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ABSTRACT 

The 4G network provides a significant improvement in performance, but service 

providers are still faced with the annual increase in usage of cell phones and wireless 

devices. Spectrum efficiency is the most prominent issue in handling the high number of 

users. The cognitive radio is capable of changing its transmission and/or reception 

parameters according to the demands of the network. In the 4G network, the cognitive 

radio is seen as a solution to spectrum efficiency. With the high number of users, it also 

means that there is a need to effectively localize and track the 4G cognitive radio (4G-

CR) signal for various purposes such as urban environment warfare, national security, 

surveillance, intelligence, and emergency rescue.  

The localization errors from previous proposed methods of time-difference-of-

arrival (TDOA) measurements were analyzed in this thesis. The localization errors 

obtained are close to the differential-distance errors derived from the TDOA 

measurement algorithms. In addition, the localization of 4G-CR requires an adaptive 

tracking method, which is also discussed in this thesis. 
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I. INTRODUCTION 

A. BACKGROUND 

 4G (4th Generation) Network  

According to International Telecommunication Union (ITU), LTE-Advanced 

(Long-Term Evolution-Advanced) and WiMAX (Worldwide Interoperability for 

Microwave Access) Release 2.0 are officially designated as IMT-Advanced (International 

Mobile Telecommunications-Advanced) systems [1]. IMT-Advanced systems are not 

termed as 4G so as to reduce confusion with commercially marketed 4G networks which 

are actually 3G+ networks; however, in this thesis, 4G networks are referred as IMT-

Advanced systems.  

The 4G networks provide improvements in spectrum efficiency so as to be able to 

support more users at higher data rates per radio channel. The architecture is fully packet-

based with lower overall latency [1]. The improved radio resource management and 

control has enhanced quality-of-service. There are new capabilities such as wideband 

radio channels and multiple-input multiple-output (MIMO) which can be used to improve 

communication performance. 

The commercial 4G telecommunication network, LTE-Advanced, also has the 

advantage of having one global standard [2], which increases interoperability and results 

in quicker responses for public safety rescue operations. Based on post analyses of 

natural disaster and terrorist attacks, the most significant hindrance to initial rescue 

response is the lack of interoperability between communication assets of rescue 

organizations and the network of the affected area [3].  

 Cognitive Radio System 

The cognitive radio system (CRS) is defined on the ITU website as “a radio 

system employing technology that allows the system to obtain knowledge of its 

operational and geographical environment, established policies and its internal state” [4]. 

With the acquired knowledge, the radio system is able to “dynamically and autonomously 



 2 

adjust its operational parameters and protocols” so it can “achieve predefined objectives” 

[4].  

One feature of CR environment is that there are two types of users, namely 

primary and secondary. The primary users (PUs) are authorized to use the frequency 

spectrum in a specific geographical area, and the primary user network is likely to have 

excess resources available on the spectrum. The secondary user (SU) utilizes the 

spectrum in an opportunistic manner and has the responsibility of avoiding interference 

with the primary users [5].  

 Orthogonal Frequency-Division Multiplexing (OFDM)  

OFDM is currently employed in WiFi, WiMAX (Worldwide Interoperability for 

Microwave Access), WRAN (wireless regional area network) and the cellular standard 

LTE. OFDM is considered to be an excellent multiplexing technique for common 

telecommunication modulation formats such as QPSK and QAM due to its robustness in 

multipath fading channels, high spectral efficiency and dynamic spectrum use [6]. OFDM 

allows the subcarriers to be turned on or off in accordance to available spectrum 

availability; hence, it is a good modulation technique for the CR [6]. 

 4G Cognitive Radio (4G-CR) 

In this thesis, the 4G cognitive radio (4G-CR) is defined as a cognitive radio 

system in a 4G network which utilizes orthogonal frequency-division multiplexing 

(OFDM). 

 Issues and Challenges 

Although there is an expected significant improvement in performance, 4G 

networks are still faced with the annual increase in usage of cell phones and wireless 

devices. Spectrum efficiency is the most prominent issue in handling the large number of 

users. The CRS is a potential solution to spectrum efficiency because it is capable of 

detecting spectrum availability and adjusting its transmission and/or reception parameters 

accordingly [3], [6]. The CRS is considered to provide spectrum-loading flexibility [3] in 

the event of unusual load conditions, and it is seen as a means of providing service 
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flexibility when operating in a heterogeneous communication environment where there 

are several service providers or radio standards such as WiMAX or 3G/4G [2]. 

