)

59

δ =
1
r̂E

⌈
LECW

NCW

⌈
LE,min

LECW RECW

⌉ ⌉
+

1
r̂E
, (4.30)

before replacing LE,min from (4.20)

δ =
1
r̂E

LECW

NCW

⌈

UETBI

NPSDU

⌉
LECW RECW

+

1
r̂E
. (4.31)

Since the value of LECW RECW , which represents the amount of data bits carried in each
LDPC codeword, is an integer, and the value of UETBI and NPSDU are real numbers [74],

δ =
1
r̂E

⌈
LECW

NCW

⌈
UETBI

NPSDU LECW RECW

⌉ ⌉
+

1
r̂E
. (4.32)

Finally, substituting the expression for NCW from (4.2) yields

δ =
1
r̂E

LECW⌈
8ρLP

LCW RC

⌉ ⌈
UETBI

NPSDU LECW RECW

⌉ +
1
r̂E
. (4.33)

4.6.2 Edge Cases
The vertical boundary between vertices E′ and F′ on the edge of the reduced region in Figure
4.10 represents an estimate of the current channel state and the location that will maximize
ME for a given PER. The horizontal edge of the region, connecting D′ and E′, identifies
the maximum permissible PER based on both the protocol standard and any specified factor
of safety. Finally, the diagonal segment connecting D′ and F′ is the expected performance
of the communications channel while supporting the minimum embedding rate required to
meet the desired embedded channel throughput.

The vertices of this reduced region that intersect the adjusted SNR limit represent

60

locations of either minimum distortion or maximum embedding capacity. Specifically, F′

represents the lowest Type 1 distortion while supporting the lowest allowable embedding
capacity. Conversely, E′ represents the maximum possible ME , and therefore the highest
capacity, but achieves this performance at the highest level of distortion.

4.7 Implementation of Multipath Fading Channel
The final modification to our 802.11ad testbed involved the implementation of a multipath
fading channel to better approximate the performance of our embedding methodologies un-
der realistic channel conditions. The channel model accepted by IEEE P802.11 Task Group
ad (TGad) for the DMG protocol is outlined in [75]; unfortunately, while the MATLAB
WLAN Toolbox contains system objects to model fading channels for many modern 802.11
standards, they did not develop a specific implementation for 802.11ad DMG.

Fortunately, the 2018b and 2019a releases of the WLAN Toolbox contained a channel
model for IEEE 802.11ay based on [76], which was developed to support IEEE P802.11
TGay. Although this model supports characteristics that are not implemented by SC DMG,
to include MIMO, both [76] and the MATLAB implementation define a legacy single-
input and single-output (SISO) mode [77]. Furthermore, the updated model included
confirmation that both the polarization and space-time characteristics of the propagation
channel had been correctly implemented in the original TGad model [76].

The MATLAB implementation of [76] did not incorporate the three existing 802.11ad
channel models Living Room, Enterprise Cubicle, or Conference Room that remained in
the 802.11ay revision; instead they opted to implement three of the newer models including
Open Space, Street Canyon, and Large Indoor Space (Hotel Lobby) [77]. To best align
with the characteristics of SC DMG, we selected the open area hotspot implementation,
which contains only a single reflection plane, and the single user SISO (SU-SISO) user
characteristic. Based on expected range estimates from [47], we selected the locations of
our stations to achieve a slant range of approximately 10 meters. In this configuration,
the MATLAB implementation conducts ray tracing to develop the LOS and non-line-of-
sight (NLOS) paths with a single first-order reflection. The simulated results that employed
this model are presented in Section 6.3.1

61

4.8 Summary
In this chapter, we introduced our proposed implementation of error correction code-
based embedding within 802.11ad DMG and identified the critical aspects of developing
a MATLAB-based simulation to ascertain the performance of our techniques. We then
discussed the use of error correction codes to improve the bit-error performance of our
embedded payload and derived expressions to determine the maximum FEC-protected
payload capacity. Analysis techniques were developed to estimate the embedding capacity
based on the channel state and then expanded to consider constraints that might limit the
size of the embedded payload as well as identify the expected distortion on the underlying
communication system. Finally, we outlined the implementation of a simulated multipath
fading channel to establish the performance of our embedding techniques under more
realistic channel conditions. Relevant results obtained from the simulations developed for
these LDPC-based embedding techniques will be presented in Chapter 6.

62

CHAPTER 5:
Error Correction-Based Embedding in Convolutional

Codes

Following our investigation of LDPC codes, we turned our attention to developing embed-
ding techniques within convolutional codes. We specifically chose to examine the R = 1/2
(7, [133, 171]) convolutional code, first proposed in [78], that has a constraint length K = 7,
and an encoder that can be described by the polynomial generators g0 = 133 and g1 = 171.
This convolutional code has seen broad application in commercial communications systems
and has been utilized withinWi-Fi standards as far back as IEEE 802.11a. Unlike the LDPC
codes utilized for DMG, this BCC is not systematic and therefore, there is no distinction
between data and parity bits in the output of the encoder.

The use of this specific error correction code within IEEE 802.11 is heavily dependent
on puncturing techniques to facilitate increased data rates. In the most recent standards,
this code can be found with three distinct puncture rates of R = 2/3, R = 3/4, and
R = 5/6. Consequently, any embedding techniques developed for this particular code had
to be capable of being implemented against both the unpunctured R = 1/2 parent code as
well any of the punctured rates.

Our work on convolutional codes afforded us the opportunity to develop a simplified
model of an adaptive rate communication system. The attributes of our model were
carefully selected to maximize utility while minimizing complexity. Once we validated
our embedding concepts within this model, we applied portions of these techniques in a
MATLAB testbed for IEEE 802.11ac VHT.

Despite the fact that convolutional codes function in an entirely different manner than
block codes, we retained the three key concepts from our original embedding methodology.
First, our embedding techniquewould seek to remove our embedded data at the receiver prior
to decoding. Second, we would explore implementations that would require the selection of
sub-optimal MCS indices to increase the embedding capacity. Third, we would attempt to
develop techniques that could exploit available capacity within the current MCS index. A
block diagram of the information-hiding architecture within a generic convolutional error

63

correction code-based communication system is shown in Figure 5.1.

Figure 5.1. Major components of generalized convolutional code-based em-
bedding process

5.1 Adaptive Rate Embedding Model
During the development and testing of the complex simulation which was utilized to imple-
ment our embedding techniques against IEEE 802.11ad, we made a number of observations
related to the behavior of both the underlying communications channel and the embedded
payload that pertain to data collection and analysis.

We observed that the BER for an uncoded embedded payload was consistent with the
performance of uncoded data transmitted at the specified modulation type and channel
state. If FEC was implemented to protect the embedded payload, the performance of that
error correction mechanism was simply a factor of the selected code rate and the current
channel conditions. Most importantly, the impact of embedding on the performance of
the underlying communication channel, measured in PER, was solely determined by the
number and location of the embedded bits; specifically, the critical factor was the impact of
the erasures in the received code that occurred when we extracted our embedded payload
from the underlying channel. The actual content of those bit locations during the simulated
transmission and demodulation did not have any impact on PER.

These observations were used to make deliberate design decisions with respect to the
development and implementation of our embedding techniques; specifically, for our initial

64

trials, no data would actually be embedded in the transmitted frames. So long as we removed
the bit values prior to decoding, the performance impact to the underlying system would be
accurate but the complexity of the testbed would be significantly reduced.

An additional consideration in the development of our model was the selection of
the modulation type and channel model. By selecting binary phase-shift keying (BPSK)
modulation over an AWGN channel, we were able to leverage well understood analytical
expressions to derive the error bounds of our specified (7, [133, 171]) convolutional code.
Not only would these equations allow us to validate the implementation of our adaptive rate
model, and compare estimated BER of our notional MCS indices against the analytically
derived performance bounds, but also enable us to calculate the expected error performance
of our embedded payload without relying on experimental results.

As a result, our proposed adaptive rate system would have four distinct rates, designated
MCS A, MCS B, MCS C and MCS D; the MCS indices would each adopt a coding rate
and puncture pattern that aligned with the real world implementation of the (7, [133, 171])
convolutional code. MCS A would utilize the parent code with R = 1/2, with MCS B, C
and D utilizing rates R = 2/3, R = 3/4, and R = 5/6, respectively.

With a notional adaptive rate model established, we leveraged analytical expressions
from [59], [63], [65] to establish the theoretical performance bounds. The necessary
characteristics to define the performance of (7, [133, 171]) are contained in Table 5.1 where
d f is the minimum free distance of the code, ad is the event weight for the code, and cd is
the information error weight of the code.

Table 5.1. Code description and weight spectra of IEEE 802.11 binary con-
volutional code. Adapted from [65].

Constraint
Length

K

Generators
(in octal)

Free
Distance

df

Weight Spectra
(ad, d = df , df + 1, . . . , df + 19)
[cd, d = df , df + 1, . . . , df + 19]

7 133, 171 10

(11, 0, 38, 0, 193, 0, 133, 0, 7275, 0, 40406, 0,
234969, 0, 1337714, 0, 7594819, 0, 43375588, 0)
[36, 0, 211, 0, 1404, 0, 1163, 0, 77433, 0, 502690,
0, 3322763, 0, 21292910, 0, 134365911, 0,
843425871, 0]

The event weight, ad , represents the number of incorrect paths with a distance, d,

65

that diverge from the correct path before rejoining at a later stage where d ≥ d f ree; the
information error weight, cd , is a related metric that counts the total number of information
bit errors on the paths represented by ad .

It is then possible to calculate the probability of bit error, Pb, union bound [59]

Pb <

∞∑
d=df ree

cdPd (5.1)

where Pd is the probability of selecting an error path of weight d. Although the summation
term in (5.1) is infinite, the first terms of the series are dominant and extremely accurate
estimates for Pb can be calculated after as few as ten terms [79]. The expression for Pd is
dependent upon the modulation type and the channel itself. In the simplest case, Pd for
hard decision decoding of a binary symmetric channel is given by [63]

Pd =
[
2
√

p (1 − p)
]d

(5.2)

where p is the probability of channel transition. A more appropriate estimate for our model
can be found by utilizing the pairwise error probability for coherent soft-decision BPSK in
AWGN [65]

Pd = Q

(√
2d

EbR
N0

)
, (5.3)

where d remains the weight of the error path, Eb is the energy per information bit, N0 is the
noise spectral density, and R is the code rate. Combining (5.1) and (5.3) yields

Pb <

∞∑
d=df ree

cdQ

(√
2d

EbR
N0

)
. (5.4)

An improved bound for the performance of punctured convolutional codes relies upon
the fact that the puncture period of the code imparts a regular time-variance based on the

66

Table 5.2. Code description and weight spectra of punctured rates of IEEE
802.11 binary convolutional code. Adapted from [80]..

Puncturing
Rate

R

Puncturing
Pattern

Free
Distance

df

Weight Spectra
(ad, d = df , df + 1, . . . , df + 9)
[cd, d = df , df + 1, . . . , df + 9]

2/3
[
1 1
1 0

]
6

(1, 16, 48, 158, 642, 2435, 91274, 34705,
131585, 499608)
[3, 70, 285, 1276, 6160, 27128, 117019,
498860, 2103891, 8784123]

3/4
[
1 1 0
1 0 1

]
5

(8, 31, 160, 892, 4512, 23307, 121077,
625059, 3234886, 16753077)
[42, 201, 1492, 10469, 62935, 379644,
2253373, 13073811, 75152755,
428005673]

5/6
[
1 1 0 1 0
1 0 1 0 1

]
4

(14, 69, 654, 4996, 39699, 315371,
2507890, 19921920, 158275483,
1257455600)
[92, 528, 8694, 79453, 792114, 7375573,
67884974, 610875423, 5427275376,
47664215639]

starting position within the puncture period k [65]. This revised expression for the union
bound [65]

Pb <
1
k

∞∑
d=df ree

cdPd , (5.5)

was then used along with the distance spectra in Table 5.2 to calculate the performance
boundaries of the codes in our adaptive rate model. The resulting bounds for Pb are shown
in Figure 5.2.

Once we had an analytical description of the performance bounds of the convolutional
codes, we developed a simple MATLAB script to calculate BER performance for each of
these code rates under BPSK modulation over an AWGN channel. The software testbed,
which can be found in Appendix A.3, was configured to employ soft decision demodulation
to generate approximate LLR values that were then passed through a Viterbi decoder. A

67

0 1 2 3 4 5 6 7 8

Eb/No (dB)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

P
b
 for BPSK with AWGN, R = 1/2

P
b
 for BPSK with AWGN, R = 2/3 (Punc)

P
b
 for BPSK with AWGN, R = 3/4 (Punc)

P
b
 for BPSK with AWGN, R = 5/6 (Punc)

Figure 5.2. Probability of bit error upper union bound for BSPK over AWGN
with R = 1/2 convolutional code (K = 7, g0 = 133, g1 = 171) with
punctured rates of R = 2/3, R = 3/4, and R = 5/6

traceback depth of τ = 96 was utilized for all code rates.

Simulations were then conducted for each of our notional MCS indices over a range
of Eb/N0 values under AWGN conditions. We selected a frame size of 1200 bits, which
contained randomly generated binary data, and computed the average BER at the testbed
receiver. The number of frames transmitted for each Eb/N0 value varied depending on the
observed error performance. For each trial, data frames would be encoded and transmitted
over the channel at each Eb/N0 point until a total of 1000 bit errors were observed; if this
threshold was not reached, the testbed would continue transmitting frames until the total
number of transmitted bits exceeded 1×108. This implementation was adapted from similar
examples published by MATLAB and allowed us to reduce the overall time required for the
simulation while obtaining high fidelity results. These trials were then completed multiple
times under different channel conditions. The BER curves resulting from these trials are
shown in Figure 5.3 when plotted against the error bounds for convolutionally coded BPSK
from (5.5).

The BER derived from the simulated trials of our notionalMCS indices clearly converge

68

0 1 2 3 4 5 6 7 8 9

Eb/No (dB)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

P
b
 for BPSK with AWGN, R = 1/2

P
b
 for BPSK with AWGN, R = 2/3 (Punc)

P
b
 for BPSK with AWGN, R = 3/4 (Punc)

P
b
 for BPSK with AWGN, R = 5/6 (Punc)

MCS A, R = 1/2, BPSK

MCS B, R = 2/3 (Punc), BPSK

MCS C, R = 3/4 (Punc), BPSK

MCS D, R = 5/6 (Punc), BPSK

Figure 5.3. Performance of adaptive rate model MCS indices compared to
theoretical limits, BER versus Eb/N0, 100 trials

.

on the upper union bound for Pb; this result validated the performance of our MATLAB
BPSK testbed and facilitated further testing of the proposed embedding implementations.

5.2 Convolutional Code Embedding
Having established the baseline performance of our MCS model, we turned our attention to
developing a puncturing implementation for the specified BCC. Separate methods had to
be developed depending on whether the communication system was operating at an MCS
index that utilized the unpunctured parent code or one that used punctured codes.

With analytical expressions to quantify Pb for the convolutional codes under consid-
eration, we focused our simulation on the performance of the underlying communication
channel based on the raw number of embedded bits. As previously discussed, the embed-
ding payload for our MCS model could be simulated by the action of simply removing
specific received bits from consideration at the convolutional decoder. In the MATLAB
implementation of the Viterbi decoder, this action could be accomplished by either replac-
ing those received bit locations with 0 prior to decoding, or declaring those bit locations

69

as being invalid within the Viterbi decoder structure. Either method ensured the content of
those bit locations were not considered during branch metric calculations.

As with our 802.11ad implementation, we sought to exploit excess redundancy provided
by the R = 1/2, (7, [133, 171]) convolutional code; this excess redundancy could exist due
to the fact that the current channel conditions simply exceed the minimum requirement for
the current MCS, or as the result of the MCS index being intentionally decremented. While
the specific implementation was not addressed for the purposes of our adaptive rate model,
we did consider embedding implementations to be viable so long as the Eb/N0 requirements
of the embedded MCS, IC , did not exceed the minimum Eb/N0 requirements for the next
higher MCS, IC+1.

5.2.1 Embedding Within Unpunctured Code
In developing an embedding and extraction method for this BCC, the more trivial case
was for the unpunctured parent code. Extensive research has been conducted into optimal
puncturing patterns for convolutional codes that maximize both throughput and error perfor-
mance. Many of these puncture patterns have been developed our R = 1/2, (7, [133, 171])
code, and any of these could be potentially implemented as an embedding scheme; instead
of puncturing bits prior to transmission, the punctured locations would be used to carry our
embedded payload. Our embedding scheme would then ensure these embedded bits were
removed from consideration prior to the decoding process.

An example of this embedding technique is illustrated in Figure 5.4. In our notional
example, nine bits of source data are first passed through the R = 1/2 BCC resulting in the
output of 18 encoded bits. Our six payload bits are then embedded into the encoded data
at the positions outlined in red; these positions are the same locations that would normally
be punctured for the R = 3/4 code as specified in [44]. This modified data stream is then
transmitted across a channel before being passed through the demodulation and decoding
process at the receiver. In this particular case, the proposed method would embed six bits
for every 18 bits in the coded bit stream, and therefore be expected to deliver an embedded
data rate equivalent to one-third of the data rate of the underlying channel.

Given the well-defined nature of the puncturing patterns for the specified parent code,
and the fact that analytical expressions exist to characterize code performance, we did

70

Figure 5.4. Proposed embedding scheme for unpunctured convolutional
codes. Embedding conducted on R = 1/2 code resulting in an equivalent
R = 3/4 rate code.

not conduct exhaustive simulations for this embedding technique. Instead, we focused on
quantifying the capacity of this embedding method in terms of the equivalent puncture rate
selected for embedding.

5.2.2 Embedding within Punctured MCS Indices
For the punctured code rates, an alternative method was needed to deliver the optimal
embedding rate while selecting embedding locations that still allow the code to deliver
predictable error performance to the underlying communication system. We recognized that
since we would be conducting our embedding in the bits that remain after the puncturing
process, our embedding technique had to factor in the location of the punctured bits.

Although not identical in application, we drew inspiration for our embedding technique
from the ability of RCPC to support unequal embedding rates while maintaining the same
encoder and decoder structure. Recall that in RCPC, lower rate codes are generated from
higher rate codes by adding back additional bits that had been previously punctured. We
investigated the possibility of conducting the inverse process on the R = 1/2, R = 3/4 and

71

R = 5/6 punctured codes in our adaptive rate model, but all of the punctured code rates in
our model were already reduced to a structure, R = k/n where n − 1 = k. Consequently,
there were not any viable locations that could be embedded in every puncture period, k,
without removing all redundancy from the code. Instead, we proposed appending the output
from multiple puncture periods into a block, and then selecting a single embedding location
from the resulting code sequence. This method would greatly reduce the impact on the code
redundancy at the expense of our embedding capacity.

We then proceeded to assess two of the punctured codes rates, R = 2/3 and R = 3/4, to
determine the optimal block size and embedding location. As a starting point, we recognized
that since the impact of our proposed embedding mechanism mimics the behavior of
punctured bit locations at the decoder, we could develop an expression to describe our
proposed embedding scheme as an equivalent punctured rate. By appending m puncture
periods, and selecting a single embedding location, the equivalent coding rate, Requiv , was
found to be

Requiv =
mk

mn − 1
(5.6)

where n is the number of coded data bits in each puncture period of the base coding
rate. We looked at developing an equivalent puncture pattern which would provide BER
performance that fell between the performance curves in our current model and allowed us
to take advantage of an implementation where we were operating at a decremented MCS, or
situations where the channel conditions exceeded the minimum requirements for the current
MCS. Possible equivalent puncture rates were examined for various values of m; candidate
rates for the base codes of R = 2/3 and R = 3/4, determined from (5.6), are listed in Table
5.3.