With the use of CRs in a 4G network, there is a need to effectively localize and 

track a 4G-CR target for various purposes such as urban environment warfare, national 

security, surveillance, intelligence, emergency rescue. The localization of CR is even 

more essential when adversaries and terrorists can use CRs for cyber warfare [5]. The 

challenge is the inherent dynamic nature of a 4G-CR signal. The 4G-CR target cannot 

solely be localized using conventional localization methods as there is a constant change 

in spatial, frequency and temporal parameters. There has been very little work on 

localization of CR [7]. 

B. PURPOSE OF RESEARCH AND RELATED WORK 

 Passive Localization Using Time-Difference-of-Arrival (TDOA)  

Passive localization is advantageous to users because of the low cost and power 

requirements. With no transmission of a radio frequency (RF) signal, the power 

requirement is low and costs are kept low. Passive localization is relatively faster than 

active localization as there is no wait time required for returned signals. 

Time-difference-of-arrival (TDOA) localization methods are beneficial as there is 

no need for time synchronization between transmitters and receivers. Past work has 

identified the pilot symbols in an OFDM signal as the most important parameter for 

localization [8]. There are three proposed TDOA algorithms to localize emitters using 

static and passive sensors. The pros and cons of the three methods, including the expected 

TDOA errors, were presented in [8]. 

The localization method using geostationary satellites has been analyzed in detail, 

and the results are promising [9], [10]. A Monte Carlo-based method and a non-linear 

least-squares framework were compared for localization, and the non-linear least-squares 

method with at least three sensors was recommended in [11]; hence, the least-squares 

method in [9] is used for the error analysis in this thesis. An analysis of sensor-position 

errors on source localization is provided in [12]. The sensor-position error is included in 

the error analysis and effects observed in this research are discussed in Chapter IV. 
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Previous work is continued in this thesis by analyzing the localization error based 

on the expected TDOA errors in [8] and sensor-position errors. 

 Tracking of 4G-CR 

The issue of spectrum efficiency motivated the study of utilizing the white spaces 

of the licensed spectrum while maintaining low probability of interference. The Institute 

of Electrical and Electronics Engineers (IEEE) standard 802.22 [13] is a standard for 

WRAN and utilized CR techniques to use the unused portion of the television (TV) 

frequency spectrum without causing interference to the primary operation of digital TV 

broadcast. The unused portion of the RF spectrum are called white spaces. In a 4G 

network, wireless devices can possess CR capability similar to that in IEEE 802.22 

devices, increasing the spectrum efficiency of the 4G networks. Both the spectrum-

sensing function (SSF) of IEEE 802.22 and the localization methods of CRs are discussed 

in Chapter V. There are suggestions for strategies in Chapter VI to track the 4G-CR 

signals for the purposes of emergency rescue or surveillance. 

The proposed method in [14] is used to localize secondary users (SU) based on 

their measurement of primary user (PU) signals in the TV spectrum while the extended 

semi-range based method to localize a CR is provided by [5]. In a 4G network, the 

secondary user target can be detected using an external wireless sensor network. This 

scenario is adopted for the thesis. 

 Objectives 

There are two objectives for this thesis research. The first is to continue the work 

from [8], where an error analysis is to be conducted based on the mathematical results 

from previous TDOA localization methods of a 4G OFDM signal. The second objective 

is to propose an adaptive localization method for 4G-CR, as the current localization 

methods are insufficient to track the 4G-CR continuously.  

With the above objectives, this thesis is a contribution to the study of localizing 

and tracking 4G-CR signals and, particularly, OFDM signals. 
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C. RESEARCH WORK OUTLINE 

 Part 1: TDOA Localization-Error Analysis 

The investigation of the localization error with the use of time-difference-of-

arrival (TDOA) on static sensors is included in Chapters III and IV. The error analysis 

provides insight into the accuracy of the new TDOA methods proposed in [8] for OFDM 

signals. The effect of sensor-position error on localization error is also analyzed. The 

mathematical model is first presented, a Matlab simulation of the model is conducted, 

and the results are analyzed. There is also a discussion on practical implications. 

 Part 2: Adaptive Localization and Tracking Strategies  

The localization of 4G-CR signal is challenging due to changes in spatial, 

frequency and temporal parameters. Current localization methods are insufficient to 

continuously track the 4G-CR signal. The discussion of cognitive radio capabilities in 

IEEE 802.22 are included in Chapter V, which are adopted in the conceptualization of the 

adaptive localization method for 4G-CR in Chapter VI. 
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II. PREVIOUS WORK 

A. GOALS OF THE STUDY 

The previous work in [8] consists of a study of the 4G-CR with the following 

goals: 

 identify parameters in the adaptive frequency hopping (FH)-OFDM-based 
waveform and 

 devise methods to effectively localize and track 4G-CR radios. 

The study successfully identified the pilot symbol as the most important 

parameter for localization of the 4G-CR signals. Three methods of TDOA localization 

were proposed at the end of the study, and the expected TDOA error uncertainty forms 

the basis of research in this thesis.   

B. FINDINGS FROM THE STUDY 

 Methods of TDOA Measurement 

The pilot symbol carries reference information in the OFDM waveform for 

demodulation. This information can be leveraged for localization purpose. The three 

main methods of TDOA measurement utilize the pilot symbol as part of the 

measurement. 

 Single-pilot subcarrier measurement (differential-phase method) 

This differential-phase method uses two synchronized sensors, which detect the 

pilot symbol from the emitter. Each sensor detects the pilot symbol, and the phase 

difference of the two symbols is used to calculate the TDOA relative to the reference 

time.  

This measurement technique requires the TDOA to be much smaller than the 

symbol time; hence, the emitter must be close to the sensors, or the distance difference 

from the emitter to the sensors has to be shorter so that the frequency-time constraint is 

satisfied. The other drawback is phase-ambiguity, which is not practical for high data rate 

signals. 
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 Two-pilot subcarrier measurement  (double-differential phase method) 

This double-differential phase method is based on the measurement of two pilot 

symbols from two subcarriers at two different frequencies. If the two symbols are 

identical, the phase difference at emitter’s transmission time is 0 degrees. If the symbols 

are different, then it is necessary for the sensors to possess knowledge of the phase 

difference at emitter’s transmission time. 

The phase-ambiguity problem is still present in this method; however, the time 

constraint is less restrictive than for the first method. This is because TDOA is inversely 

proportional to the difference in carrier frequencies between the two subcarriers. This 

method is more practical for current high speed networks. 

 Direct-timing measurement  

The double-differential phase method does not have phase-ambiguity when the 

TDOA is much smaller than an OFDM period T, which is the subcarrier symbol time.  

The sensors have an existing mechanism for reference synchronization timing t0. 

To derive the coarse estimation of the TDOA, the sensors compare the frame 

synchronization timing that each obtains and compares it with t0. The frame 

synchronization timing at every sensor is obtained via the trained OFDM symbol 

sequence in the preamble of the data frame. The location of an OFDM symbol in the data 

frame is obtained relative to the frame synchronization timing. The fine estimation of the 

TDOA can be obtained via one or more pilot symbols in the current OFDM symbol. 

This method works with one or more pilot subcarriers and does not have any 

phase-ambiguity. The drawback is that there is a need for precise reference timing 

between the sensors. The reference synchronization timing is also subject to the same 

timing jitters as the frame synchronization timing. This further increases the TDOA error. 

 Proposed Algorithms for TDOA Measurement  

The three proposed algorithms in [8] are: 

 Early-late FFT sampling algorithm (EL-FFT.SA) 
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This method uses the direct-timing measurement and aims to find the minimum 

Euclidean distance between the co-phased sampled pilot symbols at various FFT sample 

timings to the known pilot symbol stored at the sensor.   

 Double-differential phase algorithm (DDPA) 

This algorithm utilizes the double-differential phase method. It does not require 

precise synchronized reference timing because the TDOA is calculated from the 

difference in phases between two pilot symbols obtained from two sensors. The 

disadvantage is that phase-ambiguity still exists if the sensors are located far from the 

emitter or from each other. Since the FFT sampling timing and the time-of-arrival can be 

derived from this algorithm, EL-FFT.SA can be used as a supplement to DDPA. 

 Data-aided double-differential phase algorithm (DA-DDPA) 

This is an alternative to DDPA as it extends the range ambiguity. An extended 

range ambiguity means that the maximum unambiguous distance between sensor and 

emitter is extended. The range ambiguity is linearly proportional to the frequency 

separation between two subcarriers. A larger frequency separation increases the 

maximum unambiguous range. In a typical OFDM signal, the frequency separation 

between two adjacent pilot subcarriers is more than the frequency separation between two 

adjacent subcarriers. Instead of using phase difference between two pilot subcarriers, the 

data subcarrier that is adjacent to a pilot subcarrier is utilized in this algorithm. Although 

DA-DDPA can extend the range of sensors, there is a disadvantage of higher 

vulnerability to error due to lower signal-to-noise ratio (SNR) of the data symbol as 

compared to the higher pilot-to-noise ratio.  