The Requiv = 10/14 and Requiv = 12/15 were selected for implementation; their
selection was also influenced by the fact that previous work in [65], [80] had published
the weight spectra for puncturing patterns for our BCC at rates equal to the reduced fraction
form of our proposed Requiv . These analytically derived Pb bounds for the puncture rates
of R = 5/7 and R = 4/5 would then be available to help assess the performance of the
proposed embedding pattern.

72

Table 5.3. Equivalent puncture rate, Requiv , achieved for appending m-
puncture periods for base code rates of R = 2/3 and R = 3/4; single
embedded bit per block.

m
Base Code Rate

R = 2/3 R = 3/4
1 Requiv = 2/2 Requiv = 3/3
2 Requiv = 4/5 Requiv = 6/7
3 Requiv = 6/8 Requiv = 9/11
4 Requiv = 8/11 Requiv = 12/15
5 Requiv = 10/14 Requiv = 15/19
6 Requiv = 12/17 Requiv = 18/22q

To verify the performance of the proposed embedding scheme, we utilized our
MATLAB-based MCS model testbed to conduct a series of simulations across an AWGN
channel; any non-punctured bits in the series ofm-concatenated puncture periods of the base
code was eligible for embedding. All of the available embedding locations, a total of 15 in
Requiv = 10/14, and 16 in Requiv = 12/15, were tested within the MATLAB model. The
resulting performance curves were then utilized to identify the optimal embedding location.
The trials were structured to first compare each of the groups of embedding positions as
shown in Figure 5.5; each group was identified by their relative location within the output
bitstream of the original code. The punctured locations from the parent code, which are not
available for embedding, are highlighted in gray.

Trials conducted utilizing our MCS testbed did not find any meaningful differences
between locations selected within the same embedding group. When the embedding groups
were compared against one another, as shown in Figure 5.6, the only significant outlier was
the first embedding location for Requiv = 12/15, which appeared to deliver a lower BER
at increased Eb/N0. We were also able to compare these embedding results against the
Pb bounds for comparable rate punctured codes. We compared Requiv = 10/14 against a
R = 5/7 code from [80] and Requiv = 12/15 against a R = 4/5 code from [65] and found
that both embedding locations compared favorably to the analytically derived Pb bounds.

Ultimately, we selected the second embedding location in the first puncture period
for both implementations. Although the first embedding location for the Requiv = 12/15

73

(a) (b)

Figure 5.5. Embedding location groups proposed for puncture code rates:
(a) Requiv = 10/14 embedding positions and (b) Requiv = 12/15 embedding
positions.

0 1 2 3 4 5 6

Eb/No (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

Embed Position 1

Embed Position 2

Embed Position 3

P
b
 for BPSK with AWGN, R = 5/7

(a)

0 1 2 3 4 5 6 7 8

Eb/No (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r
R

a
te

Embed Position 1

Embed Position 2

Embed Position 3

Embed Position 6

P
b
 for BPSK with AWGN, R = 4/5

(b)

Figure 5.6. Evaluation of embedding location for punctured convolutional
codes; BPSK modulation, 100 trials over AWGN: (a) Requiv = 10/14 em-
bedding on base R = 2/3 code and (b) Requiv = 12/15 embedding on base
R = 3/4 code.

returned a minor improvement in BER, when this embedding location was implemented
in simulations for 802.11ac, it was found that the second embedding location returned
improved PER performance. This change in performance was found to be associated with

74

Figure 5.7. Proposed embedding scheme for punctured convolutional codes
conducted on R = 3/4 code resulting in Requiv = 12/15 code

the characteristic of the Viterbi decoder utilized by each implementation. For our initial
simulations in the MCS model testbed, a continuous mode Viterbi-decoder was specified
where the encoder state is retained between each frame; conversely, the 802.11ac simulation
utilized a truncated decoder where the encoder resets after each frame. A depiction of the
proposed embedding technique with the experimentally derived embedding location is
shown in Figure 5.7. From this structure, we developed the concept of an embedding
interval, ν, which describes the length of the embedding period. For the case developed for
Requiv = 10/14, with m = 5 appended puncture periods and n = 3 as the number of output
bits contained in each puncture period, ν = m × n = 5 × 3 = 15. For the Requiv = 12/15
embedding with m = 4 and n = 4, ν = 16.

5.3 Forward Error Correction of Embedded Message
The selection of a FEC code for the embedded payload will not only impact the overall
embedding capacity but impact the error rate of the received payload. One area briefly

75

mentioned in Chapter 3 was the concept of unequal error protection between the embedded
data and the underlying communications channel. Under normal circumstances, the FEC
selected to protect the embedded data should provide at least as much redundancy as the
underlying communications channel. Due to the unique nature of these embedded channels,
and the fact that some implementations are likely simplex in nature and lack the ability to
utilize ARQ-like mechanisms, it may be advantageous to select a more robust FEC code
than the underlying channel.

An additional case exists within adaptive rate communication systems if the channel
state is known to exceed the requirements for the currentMCS; this situationwould generally
exist if a decrementedMCSwas intentionally selected in an attempt to increase the available
embedding capacity. In this case, a higher-rate FEC code can be selectedwith the knowledge
that the channel conditions are more favorable than indicated by the MCS index.

To get a sense of the impact of FEC selection on the error performance of the embedded
payload we took advantage of the analytical expressions that exist for our BPSK and BCC-
based MCS model. An upper bound on the resulting probability of packet error, Pp can
then be determined by [79]

Pp < 1 − (1 − Pe)
8L , (5.7)

where Pe is the union bound on the error event probability and L is the length of the packet
in octets. As opposed to the Pb bound calculated in (5.4), which accounts for the fact that
each error on the decoding path will result in multiple information bit errors, Pe simply
returns the probability of any error event occurring. Similar to our earlier calculation of Pb,
the distance spectra for our codes can be utilized [63]

Pe <

∞∑
d=df ree

adPd , (5.8)

where ad is the event weight and Pd remains the pairwise error probability for the selected
modulation and channel. Combining (5.3), (5.7), and (5.8) yields the following expression
for the Pp for BPSK in AWGN

76

Pp < 1 −
1 − ©«

∞∑
d=df ree

adQ

(√
2d

EbR
N0

)ª®¬

8Lp

, (5.9)

with Lp representing the length of the PSDU in octets.

To get a sense of the estimated error performance based on the selection of varying FEC
codes we utilized the expressions for the upper bounds of Pp from (5.9) to determine Eb/N0

at a designated threshold; in this case we utilized a value of Pp = 0.1. The values listed
in Table 5.4 represent the minimum expected performance for the communication system
operating at the designated MCS.

Table 5.4. Required Eb/N0 for MCS indices to maintain Pp = 0.1; BPSK
with 4096-octet PSDU in AWGN.

MCS Index Coding Rate Eb/N0

A R = 1/2 4.084 dB
B R = 2/3 4.681 dB
C R = 3/4 5.247 dB
D R = 5/6 5.889 dB

We used the Eb/N0 for each MCS index to estimate the probability of bit error, P̂b, for
the embedded payload using (5.5) with the results being recorded in Table 5.5.

Table 5.5. Estimated upper bound for Pb of embedded data when Pp = 0.1;
BPSK MCS model with 4096-octet PSDU in AWGN.

Selected FEC for
Embedded Data

P̂b of Embedded Bits at Pp = 0.1
MCS A MCS B MCS C MCS D

R = 1/2 1.35 × 10−5 1.53 × 10−6 1.62 × 10−7 9.50 × 10−9

R = 2/3 7.01 × 10−5 7.64 × 10−6 8.74 × 10−7 6.26 × 10−8

R = 3/4 4.11 × 10−4 4.77 × 10−5 6.67 × 10−6 6.60 × 10−7

R = 5/6 3.9 × 10−3 3.19 × 10−4 4.16 × 10−5 4.66 × 10−6

The lower-left corner of the table, highlighted in grey, represents FEC selections thatwill
deliver a higher embedding capacity but provide less error protection than the underlying
communication system.

77

5.4 Embedding Capacity Estimation
To estimate the embedding capacity of our proposed techniques for convolutional codes, it
is first necessary to extend the concept of the embedding interval, ν, to our implementation
for unpunctured codes. For the unpunctured case, the embedding is conducted in a manner
consistent with an equivalent puncture code, Requiv ; using our standard definition of a
punctured code

Requiv =
kequiv

nequiv
(5.10)

where nequiv represents the number of output bits and kequiv is the number of input bits (as
well as the puncture period of the equivalent code rate). Using these values, and the rate of
the parent convolutional code, RP, it is possible to derive an expression for the embedding
interval of the unpunctured implementation, νU , where

νU =
kequiv

RP
. (5.11)

Next, we must define the number of embedded bits in each embedding interval, bν. For our
proposed implementation on punctured code rates, bν = 1. For the unpunctured case, bν,U
is related to kequiv of the equivalent puncture rate and the parent code rate

bν,U =
kequiv

RP
− nequiv = νU − nequiv . (5.12)

Now that we can express the performance of both embedding methods in terms of an
embedding interval, we can develop a common equation to determine the raw embedding
capacity of each approach. For the following equations, we will use the notation ν and bν
for the embedding interval and capacity per embedding interval; while we have defined ν
and bν for embedding in MCS that employ punctured codes, the equations will be equally
valid for νU and bν,U from the unpunctured techniques. Given the length of the underlying
data block in octets, LP, and the rate of the convolutional encoder used to support the MCS
of the underlying communication channel, RC , it is possible to determine the number of
coded bits per block, NCBPB, where

78

NCBPB =

⌈
8LP

RC

⌉
, (5.13)

which can then be combinedwith ν and bν to determine an expression for the raw embedding
capacity of our implementations where CE,blk is the raw embedding capacity measured in
bits-per-block

CE,blk = bν

⌊
NCBPB

ν

⌋
. (5.14)

We used this raw capacity to determine the size of the embedded payload, LE , when REC is
the FEC code rate selected to protect the embedded bits

LE =
⌊
CE,blk REC

⌋
. (5.15)

Combining (5.13), (5.14), and (5.15) provides an expression for the capacity of our convo-
lutional embedding methods, expressed as the size of the FEC-protected embedded payload
and as a function of the underlying data block and the convolutional code used by the current
MCS

LE =

bνREC

⌊
1
ν

⌈
8LP

RC

⌉ ⌋ . (5.16)

5.5 Embedding within IEEE 802.11ac VHT
Once our proposed block embedding technique had been validated via simulation in our
BPSK testbed, we worked to adapt our embedding technique within a MATLAB implemen-
tation of 802.11ac VHT. Our embedding testbed was once again adapted from a MATLAB-
developed script to measure PER; embedding and extraction of the hidden message required
modifications to existing encode and decode functions used within the MATLAB WLAN
Toolbox. While we did embed randomly generated payload bits at the transmitter, and

79

subsequently extract them at the receiver, the only metric actively collected during our VHT
embedding trials was the PER of the underlying communication channel. Based on earlier
observations, our primary concern in these trials was the performance impact on the carrier
at each embedding interval.

Our simulation implemented the transmission of a single VHT PPDU and we evaluated
the performance of our system based on a 10% PER threshold established by the receiver
validation criteria outlined in [44]. While this performance threshold was specified for a
PSDU of 4096 octets, we discovered that in the MATLAB implementation of 802.11ac,
there is no method to directly set the length of the PSDU. This change in implementation
is due to the fact that in VHT all frames are considered to be aggregate frames, even if they
only contain a single MAC Protocol Data Unit (MPDU) [81]. Instead, we must designate
the length of the aggregate MPDU (A-MPDU) which is then encapsulated by the simulated
MAC layer to become the PSDU.

MATLAB faithfully implements this portion of the protocol, but as a result, the length
of the PSDU will vary between MCS rates even if the length of the A-MPDU remains
unchanged. The amount of overhead in this encapsulation is inconsistent between MCS
rates as it is related to the number of data bits per symbol, NDBPS, which is determined by
the selected modulation type and coding rate as well as other characteristics including the
bandwidth (BW), number of spatial streams, NSS, and order of the MIMO implementation.
As an example, we opted to conduct all of our VHT trials using 8 × 8 MIMO, 8 spatial
streams, and a BW of 80 MHz. To determine the number of data bits per symbol, it was
first necessary to calculate NCBPS, or the number of coded data bits per symbol [36]

NCBPS = NSD × NFS × NSS × NBPSCS , (5.17)

where NFS is the number of frequency segments, NSD is the number of complex data
numbers for each segment, NSS is the number of spatial streams, and NBPSCS is the number
of coded data bits per subcarrier per spatial stream [36]. The values of NBPSCS, NFS, NSS

and NSD are all functions of the selected MCS and can be found in [44].

The results from (5.17) can then be used to determine the number of data bits per
symbol [36],

80

NDBPS = NCBPS × R (5.18)

where R is the code rate of the selected MCS. For our selected parameters, the values of
NDBPS for each MCS index are displayed below in Table 5.6, along with the number of
symbols, NS, required to transport an A-MPDU length of 4096-octets, and the resulting size
of PSDU, LPSDU , after accounting for any required overhead. Despite variations in PSDU
length, we elected to conduct all of our simulations with a consistent A-MPDU as it was an
accurate reflection of the variations that would occur between adjacent MCS in real-world
VHT implementations.

Table 5.6. Number of databits per symbol, number of required symbols, and
associated PSDU length for MCS indices in 802.11ac; 8×8 MIMO, 8 spatial
streams, BW of 80 MHz and A-MPDU of 4096 octets.

MCS NDBPS NS LPSDU

1 1872 bits 18 4207 octets
2 2808 bits 12 4208 octets
3 3744 bits 9 4208 octets
4 5616 bits 6 4207 octets
5 7488 bits 5 4675 octets
6 8424 bits 4 4207 octets
7 9360 bits 4 4673 octets
8 11232 bits 3 4205 octets
9 12480 bits 3 4673 octets

Before conducting any embedding trials, it was first necessary to conduct baseline
performance testing of the unembedded VHTMCS indices; as before, the performance was
evaluated as PER across a range of SNR points. The results of our initial validation of MCS
indices 1 through 9, conducted over an AWGN channel with an A-MPDU length of 4096
octets, are shown in Figure 5.8.

Similar to the technique utilized in 802.11ad, embedding of the desired payload would
take place following the encoder and prior to the modulator; extraction would take place
following the demodulator and prior to the decoder. Conducting this process within VHT
adds an extra layer of complexity due to the presence of multiple data streams in the encoder.

81

5 10 15 20 25 30 35

SNR (dB)

10-3

10-2

10-1

100

P
E

R

MCS 1

MCS 2

MCS 3

MCS 4

MCS 5

MCS 6

MCS 7

MCS 8

MCS 9

Figure 5.8. PER versus SNR performance curves for 8×8 MIMO IEEE
802.11ac VHT modulation and coding schemes with BW of 80 MHz; per-
formance average of 10000 trials over AWGN channel with single 4096-octet
A-MPDU.

After the padded data field of the PPDU is passed through the scrambler, it is parsed into
multiple data streams before being passed to the BCC encoders. The multiple encoders
are necessary due to encoder data rate limitations of 600 Mbps [36]. The number of
data streams, NES, and therefore the number of parallel BCC encoders and decoders for
a specified MCS can be determined based on the value of NDBPS previously calculated in
(5.18) [36]

NES =

⌈
NDBPS

600 × 3.6

⌉
(5.19)

where 3.6 is a constant that represents the short GI duration, and 600 is the data rate
limitation for the BCC encoder measured in Mbps.

For our simulated VHT embedding trials, we opted to utilize a BW of 80 MHz and
NSS = 8; these characteristics established the values of NSD = 234 and NFS = 1. For an
MCS-index of 5, which has R = 2/3 code, and 64-QAM modulation with NBPSCS = 6,

82

we were able to determine from (5.17) and (5.18) that NDBPS = 7488. Passing this value
through (5.19) results in a requirement for four BCC encoders.

To implement our proposed embedding scheme, payload bits were embedded into each
of the NES data streams at the specified embedding interval, ν, after the underlying data
stream was encoded and punctured, but prior to additional stream parsing and interleaving.
At the receiver, the embedded payload must be recovered after de-interleaving and prior
to the NES data streams entering the BCC decoders. The method used to prevent the bit
locations that carry the embedded data from being considered by the BCC decoders are
dependent on implementation and would have to be evaluated on a case-by-case basis. In
our simulated VHT trials, we were to able obtain consistent results by either replacing
the bit locations with LLR = 0, or modifying the logic within the decoder to identify the
embedded bit locations as containing invalid information.

Given information about the size of the parsed PPDU data field in bits, LDS, which
represents the length of the uncoded data that passed through each of the NES BCC encoders,
we can modify (5.14) and (5.15) to determine the length of the FEC-protected embedded
payload, LE,VHT , carried in each PPDU

LE,VHT = NES

bνREC

⌊
1
ν

⌈
LDS

RC

⌉ ⌋ , (5.20)

where RC is the MCS code rate, REC is the rate of the FEC code used on the embedded
payload, and ν is the designated embedding interval.

5.6 Implementation of TGac Fading Channel
To investigate the performance of these embedding techniques under more realistic channel
conditions required the use of an appropriate fading model. TheMATLABWLANToolbox
contains a system object that implements multipath fading based on channel model charac-
teristics accepted by IEEE P802.11 Task Group ac (TGac) as outlined in [82]. This model
is itself an extension on the earlier Task Group n (TGn) channel model with modifications
to account for the improvements implemented in 802.11ac to enable higher throughput in-

83

cluding the use of higher order MIMO, increased BW, and the implementation of multi-user
MIMO (MU-MIMO).

The MATLAB implementation of the TGac fading model allows the selection of one
of six delay profiles described in [83] that were selected to represent different WLAN
channel environments; we selected Model-D which was developed to represent a typical
office environment [84]. Key attributes associated with this delay profile include the root
mean squared (rms) delay spread of 50 nanoseconds (ns), maximum delay of 390 ns, Rician
K-factor of 3 dB, and a break-point distance of 10 meters. [84]. The break-point distance of
the model specifies the distance between stations at which the channel would be considered
NLOS. As a result, the distance between the transmitter and receiver impacts both the
computation of path loss as well as the transition between LOS and NLOS conditions.

5.7 Summary
In this chapter, we developed the concept for embedding within convolutional codes and
presented techniques that could be implemented depending on whether a convolutional
code was the parent code, or an already punctured version. These techniques were initially
validated within a theoretical MCS model that was specifically developed to allow the sim-
ulated results to be validated by performance bounds derived from analytical expressions.
We explored the trade-offs involved with the selection of FEC techniques to protect our em-
bedded payload and derived capacity equations to determine the amount of data that could
be carried as an embedded payload based on the parameters of the underlying communica-
tion system and the embedding implementation. Finally, we discussed the multipath fading
model that would be utilized to explore the performance of our embedding techniques under
more realistic channel conditions. Relevant results obtained from the simulations developed
for these convolutional embedding techniques will be presented in Chapter 6.