 Initial Assessment of The Three Proposed Algorithms  

The EL-FFT.SA method has no phase-ambiguity and works with one or more 

pilot subcarriers; however, it requires precise, synchronized reference timing among the 

sensors. The FFT sampling time must be kept the same and requires a clock time that is 

synchronized with the OFDM clock. 
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The DDPA works with at least two pilot subcarriers but still has the phase-

ambiguity problem. The advantage is that it does not require a precise synchronized 

reference time among the sensors and that the FFT sampling time does not need to be 

kept the same.  

The DA-DDPA also has phase-ambiguity but allows a larger TDOA range; 

however, it is more susceptible to noise. Similar to DDPA, it does not require a precise, 

synchronized reference time among the sensors, and the FFT sampling time does not 

need to be kept the same. 

 Error Analysis of the Three Proposed Algorithms  

 Early-late FFT sampling algorithm (EL-FFT.SA) 

The conclusion from the mathematical analysis is that there is a quantization error 

inherent in this method. A higher sampling rate reduces quantization error but increases 

the bandwidth and noise power. The increase in bandwidth and noise power reduces the 

SNR and can cause a misdetection of the true pilot sample. Since there is precise, 

synchronized reference timing, there is no phase-ambiguity. The performance of this 

algorithm depends on the quantization noise and timing jitter of the reference timing. The 

average TDOA error is expected to be less than 20.0 m. 

 Double-differential phase algorithm (DDPA) 

There is no quantization error in this method because the differential-phase is 

used instead of the absolute phase. There is also no timing jitter error because TDOA is 

calculated from differential phases. Although precise synchronized reference timing is 

not required, phase-ambiguity is present in this method. The average TDOA error is 

expected to be less than 20.0 m. 

 Data-aided double-differential phase algorithm (DA-DDPA) 

Similar to DDPA, there is no quantization error or timing jitter error. DA-DDPA 

is an alternative to DDPA as its range is extended with phase-ambiguity having a smaller 

impact on the result. Performance depends on the SNR of data subcarriers, which is about 

7 to 10 dB lower than that of pilot subcarriers. In general, the TDOA root-mean-squared 
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(RMS) error is larger than that of DDPA; however, if the OFDM waveform has a large 

number of pilot subcarriers and small pilot subcarrier frequency spacing, this method can 

achieve the same performance as DDPA. The TDOA error is expected to be less than 90 

m but, under certain circumstances, can achieve an error of less than 20.0 m. 

C. RELATED WORK 

With the expected TDOA error from the three proposed TDOA measurement 

methods, the localization-error analysis is discussed in Chapters III and IV. 
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III. TDOA LOCALIZATION-ERROR ANALYSIS 

In this chapter, the localization-error analysis and numerical results from the 

Matlab simulation are discussed. The modeling and simulation approach is discussed in 

this chapter, while the Matlab simulation results are presented in Chapter IV. 

A. INTRODUCTION 

The localization error was initially intended to investigate the use of TDOA 

method on static emitters and sensors; however, due to the high usage of drones for 

localization, part of the analysis was extended to include sensors more than 300 m in 

height. The error analysis is to provide insight into the accuracy of the new TDOA 

methods proposed in [8]. 

The differential-distance error uncertainty in [8] is +/-20 m, and this is used as the 

baseline for the localization-error analysis. As sensor-position error is predicted to 

contribute to localization error, it is also incorporated in the error analysis. 

The modeling of the error analysis identifies the input variables and the 

coordinate system used in the mathematical model.   

B. MODELING PROCESS 

The model is such that there are n passive sensors and one emitter. The objective 

is to calculate the emitter-position error given certain input parameters. It is assumed that 

the true sensor position and true emitter position are known. The factors which affect the 

emitter-position error are identified and are used as input variables. The changes in the 

simulation model included the coordinate system and the least-squares solution. 

 Input Variables   

The factors which affect the emitter-position error are categorized into primary 

and secondary types. These factors are used as input variables.  
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a. Primary Variables 

The main goal of the error analysis is to study the effects of the primary input 

variables on the error in emitter position (∆xe, ∆ye, ∆ze). The following are the primary 

variables, where i, j = 1,2,…, n and n represents number of sensors: 

 TDOA error (∆τij) or differential-distance error (c∆τij) and 
 sensor-position error (∆xi, ∆yi, ∆zi). 

b. Secondary Variables  

The secondary variables can influence emitter-position error and are: 

 altitude of sensors ( , 1, 2,...ih i n= ), 
 range between emitter and sensors ( , 1, 2,...,e ir r i n− = ), and 
 number of sensors (n). 

 Changes in the Modeling   

The coordinate system and least-squares solution are two changes to the 

simulation model considered. The final model utilized the geocentric 3D Cartesian 

coordinate system and the modified least-squares solution. 

a. Coordinate System   

The type of coordinate system is also considered in the model. Initially, the   

three-dimensional (3D) Cartesian coordinate system with its origin at the emitter was 

used in the model; however, due to poor estimation of the earth surface, it was changed to 

a geocentric 3D Cartesian coordinate system with its origin at the center of Earth.  

b. Modified Least-Squares Solution  

The initial least-squares solution does not yield the best estimate for emitter-

position error; hence, the least-squares solution was modified to make the estimate more 

accurate. The details of the two solutions are discussed further in the mathematical 

model.  

The initial least-squares method did not provide a good estimate of the 

localization error due to the inherent characteristics of the geocentric coordinate system. 
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The contribution of error in the z-coordinate is relatively smaller than that for the x-

coordinate and y-coordinate. The coordinates of sensors or emitters (x, y, z) are 

determined from the altitude h, longitude θL, and latitude θl according to  

 ( ) cos cos ,                                     (3.1)L lx R h θ θ= +  

 ( )sin cos ,                                      (3.2)L ly R h θ θ= +  

and 

 ( )sin .                                            (3.3)lz R h θ= +  

It can be observed in Table 1 that the magnitude of z is significantly smaller when 

near the equator. At latitude five degrees North, z is 12% that of z at latitude 45 degrees 

North. 

Table 1.   Latitude effects on x, y, and z-coordinates. 

GPS coordinates x, y, z-coordinates 
Latitude 

θl 
Longitude 

θL 
Altitude 

h 
x y z 

45 ̊ N 150 ̊ E 200 m −3905833 2255034 4510068 
10 ̊ N 150 ̊ E 200 m −5439766 3140650 1107562 
5 ̊ N 150 ̊ E 200 m −5502663 3176964 555896 

 

C. MATHEMATICAL MODEL 

 TDOA Equation  

The distance between sensor i and the emitter is 

 ( ) ( ) ( )2 2 2 ,                            (3.4)e i e i e i e ix x y y z z− = − + − + −r r
 

where re is emitter position vector, ri is sensor i position vector and i = 1,2,…n for n 

sensors. The differential-distance between sensor i and sensor j is  
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( ) ( ) ( ) ( ) ( ) ( )2 2 22 2 2 ,

, 1, 2,..., ; .                          
                                                                                                      

e i e j e i e i e i e j e j e jx x y y z z x x y y z z

i j n i j

− − − = − + − + − − − + − + −

= ≠

r r r r

                                 (3.5)
The differential-distance is equivalent to  

,                                              (3.6)ij e i e jcτ = − − −r r r r  

where c  is the speed of light, and τij is the TDOA between sensor i and sensor j. 

Substituting (3.5) into (3.6), we get the TDOA as  

( ) ( ) ( ) ( ) ( ) ( )2 2 22 2 21 1 .       (3.7)ij e i e i e i e j e j e jx x y y z z x x y y z z
c c

τ = − + − + − − − + − + −

 

 TDOA Error Equations 

The partial differentiation of τij with respect to xe, ye, and ze gives the TDOA error 

 

, , 1, 2,..., ; ,                        (3.8)ij ij ij
ij e e e

e e e

x y z i j n i j
x y z
τ τ τ

τ
∂ ∂ ∂

∆ = ∆ + ∆ + ∆ = ≠
∂ ∂ ∂

 

and the partial derivatives are  

1 1 ,                                         (3.9)ij e je i

e e i e j

x xx x
x c c
τ∂ −−

= −
∂ − −r r r r

 

1 1 ,                                       (3.10)ij e je i

e e i e j

y yy y
y c c
τ∂ −−

= −
∂ − −r r r r

 

and 

 1 1 ,                                       (3.11)ij e je i

e e i e j

z zz z
z c c
τ∂ −−

= −
∂ − −r r r r

 

which can be written as  
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 1 1 , { , , }.                        (3.12)ij e je i

e e i e j

w ww w w x y z
w c c
τ∂ −−

= − ∈
∂ − −r r r r

 

Equations (3.8) and (3.12) can be redefined with the matrix equation  

                                                         (3.13)Av u=   

where A, v and u are defined as 

 

 

12 12 12

1, 1, 1,

,                                     (3.14)
e e e

n n n n n n

e e e

x y z
A

x y z

τ τ τ

τ τ τ− − −

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 =
 ∂ ∂ ∂ 
 ∂ ∂ ∂ 

    

 ,                                                       (3.15)
e

e

e

x
v y

z

∆ 
 = ∆ 
 ∆ 

 

and 

 

1,

.                                                     (3.16)
ij

n n

u
τ

τ −

 ∆
 =  
 ∆ 

  

 

 Linear Least-Squares Solution  

The linear least-squares solution of (3.13) is the emitter-position error vector v. 