84

CHAPTER 6:
Embedding Simulation Results

Following the development of error correction code-based implementations for both LDPC
and convolutional codes, we conducted extensive MATLAB simulations to evaluate their
performance in terms of both embedding capacity as well as impact to the underlying
communication system. MATLAB versions 2018b and 2019a were utilized to generate
the results contained in this chapter along with functions contained within the MATLAB
WLAN Toolbox. Existing end-to-end simulations, developed and published by MATLAB
as part of WLAN Toolbox documentation, were used to develop our 802.11ac and 802.11ad
testbeds. We compared these existing scripts against [44] as well as other relevant references
[36], [51], [53], [59], [63] to validate the critical functional components of the encoding,
modulation, demodulation, and decoding process.

We present the results of our simulations in three distinct sections. The first section
characterizes the performance of the LDPC-based embedding within the IEEE 802.11ad
DMG standard. The second section presents the results of our convolutional code embed-
ding in both the original BPSK model as well simulated trials conducted for IEEE 802.11ac
VHT. The final section addresses the performance of both DMG and VHT embedding
under simulated multipath fading environments in an attempt to validate our embedding
techniques under more realistic channel models.6,7

6.1 Embedding in LDPC Codes
Initial simulations to assess the performance of the proposed embedding scheme within the
LDPCcodes of the 802.11adDMGstandardwere conducted against anAWGNenvironment.
The first series of trials presented in this section represents the embedding case where the
MCS of the underlying channel is intentionally decremented; in this case, we can assume

6Portions of this chapter were previously published by IEEE [5]. Reprinted, with permission, from P. M.
B. Harley, M. Tummala and J. C. McEachen, “High-Throughput Covert Channels in Adaptive Rate Wireless
Communication Systems,” 2019 International Conference on Electronics, Information, and Communication
(ICEIC), Auckland, New Zealand, 2019, pp. 1-7.

7Portions of this chapter were used in an upcoming paper submission for the 53rd Hawaii International
Conference on System Sciences (HICSS), slated for January, 2020.

85

that the channel conditions are sufficient to support the next higher MCS index, IC+1. As
a result, each LDPC codeword can be embedded to the maximum extent so long as the
performance of the embedded channel operating at MCS index IC is able to maintain the
designated PER threshold at a SNR equivalent or lower than that required by IC+1. In
the second series, we examined the case where we do not decrement the MCS prior to
embedding. Instead, we sought to evaluate the relationship between the available margin of
embedding, ME , and the embedded channel capacity, CCW , measured in bits-per-codeword.

6.1.1 Decremented Modulation and Coding Scheme Embedding
Our firstMATLAB simulations served as a proof of concept of the embedding technique and
were designed to address three main objectives [5]. First, determine if a specified payload
could be successfully embedded and subsequently extracted from an LDPC codeword.
Second, identify the upper limit of embedding, measured in bits-per-codeword, which
would result in a noticeable performance degradation to the underlying communication
system [5]. Finally, we sought to assess whether the embedded payload could be reliably
estimated given the presence of channel noise [5].

Based on our original examination of the implementation of the IEEE 802.11ad DMG
protocol, initial embedding simulations were conducted at MCS 9 and evaluated under
channel-conditions that would support MCS 9.1. The simulated transmitter replaced the
first 48 parity bits of each R = 13/16 LDPC codeword with a unique payload; the em-
bedded data for these initial trials was not protected by any error correction mechanisms.
After determining that the embedding technique was feasible, additional trials were then
conducted to determine the behavior of the embedded channel, and the underlying com-
munication system, at different levels of embedding [5]. Decrementing the selected MCS
index resulted in a reduction in the maximum data rate of the underlying communications
system; for example, when MCS 9 is selected in lieu of MCS 9.1, the maximum data rate
is reduced from 2695 Mbps to 2502.5 Mbps [44] [5].

Results of simulated trials where the PER for varying embedding rates are compared to
that of the baseline MCS index are displayed in Figure 6.1; as expected, the PER of MCS 9,
at an embedding rate of 48 bits-per-codeword, is equivalent to that of baseline MCS 9.1 [5].
The embedded data during these initial trials was uncoded and therefore did not benefit

86

6 6.5 7 7.5 8 8.5 9 9.5 10

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

P
E

R
MCS 9 (Embed), 12 Bits / Codeword

MCS 9 (Embed), 24 Bits / Codeword

MCS 9 (Embed), 36 Bits / Codeword

MCS 9 (Embed), 48 Bits / Codeword

MCS 9 (No Embedding)

MCS 9.1 (No Embedding)

Figure 6.1. Packet error ratio of underlying communication channel; MCS
9, no FEC, 10000 PSDU per SNR. DMG PHY simulation under AWGN
channel. Source: [5], © 2019 IEEE.

from any error correction [5]. As a result, the BER of the received embedded payload was
consistent with the probability of bit error, Pb, of uncoded QPSK [5]. The comparison of
the embedded BER to the Pb for QPSK is shown in Figure 6.2.

A surprising observation from this original set of trials related to the fact that the
performance of the underlying communications channel, as characterized by PER, appeared
to be relatively predictable when subjected to varying levels of embedding activity [5]. As
illustrated in Figure 6.1, the PER of the underlying communication system increased up to
the limit of 48 bits-per-codeword, with embedding rates of 24 bits-per-codeword requiring
a lower SNR to achieve a given PER than the 36 bits-per-codeword embedding rate, but a
higher SNR than the 12 bits-per-codeword rate [5]. The monotonic relationship between
increased SNR and increased embedding capacity formed the foundation for our proposed
extension to variable rate embedding without the need to decrement the MCS.

87

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

SNR (dB)

10
-4

10
-3

10
-2

10
-1

B
E

R

MCS 9 (Embed), 12 Bits / Codeword

MCS 9 (Embed), 24 Bits / Codeword

MCS 9 (Embed), 36 Bits / Codeword

MCS 9 (Embed), 48 Bits / Codeword

Theoretical BER, QPSK (uncoded)

Figure 6.2. Bit error ratio for received hidden message; MCS 9, no FEC,
10000 PSDU per SNR. DMG PHY simulation under AWGN channel. Source:
[5], © 2019 IEEE.

After we completed our initial trials atMCS 9, we repeated similar trials on the 802.11ad
MCS indices that utilized QPSK modulation. The maximum number of bits-per-codeword
for each 4096-octet PSDU was determined experimentally for each MCS [5]. We utilized
these results to calculate the ratio of embedded data to the amount of data bits contained
in each PPDU (including padding); we then multiplied this ratio against the data rates
published in [44] to estimate the embedded data rate at each MCS. Embedding capacity
estimates are displayed in Table 6.1.

Of note, the embedding rates per codeword from these trials align well with the theoret-
ical capacity based on the difference in redundancy discussed in Section 3.4. A comparison
between the predicted bounds and the results of the simulated trials are shown in Table 6.2;
in all cases, our simulated results met or exceeded the predicted embedding rates. For the
cases where the embedding capacity exceeded the difference in redundancy between adja-
cent MCS, we believe that the iterative decoding nature utilized for LDPC codes provided
additional coding gain that supported a higher than expected embedding rate. Although the

88

Table 6.1. Summary of results: DMG, single carrier, QPSK modulation,
4096-octet PSDU, no FEC
MCS Index LDPC

Code
Rate

Max
Embed
per CW

Embedded Bits
Dictated by
Channel

Conditions

Used for
Embedding

Per
4096-octet
PSDU

As % of
Overt
Data

Estimated
Data Rate
(Mbps)

7 6 1/2 95 bits 9310 bits 28.27% 435.36
8 7 5/8 85 bits 6715 bits 20.24% 389.62
9 8 3/4 48 bits 3168 bits 9.52% 219.91
9.1 9 13/16 48 bits 2928 bits 8.79% 220.00

lack of FEC in these trials maximized the embedding capacity of the information-hiding
technique, the high BER of the embedded payload would not have facilitated a reliable
embedded communications channel [5].

Table 6.2. Predicted embedding rates, measured in bits per LDPC codeword,
compared to simulated results, 802.11ad DMG SC QPSK MCS

MCS Index
Predicted
Embedding

Rate

Simulated
Results

6 84 95
7 84 85
8 42 48
9 48 48

6.1.2 Forward Error Correction of Embedded Message
For the initial trials conducted at MCS 9, the maximum embedding capacity under channel
conditions that could support MCS 9.1 was 48 bits-per-codeword; using (4.3), the raw
embedding capacity was determined to be 2928 bits for a 4096-octet PSDU. Selecting the
least robust FEC code from the 802.11ad standard, the punctured R = 7/8 code, it was only
possible to embed four 624-bit codewords in each PSDU, leaving 240 bits unaltered. From
(4.7), it was possible to calculate that the FEC-protected payload in each 4096-octet PSDU
was therefore reduced to just 2184 bits.

Although capacity was reduced, FEC significantly improved the embedded payload
BER. The SC DMG specification calls for a minimum PER of 10−2, or 1% [44]; as shown

89

in Figure 6.1, a 1% PER is achieved at an SNR of approximately 8.6 dB [5]. At 8.6 dB, the
BER for the FEC-protected embedded payload, illustrated in Figure 6.3, is approximately
7.8 × 10−7 [5]. As before, trials were then conducted for all QPSK-based MCS with
embedding capacity estimates provided in Table 6.3 [5].

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

SNR (dB)

10
-8

10
-6

10
-4

10
-2

10
0

B
E

R

MCS 9 (Embed), 2184 Bits / PSDU, LDPC (7/8)

MCS 9 (Embed), 2928 Bits / PSDU, No FEC

Theoretical BER (QPSK - uncoded)

Figure 6.3. Bit error ratio for received hidden message; MCS 9, LDPC(7/8)
FEC, 10000 PSDU per SNR. DMG PHY simulation under AWGN channel.
Source: [5], © 2019 IEEE.

Table 6.3. Summary of results: DMG, single carrier, QPSK modulation,
FEC applied to embedded hidden data.

MCS Index LDPC Code Rate Embedded Bits
Dictated by
Channel

Conditions

Used for
Embedding

Overt
Data

Embedded
Data

Per
4096-octet
PSDU

As % of
Overt
Data

Estimated
Data Rate
(Mbps)

7 6 1/2 5/8 5460 bits 16.58% 255.36
8 7 5/8 3/4 4536 bits 13.67% 263.16
9 8 3/4 13/16 2184 bits 6.57% 151.67
9.1 9 13/16 7/8 2184 bits 6.56% 164.10

90

6.1.3 Interleaving of Embedded Data
An additional series of trials was then conducted utilizing the interleaved embedding tech-
nique with the aim of reducing the distortion on the underlying communications channel
without sacrificing the FEC-protected payload capacity of the embedded channel.

While the modification did not result in an increase in embedding capacity, it did
consistently reduce the impact of the embedding on the underlying communication system
[5]. A representation of this improvement can be seen in Figure 6.4 where the PER for
interleaved embedding is shown alongside the standard FEC implementation; in both cases,
2184 message bits were embedded in each 4096-octet PSDU but the interleaved method
achieved this performance with a 0.25 dB reduction in the required SNR [5]. As shown in
Figure 6.5, the embedded data BER for the interleaved case remains unchanged from the
standard FEC implementation [5].

6 6.5 7 7.5 8 8.5 9 9.5 10

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

P
E

R

MCS 9 (Embed), 2184 Bits / PSDU

MCS 9 (Embed), 2184 Bits / PSDU, Interleaved

MCS 9 (No Embedding)

MCS 9.1 (No Embedding)

Figure 6.4. Packet error ratio of underlying communication channel; MCS 9
with interleaved embedding, LDPC(7/8) FEC, 10000 PSDU per SNR. DMG
PHY simulation under AWGN channel. Source: [5], © 2019 IEEE.

This improved performance remained consistent across the previously considered MCS
indices that utilize QPSK modulation [5]. A summary of the SNR performance of this final
iteration, along with the associated BER for the embedded data, is shown in Table 6.4 [5].

91

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

SNR (dB)

10
-8

10
-6

10
-4

10
-2

10
0

B
E

R

MCS 9 (Embed), 2184 Bits / PSDU, LDPC (7/8)

MCS 9 (Embed), 2184 Bits / PSDU, LDPC (7/8), (Interleaved)

MCS 9 (Embed), 2928 Bits / PSDU, No FEC

Theoretical BER (QPSK - uncoded)

Figure 6.5. Bit error ratio for received hidden message; MCS 9 with in-
terleaved embedding, LDPC(7/8) FEC, 10000 PSDU per SNR. DMG PHY
simulation under AWGN channel. Source: [5], © 2019 IEEE.

Table 6.4. Summary of results: DMG, single carrier, QPSK modulation,
FEC and interleaving applied to embedded hidden data
MCS Index SNR Required at 1% PER Embedded

Bits per
4096-octet
PSDU

Embedded
Data BER
(at 1%
PER)

Dictated by
Channel

Conditions

Used for
Embedding

Dictated by
Channel

Conditions

Used for
Embedding

MCS 7 MCS 6 5.07 dB 4.93 dB 5460 bits 5.3 × 10−6

MCS 8 MCS 7 6.41 dB 6.26 dB 4536 bits 5.4 × 10−6

MCS 9 MCS 8 7.47 dB 7.21 dB 2184 bits 4.1 × 10−6

MCS 9.1 MCS 9 8.61 dB 8.31 dB 2184 bits 7.8 × 10−7

6.1.4 Embedding within Existing MCS
Using the analytical tools and techniques outlined in Section 4.4, we sought to fully charac-
terize the performance of our LDPC embedding scheme for IEEE 802.11ad in the AWGN
environment. The goal of these simulations was to gather sufficient data to summarize the
error performance of the underlying communication system over the full range of embed-
ding rates; this data would then be used to develop a function to describe the maximum
level of embedding that could be conducted at a given channel state.

92

As the focus of these trials was to determine the performance of the underlying system,
we did not evaluate the BER performance of the embedded data. The embedding trials in
Section 6.1.2 clearly established that the application of FEC techniques to the embedded
payload were able to deliver acceptable error performance at even the highest embedding
rates. While the use of FEC, and the requirement to transmit parity bits, will reduce the size
of the embedded payload that can be carried in each codeword, this reduction can be easily
calculated based on the selected FEC code rate and equations presented in Section 4.3.1.

Expanded embedding trials were conducted for all SCMCS with the exception of MCS
1 and MCS 5. MCS 1 was excluded as it is the only SC MCS that utilizes a repetition
factor (ρ = 2); MCS 5 was excluded because it is outperformed by MCS 6 under the same
channel conditions. Due to the fact that MCS 6 offers a higher data rate and superior error
performance, not only is MCS 5 unlikely to be selected by a link adaptation algorithm, but
the MCS would also be a poor candidate for FEC-based embedding. A plot of the results
from the embedding trials conducted for the SC QPSK MCS is shown in Figure 6.6.

3 4 5 6 7 8 9 10

SNR (dB)

0

10

20

30

40

50

60

70

80

90

100

110

120

E
m

b
e

d
d

e
d

 B
it
s
 (

p
e

r
C

o
d

e
w

o
rd

)

MCS 6 Embedded at PER 0.01

MCS 7 Embedded at PER 0.01

MCS 8 Embedded at PER 0.01

MCS 9 Embedded at PER 0.01

MCS 9.1 Embedded at PER 0.01

MCS 6 at PER 0.01

MCS 7 at PER 0.01

MCS 8 at PER 0.01

MCS 9 at PER 0.01

MCS 9.1 at PER 0.01

MCS 10 at PER 0.01

Figure 6.6. Embedded bits-per-codeword versus SNR for all 802.11ad π/2-
QPSK modulated MCS indices; embedding conducted in first n parity bits
of each LDPC codeword

When the regression lines obtained for each MCS were plotted against the simulated

93

results, the fit was generally very good. That said, as shown in Figure 6.7, there were a
number of points, highlighted by red circles, where these regression lines deviate from the
simulated results. For the SC QPSK MCS, the differences were particularly noticeable as
the regression line approached the maximum embedding rate for MCS 8 and at both the
maximum and minimum embedding rates for MCS 9. In these cases, alternative bounds
were identified to adjust the original regression lines to ensure the estimated capacity was
achievable at the given SNR and within the required PER. The modified slope was then used
to determine the associated estimated embedding coefficient, r̂E ; similar discrepancies in
the remaining SC MCS were similarly identified and corrected. The estimated embedding
coefficient for all SC MCS are recorded in Table 6.5.

3 4 5 6 7 8 9 10

SNR (dB)

0

10

20

30

40

50

60

70

80

90

100

110

120

E
m

b
e

d
d

e
d

 B
it
s
 (

p
e

r
C

o
d

e
w

o
rd

)

y = 71.18*x - 260.7

y = 62.64*x - 316.4

y = 50.33*x - 323.2
y = 49.62*x - 375.9

y = 19.94*x - 172.1

Regression Line of MCS 6 Embedding

Regression Line of MCS 7 Embedding

Regression Line of MCS 8 Embedding

Regression Line of MCS 9 Embedding

Regression Line of MCS 9.1 Embedding

Figure 6.7. Regression lines of embedded bits per codeword versus SNR for
all 802.11ad QPSK modulated MCS

For MCS 8 and 9, we noted that the deviation from the original regression line was
particularly pronounced as the result of a rate change that took place after the 42-bit-per-
codeword embedding rate. Since the cycle permutation matrix used to construct the H for
802.11ad has a dimension of 42 × 42, we investigated the structure of H in this location.
We determined that for both LDPC matrices, the transition into an adjacent submatrix
resulted in embedding locations 43 to 48 contributing to check nodes that were already
associated with embedded positions. Having multiple locations contributing an LLR = 0

94

to the first stage of the decode process (η[1]), would result in all locations in the resulting
matrix, including the embedded bit positions, being set to zero. As a result, during the first
bit node update, the impacted check nodes would not contribute any information toward
recovering the original values of the embedded locations. This had the impact of effectively
reducing the equivalent column weight, wc, in these bit positions during the first cycle. For
the R = 13/16 code in MCS 9, this issue was compounded by the fact that wc = 2 at the
embedding locations 43 through 48 as opposed to wc = 3 for each of the first 42 embedding
locations.

Table 6.5. Estimated embedding coefficient, r̂E , for 802.11ad (first n Parity
Bits)

Modulation MCS
Rate
1/2 MCS

Rate
5/8 MCS

Rate
3/4 MCS

Rate
13/16 MCS

Rate
7/8

π/2-BPSK 2 78.62 3 66.14 4 46.86 5 N/A – –
π/2-QPSK 6 71.18 7 62.64 8 46.47 9 41.27 9.1 19.94
π/2-16QAM 10 57.40 11 54.88 12 43.52 12.1 39.02 12.3 19.36
π/2-64QAM – – 12.3 44.02 12.4 37.08 12.5 36.72 12.6 20.52

As shown in Table 6.5, the value of r̂E generally decreased with increased code rate or
order of modulation. This result aligns with our intuition related to FEC-based embedding;
r̂E is a measure of the estimated embedding capacity per codeword for every additional dB
of SNR. Therefore, as the modulation becomes more complex or the redundancy of the
FEC is reduced, we would expect to see a decrease in the ability to embed data without
increasing the PER. The most significant reduction in embedding performance is observed
for the MCS that utilize the R = 7/8 codes; this extremely poor performance is due to the
fact that the R = 7/8 code is itself a punctured version of the R = 13/16 LDPC code.