Since the matrix A has dimensions n(n-1)/2 by 3, which is not a square matrix, the pseudo 

inverse of A is used. The emitter-position error vector is obtained as 

 1( ) .                                                 (3.17)T Tv A A A u−=  

The root-mean-squared (RMS) emitter-position error is  

 ( ) ( ) ( )2 2 2 .                                 (3.18)e e ev x y z= ∆ + ∆ + ∆  
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 Three-Sensor System  

a. Altitude Error    

A three-satellite system to detect user-coordinate errors (∆xu, ∆yu, ∆zu) is 

discussed in [9]. This is similar to the present problem of determining the emitter-position 

error (∆xe, ∆ye, ∆ze) in a three-sensor system; hence, the mathematical model in [9] is 

adopted.  

In [9], for the three-satellite system, four non-linear equations were used to 

determine the user coordinates (xu, yu, zu) and user-coordinates error (∆xu, ∆yu, ∆zu). The 

first three equations are derived from the differential-distance between two satellites, 

which is similar to (3.6). The fourth equation utilized the user altitude hu and can also be 

used with the emitter altitude he as  

 2 2 2 2( ) ,                                     (3.19)e e e ex y z R h+ + = +  

where R is the earth radius. Equation (3.19) can be rewritten as  

 ( )2 2 2 .                                    (3.20)e e e eh x y z R= + + −  

The partial differentiation of (3.20) with respect to x, y, and z gives the altitude error 

 ,                                (3.21)e e e
e e e e

e e e

h h hh x y z
x y z
∂ ∂ ∂

∆ = ∆ + ∆ + ∆
∂ ∂ ∂

 

and the partial derivatives are  

 
2 2 2

,                                      (3.22)e e

e e e e

h x
x x y z
∂

=
∂ + +

 

 
2 2 2

,                                      (3.23)e e

e e e e

h y
y x y z
∂

=
∂ + +

 

and 

 
2 2 2

.                                      (3.24)e e

e e e e

h z
z x y z
∂

=
∂ + +

 

Now (3.21) can be written as the emitter-altitude error 
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2 2 2

( ) ( ) ( ) ( ) ( ) ( ) .         (3.25)e e e e e e e e e e e e
e

ee e e

x x y y z z x x y y z zh
R hx y z

∆ + ∆ + ∆ ∆ + ∆ + ∆
∆ = =

++ +

 

Equation (3.25) together with (3.14) and (3.17) can be formed into another linear least 

square equation  

 ,                                                          (3.26)Bv m=  
 

where B, v and m are defined, respectively, 

 

12 12 12

13 13 13

23 23 23

,                                      (3.27)

e e e

e e e

e e e

e e e

e e e

x y z

x y z
B

x y z
x y z

R h R h R h

τ τ τ

τ τ τ

τ τ τ

∂ ∂ ∂ 
 ∂ ∂ ∂ 
∂ ∂ ∂ 

 ∂ ∂ ∂ =
 ∂ ∂ ∂
 ∂ ∂ ∂ 
 
 

+ + +   

 ,                                                       (3.28)
e

e

e

x
v y

z

∆ 
 = ∆ 
 ∆ 

 

and 

 

12

13

23

.                                                      (3.29)

e

m

h

τ
τ
τ

∆ 
 ∆ =
 ∆
 ∆ 

 

 

b. Modified Linear Least-Squares Solution  

Similar to reference [9], the error contribution in the z-coordinate in (3.8) and 

(3.25) is observed to be much less than the error contribution in the x- and y-coordinates; 

hence, the modified linear least-squares solution from [9] is adopted for the error analysis 

model.  
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The modified least-squares approach aimed to obtain a more accurate estimate of 

∆z. The least-squares estimate of ∆x and ∆y is first derived without the contribution of ∆z. 