Once we had completed the trials for all SC MCS, we repeated all trials for an alternate
embedding positionwithin the LDPC codewords. Initial trials identified strong performance
when embedding was conducted at the end of the data section of the systematic LDPC
codeword. The results of embedding in the last n data bits for the QPSK MCS indices is
shown in Figure 6.8; it is clear that this embedding location resulted in a steeper slope for
all MCS with the exception of MCS 9.1. This steeper slope corresponds to a larger r̂E , and
a higher estimated embedding capacity.

Embedding trials were repeated for all SC MCS with the exception of MCS 1 and

95

3 4 5 6 7 8 9 10

SNR (dB)

0

10

20

30

40

50

60

70

80

90

100

110

120

E
m

b
e
d
d
e
d
 B

it
s
 (

p
e
r

C
o
d
e
w

o
rd

)

MCS 6 Embedded, last n-data bits

MCS 6 Embedded, first n-parity bits

MCS 7 Embedded, last n-data bits

MCS 7 Embedded, first n-parity bits

MCS 8 Embedded, last n-data bits

MCS 8 Embedded, first n-parity bits

MCS 9 Embedded, last n-data bits

MCS 9 Embedded, first n-parity bits

MCS 9.1 Embedded, last n-data bits

MCS 9.1 Embedded, first n-parity bits

Figure 6.8. Comparison of embedding capacity for all 802.11ad π/2-QPSK
modulated MCS indices; embedding conducted in first n parity bits versus
last n data bits of each LDPC codeword.

Table 6.6. Estimated embedding coefficient, r̂E , for 802.11ad (last n Data
Bits)

Modulation MCS
Rate
1/2 MCS

Rate
5/8 MCS

Rate
3/4 MCS

Rate
13/16 MCS

Rate
7/8

π/2-BPSK 2 86.45 3 71.70 4 48.20 5 N/A – –
π/2-QPSK 6 81.66 7 67.01 8 48.42 9 46.41 9.1 13.33
π/2-16QAM 10 62.65 11 58.71 12 40.98 12.1 43.70 12.3 13.39
π/2-64QAM – – 12.3 47.15 12.4 37.31 12.5 38.28 12.6 14.94

MCS 5. The results from these trials were utilized to calculate the estimated embedding
coefficients, r̂E , and are summarized in Table 6.6. When compared to the values for r̂E

obtained from the original embedding location, embedding in the last n data bits resulted in
an increased embedding capacity for all MCS indices with the exception of MCS 12, and
the MCS that utilize the punctured R = 7/8 LDPC code.

We also utilized the results of these extended trials to revisit the maximum embedding
capacity, measured in bits-per-codeword, for all of the MCS indices. Based on a 4096-octet

96

Table 6.7. Maximum estimated embedding for 802.11ad DMG SC PHY,
presented in bits-per-codeword; embedding conducted in first n parity bits
and last n data bits.

MCS Modulation Rate Embedding Capacity per Codeword
First n Parity Bits Last n Data Bits

2

π/2-BPSK

R = 1/2 103 bits 111 bits
3 R = 5/8 87 bits 94 bits
4 R = 3/4 50 bits 54 bits
5 R = 13/16 N/A N/A
6

π/2-QPSK

R = 1/2 95 bits 106 bits
7 R = 5/8 85 bits 91 bits
8 R = 3/4 48 bits 49 bits
9 R = 13/16 48 bits 53 bits
9.1 R = 7/8 21 bits 13 bits
10

π/2-16QAM

R = 1/2 96 bits 105 bits
11 R = 5/8 84 bits 91 bits
12 R = 3/4 49 bits 50 bits
12.1 R = 13/16 48 bits 52 bits
12.2 R = 7/8 23 bits 15 bits
12.3

π/2-64QAM

R = 5/8 84 bits 91 bits
12.4 R = 3/4 48 bits 50 bits
12.5 R = 13/16 47 bits 49 bits
12.6 R = 7/8 N/A N/A

PSDU, the maximum embedding for each MCS are presented in Table 6.7; of note, there is
no maximum embedding capacity listed for MCS 12.6 because our methodology could not
establish a valid upper bound for this particular rate.

6.2 Convolutional Code Embedding
In this section, we outline significant results from our simulations conducted for embedding
in convolutional codes. Once we established the behavior of our embedding techniques
utilizing our MCS model, we transitioned to trials utilizing our 802.11ac testbed.

6.2.1 Variable-rate Embedding of Punctured Convolutional Codes
Initial simulations conducted with our BPSK MCS testbed validated the performance of
the embedding techniques for MCS indices that utilized punctured code rates. Specifically,
we identified that for MCS B, with a base R = 2/3 code, we were able to embed the coded

97

bitstream at an interval of ν = 15, producing a Requiv = 10/14 embedded code with a BER
performance that would fall between MCS B and MCS C. We repeated the same process
for MCS C, with the embedding interval ν = 16, or an Requiv = 12/15 implementation. As
shown in Figure 6.9, the fact that the BER performance of the embeddedMCS falls between
MCS rates IC and IC+1 indicates that this technique would be valid in the case where the
MCS was intentionally decremented.

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

SNR (dB)

10-5

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

MCS B (R = 2/3)

MCS B Embedded, =15

MCS C (R = 3/4)

MCS C Embedded, =16

MCS D (R = 5/6)

Figure 6.9. Bit error ratio versus SNR performance curves for punctured
embedding implementation, base code rate R = 2/3, ν = 15, and base code
rate R = 3/4, ν = 16. BPSK simulation over AWGN channel, 1200 bits per
packet.

Following the successful demonstration of our initial scheme at the puncture position
and ν values determined in our simulated trials, we looked to expand the flexibility of the
embedding technique. We found that by increasing or decreasing the embedding interval,
we had the ability to vary the embedding capacity of our channel. We were able to obtain
increased embedding capacity while decreasing ν, at the expense of increasing the impact
(measured in BER) on the underlying channel; conversely, increasing the interval ν reduced
the SNR requirement while simultaneously decreasing embedding capacity. The results of
our trials on MCS B, R = 2/3 embedding, can be seen in Figure 6.10 while the results for
MCS C, R = 3/4 embedding, are shown in Figure 6.11.

98

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

SNR (dB)

10-5

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

MCS B (R = 2/3)

MCS C (R = 3/4)

MCS B Embedded, = 60

MCS B Embedded, = 45

MCS B Embedded, = 30

MCS B Embedded, = 24

MCS B Embedded, = 18

MCS B Embedded, = 15

MCS B Embedded, = 12

MCS B Embedded, = 9

Figure 6.10. Bit error ratio versus SNR performance curves for variable rate
embedding in MCS B; BPSK modulation, R = 2/3 code, AWGN channel.

-2 -1 0 1 2 3 4 5

SNR (dB)

10-5

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

MCS C (R = 3/4)

MCS D (R = 5/6)

MCS C Embedded, = 64

MCS C Embedded, = 40

MCS C Embedded, = 32

MCS C Embedded, = 20

MCS C Embedded, = 16

MCS C Embedded, = 12

Figure 6.11. Bit error ratio versus SNR performance curves for variable rate
embedding in MCS C; BPSK modulation, R = 3/4 code, AWGN channel.

99

For MCS B, we were able to successfully implement embedding intervals from ν = 9
to 60 without exceeding the SNR requirements to support MCS C. MCS C embedding was
likewise demonstrated for ν = 12 to 64. By restricting the possible values of ν to multiples
of n, where the base MCS code rate is R = k/n, we are able to maintain the same relative
embedding position within the coded bit stream; this also allowed the continued use of the
capacity equations defined in Section 5.4.

6.2.2 Embedding within IEEE 802.11ac VHT
Based on the results obtained from our simulations conducted within the BPSK-based
embedding model, we extended the same techniques to our IEEE 802.11ac VHT testbed.
Embedding trials were conducted for both unpunctured and punctured MCS over an AWGN
channel. The MCS indices utilized for these simulations were configured with 8 × 8
MIMO, 8 spatial streams, and a BW of 80 MHz. Based on receiver sensitivity requirements
established in [44], the PER threshold for a 4096-octet PSDU would be 10% vice the 1%
for 802.11ad DMG.

Similar to our series of experiments for DMG, the trials conducted on our VHT testbed
sought to demonstrate the feasibility of our embedding techniques for two use cases. The
first was a situation where the MCS index was intentionally decremented to increase the
redundancy and therefore embedding capacity of our channel. This case would be demon-
strated through the embedding of the unpunctured parent code utilized by MCS 1; the goal
was to facilitate the embedded channel while maintaining an acceptable PER assuming a
channel state that could support MCS 2. The second case utilized variable rate embedding
to exploit an embedding margin, ME , within the existing MCS. To support this objective
we would use the embedding technique discussed in Section 6.2.1.

Embedding Unpunctured VHT MCS
Despite the positive results obtained during the initial trials conducted in the simplified
BPSK testbed, initial simulations of our unpunctured code embedding technique in 802.11ac
VHT did not return a favorable outcome. As shown in Figure 6.12, despite implementation
embedding and extraction in the same puncturing pattern used for the R = 3/4 code, our
equivalent embedding technique returned substantially worse performance from a PER
perspective.

100

6 7 8 9 10 11 12 13 14

SNR (dB)

10-3

10-2

10-1

100

P
a

c
k
e

t
E

rr
o

r
R

a
te

 (
P

E
R

)

MCS 1 (No Embedding)

MCS 2 (No Embedding)

MCS 1, R
equiv

= 2/3 Embed, = 30

MCS 1, R
equiv

= 3/4 Embed, = 30

Figure 6.12. Unpunctured MCS embedding, VHT PHY simulation under
AWGN channel. Results for MCS 1, 10000 PSDU per SNR, 4096-octet
A-MPDU; decoder utilizing MCS 1 standard traceback depth, τ = 30.

We quickly determined that this poor performance was due to the configuration of the
Viterbi decoder and the selection of the traceback depth, τ. In theMATLAB implementation
of the BCC decoder, τ = 30 is utilized for the unpunctured R = 1/2 decoder utilized in
MCS 1, while τ = 45 is specified for R = 2/3 punctured codes and τ = 60 is specified for
the R = 3/4 code rate. This dependence on τ was not identified during our initial MCS
model simulations because our configuration had utilized a set value of τ = 96 for all MCS
indices.

Recognizing that the performance of these codes, and therefore our embedding scheme,
is highly dependent on the selection of τ, we conducted additional trials to characterize the
impact of increased traceback depth. The results of those trials, which evaluated τ = 30,
45, 60, and 90 are shown in Figure 6.13 for both Requiv = 2/3 and Requiv = 3/4 embedding.

In both cases, there was a noticeable performance gain based on the increased τ. As a
result, the ability to adjust the traceback depth on the receiver would need to be investigated
when evaluating this particular technique for implementation. The results of optimizing τ
can be seen in Figure 6.14.

Assuming the ability to influence the selection of τ as part of our embedding implemen-

101

6 7 8 9 10 11 12 13 14 15

SNR (dB)

10
-3

10
-2

10
-1

10
0

P
a

c
k
e

t
E

rr
o

r
R

a
te

 (
P

E
R

)

MCS 1 (No Embedding)

MCS 2 (No Embedding)

MCS 1, R
equiv

= 2/3 Embed, = 30

MCS 1, R
equiv

= 2/3 Embed, = 45

MCS 1, R
equiv

= 2/3 Embed, = 60

MCS 1, R
equiv

= 2/3 Embed, = 90

(a)

6 7 8 9 10 11 12 13 14 15

SNR (dB)

10
-3

10
-2

10
-1

10
0

P
a
c
k
e
t
E

rr
o
r

R
a
te

 (
P

E
R

)

MCS 1 (No Embedding)

MCS 2 (No Embedding)

MCS 1, R
equiv

= 3/4 Embed, = 30

MCS 1, R
equiv

= 3/4 Embed, = 45

MCS 1, R
equiv

= 3/4 Embed, = 60

MCS 1, R
equiv

= 3/4 Embed, = 90

(b)

Figure 6.13. PER performance comparison based on variations in τ for
embedding trial conducted at MCS 1; 10000 trials per SNR, 4096-octet A-
MPDU: (a) embedding at Requiv=2/3 [νU =4, bν,U =1] and (b) embedding
at Requiv=3/4 [νU =6, bν,U =2].

6 7 8 9 10 11 12 13 14

SNR (dB)

10-3

10-2

10-1

100

P
a

c
k
e

t
E

rr
o

r
R

a
te

 (
P

E
R

)

MCS 1 (No Embedding)

MCS 2 (No Embedding)

MCS 1, R = 2/3 Equiv Embed, = 45

MCS 1, R = 3/4 Equiv Embed, = 60

Figure 6.14. Unpunctured MCS embedding, VHT PHY simulation under
AWGN channel. Results for MCS 1, 10000 trials per SNR, 4096-octet A-
MPDU; decoder utilizing optimized traceback depth, τ, for equivalent embed
rates.

tation, and utilizing (5.19) and (5.20), we are able to determine the size of the FEC-protected
embedded payload, LE,VHT , carried in each PPDU. The expected embedding capacity is
summarized in Table 6.8. This table includes changes to the embedding capacity depending
on various rates of FEC protection. When our embedding scheme is operating under a

102

decremented MCS index, the capacity highlighted in grey is only available if we opt to uti-
lize less error correction redundancy for the embedded payload than the underlying channel.
For the case where MCS 1 is being utilized by the underlying communication system with
a channel bandwidth of 80MHz, a 400ns guard interval, and NSS = 8 spatial streams, the
embedded data rate for REquiv = 3/4, including a FEC code of REC = 1/2, would be well
in excess of 100 Mbps.

Table 6.8. Payload capacity of proposed embedding implementation of
802.11ac, MCS 1; data capacity in bits-per-PPDU under varying rates of
error protection, REC. 8×8 MIMO, 8 spatial streams, 80-MHz BW, 4096-
octet A-MPDU. .

Selected FEC for
Embedded Data

Embedded Payload Capacity
Requiv= 2/3 Requiv= 3/4

[νU = 4, bν,U = 1] [νU = 6, bν,U = 2]
No FEC 16848 bits 22464 bits

REC = 1/2 8424 bits 11232 bits
REC = 2/3 11232 bits 14976 bits
REC = 3/4 12636 bits 16848 bits
REC = 5/6 14040 bits 18720 bits

Embedding Punctured VHT MCS
For already punctured MCS, embedding trials were conducted for MCS 5 and MCS 6
utilizing the embedding techniques previously discussed in Section 5.2.2. Unlike our initial
VHT trials, the performance of our variable embedding in MCS 5 and 6 did not appear to
suffer from the same issues involving insufficient traceback depth, τ. As with the proof-of-
concept conducted in our BPSK MCS model, we selected a range of embedding intervals,
ν, for each MCS implementation. For MCS 5, ν varied between 9 and 108; for MCS 6 it
was between 12 and 96. The results of these embedding trials are shown in Figures 6.15
and 6.16 respectively.

Although the behavior of this embedding was very similar to our implementation in
the MCS model, it is worthwhile to note that while it appeared that ν = 9 was a viable
embedding interval when it was implemented on MCS B, it clearly exceeded the SNR
requirement of the next MCS index in our VHT MCS 5 embedding trial. This difference

103

18 19 20 21 22 23 24 25

SNR (dB)

10-2

10-1

100

P
a

c
k
e

t
E

rr
o

r
R

a
te

 (
P

E
R

)

MCS 5

MCS 6

MCS 5 Embedded, = 108

MCS 5 Embedded, = 54

MCS 5 Embedded, = 27

MCS 5 Embedded, = 18

MCS 5 Embedded, = 15

MCS 5 Embedded, = 12

MCS 5 Embedded, = 9

PER 0.1 Threshold

Figure 6.15. Variable rate embedding trials, VHT PHY simulation under
AWGN channel. Results for MCS 5, 100000 trials per SNR, embedding
capacity per 4096-octet A-MPDU.

19 20 21 22 23 24 25 26

SNR (dB)

10-2

10-1

100

P
a

c
k
e

t
E

rr
o

r
R

a
te

 (
P

E
R

)

MCS 6

MCS 7

MCS 6 Embedded, = 96

MCS 6 Embedded, = 48

MCS 6 Embedded, = 24

MCS 6 Embedded, = 18

MCS 6 Embedded, = 16

MCS 6 Embedded, = 12

PER 0.1 Threshold

Figure 6.16. Variable rate embedding trials, VHT PHY simulation under
AWGN channel. Results for MCS 6, 100000 trials per SNR, embedding
capacity per 4096-octet A-MPDU.

in performance is likely due to the fact that BER is not necessarily analogous to PER in
convolutional codes, and because the PSDU required in MCS 6 to transport a 4096-octet

104

A-MPDU is significantly shorter than the same frame in MCS 5. Based on the results of
these trials, the embedding capacity for each MCS are provided in Tables 6.9 and 6.10. As
with our results from MCS 1, the capacities are provided, in bits-per-PPDU, for varying
rates of FEC redundancy.

Table 6.9. Payload capacity of proposed embedding implementation of
802.11ac, MCS 5; data capacity in bits-per-PPDU under varying rates of
error protection, REC. 8 × 8 MIMO, 8 spatial streams, 80 MHz BW, 4096
octet A-MPDU. .

Selected FEC for
Embedded Data

Embedded Payload Capacity (bits per-PPDU)
ν = 12 ν = 15 ν = 18 ν = 27 ν = 54 ν = 108

No FEC 4680 3744 3120 2080 1040 520
REC = 1/2 2340 1872 1560 1040 520 260
REC = 2/3 3120 2496 2080 1386 693 346
REC = 3/4 3510 2808 2340 1560 780 390
REC = 5/6 3900 3120 2600 1733 866 433

Table 6.10. Payload capacity of proposed embedding implementation of
802.11ac, MCS 6; data capacity in bits-per-PPDU under varying rates of
error protection, REC. 8 × 8 MIMO, 8 spatial streams, 80 MHz BW, 4096
octet A-MPDU. .

Selected FEC for
Embedded Data

Embedded Payload Capacity (bits per-PPDU)
ν = 12 ν = 16 ν = 18 ν = 24 ν = 48 ν = 96

No FEC 3744 2808 2496 1872 936 468
REC = 1/2 1872 1404 1248 936 468 234
REC = 2/3 2496 1872 1664 1248 693 312
REC = 3/4 2808 2106 1872 1404 624 351
REC = 5/6 3120 2340 2080 1560 780 390

6.3 Embedding under Multipath Fading Channels
The final series of experimental trials conducted during our investigation implemented
multipath fading models to more accurately reflect real-world conditions. In both cases,
the number of trials that could be conducted was limited based on the significant increase
in computational resources required for each simulation. Even taking full advantage of

105

performance gains offered by theMATLAB parallel processing toolbox, the time required to
complete the simulations withmultipath fading channels increased by an order of magnitude
over those conducted in AWGN. As a result, the intent of presenting the following results
is to not exhaustively describe the performance of these channels under the simulated
fading conditions, but rather validate that the impact of these embedding techniques on the
underlying channel were consistent with that observed under AWGN.

6.3.1 DMG Embedding with TGay Multipath Fading Channel
Our final set of LDPC embedding trials were conducted in a simulated multipath fading
environment. Wemodified our DMGembedding testbed to incorporate theMATLABTGay
fading channel system object previously described in Section 4.7. We selected the SISO
implementation of the open area model where the transmitters and receiver were separated
by a distance of approximately 10 meters.

Figure 6.17. Open area hotspot model utilized to simulate 60-GHz DMG
multipath fading environment

We also selected the number of elements for each antenna; despite the fact that 802.11ad
does not support MIMO, it utilizes a uniform rectangular array (URA) antenna to support
beamforming. We selected a 4 × 4 configuration based on available specification of real-
world DMG implementations. The geometry of the resulting fading model is shown in
Figure 6.17. With the channel model configured, we proceeded to repeat our embedding
trials forMCS 6, testing various embedding rates from 1 bit-per-codeword up to a maximum

106

of 120 bits-per-codeword. For each embedding rate, the simulation transmitted 100000
PSDU at every SNR point. The resulting PER performance curves, truncated after the
maximum embedding capacity of 95 bits-per-codeword are shown in Figure 6.18.

2 4 6 8 10 12 14 16

SNR (dB)

10-2

10-1

100

P
E

R

MCS 6 - No Embedding

MCS 7 - No Embedding

PER Threshold, 0.01

Figure 6.18. Packet error ratio versus SNR embedding trial, DMG PHY
simulation over TGay multipath fading channel. Results for MCS 6, 100000
trials per SNR, 1 to 95 embedded bits per LDPC codeword.

Once we obtained the results of these trials we repeated the embedding coefficient
analysis from Chapter 4 to determine if the previously identified relationship between the
embedding margin, ME , and the embedding capacity, CCW , remained in the presence of
multipath fading. The results of this analysis can be found in Figure 6.19; given the
approximately linear trend of the embedding capacity, we were able to determine r̂E = 56.9.

Although this coefficient is substantially lower than that calculated from the AWGN
case, its reduction is due entirely to the increased SNR between MCS 6 and 7; the max-
imum embedding rate per codeword remains 95 bits. Based on these results, we feel
confident that the analytical techniques developed under AWGN would be applicable to
fading environments.

107

12.5 13 13.5 14 14.5 15 15.5 16

SNR (dB)

0

10

20

30

40

50

60

70

80

90

100

110

120

E
m

b
e

d
d

e
d

 B
it
s
 (

p
e

r
C

o
d

e
w

o
rd

)
y = 56.89*x - 726.4

MCS 6 Embedded at PER 0.01

 Regression Line

MCS 6 at PER 0.01

MCS 7 at PER 0.01

Figure 6.19. Estimated embedding capacity at a given SNR while maintain-
ing 1% PER with associated line of regression. DMG PHY simulation over
TGay multipath fading channel, MCS 6, 100000 PSDU per SNR point, 1 to
95 embedded bits per LDPC codeword.

6.3.2 VHT Embedding with TGac Multipath Fading Channel
Finally, we conducted a series of trials using the MATLAB TGac multipath fading model
previously described in Section 5.6. The simulation was configured using the Model-D
delay profile that best represents a typical office environment, and the transmission distance
was set to 10 meters, which resulted in NLOS channel conditions.

We configured our original VHT testbed to filter our transmitted symbols through the
desired multipath fading channel. Before conducting any embedding trials, we first needed
to establish the performance of the VHT MCS under fading conditions; this performance
was evaluated in terms of PER versus SNR. We again elected to utilize 8 spatial streams,
8×8 MIMO and a BW of 80 MHz. Once these initial performance bounds were determined,
we completed embedding simulations for two of the cases that had been previously explored
with an AWGN channel.

The first set of trials was conducted against a VHT MCS that utilized an unpunctured
code rate. To align with our previous simulation, we repeated our embedding trials on

108

MCS 1 for Requiv = 2/3 and Requiv = 3/4. These trials were conducted using the optimal
values for τ that were determined in Section 6.2.2. Based on our previous AWGN trials, we
expected that the simulated PER of Requiv = 3/4 with τ = 60 would be consistent with the
performance of the unembedded MCS 2. As shown in Figure 6.20, the performance of our
embedding technique in the fading channel aligned with our expectations and supports the
results obtained under AWGN conditions.

14 16 18 20 22 24 26 28

SNR (dB)

10-2

10-1

100

P
a
c
k
e
t
E

rr
o
r

R
a
te

 (
P

E
R

)

MCS 1 (No Embedding)

MCS 2 (No Embedding)

MCS 1, R
equiv

= 2/3 Embed, = 45

MCS 1, R
equiv

= 3/4 Embed, = 60

Figure 6.20. Unpunctured MCS embedding, VHT PHY simulation under
TGac channel Model-D, 10m, NLOS. Results for MCS 1, 10000 trials per
SNR, 4096-octet A-MPDU.

The second set of trialswas conducted against VHTMCS5, which utilizes the punctured
R = 2/3BCC. To replicate the original embedding trials, we repeated simulations for values
of ν that ranged between 9 and 108. After the transmission of 10000 PPDU at each SNR
point, we evaluated the PER performance of the underlying communications system; the
results, plotted against the unembedded PER for VHT MCS 5 and 6, are shown in Figure
6.21.

The results obtained from this series of trials were also entirely consistent with those
observed under AWGN. This outcome further supports our assertion that these error
correction-based embedding techniques would be viable under real world conditions.

109

32 34 36 38 40 42 44

SNR (dB)

10-2

10-1

100

P
a

c
k
e

t
E

rr
o

r
R

a
te

 (
P

E
R

)

MCS 5

MCS 6

MCS 5 Embedded, = 108

MCS 5 Embedded, = 54

MCS 5 Embedded, = 27

MCS 5 Embedded, = 18

 MCS 5 Embedded, = 15

 MCS 5 Embedded, = 12

MCS 5 Embedded, = 9

Figure 6.21. Variable rate embedding trials, VHT PHY simulation under
TGac; Model-D, 10m, NLOS. Results for MCS 5, 10000 trials per SNR,
embedding capacity per 4096-octet A-MPDU.

6.4 Summary
In this chapter, we presented the significant results of our MATLAB embedding simulations
for both LDPC and convolutional codes. The simulated results support our initial observa-
tions on the ability to develop variable rate embedded channels within the error correction
codes of modern WLAN standards. We further demonstrated the ability to control the
amount of distortion experienced by the underlying channel by varying the rate of our em-
bedding. Using the expressions developed in Chapters 4 and 5, we were able to evaluate the
capacity of our embedding implementations. Finally, we extended our previous simulations
to verify the performance of our embedding techniques in multipath fading channels.

110

CHAPTER 7:
Conclusion

The goal of our work was to explore the implementation of embedded channels developed
within error correction techniques utilized by modern wireless protocols. These methods
exploit redundant error correction capacity within systems that can operate across a range
of modulation and coding schemes; the resulting channels have the potential to support both
covert communications as well as other legitimate auxiliary applications. We investigated
specific methodologies based on the error correction mechanisms and PHY characteristics
of two separate WLAN specifications. Finally, we developed models and analytical tech-
niques to describe the behavior of our embedding schemes, provided capacity estimates
for the resulting channels, and identified the impact to the performance of the underlying
communication systems.

We accomplished the objectives of this dissertation through the development of em-
bedding methodologies that have been demonstrated for both LDPC and convolutional
codes and subsequently evaluated through simulation testbeds for IEEE 802.11ad DMG
and 802.11ac VHT. These testbeds supported the extensive simulations utilized to char-
acterize the behavior of the embedding schemes and, specifically, the interaction of our
embedding technique to the MCS indices that enable rate adaptation in response to changes
in channel conditions. These results enabled the development of analytical expressions to
characterize the behavior of our techniques as well as establish performance bounds.

7.1 Significant Contributions
The research conducted in this dissertation has significantly advanced the body of work
related to embedded channels within the error correction mechanisms of adaptive rate
wireless communication systems. The first contribution was the development of an embed-
ded channel model that greatly increased the available capacity by leveraging the inherent
functionality of adaptive rate communication systems. The second contribution was the
extension of our original implementation to support variable embedding rates and the
development of analytical techniques to estimate the embedding capacity as it relates to
current channel conditions. The final contribution was the development of constraints to

111

the variable rate embedding that not only define the maximum embedding capacity, but also
establish the minimum margin of embedding, ME , required to meet our embedded channel
requirements.

7.1.1 Embedding in Adaptive Rate Wireless Communication Systems
Extending on previous efforts that utilized error correction codes to develop covert commu-
nication channels [28], [33], [34], we identified that in adaptive rate communication systems,
the effective redundancy of the error correction scheme could be increased by intentionally
selecting a lower MCS index. Through the development of simulation testbeds, we were
able to demonstrate the application of this concept to the original block code application in
IEEE 802.11ad DMG while also extending these results to punctured convolutional codes
that support IEEE 802.11ac and other legacy WLAN standards.

Beyond the basic proof-of-concept simulations, we were able to establish the capacity
of this technique across multiple MCS indices as well as to examine the reliability of our
embedded channel with respect to the error performance of the embedded payload. We
explored the implications of implementing varying rates of FEC techniques to balance the
needs of reliability against overall payload capacity.

7.1.2 Variable Rate Embedding and Capacity Estimation
Modern 802.11 specifications include provisions that enable stations to estimate the chan-
nel state to support both soft-decision demodulation and decoding as well as potentially
influence rate adaptation [42], [43]. Applying this information to our original embedding
scheme, we successfully demonstrated that our embedding techniques could be tuned to
support varied embedding capacities, which had differing impacts on the performance of
the underlying channel. Based on extensive simulated trials, we were able to establish that
in order to maintain a specified error threshold for the underlying channel, a relationship
existed between the quality of the channel and the embedding capacity.

We also explored the concept of an embedding coefficient, rE , which provided an
estimate for the embedding capacity based on a specified margin of embedding, ME , or the
difference in SNR between the current channel conditions and the minimum requirement
for a given MCS index. While our specific implementation in the IEEE 802.11ad standard

112

resulted in a constant value of rE for a given MCS, rE is a function of the selected error
correction code as well as the specific embedding technique and location. Even if this
combination does not result in a constant value over the entire embedding range, this
concept could be extended to factor in the available embedding margin and still provide
reliable capacity estimates.

7.1.3 Embedding Model with Constraints
We developed a model for which we could specify reasonable limits on the available SNR,
the maximum acceptable PER of the underlying communication system, and the minimum
capacity requirements of our embedded channel. We recognized that if our proposed
embedding methodologies were applied to real-world systems, there would be several
internal and external factors that would limit the performance of our embedding scheme;
we specifically focused on how the available embedding region, which is bounded by
adjacent MCS indices, would be influenced by these various constraints. By incorporating
these factors into our previous expressions for embedding capacity, we were able to improve
our estimates for the maximum embedding payload as well as establish a threshold for the
minimum required channel state to meet mission requirements.

7.2 Future Work
The results presented in this dissertation provide a basis for the analysis and performance
assessment of embedded channels within adaptive rate wireless communication systems.
While we spent significant time outlining the analysis of available capacity contained
within these MCS-based adaptive rate communication systems, we would need to address
two significant challenges before real-world implementation, particularly if the embedding
was intended to support the development of a covert channel. Additionally, there are several
areas related to the proposed embedding methodology that could be extended to improve
our understanding of these embedding techniques or improve the embedding capacity of
these schemes.

7.2.1 Real-World Implementation Challenges
The first challenge related to real-world implementation of these techniques is how to
coordinate the embedding location and embedding rate between the transmitter and receiver.

113

While the location selected for embedding could be passed as a pre-shared key, the specific
embedding ratewould bemore difficult to coordinate in a covertmanner. Due to the low-data
rate requirement for passing rate selection announcements, it might be possible to utilize
an alternate path for this control channel such as embedding in an unused protocol field or
in padded bit locations. An alternate solution might be to maintain an extremely low-rate
embedding regardless of channel condition. This low capacity channel, which might only
occupy a single bit per codeword, could act as a preamble for the full-rate channel and
provide notification to the receiver of the location and size of the embedded payload before
transmission.

The second issue involves having sufficient insight into the current channel state to
make embedding decisions based on the available channel margin. As noted in Chapter 2,
there has been significant research into SNR-based link adaptation algorithms that rely on
accurate channel estimation information; it would be necessary to expand on this research
to determine whether sufficiently accurate representations of the embedding margin exist to
implement our proposed variable-rate embedding scheme.

7.2.2 Extensions to Proposed Methodology
Although we performed simulated trials of all potential embedding locations using the im-
plementation described for the binary convolutional code, we did not perform an exhaustive
search of the LDPC codes utilized within 802.11ad. There are no published puncturing
patterns proposed for the specific LDPC codes utilized in DMG, but a possible extension
of this work would be to utilize one of the puncturing algorithms or computer search meth-
ods to determine the ideal embedding locations; we could then repeat our simulations to
determine if this optimized embedding resulted in increased capacity.

Our focus here was developing techniques that would maximize the capacity of the
embedding channel. To that end, we proposed extracting and replacing the embedded bit
locations to minimize the distortion to the underlying communications channel at these
extremely high embedding rates. While this technique maximized capacity, it might require
extensive hardware and firmware modifications and precludes the ability to develop a covert
channel to a non-cooperative third party receiver. A simple extension of these proposed
schemes would be to evaluate the embedding capacity for a technique that did not rely on the

114

replacement of the received embedded values with LLR = 0; the resulting channel would
trade capacity for simplicity of implementation.

While we concentrated our efforts on the implementation of these embedding tech-
niques on IEEE 802.11 protocols, it should be possible to extend the application to other
MCS-based adaptive rate wireless communication systems, including LTE. Although the
error correction codes utilized to support these implementations may differ from those
explored in our work, the use of distinct MCS indices, along with the implicit and explicit
information related to the current channel state provided by these protocols, should enable
the development of similar methodologies to support embedded channels.

Error correction code-based information hiding techniques have been traditionally lim-
ited to implementation in the PHY. Consequently, the embedded channels proposed in our
research only span a single hop. A possible extension of these techniques could focus on
implementation within application layer-FEC (AL-FEC); these codes have been developed
for use within the application or transport layer to support streaming media with the goal
of improving the reliability of content delivery [85]. In addition to AL-FEC enabling the
development of end-to-end embedded channels, the fact that these codes are designed for
use at the application layer means that they are intended to be implemented in software [86],
which drastically reduces the potential complexity needed to exploit and modify hardware
or firmware as required for our current proposed implementation.

115

THIS PAGE INTENTIONALLY LEFT BLANK

116

APPENDIX: Code Repository

The code contained in this appendix is representative of the MATLAB functions and scripts
that were utilized to support our research into the development of embedded channels in
adaptive rate wireless communication systems.

A.1 Low-Density Parity Check Code Embedding
The code contained in this section was developed to explore the structure of the LDPC
codes utilized by IEEE 802.11ad DMG and also evaluate the performance of our embedding
scheme in terms of the metrics PER and BER.

A.1.1 Construction of LDPC Parity Check Matrices
The following script was developed to investigate the structure of the QC-LDPC parity
check matrices specified for IEEE 802.11ad. The parity check matrices were constructed
based on [44].

1 %% LDPCParityMatricesDMG

2 % This script was developed to create the LDPC parity check matrices specified

3 % for IEEE 802.11ac. Included function of cyclicPermMatrix, which construct the

4 % appropriate shifted identity matrix based on the table entry specified in IEEE

5 % 802.11−2016.

6 format compact;

7 clear all;

8 % Table entries to define parity check matrices as defined in 802.11ad Standard;

9 % parity table entries for LDPC rate−1/2 code

10 ParityTable = [40,−1,38,−1,13,−1,5,−1,18,−1,−1,−1,−1,−1,−1,−1;

11 34,−1,35,−1,27,−1,−1,30,2,1,−1,−1,−1,−1,−1,−1;

12 −1,36,−1,31,−1,7,−1,34,−1,10,41,−1,−1,−1,−1,−1;

13 −1,27,−1,18,−1,12,20,−1,−1,−1,15,6,−1,−1,−1,−1;

14 35,−1,41,−1,40,−1,39,−1,28,−1,−1,3,28,−1,−1,−1;

15 29,−1,0,−1,−1,22,−1,4,−1,28,−1,27,−1,23,−1,−1;

16 −1,31,−1,23,−1,21,−1,20,−1,−1,12,−1,−1,0,13,−1;

17 −1,22,−1,34,31,−1,14,−1,4,−1,−1,−1,13,−1,22,24];

18 % Z represents the size of the permutation matrix defined for 802.11ad standard

19 Z = 42;

20 % Determine total size of parity check matrix based on parity table and

21 % permutation matrix

22 ParityTableSize = size(ParityTable);

117

23 ParityTableRow = ParityTableSize(1,1);

24 ParityTableCol = ParityTableSize(1,2);

25 % Fill Matrix will all zeros

26 LDPCParity = zeros(ParityTableSize*Z);

27 % Develop parity matrix from provided table and permutation matrix

28 for row = 1:ParityTableRow;

29 rowLower = ((row−1)*Z)+1;

30 rowUpper = row*Z;

31 for col = 1:ParityTableCol;

32 tableEntry = ParityTable(row,col);

33 MatrixElement = cyclicPermMatrix(Z,tableEntry);

34 colLower = ((col−1)*Z)+1;

35 colUpper = col*Z;

36 LDPCParity(rowLower:rowUpper,colLower:colUpper)=MatrixElement;

37 end

38 end

39 % Save resulting matrix in Excel format

40 filename = 'testdata.xlsx';

41 xlswrite(filename,LDPCParity);

42

43 %% Supporting function cyclicPermMatrix

44 function [matrixElement] = cyclicPermMatrix(Z,tableEntry)

45 % Develops appropriate shifted version of identity matrix

46 if tableEntry < 0;

47 % Creates Z x Z matrix of zeros

48 matrixElement = zeros(Z);

49 else

50 % Creates Z x Z identity matrix

51 P = eye(Z);

52 % Circular Shift; opposite of of tableEntry based on published standard

53 matrixElement = circshift(P,[−tableEntry,0]);

54 end

55 end

A.1.2 Simulation for IEEE 802.11ad DMG Embedding
The original simulation for IEEE 802.11ad was developed from a PER calculation example
provided as part of the release notes for the WLAN Toolbox in MATLAB 2018a. Although
the specific script we used to develop our main simulation is no longer available online, an
updated version was published with MATLAB release 2018b; this version also contained
support for TGay multipath fading [87].

In order to implement the simulation it was necessary to modify both the base script as
well as some of the supporting WLAN Toolbox functions. The primary functions that re-
quired modification were wlan.internal.dmgData, which encodes the underlying PSDU

118

before transmission, and wlanDMGDataBitRecover which demodulates and decodes the
received PSDU. The relationship of these MATLAB Toolbox functions is shown in Figure
A.1.

Figure A.1. Structure of PER simulation for 802.11ad-based embedding
utilizing MATLAB WLAN Toolbox

On the transmit side, the wlanWaveformGenerator function must also be modified
to allow for the additional parameters needed for embedding to be passed to the updated
version of wlan.internal.dmgData.

Main Simulation, DMG PER
From the main program, embedding is accomplished by calling the modified version of the
wlanWaveformGenerator function. The desired payload is then forwarded to a modified
version of wlan.internal.dmgData and embedded into the LDPC codewords. The below
code segment also applies FEC-protection to the embedded payload.