Subsequently, ∆z is obtained using ∆x and ∆y. The emitter-position error vector v in 

(3.28) is obtained from (3.26) with modifications to matrix B and v, where 

 1 ,                                                       (3.30)
e

v
v

z
 

=  ∆ 
 

 1
1 1 1 1( ) ,                                       (3.31)e T T

e

x
v B B B m

y
−∆ 

= = ∆ 
 

 
2

1
2 2 2 1 1( ) ( ),                               (3.32)T T T

ez B B B m B B v−∆ = −  

12 12

13 13

1
23 23

,                                        (3.33)

e e

e e

e e

e e

e e

x y

x y
B

x y
x y

R h R h

τ τ

τ τ

τ τ

∂ ∂ 
 ∂ ∂ 
∂ ∂ 

 ∂ ∂ =
 ∂ ∂
 ∂ ∂ 
 
 

+ + 

 

and 

 

12

13

2
23

.                                                    (3.34)

e

e

e

e

e

z

z
B

z
z

R h

τ

τ

τ

∂ 
 ∂ 
∂ 

 ∂ =
 ∂
 ∂ 
 
 

+ 
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 Four-Sensor System  

In the four-sensor system, the modified least-squares solution is used. The 

emitter-position error vector v is obtained from Equations (3.30) to (3.32) and (3.35) to 

(3.36), where  

12 12

13 13

1
14 14

                                       (3.35)

e e

e e

e e

e e

e e

x y

x y
B

x y
x y

R h R h

τ τ

τ τ

τ τ

∂ ∂ 
 ∂ ∂ 
∂ ∂ 

 ∂ ∂ =
 ∂ ∂
 ∂ ∂ 
 
 + + 

 

and 

 

12

13

2
14

.                                                 (3.36)

e

e

e

e

e

z

z
B

z
z

R h

τ

τ

τ

∂ 
 ∂ 
∂ 

 ∂ =
 ∂
 ∂ 
 
 + 

 

To obtain the matrix in (3.35) for the four-sensor system, partial derivatives of 23τ

with respect to ex  and ey  in (3.33) are replaced with partial derivatives of 14τ . As for 

(3.36), the partial derivative of 23τ with respect to ez  in (3.34) is replaced with the partial 

derivative of 14τ . 

D. TEST CASES FOR THREE-SENSOR SYSTEM 

The test cases were created to determine how the input variables affect the 

localization error of the emitter. The results are observed and discussed in Chapter IV. 
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 Effect of Primary Variables 

Test cases 1 and 2 aim to provide an insight into how the primary variables affect 

the localization error of the emitter. 

a. Test Case 1: Worst Case of RMS Emitter-Position Error  

The purpose of this case is to derive the extreme case of the RMS emitter-position 

error by finding the worst case of the primary input variables. The primary variables are 

the TDOA error and sensor-position error. 

The TDOA error ∆τij is proportional to the differential-distance error c∆τij. To 

provide a comparison to sensor-position error in the same units of measurement, the 

sensor differential-distance error is used instead of TDOA error from here on.  

In a three-sensor system, the altitude error ∆he in (3.29) has the same error limits 

as the sensor-position error since they are both position errors. 

The variables for test case 1 are in Table 2, where { , , }w x y z∈ . The ranges of 

values of input variables are stated for each test case. Test case 1a has the lowest range 

limits, while test case 1b has the highest range limits. It is expected that the results of test 

case 1a will provide the lowest emitter-position error, and the opposite is expected from 

test case 1b. Test case 1c aims to provide insight to the effect of sensor-position error and 

emitter-altitude error. The differences between test case 1a and 1c are the limits for 

sensor-position error and emitter-altitude error. 

Table 2.   Discrete variables for worst case of RMS emitter-position error. 

 Discrete variables 
Test case 

no. 
Sensor differential-

distance error 
Sensor-position 

error  
Emitter-altitude 

error 
1a 10 m ≤ |c∆τij| ≤ 20 m, 

increments of 1 m 
0.2 m ≤ |∆wi| ≤ 2 m, 
increments of 0.1 m 

0.2 m ≤ |∆he| ≤ 2 m, 
increments of 0.1 m 

1b 20 m ≤ |c∆τij| ≤ 40 m, 
increments of 2 m 

1 m ≤ |∆wi| ≤ 4 m, 
increments of 0.2 m 

1 m ≤ |∆he| ≤ 4 m, 
increments of 0.2 m 

1c 10 m ≤ |c∆τij| ≤ 20 m, 
increments of 1 m 

1 m ≤ |∆wi| ≤ 4 m, 
increments of 0.2 m 

1 m ≤ |∆he| ≤ 4 m, 
increments of 0.2 m 
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b. Test Case 2: Uniform Random Distribution  

The primary variables, the sensor differential-distance error and sensor-position 

error, were chosen to be uniform random variables. In a three-sensor system, the altitude 

error ∆he in (3.29) has the same error limits as the sensor-position error since they are 

both position errors. The input variables for test cases 2a to 2c are the same for test cases 

1a to 1c.  