%% Encode embed data with appropriate FEC

% Determine maximum number of embedded bits per codeword based on

% simulation parameters

embedBitsPerCW = embedBitsIndex(embedTrial);

% Select Data to Embed (array format)

embedDataArray = messageArray(1:embedDataSize(embedTrial));

% Reshape embed data into codeword

embedBlkCW = reshape(embedDataArray,embedCWdataLen,numEmbedCW(embedTrial));

% Encode Parity Bits (Embed Data)

embedParityBits = wlan.internal.ldpcEncodeCore(embedBlkCW,mcsEmbedTable.Rate);

% Check if selected FEC is rate−7/8 (requires puncturing)

if isequal(mcsEmbedTable.Rate,7/8)

% Puncture first 48 parity bits if needed

embedParityBitsPunc = embedParityBits(49:end,:);

ldpcEmbedBits = [embedBlkCW; embedParityBitsPunc];

119

else

ldpcEmbedBits = [embedBlkCW;embedParityBits];

end

% Reshape embedded data into column

embedData = reshape(ldpcEmbedBits,[],1);

%% wlanWaveformGenertor_embedDataFEC

% Calls modified version of 'wlanWaveformGenerator'. Passes the additional

% arguments, 'embedData' and 'embedBitsPerCW', necessary to enable

% embedding in the LDPC codewords; embedding occurs in the function

% 'wlan.internal.dmgData'.

txWaveform = wlanWaveformGenerator_embedDataFEC(psdu,cfgDMG,embedData,embedBitsPerCW);

Extraction of the FEC-protected embedded payload is accomplished through modification
of the wlanDMGDataBitRecover function. This section of code also performs the LDPC
decode for the FEC-protected embedded payload, determines the number of bit errors
(and BER) found in the embedded payload, and calculates the number of packet errors
encountered in the underlying communications channel. These values are later used to
determine the PER and BER for the trials conducted at each SNR point.

%% Embedded payload extraction and zero stuffing

% Calls modified version of 'wlanDMGDataBitRecover'. Function returns the soft

% decisions values of the underlying communication channel as well as the LLR

% values associated with the embedded bit positions.

[dataDecode,softEmbedBits] = wlanDMGDataBitRecover_embedDataFEC(rxDataSym,nVarEst,...

embedBitsPerCW,cfgEmbedDMG,cfgDMG);

% Reshape embed data into LDPC codewords

softEmbedBitsCW = reshape(softEmbedBits,paramsEmbedMCS.LCW,...

numEmbedCW(embedTrial));

% Section of code required to perform LDPC decoding on the embedded data

maxLDPCIterationCount = 12;

if isequal(mcsEmbedTable.Rate,7/8)

% Add punctured 48 parity bits and decode with 13/16 rate

softEmbedBitsCWPunc =...

[softEmbedBitsCW(1:546,:);zeros(48,numEmbedCW(embedTrial));...

softEmbedBitsCW(546+1:end,:)];

[decodedEmbedBits,numIterations,parityCheck] =...

wlan.internal.ldpcDecodeCore(softEmbedBitsCWPunc,13/16,maxLDPCIterationCount);

else

[decodedEmbedBits,numIterations,parityCheck] =...

wlan.internal.ldpcDecodeCore(softEmbedBitsCW,mcsEmbedTable.Rate,...

maxLDPCIterationCount);

end

%% Hard decision decode (no FEC) is also performed on returned LLR values

% Returned codewords truncated to remove parity bits

softEmbedBitsData = softEmbedBitsCW(1:embedCWdataLen,:);

120

% Hard decision, LLR > 0 interpreted as a binary '0'

softEmbedBitsData(softEmbedBitsData>0)=0;

% Hard decision, LLR < 0 interpreted as a binary '1'

softEmbedBitsData(softEmbedBitsData<0)=1;

rcvEmbedBitsNoFEC = softEmbedBitsData;

% Determine if there was a packet error in the underlying communication channel

packetError = any(biterr(psdu,dataDecode));

% Compute total number of packet errors (cumulative over all trials)

numPacketErrors = numPacketErrors+packetError;

% Identity bit errors (and BER) for the embedded payload

dataRcv = dataDecode;

% Number of bit errors (and BER) when FEC is utilized

[embedErrorsTrial,embedBERTrial] = biterr(embedBlkCW,decodedEmbedBits);

% Number of bit errors (and BER) for hard decision decode, no FEC

[embedErrorsTrialNoFEC,embedBERTrialNoFEC] = biterr(embedBlkCW,rcvEmbedBitsNoFEC);

% Compute total number of bit errors (over all trials) when FEC is utilized

numEmbedErrors = numEmbedErrors + embedErrorsTrial;

% Compute total number of bit errors (over all trials), no FEC

numEmbedErrorsNoFEC = numEmbedErrorsNoFEC + embedErrorsTrialNoFEC;

Modifications to WLAN Toolbox Function for Payload Embedding
The following modified version of the MATLAB function wlan.internal.dmgData was
utilized to enable embedding of our desired payload. This particular implementation was
for embedding the interleaved FEC-protected payload in the first n parity bits of each LDPC
codeword.

1 function y = dmgData_embedDataFEC(psdu,cfgDMG,embedData,embedBitsPerCW)

2 %% dmgData DMG Data field processing of the PSDU

3 % Copyright 2016−2017 The MathWorks, Inc.

4

5 %% Embedding Modifications: dmgData_embedDataFEC

6 % The original wlan.internal.dmgData function developed by MATLAB for the WLAN

7 % Toolbox has been modified to conduct error correction code−based embedding

8 % within IEEE 802.11ad DMG; this version implements interleaved FEC−protected

9 % embedding and replaces the call for 'wlan.internal.dmgData' in the

10 % original MATLAB−developed simulation. All header comments from the

11 % original function have been removed; lines 14 − 25 are unmodified from original

12 % 'wlan.internal.dmgData' function. Function modifications occur between the

13 % dashed lines.

14

15 if strcmp(phyType(cfgDMG),'Control')

16 % Encode header and data together due to differential encoding

17 headerBits = wlan.internal.dmgHeaderBits(cfgDMG);

18 encHeaderBits = wlan.internal.dmgHeaderEncode(headerBits,psdu,cfgDMG);

121

19 encDataBits = wlan.internal.dmgDataEncode(psdu,cfgDMG);

20 % Modulate

21 yT = wlan.internal.dmgDataModulate([encHeaderBits; encDataBits],cfgDMG);

22 % Strip out the encoded data from differential modulation

23 y = yT((8192+1):end);

24 else % SC/OFDM PHY

25 encodedStream = wlan.internal.dmgDataEncode(psdu,cfgDMG);

26 % −−−

27 %% Embed Data (FEC Protected, with Interleaving)

28 % Gather parameters based on selected MCS

29 paramsMCS = wlan.internal.dmgSCEncodingInfo(cfgDMG);

30 mcsTable = wlan.internal.getRateTable(cfgDMG);

31 % Determine padding added during encode process; retain padding

32 encodedStreamPadSize = paramsMCS.NBLK_PAD;

33 encodeStreamPad = encodedStream((end−(encodedStreamPadSize−1):end));

34 % Length of LDPC codewords within encoded stream

35 encodedStreamCW = numel(encodedStream) − encodedStreamPadSize;

36 % Reshape encoded data stream into LDPC Codewords; padding removed

37 encodedCW = reshape(encodedStream(1:encodedStreamCW),paramsMCS.LCW,[]);

38 % Data Bits in each CW

39 dataBitsPerCW = paramsMCS.LCW * mcsTable.Rate;

40 % Calculates start and stop position for embedding (first n bits of data CW)

41 embedStartLoc = dataBitsPerCW + 1;

42 embedEndLoc = embedStartLoc + embedBitsPerCW − 1;

43 % Defines area of CW available for embedding based on first n bits of data CW

44 embedArea = encodedCW(embedStartLoc:embedEndLoc,:);

45 % Size of Embed Area

46 embedAreaSize = size(embedArea);

47 % Reshape embedArea into Array (Row−wise Reshape)

48 embedArray = reshape(embedArea.',[],1);

49 embedArrayWithData = embedArray;

50 % Embed data into desginated positions

51 embedArrayWithData(1:numel(embedData)) = embedData;

52 % Reshape embedArrayWithData into embedArea (Row−wise)

53 embedAreaWithData = ...

54 reshape(embedArrayWithData.',embedAreaSize(2),embedAreaSize(1)).';

55 encodedCWplusEmbed = encodedCW;

56 encodedCWplusEmbed(embedStartLoc:embedEndLoc,:) = embedAreaWithData;

57 % Reshape matrix into single bitstream

58 encodedBits = [reshape(encodedCWplusEmbed,[],1);encodeStreamPad];

59 % −−−

60 % Modulate Embedded Bitstream

61 y = wlan.internal.dmgDataModulate(encodedBits,cfgDMG);

62 end

63

64 end

122

Modifications to WLAN Toolbox Function for Payload Extraction and Recovery
Recovery of the embedded data, as well as replacement of the embedded locations with LLR
= 0, is accomplished with a modified version of the MATLAB WLAN Toolbox function
wlanDMGDataBitRecover.

1 function [dataBits,softEmbedBits] = wlanDMGDataBitRecover_embedDataFEC(rx,...

2 noiseVarEst,embedBitsPerCW,cfgEmbedDMG,varargin)

3 %% wlanDMGDataBitRecover Recover data bits from DMG Data field

4 % Copyright 2017 The MathWorks, Inc.

5

6 %% Embedding Modifications: wlanDMGDataBitRecover_embedDataFEC

7 % This function has been modified to extract embedded bit locations within

8 % IEEE 802.11ad DMG and stuff those bit locations with LLR = 0; this version

9 % implements extraction of interleaved FEC−protected embedded payload and

10 % replaces the call for 'wlanDMGDataBitRecover' in the original simulation. All

11 % header comments from the original function have been removed; lines 14 − 77 are

12 % unmodified from original 'wlandDMGDataBitRecover' function. Function

13 % modifications occur between the dashed lines.

14

15 % Check minimum and maximum number of input arguments

16 narginchk(5,10)%(3,8);

17 % If input rx is empty then do not attempt to decode; return empty

18 if isempty(rx)

19 dataBits = zeros(0,1,'int8');

20 return;

21 end

22 csiFlag = 0;

23 if isa(varargin{1},'wlanDMGConfig')

24 % If no CSI input is present

25 cfgDMG = varargin{1};

26 csi = [];

27 elseif nargin>5 && isa(varargin{2},'wlanDMGConfig')

28 %elseif nargin>3 && isa(varargin{2},'wlanDMGConfig')

29 csi = varargin{1};

30 cfgDMG = varargin{2};

31 csiFlag = 1;

32 else

33 coder.internal.error('wlan:shared:ExpectedDMGObject');

34 end

35 % Validate configuration object

36 validateattributes(cfgDMG,{'wlanDMGConfig'},{'scalar'},mfilename,'DMG format ...

configuration object');

37 % Input CSI is only required for OFDM PHY

38 coder.internal.errorIf(¬isempty(csi) && ¬...

strcmp(phyType(cfgDMG),'OFDM'),'wlan:shared:InvalidInputCSI');

39 % Validate each P−V pair

40 if isempty(coder.target) % Simulation path

123

41 p = inputParser;

42 p.PartialMatching = true;

43 % Set defaults for the optional arguments

44 addParameter(p,'MaximumLDPCIterationCount',12);

45 addParameter(p,'EarlyTermination',false);

46 parse(p,varargin{2+csiFlag:end}); % Parse inputs

47 res = p.Results;

48 maximumLDPCIterationCount = res.MaximumLDPCIterationCount;

49 earlyTermination = res.EarlyTermination;

50 else % Codegen path

51 pvPairs = struct('MaximumLDPCIterationCount', uint32(0), ...

52 'EarlyTermination', uint32(0));

53 % Select parsing options

54 popts = struct('PartialMatching', true);

55 % Parse inputs

56 pStruct = ...

coder.internal.parseParameterInputs(pvPairs,popts,varargin{2+csiFlag:end});

57 % Get values for the P−V pair or set defaults for the optional arguments

58 maximumLDPCIterationCount = ...

59 coder.internal.getParameterValue(pStruct.MaximumLDPCIterationCount,12,...

60 varargin{2+csiFlag:end});

61 earlyTermination = ...

62 coder.internal.getParameterValue(pStruct.EarlyTermination,false,...

63 varargin{2+csiFlag:end});

64 end

65 validateattributes(maximumLDPCIterationCount,{'numeric'},{'real','nonempty',...

66 'scalar','finite','>',0},mfilename,'''MaximumLDPCIterationCount''value');

67 validateattributes(earlyTermination,{'logical'},...

68 {'scalar','nonempty'},mfilename,'''EarlyTermination'' value');

69 % Validate input

70 validateattributes(rx,{'double'},{'2d','finite'},mfilename,'input');

71 % Validate input noise estimate

72 validateattributes(noiseVarEst,{'double'},...

73 {'real','scalar','nonnegative','finite'},mfilename,'noiseVarEst');

74 if csiFlag

75 softBits = wlan.internal.dmgDataDemap(rx,noiseVarEst,csi,cfgDMG);

76 else

77 softBits = wlan.internal.dmgDataDemap(rx,noiseVarEst,cfgDMG);

78 end

79 % −−−

80 %% Embedded Data Recovery and Zero Stuffing

81 % Gather characteristics about selected MCS

82 paramsMCS = wlan.internal.dmgSCEncodingInfo(cfgDMG);

83 mcsTable = wlan.internal.getRateTable(cfgDMG);

84 % Determine number of total demodulated bits

85 softBitsSize = size(softBits);

86 % Reshape into column array

87 softBitsArray = reshape(softBits,[],1);

88 % Determine padding added during encode process

89 softBitsPadSize = paramsMCS.NBLK_PAD;

124

90 softBitsPad = softBitsArray((end−(softBitsPadSize−1):end));

91 % Length of LDPC codewords within encoded stream

92 softBitsCWLen = numel(softBits) − softBitsPadSize;

93 % Reshape encoded data stream into LDPC codewords; padding removed

94 softBitsCW = reshape(softBits(1:softBitsCWLen),paramsMCS.LCW,[]);

95 % Calculate data Bbts in each CW

96 dataBitsPerCW = paramsMCS.LCW * mcsTable.Rate;

97 % Determine embedding location within codewods; only valid for embedding ...

within first n parity bits

98 embedStartLoc = dataBitsPerCW + 1;

99 embedEndLoc = embedStartLoc + embedBitsPerCW − 1;

100 embedArea = softBitsCW(embedStartLoc:embedEndLoc,:);

101 % Size of Embed Area

102 embedAreaSize = size(embedArea);

103 % Reshape embedArea into Array (Row−wise)

104 embedArray = reshape(embedArea.',[],1);

105 % Determine number of Embedded Data Bits in Embed Area

106 paramsEmbedMCS = wlan.internal.dmgSCEncodingInfo(cfgEmbedDMG);

107 mcsEmbedTable = wlan.internal.getRateTable(cfgEmbedDMG);

108 % Number of embedded data CW per packet

109 numEmbedCW = floor((embedBitsPerCW * paramsMCS.NCW)/paramsEmbedMCS.LCW);

110 %Embed Data CW Size

111 embedCWLen = paramsEmbedMCS.LCW;

112 % Determine total size of Embeded CW

113 embedDataSize = numEmbedCW*embedCWLen;

114 % Select embedded bit locations; second argument returned from function

115 softEmbedBits = embedArray(1:embedDataSize);

116 embedArrayNoEmbed = embedArray;

117 % Stuff LLR = 0 values into embedded locations

118 embedArrayNoEmbed(1:embedDataSize) = 0;

119 % Reshape embedArrayWithData into embedArea (Row−wise)

120 embedAreaNoEmbed = ...

reshape(embedArrayNoEmbed.',embedAreaSize(2),embedAreaSize(1)).';

121 softBitsNoEmbed = softBitsCW;

122 softBitsNoEmbed(embedStartLoc:embedEndLoc,:) = embedAreaNoEmbed;

123 % Reshape embedded bits into original dimensions

124 softBitsStream = [reshape(softBitsNoEmbed,[],1);softBitsPad];

125 % −−−

126 %% Decode Legitimate Data; first argument returned from function

127 dataBits = wlan.internal.dmgDataDecode(softBitsStream,cfgDMG,...

128 maximumLDPCIterationCount,earlyTermination);

129 end

A.1.3 Specify Changes in Embedding Location
Our original simulations embedded the payload in the first n parity bits of the LDPC
codewords. A modified technique enabled the selection of alternate embedding locations.

125

This section briefly describes the code modifications required to enable this functionality;
of note, this particular implementation did not FEC-protect the embedded payload.

%% The code provided below specifies changes that must be made to the main script

% of the PER simulation in order to support user−specified changes to the

% embedding location:

% The embed location must be defined.

embedLocation = "begPar";

% This parameter will then be passed via an updated call to

% 'wlanWaveformGenerator_embedData' to embed the data; as with the original

% implementation, this function passes the arguments through to a modified

% version of the 'wlan.internal.dmgData' function, in this case

% called 'dmgData_embedData'.

txWaveform = wlanWaveformGenerator_embedData(psdu,cfgDMG,embedData,embedLocation);

% The embedLocation parameter is also passed to the

% 'wlanDMGDataBitRecover_embedData' function to extract the embedded bits and

% replace them with LLR = 0.

[dataDecode,rcvEmbedBits] = wlanDMGDataBitRecover_embedData(rxDataSym,...

nVarEst,embedBitsPerCW,cfgDMG,embedLocation);

Modifications were also required to the original wlan.internal.dmgData function in
order to support the user-specified embedding locations. The segment of code below
would replace the code modifications to wlan.internal.dmgData previously identified
in Appendix A.1.2.

%% Embedding Modifications: dmgData_embedData for multiple embedding locations.

% This code replaces the modifications identified in dmgData_embedDataFEC.

% −−−

%% Embed Data (No FEC, user−defined location)

% Gather parameters based on selected MCS

paramsMCS = wlan.internal.dmgSCEncodingInfo(cfgDMG);

mcsTable = wlan.internal.getRateTable(cfgDMG);

encodedCW = reshape(encodedStream(1:size(encodedStream)−...

paramsMCS.NBLK_PAD),paramsMCS.LCW,[]);

%% location of embed data

embedBitsPerCW = size(embedData,1)/(paramsMCS.NCW);

dataBitsPerCW = paramsMCS.LCW * mcsTable.Rate;

% Calculates start and stop bits for embedding based on selected location

if embedLocation == "begData" % Embed first n data bits

embedStartLoc = 1;

embedEndLoc = embedStartLoc + embedBitsPerCW − 1;

elseif embedLocation == "midData" % Embed middle n data bits

126

embedStartLoc = dataBitsPerCW/2 + 1;

embedEndLoc = embedStartLoc + embedBitsPerCW − 1;

elseif embedLocation == "endData" % Embed last n data bits

embedStartLoc = dataBitsPerCW − embedBitsPerCW + 1;

embedEndLoc = dataBitsPerCW;

elseif embedLocation == "begPar" % Embed first n parity bits

embedStartLoc = dataBitsPerCW + 1;

embedEndLoc = embedStartLoc + embedBitsPerCW − 1;

elseif embedLocation == "midPar" % Embed middle n parity bits

% subtracts total bits from data, to get amount of parity bits,

% dividing it by two to get the midpoint

parityMidVal = (paramsMCS.LCW − dataBitsPerCW)/2;

embedStartLoc = paramsMCS.LCW − parityMidVal + 1;

embedEndLoc = embedStartLoc + embedBitsPerCW − 1;

elseif embedLocation == "endPar" % Embed last n parity bits

embedStartLoc = paramsMCS.LCW − embedBitsPerCW + 1;

embedEndLoc = paramsMCS.LCW;

end

% Reshape embedded payload into appropriate dimensions

embedDataCW = reshape(embedData,embedBitsPerCW,[]);

encodedCWplusEmbed = encodedCW;

% Embed payload into locations determined above

encodedCWplusEmbed(embedStartLoc:embedEndLoc,:) = embedDataCW;

encodedBits = [reshape(encodedCWplusEmbed,[],1);encodedStream(...

(end−(paramsMCS.NBLK_PAD−1):end))];

% −−−

User-specified embedding locations also required updates to the functionwlanDMGDataBitRecover.
The below modifications would replace those previously identified for this function in Ap-
pendix A.1.2.

%% Embedding Modifications: wlanDMGDataBitRecover_embedData for multiple

%% embedding locations.

% This code replaces the modifications identified in % ...

wlanDMGDataBitRecover_embedDataFEC.

% −−−

%% Embedded Data Recovery and Zero Stuffing

% Gather characteristics about selected MCS

paramsMCS = wlan.internal.dmgSCEncodingInfo(cfgDMG);

mcsTable = wlan.internal.getRateTable(cfgDMG);

% Reshape into column array

softBitsArray = reshape(softBits,[],1);

softBitsCW = ...

reshape(softBits(1:size(softBitsArray,1)−paramsMCS.NBLK_PAD),paramsMCS.LCW,[]);

%% location of embed data

% embedBitsPerCW has already been passed to this function and is available

dataBitsPerCW = paramsMCS.LCW * mcsTable.Rate; % How many data bits are in the ...

127

codeword

% Calculates start and stop bits of payload based on selected location

if embedLocation == "begData" % Payload in first n data bits

embedStartLoc = 1;

embedEndLoc = embedStartLoc + embedBitsPerCW − 1;

elseif embedLocation == "midData" % Payload in middle n data bits

embedStartLoc = dataBitsPerCW/2 − embedBitsPerCW +1;

embedEndLoc = embedStartLoc + embedBitsPerCW − 1;

elseif embedLocation == "endData" % Payload in last n data bits

embedStartLoc = dataBitsPerCW − embedBitsPerCW + 1;

embedEndLoc = dataBitsPerCW;

elseif embedLocation == "begPar" % Payload in first n parity bits

embedStartLoc = dataBitsPerCW + 1;

embedEndLoc = embedStartLoc + embedBitsPerCW − 1;

elseif embedLocation == "midPar" % Payload in middle n parity bits

parityMidVal = (paramsMCS.LCW − dataBitsPerCW)/2;

% subtracts total bits from data, to get amount of parity bits,

% dividing it by two to get the midpoint

embedStartLoc = paramsMCS.LCW − parityMidVal + 1;

embedEndLoc = embedStartLoc + embedBitsPerCW − 1;

elseif embedLocation == "endPar" % Payload in last n parity bits

embedStartLoc = paramsMCS.LCW − embedBitsPerCW + 1;

embedEndLoc = paramsMCS.LCW;

end

% Conduct hard decision decoding on embedded bits (no FEC applied)

hardEmbedBits = softBitsCW(embedStartLoc:embedEndLoc,:);

hardEmbedBits(softEmbedBits>0)=0;

hardEmbedBits(softEmbedBits<0)=1;

rcvEmbedBits = reshape(hardEmbedBits,[],1);

softBitsNoEmbed = softBitsCW;

% Stuff LLR = 0 values into embedded locations

softBitsNoEmbed(embedStartLoc:embedEndLoc,:) = 0;

% Reshape received bits (with embedding locations removed) prior to decoder

softBitsStream = ...

[reshape(softBitsNoEmbed,[],1);softBitsArray(end−(paramsMCS.NBLK_PAD−1):end)];

% −−−

A.2 Variable Rate Embedding Analysis Tools
In order to fully characterize the performance of our embedding scheme, it became necessary
to export the embedding trial results, retain them for future analysis, and develop a semi-
logarithmic interpolation tool to estimate the required SNR for each given embedding rate.

128

A.2.1 Data Collection from PER Trials
The following code was appended to our existing PER testbed to save the vital metrics from
each simulation in a uniquely-named .mat file.

%% Data Collection and Structure Array Development

% The following code section were appended to our embedding simulations to record

% relevant metrics related to the embedding performance, specifically, the PER

% of the underlying system and BER of embedded payload.

% Generate a structure array with fields that correspond to the relevant

% performance metrics from each trial

trialResults.embedBitsIndex = embedBitsIndex; % Embedded bits per codeword

trialResults.SNRvalues = SNRvalues; % SNR points evaluated for simulation

trialResults.packetErrorRate = packetErrorRate; %PER

trialResults.embedBER = embedBER; %BER

% Establish DTG format for timestamp

formatOut = 'yyyymmdd_HHMMSS';

% Generate filename for .mat file that contains the results.

% Unique name based on simulation characteristics and timestamp

fileName = ['MCS_',num2str(mcsFilenameIndex(mcsValue)),'_MCSEmbed_',...

num2str(mcsFilenameIndex(mcsValue+1)),'_PER_and_BER_',...

num2str(trialResults.embedBitsIndex(1)),'−',...

num2str(trialResults.embedBitsIndex(end)),'_',num2str(maxNumErrors),'−',...

num2str(maxNumPackets),'_',num2str(datestr(now,formatOut)),'_',...

num2str(embedLocation)];

% Save resulting output

save(fileName, 'trialResults');

fprintf('Results saved to %s\n', fileName);

A.2.2 Semi-logarithmic Interpolation and Plotting
This code determined the estimated SNR required to maintain a specified PER at given
embedding rate by performing semi-logarithmic interpolation.

1 %% Estimate SNR to maintain specified PER threshold

2 % Script must be in the same path as the files that need to be combined. Prior to

3 % running this script, the user should load the .mat file containing the first

4 % dataset into the MATLAB Workspace.

5

6 figure;

7 % Plot all PER vs SNR curves in dataset

8 semilogy(trialResults.SNRvalues,trialResults.packetErrorRate,'HandleVisibility','off')

9 hold on

10 % Set PER threshold based on protocol specification or user preference

129

11 threshold = 0.01;

12 % Perform semi−log interpolation on each dataset

13 for numEmbedBits = 1:length(trialResults.embedBitsIndex);

14 aboveThreshold = find(trialResults.packetErrorRate(numEmbedBits,:) ≥ threshold);

15 upperBoundLoc(numEmbedBits) = aboveThreshold(end);

16 if upperBoundLoc(numEmbedBits) < length(trialResults.SNRvalues);

17 belowThreshold = find(trialResults.packetErrorRate(numEmbedBits,:) ≤ ...

threshold);

18 lowerBoundLoc(numEmbedBits) = belowThreshold(1);

19 if upperBoundLoc(numEmbedBits) == lowerBoundLoc(numEmbedBits);

20 SNRatThreshold(numEmbedBits) = ...

trialResults.SNRvalues(lowerBoundLoc(numEmbedBits));

21 else

22 upperBoundPER(numEmbedBits) = ...

trialResults.packetErrorRate(numEmbedBits,upperBoundLoc(numEmbedBits));

23 upperBoundSNR(numEmbedBits) = ...

trialResults.SNRvalues(upperBoundLoc(numEmbedBits));

24 lowerBoundPER(numEmbedBits) = ...

trialResults.packetErrorRate(numEmbedBits,lowerBoundLoc(numEmbedBits));

25 lowerBoundSNR(numEmbedBits) = ...

trialResults.SNRvalues(lowerBoundLoc(numEmbedBits));

26 SNRatThreshold(numEmbedBits)= ...

upperBoundSNR(numEmbedBits)+((log10(threshold)− ...

log10(upperBoundPER(numEmbedBits)))/ ...

(log10(lowerBoundPER(numEmbedBits))− ...

log10(upperBoundPER(numEmbedBits)))) ...

*(lowerBoundSNR(numEmbedBits)− upperBoundSNR(numEmbedBits));

27 end

28 end

29 end

30 % Plot estimated SNRpoint against the PER curves

31 plot(SNRatThreshold,threshold,'r+','HandleVisibility','off')

32

33 % Plot Embedding Rate vs SNR

34 figure;

35 plot(SNRatThreshold,trialResults.embedBitsIndex(1:length(SNRatThreshold)),'+')

36 hold on

37 clear all;

A.3 Convolutional Code Embedding
We created a simple software simulation to conduct our initial investigation of convolutional
embedding. This code was based on a MATLAB-developed simulation that compared the
performance of hard and soft decision Viterbi decoders under QAM [88].

130

1 %% Adaptive Rate Embedding Model

2 % Software testbed to establish BER performance of binary convolutional code

3 % and evaluate embedding locations using equivalent puncture patterns for

4 % the specified code rates.

5

6 clear all;

7

8 M = 2; % Modulation order

9 b = log2(M); % Bits per symbol

10 EbNoVec = (0:0.5:8)'; % Eb/No values (dB)

11 numSymPerFrame = 1200; % Number of PSK symbols per frame

12 numTrials = 10; % Number of trials

13

14 % Specify characteristics of the desired convolutional code

15 constraintLen = 7; % Constrain Length (K)

16 codeG1 = 133; % First generator polynomial

17 codeG2 = 171; % Second generator polynomial

18 trellis = poly2trellis(constraintLen,[codeG1 codeG2]);

19 tbd = 96; % Traceback depth

20 % Specify Code Rate

21 k = 2; % Numerator of code rate

22 n = 3; % Denominator of code rate

23 rate = k/n; % Specified code rate

24

25 % Initialize array for BER results

26 BERSoft = zeros(numTrials,length(EbNoVec));

27 % Specify puncture patterns based on the selected code rate

28 if rate == 1/2; % Rate for MCS 'A'

29 puncpat = [1 1];

30 elseif rate == 2/3; % Rate for MCS 'B'

31 puncpat = [1 1 1 0];

32 elseif rate == 3/4; % Rate for MCS 'C'

33 puncpat = [1 1 1 0 0 1];

34 elseif rate == 5/6; % Rate for MCS 'D'

35 puncpat = [1 1 1 0 0 1 1 0 0 1];

36 elseif rate == 10/14; % Req = 10/14 (from 2/3)

37 puncpat = [1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0];

38 else % Req = 12/15 (from 2/3)

39 puncpat = [1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1];

40 end

41

42 for trial = 1:numTrials;

43 disp(trial)

44 parfor num = 1:length(EbNoVec) % Parallel toolbox, for debug use 'for'

45 % Convert Eb/No to SNR

46 snrdB = EbNoVec(num) + 10*log10(b*rate);

47 % Noise variance calculation for unity average signal power.

48 noiseVar = 10.^(−snrdB/10);

49 % Reset the error and bit counters

50 [numErrsSoft,numErrsHard,numBits] = deal(0);

131

51 while numErrsSoft < 100 && numBits < 1e8 %Specify stopping parameters

52 % Generate binary data

53 dataIn = randi([0 1],numSymPerFrame*b,1);

54 % Convolutionally encode the data

55 dataEnc = convenc(dataIn,trellis,puncpat);

56 % PSK modulate

57 H = comm.PSKModulator('ModulationOrder',M,'PhaseOffset',0,...

58 'BitInput',true);

59 txSig = step(H,dataEnc);

60 % Pass through AWGN channel

61 rxSig = awgn(txSig,snrdB,'measured');

62 % PSK demodulate

63 decision = 'Approximate log−likelihood ratio';

64 I = comm.PSKDemodulator('ModulationOrder',M,'PhaseOffset',0,...

65 'BitOutput',true,'DecisionMethod',decision,'VarianceSource',...

66 'Property','Variance',noiseVar);

67 rxDataSoft = step(I,rxSig);

68 % Viterbi decode the demodulated data

69 dataSoft = vitdec(rxDataSoft,trellis,tbd,'cont','unquant',puncpat);

70 % Determine number of received errors

71 numErrsInFrameSoft = biterr(dataIn(1:end−tbd),dataSoft(tbd+1:end));

72 % Increment the error and bit counters

73 numErrsSoft = numErrsSoft + numErrsInFrameSoft;

74 numBits = numBits + numSymPerFrame*b;

75 end

76 % Calculate BER for trial

77 BERSoft(trial,num) = numErrsSoft/numBits;

78 end

79 end

80

81 % Determine average BER across the total number of specified trials

82 avgBERSoft = mean(BERSoft,1);

83

84 % Specify selected code rate

85 div = "%d/%d";

86 codeRate = sprintf(div,k,n);

87 % Record results from relevant infromation about trail in trialResults

88 % array; data collected to allow future analysis

89 trialResults.modOrder = M;

90 trialResults.codeRate = codeRate;

91 trialResults.puncPattern = puncpat;

92 trialResults.EbNovalues = EbNoVec;

93 trialResults.berEstSoft = BERSoft;

94

95 %% Save Trial Results

96 % Set DTG format to differentiate runs

97 formatOut = 'yyyymmdd_HHMMSS';

98 % Define file name

99 filenameDefault = ['Conv Code_K=',num2str(constraintLen),'_[',...

100 num2str(codeG1),'−',num2str(codeG2),']_tbd_',num2str(tbd),'_Rate_k=',...

132

101 num2str(k),'_n=',num2str(n),'_PSK_ModOrder_',...

102 num2str(trialResults.modOrder),'_SymPerFrame_',num2str(numSymPerFrame),...

103 '_numTrials_',num2str(numTrials),'_',num2str(datestr(now,formatOut))];

104 % Save run characteristics to .mat file in execution directory

105 fileName = filenameDefault;

106 save(fileName, 'trialResults');

107 fprintf('Results saved to %s\n', fileName);

108

109 %% Plot Results, BER vs Eb/No

110 semilogy(EbNoVec,avgBERSoft,'−*');

111 legend(sprintf('R = %d/%d',k,n));

112 grid;

113 xlabel('Eb/No (dB)');

114 ylabel('Bit Error Rate');

133

THIS PAGE INTENTIONALLY LEFT BLANK

134

List of References

[1] W. Mazurczyk, S. Wendzel, S. Zander, A. Houmansadr, and K. Szczypiorski, Infor-
mation Hiding in Communication Networks: Fundamentals, Mechanisms, Applica-
tions, and Countermeasures (IEEE Press Series on Information and Communication
Networks Security). Wiley-IEEE Press, 2016.

[2] J. Lubacz, W. Mazurczyk, and K. Szczypiorski, “Principles and overview of network
steganography,” IEEE Communications Magazine, vol. 52, no. 5, pp. 225–229, May
2014.

[3] T. G. Handel and M. T. Sandford, “Hiding data in the OSI network model,” in In-
formation Hiding, vol. 1174, G. Goos, J. Hartmanis, J. Leeuwen, and R. Anderson,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 23–38. Available:
http://link.springer.com/10.1007/3-540-61996-8_29

[4] “Cisco Visual Networking Index: Forecast and Methodology, 2016–2021,”
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/complete-white-paper-c11-481360.html, accessed: 2018-05-
28.

[5] P. M. B. Harley, M. Tummala, and J. C. McEachen, “High-throughput covert chan-
nels in adaptive rate wireless communication systems,” in 2019 International Con-
ference on Electronics, Information, and Communication (ICEIC), Jan. 2019, pp.
1–7.

[6] K. Cabaj, L. Caviglione, W. Mazurczyk, S. Wendzel, A. Woodward, and S. Zander,
“The new threats of information hiding: The road ahead,” IEEE IT Prof., vol. 20,
no. 3, pp. 31–39, May 2018.

[7] W. Mazurczyk and L. Caviglione, “Information hiding as a challenge for malware
detection,” IEEE Security Privacy, vol. 13, no. 2, pp. 89–93, Mar. 2015.

[8] L. Caviglione, S. Wendzel, and W. Mazurczyk, “The future of digital forensics:
Challenges and the road ahead,” IEEE Security Privacy, vol. 15, no. 6, pp. 12–17,
Nov. 2017.

[9] L. Frikha, Z. Trabelsi, and W. El-Hajj, “Implementation of a covert channel in the
802.11 header,” in 2008 Int. Wireless Commun. and Mobile Computing Conference,
Aug. 2008, pp. 594–599.

135

http://link.springer.com/10.1007/3-540-61996-8_29

[10] S. Cabuk, C. E. Brodley, and C. Shields, “IP covert timing channels: Design and
detection,” in Proceedings of the 11th ACM Conference on Computer and Communi-
cations Security (CCS ’04). New York, NY, USA: ACM, 2004, pp. 178–187. Avail-
able: http://doi.acm.org/10.1145/1030083.1030108

[11] R. Holloway and R. Beyah, “Covert DCF: A DCF-based covert timing channel in
802.11 networks,” in 2011 IEEE Eighth International Conference on Mobile Ad-Hoc
and Sensor Systems, Oct 2011, pp. 570–579.

[12] M. M. Sadek, A. S. Khalifa, and M. G. Mostafa, “Video steganography: A compre-
hensive review,” Multimedia Tools Appl., vol. 74, no. 17, pp. 7063–7094, Sep. 2015.
Available: http://dx.doi.org/10.1007/s11042-014-1952-z

[13] T. Rabie and M. Baziyad, “The pixogram: Addressing high payload demands for
video steganography,” IEEE Access, vol. 7, pp. 21 948–21 962, 2019.

[14] R. Patel and M. Patel, “Steganography over video file by hiding video in another
video file, random byte hiding and LSB technique,” in 2014 IEEE International
Conference on Computational Intelligence and Computing Research, Dec 2014, pp.
1–5.

[15] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,” IBM
Systems Journal, vol. 35, no. 3.4, pp. 313–336, 1996.

[16] E. Jones, O. L. Moigne, and J. Robert, “IP traceback solutions based on time to live
covert channel,” in Proceedings. 2004 12th IEEE International Conference on Net-
works (ICON 2004) (IEEE Cat. No.04EX955), 2004, vol. 2, pp. 451–457 vol.2.

[17] U. Tupakula, V. Varadharajan, and S. K. Vuppala, “Counteracting DDoS attacks
in WLAN,” in Proceedings of the 4th International Conference on Security of In-
formation and Networks (SIN ’11). ACM, 2011, pp. 119–126. Available: http:
//doi.acm.org/10.1145/2070425.2070445

[18] R. Clayton, S. J. Murdoch, and R. N. M. Watson, “Ignoring the great firewall of
China,” in Privacy Enhancing Technologies. Springer Berlin Heidelberg, 2006, pp.
20–35.

[19] S. Aryan, H. Aryan, and J. A. Halderman, “Internet censorship in Iran: A first
look,” in Presented as part of the 3rd USENIX Workshop on Free and Open Com-
munications on the Internet. Washington, D.C.: USENIX, 2013. Available: https:
//www.usenix.org/conference/foci13/internet-censorship-iran-first-look

[20] W. Mazurczyk and Z. Kotulski, “New security and control protocol for VoIP based
on steganography and digital watermarking,” Annales UMCS Informatica, vol. 5, pp.
417–426, 2006.

136

http://doi.acm.org/10.1145/1030083.1030108
http://dx.doi.org/10.1007/s11042-014-1952-z
http://doi.acm.org/10.1145/2070425.2070445
http://doi.acm.org/10.1145/2070425.2070445
https://www.usenix.org/conference/foci13/internet-censorship-iran-first-look
https://www.usenix.org/conference/foci13/internet-censorship-iran-first-look

[21] D. Kahn, “The history of steganography,” in Information Hiding (Lecture Notes in
Computer Science). Springer, Berlin, Heidelberg, May 1996, pp. 1–5.

[22] B. Carrara and C. Adams, “A survey and taxonomy aimed at the detection and mea-
surement of covert channels,” in Proceedings of the 4th ACM Workshop on Infor-
mation Hiding and Multimedia Security (IH&MMSec ’16). New York, NY, USA:
ACM, 2016, pp. 115–126. Available: http://doi.acm.org/10.1145/2909827.2930800

[23] J. Fridrich, Steganography in Digital Media: Principles, Algorithms, and Applica-
tions. Cambridge University Press, 2010.

[24] C. Krätzer, J. Dittmann, A. Lang, and T. Kühne, “WLAN steganography: A first
practical review,” in Proceedings of the 8th Workshop on Multimedia and Security
(MM&Sec ’06). New York, NY, USA: ACM, 2006, pp. 17–22. Available: http://doi.
acm.org/10.1145/1161366.1161371

[25] S. Zander, G. Armitage, and P. Branch, “A survey of covert channels and counter-
measures in computer network protocols,” IEEE Communications Surveys Tutorials,
vol. 9, no. 3, pp. 44–57, Third 2007.

[26] H. Zhao, “Covert channels in 802.11e wireless networks,” in 2014 Wireless Telecom-
munications Symp., Apr. 2014, pp. 1–5.

[27] J. Classen, M. Schulz, and M. Hollick, “Practical covert channels for WiFi systems,”
in 2015 IEEE Conference on Communications and Network Security (CNS), Sep.
2015, pp. 209–217.

[28] I. Grabska and K. Szczypiorski, “Steganography in WiMAX networks,” in 2013 5th
Int. Congr. Ultra Modern Telecommun. and Control Syst. and Workshops (ICUMT),
Sep. 2013, pp. 20–27.

[29] S. Grabski and K. Szczypiorski, “Steganography in OFDM symbols of fast IEEE
802.11n networks,” in 2013 IEEE Security and Privacy Workshops, May 2013, pp.
158–164.

[30] J. Fridrich and D. Soukal, “Matrix embedding for large payloads,” IEEE Transac-
tions on Information Forensics and Security, vol. 1, no. 3, pp. 390–395, Sep 2006.

[31] T. Filler and J. J. Fridrich, “Binary quantization using belief propagation with deci-
mation over factor graphs of LDGM codes,” CoRR, vol. abs/0710.0192, 2007. Avail-
able: http://arxiv.org/abs/0710.0192

[32] A. Gautam and R. Gupta, “Enhancement of steganography scheme based on QC-
LDPC codes,” in 2015 International Conference on Signal Processing and Commu-
nication (ICSC). IEEE, Mar 2015.

137

http://doi.acm.org/10.1145/2909827.2930800
http://doi.acm.org/10.1145/1161366.1161371
http://doi.acm.org/10.1145/1161366.1161371
http://arxiv.org/abs/0710.0192

[33] X. Yan, S. Guan, and X. Niu, “Research on the capacity of error-correcting codes-
based information hiding,” in 2008 International Conference on Intelligent Informa-
tion Hiding and Multimedia Signal Processing, 2008, pp. 1158–1161.

[34] K. S. Subramani, A. Antonopoulos, A. A. Abotabl, A. Nosratinia, and Y. Makris,
“INFECT: INconspicuous FEC-based Trojan: A hardware attack on an 802.11a/g
wireless network,” in 2017 IEEE Int. Symp. Hardware Oriented Security and Trust
(HOST), May 2017, pp. 90–94.

[35] P. N. Safier, I. S. Moskowitz, and P. Cotae, “On the baseband communication perfor-
mance of physical layer steganography,” in 2011 45th Annual Conference on Infor-
mation Sciences and Systems, 2011, pp. 1–6.

[36] E. Perahia and R. Stacey, Next Generation Wireless LANs. Cambridge University Pr.,
2013.

[37] D. Hui, S. Sandberg, Y. Blankenship, M. Andersson, and L. Grosjean, “Channel
coding in 5G New Radio: A tutorial overview and performance comparison with 4G
LTE,” IEEE Vehicular Technology Magazine, vol. 13, no. 4, pp. 60–69, Dec 2018.

[38] S. Biaz and S. Wu, “Rate adaptation algorithms for IEEE 802.11 networks: A survey
and comparison,” in 2008 IEEE Symposium on Computers and Communications.
Marrakech: IEEE, July 2008, pp. 130–136.

[39] M. Vutukuru, H. Balakrishnan, and K. Jamieson, “Cross-layer wireless bit rate adap-
tation,” in Proceedings of the ACM SIGCOMM 2009 Conference on Data Communi-
cation (SIGCOMM ’09). New York, NY, USA: ACM, 2009, pp. 3–14.

[40] M. Souryal and N. Moayeri, “Joint rate adaptation and channel-adaptive relaying
in 802.11 ad hoc networks,” in MILCOM 2006. Washington, DC, USA: IEEE, Oct.
2006, pp. 1–8.

[41] I. Haratcherev, K. Langendoen, R. Lagendijk, and H. Sips, “Hybrid rate control
for IEEE 802.11,” in Proceedings of the Second International Workshop on Mo-
bility Management &Amp; Wireless Access Protocols (MobiWac ’04). New York,
NY, USA: ACM, 2004, pp. 10–18. Available: http://doi.acm.org/10.1145/1023783.
1023787

[42] J. Zhang, K. Tan, J. Zhao, H. Wu, and Y. Zhang, “A practical SNR-guided rate adap-
tation,” in IEEE INFOCOM 2008 - The 27th Conference on Computer Communica-
tions, Apr. 2008, pp. 2083–2091.

[43] X. Chen, P. Gangwal, and D. Qiao, “Practical rate adaptation in mobile environ-
ments,” in 2009 IEEE International Conference on Pervasive Computing and Com-
munications, March 2009, pp. 1–10.

138

http://doi.acm.org/10.1145/1023783.1023787
http://doi.acm.org/10.1145/1023783.1023787

[44] “IEEE standard for Information technology–Telecommunications and information
exchange between systems Local and metropolitan area networks–Specific require-
ments - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications,” IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012),
pp. 1–3534, Dec. 2016.

[45] M. Lei and Y. Huang, “CFR and SNR estimation based on complementary Golay
sequences for single-carrier block transmission in 60-GHz WPAN,” in 2009 IEEE
Wireless Communications and Networking Conference, April 2009, pp. 1–5.

[46] B. Schulz, “White Paper: 802.11ad - WLAN at 60 GHz - Solution,” Rohde &
Schwarz GmbH & Co KG, Tech. Rep., 2017. Available: https://www.rohde-schwarz.
com/us/solutions/wireless-communications/wlan-wifi/in-focus/white-paper-802-
11ad-wlan-at-60-ghz_229148.html

[47] T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C. Widmer,
“IEEE 802.11ad: Directional 60 GHz communication for multi-Gigabit-per-second
Wi-Fi [Invited Paper],” IEEE Commun. Mag., vol. 52, no. 12, pp. 132–141, Dec.
2014.

[48] P. Bright, “Intel to stop making WiGig cards for laptops but still pushing 60GHz
for VR [Updated],” Sep. 2017. Available: https://arstechnica.com/gadgets/2017/09/
intel-to-stop-making-wigig-cards-for-laptops-but-still-pushing-60ghz-for-vr/

[49] P. Kumari, N. Gonzalez-Prelcic, and R. W. Heath, “Investigating the IEEE 802.11ad
standard for millimeter wave automotive radar,” in 2015 IEEE 82nd Vehicular Tech-
nology Conference (VTC2015-Fall), Sep. 2015, pp. 1–5.

[50] B. Su, “The next generation wireless LAN standard and overcome the test chal-
lenges,” https://www.keysight.com/upload/cmc_upload/All/20170608-A3-BrianSu.
pdf, Keysight, Tech. Rep., June 2017.

[51] T. S. Rappaport, R. W. Heath, R. C. Daniels, and J. N. Murdock, Millimeter Wave
Wireless Communications. Pearson Education (US), 2014.

[52] C. Hemanth and T. G. Venkatesh, “Performance analysis of service periods (SP) of
the IEEE 802.11ad hybrid MAC protocol,” IEEE Transactions on Mobile Comput-
ing, vol. 15, no. 5, pp. 1224–1236, May 2016.

[53] T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms. John
Wiley & Sons Inc, 2005.

[54] Z. Tu and S. Zhang, “Overview of LDPC codes,” in 7th IEEE International Confer-
ence on Computer and Information Technology (CIT 2007). IEEE, Oct 2007.

139

https://www.rohde-schwarz.com/us/solutions/wireless-communications/wlan-wifi/in-focus/white-paper-802-11ad-wlan-at-60-ghz_229148.html
https://www.rohde-schwarz.com/us/solutions/wireless-communications/wlan-wifi/in-focus/white-paper-802-11ad-wlan-at-60-ghz_229148.html
https://www.rohde-schwarz.com/us/solutions/wireless-communications/wlan-wifi/in-focus/white-paper-802-11ad-wlan-at-60-ghz_229148.html
https://arstechnica.com/gadgets/2017/09/intel-to-stop-making-wigig-cards-for-laptops-but-still-pushing-60ghz-for-vr/
https://arstechnica.com/gadgets/2017/09/intel-to-stop-making-wigig-cards-for-laptops-but-still-pushing-60ghz-for-vr/
https://www.keysight.com/upload/cmc_upload/All/20170608-A3-BrianSu.pdf
https://www.keysight.com/upload/cmc_upload/All/20170608-A3-BrianSu.pdf

[55] H. Ibl and C. Klaus, “White Paper: DOCSIS 3.1 - Application Note,” Rohde &
Schwarz GmbH & Co KG, Tech. Rep., 2015. Available: https://www.rohde-schwarz.
com/us/applications/docsis-3.1-white-paper_230854-108554.html

[56] T. Richardson and S. Kudekar, “Design of low-density parity check codes for 5G
New Radio,” IEEE Communications Magazine, vol. 56, no. 3, pp. 28–34, March
2018.

[57] D. J. Costello and G. D. Forney, “Channel coding: The road to channel capacity,”
Proceedings of the IEEE, vol. 95, no. 6, pp. 1150–1177, 2007.

[58] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms. Cam-
bridge University Pr., 2005.

[59] S. Lin and D. J. Costello, Error Control Coding (2nd Edition). Pearson, 2004.

[60] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information
Theory, vol. 8, no. 1, pp. 21–28, January 1962.

[61] R. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions on
Information Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[62] A. Shokrollahi, “LDPC codes: An introduction,” in Coding, Cryptography and
Combinatorics, K. Feng, H. Niederreiter, and C. Xing, Eds. Basel: Birkhäuser
Basel, 2004, pp. 85–110.

[63] L. H. C. Lee, Convolutional Coding: Fundamentals and Applications (Artech House
telecommunications library). Artech House, 1997.

[64] J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC codes) and
their applications,” IEEE Transactions on Communications, vol. 36, no. 4, pp. 389–
400, April 1988.

[65] P. Frenger, P. Orten, T. Ottosson, and A. Svensson, “Multi-rate convolutional codes,”
Communication Systems Group, Department of Signals and Systems, Chalmers Uni-
versity of Technology, Tech. Rep., 1998.

[66] B. Moision, “A truncation depth rule of thumb for convolutional codes,” in 2008
Information Theory and Applications Workshop, Jan 2008, pp. 555–557.

[67] The Mathworks, Inc. (2019). Digital Modulation. [Online]. Available: https://www.
mathworks.com/help/comm/ug/digital-modulation.html

[68] A. J. Viterbi, “An intuitive justification and a simplified implementation of the map
decoder for convolutional codes,” IEEE Journal on Selected Areas in Communica-
tions, vol. 16, no. 2, pp. 260–264, Feb 1998.

140

https://www.rohde-schwarz.com/us/applications/docsis-3.1-white-paper_230854-108554.html
https://www.rohde-schwarz.com/us/applications/docsis-3.1-white-paper_230854-108554.html
https://www.mathworks.com/help/comm/ug/digital-modulation.html
https://www.mathworks.com/help/comm/ug/digital-modulation.html

[69] C. E. Shannon, “A mathematical theory of communication,” The Bell System Techni-
cal Journal, vol. 27, no. 4, pp. 623–656, Oct 1948.

[70] J. Ha, J. Kim, and S. W. McLaughlin, “Rate-compatible puncturing of low-density
parity-check codes,” IEEE Trans. Inf. Theor., vol. 50, no. 11, pp. 2824–2836, Sep.
2006.

[71] X. Zhao, L. Zhu, Y. Guo, and X. Gou, “An effective puncturing algorithm for QC-
LDPC codes with dual-diagonal structure,” in Proceedings of 2012 5th Global Sym-
posium on Millimeter-Waves, May 2012, pp. 38–42.

[72] S. Choi, Y. Shin, J. Heo, K. Cho, and M. Oh, “Effective puncturing schemes for
block-type low-density parity-check codes,” in 2007 IEEE 65th Vehicular Technol-
ogy Conference - VTC2007-Spring, April 2007, pp. 1841–1845.

[73] Y. Xu, Y. Wei, and W. Chen, “On the performance evaluation of quasi-cyclic LDPC
codes with arbitrary puncturing,” in 2010 IEEE 71st Vehicular Technology Confer-
ence, May 2010, pp. 1–5.

[74] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation
for Computer Science. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1989.

[75] A. Maltsev et al., “IEEE 802.11-09/0334r8: Channel Models for 60 GHz WLAN
Systems,” TGad Working Group, Tech. Rep., May 2010.

[76] A. Maltsev et al., “IEEE 802.11-15/1150r9: Channel Models for IEEE 802.11ay,”
TGay Working Group, Tech. Rep., March 2017.

[77] The Mathworks, Inc. (2019). wlanTGayChannel. [Online]. Available: https://www.
mathworks.com/help/wlan/ref/wlantgaychannel-system-object.html

[78] J. P. Odenwalder, “Optimum decoding of convolutional codes,” Ph.D. dissertation,
Dept. Syst. Sci., Sch. Eng. Appl. Sci., Univ. California, 1970.

[79] X. Chen, “Coding in 802.11 WLANs,” Ph.D. dissertation, Hamilton Institute, Na-
tional University of Ireland Maynooth, 2012.

[80] D. Haccoun and G. Begin, “High-rate punctured convolutional codes for Viterbi and
sequential decoding,” IEEE Transactions on Communications, vol. 37, no. 11, pp.
1113–1125, Nov 1989.

[81] M. Gast, 802.11ac: A Survival Guide. O’Reilly Media, Inc., 2013.

[82] G. Breit, H. Sampath, S. Vermani et al., “IEEE 802.11-09/0308r12: TGac Channel
Model Addendum. Version 12.” TGac Working Group, Tech. Rep., March 2010.

141

https://www.mathworks.com/help/wlan/ref/wlantgaychannel-system-object.html
https://www.mathworks.com/help/wlan/ref/wlantgaychannel-system-object.html

[83] V. Erceg, L. Schaumacher, P. Kyritsi et al., “IEEE 802.11-03/940r4: TGn Channel
Models. Version 4.” TGn Working Group, Tech. Rep., May 2004.

[84] The Mathworks, Inc. (2019). wlanTGacChannel. [Online]. Available: https://www.
mathworks.com/help/wlan/ref/wlantgacchannel-system-object.html

[85] M. Luby, “Broadcast delivery of multimedia content to mobile users,” Qualcomm
Incorporated, Tech. Rep., 2013. Available: https://www.qualcomm.com/documents/
broadcast-delivery-multimedia-content-mobile-users

[86] “RaptorQ technical overview,” Qualcomm Incorporated, Tech. Rep., 2010. Avail-
able: https://www.qualcomm.com/documents/raptorq-technical-overview

[87] The Mathworks, Inc. (2019). 802.11ad packet error rate single carrier PHY simu-
lation with TGay channel. [Online]. Available: https://www.mathworks.com/help/
wlan/examples/802-11ad-packet-error-rate-single-carrier-phy-simulation-with-tgay-
channel.html

[88] The Mathworks, Inc. (2019). Estimate BER for hard and soft decision Viterbi decod-
ing. [Online]. Available: https://www.mathworks.com/help/comm/ug/estimate-ber-
for-hard-and-soft-decision-viterbi-decoding.html

142

https://www.mathworks.com/help/wlan/ref/wlantgacchannel-system-object.html
https://www.mathworks.com/help/wlan/ref/wlantgacchannel-system-object.html
https://www.qualcomm.com/documents/broadcast-delivery-multimedia-content-mobile-users
https://www.qualcomm.com/documents/broadcast-delivery-multimedia-content-mobile-users
https://www.qualcomm.com/documents/raptorq-technical-overview
https://www.mathworks.com/help/wlan/examples/802-11ad-packet-error-rate-single-carrier-phy-simulation-with-tgay-channel.html
https://www.mathworks.com/help/wlan/examples/802-11ad-packet-error-rate-single-carrier-phy-simulation-with-tgay-channel.html
https://www.mathworks.com/help/wlan/examples/802-11ad-packet-error-rate-single-carrier-phy-simulation-with-tgay-channel.html
https://www.mathworks.com/help/comm/ug/estimate-ber-for-hard-and-soft-decision-viterbi-decoding.html
https://www.mathworks.com/help/comm/ug/estimate-ber-for-hard-and-soft-decision-viterbi-decoding.html

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

143

	19Sep_Harley_Peter_First8_HOLD
	19Sep_Harley_Peter
	Introduction
	Motivation
	Research Objective
	Related Work
	Outline

	Modern Wireless Communication Systems
	Modulation and Coding Schemes
	Modern Wireless Local Area Network Standards
	Relevant Error Correction Codes
	Log-Likelihood Decoding of Low-Density Parity Check Codes
	Summary

	Embedded Channels in Adaptive Rate Communication Systems
	Embedded Channels in Communication Systems
	Preliminary Insight
	MCS-based Embedding Considerations
	Adaptive Rate Embedded Channel Model
	Summary

	Error Correction-Based Embedding in Low-Density Parity Check Codes
	Embedding with IEEE 802.11ad Directional Multi-Gigabit WLAN
	Simulation Development
	Forward Error Correction of Embedded Message
	Improved Estimates of Embedding Capacity
	Embedding Distortion
	Capacity Refinements
	Implementation of Multipath Fading Channel
	Summary

	Error Correction-Based Embedding in Convolutional Codes
	Adaptive Rate Embedding Model
	Convolutional Code Embedding
	Forward Error Correction of Embedded Message
	Embedding Capacity Estimation
	Embedding within IEEE 802.11ac VHT
	Implementation of TGac Fading Channel
	Summary

	Embedding Simulation Results
	Embedding in LDPC Codes
	Convolutional Code Embedding
	Embedding under Multipath Fading Channels
	Summary

	Conclusion
	Significant Contributions
	Future Work

	Appendix: Code Repository
	Low-Density Parity Check Code Embedding
	Variable Rate Embedding Analysis Tools
	Convolutional Code Embedding

	List of References
	Initial Distribution List