Table 3.   Uniform random variables for RMS emitter-position error (test 
cases 2a to 2c). 

 Uniform random variables 
Test case no. Sensor differential-

distance error 
Sensor-position 

error 
Emitter-altitude 

error 
2a 10 m ≤ |c∆τij| ≤ 20 m 0.2 m ≤ |∆wi| ≤ 2 m 0.2 m ≤ |∆he| ≤ 2 m 
2b 20 m ≤ |c∆τij| ≤ 40 m 1 m ≤ |∆wi| ≤ 4 m 1 m ≤ |∆he| ≤ 4 m  
2c 10 m ≤ |c∆τij| ≤ 20 m 1 m ≤ |∆wi| ≤ 4 m 1 m ≤ |∆he| ≤ 4 m 

 

 Effect of Secondary Variables  

To study the effects of secondary variables on the localization error of the emitter, 

the primary variables were chosen as random variables with a uniform distribution. The 

limits of the primary variables are described in Table 4.  

Table 4.   Uniform random variables for RMS emitter-position error (test 
cases 3a to 3c). 

 Uniform random variables 
Test case no. Sensor differential-

distance error 
Sensor-position 

error 
Emitter-altitude 

error 
3a 10 m ≤ |c∆τij| ≤ 20 m 0.2 m ≤ |∆wi| ≤ 2 m 0.2 m ≤ |∆he| ≤ 2 m 
3b 20 m ≤ |c∆τij| ≤ 40 m 1 m ≤ |∆wi| ≤ 4 m 1 m ≤ |∆he| ≤ 4 m  
3c 10 m ≤ |c∆τij| ≤ 20 m 1 m ≤ |∆wi| ≤ 4 m 1 m ≤ |∆he| ≤ 4 m 

 

In addition to the primary variables in each test case, the secondary variables are: 

 altitude of sensors, 
 distance between emitter and sensors, and 
 number of sensors (three or four). 
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a. Altitude of Sensors  

In order to study the effects of sensor altitude on the RMS emitter-position error, 

the uniformly distributed random primary variables in test cases 2a to 2c were used. 

The sensor altitude is selected based on three criteria: 

• low altitude (0 m ≤ hi ≤100 m), 
• high altitude (100 m < hi ≤ 300 m), and 
• random altitude (0 m ≤ hi ≤ 300 m). 

 

b. Range Between Emitter and Sensors  

The range between emitter and sensors can affect the localization error. The 

maximum range between emitter and sensor was varied so that the effects could be 

observed. 

The maximum ranges, 1 km, 3 km, 5 km, 10 km, 15 km, and 20 km, were chosen 

as test values. For larger ranges such as 5 km and greater, the line-of-sight 

communications is limited at lower altitude; hence, the altitude of the sensors was chosen 

to be higher. The maximum ranges and sensor altitudes in Table 5 were used together 

with test cases 3a to 3b.  

Table 5.   Maximum range and sensor altitude. 

 
Maximum range 

(km) 

 
Sensor altitude 

(m) 
1 0-300 
3 0-300 
5 300-600 
10 300-1500 
15 300-1500 
20 300-2000 

 

E. TEST CASES FOR FOUR-SENSOR SYSTEM 

It is intuitive that increasing the number of sensors causes the localization error to 

decrease. The scenario with four sensors was tested, and the primary variables were the 
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same as for the three-sensor system. The primary variables and their values are stated for 

test cases 4a to 4c in Table 6. The results from both the three-sensor system and four-

sensor system are analyzed in Chapter IV. 

Table 6.   Discrete variables for worst case of RMS emitter-position error 
(four sensors). 

 Discrete variables 
Test case no. Sensor differential-

distance error 
Sensor-position 

error  
Emitter-altitude 

error 
4a 
 

10 m ≤ |c∆τij| ≤ 20 m, 
increments of 1 m 

0.2 m ≤ |∆wi| ≤ 2 m, 
increments of 0.1 m 

0.2 m ≤ |∆he| ≤ 2 m, 
increments of 0.1 m 

4b 
 

20 m ≤ |c∆τij| ≤ 40 m, 
increments of 2 m 

1 m ≤ |∆wi| ≤ 4 m, 
increments of 0.2 m 

1 m ≤ |∆he| ≤ 4 m, 
increments of 0.2 m 

4c 
 

10 m ≤ |c∆τij| ≤ 20 m, 
increments of 1 m 

1 m ≤ |∆wi| ≤ 4 m, 
increments of 0.2 m 

1 m ≤ |∆he| ≤ 4 m, 
increments of 0.2 m 

 

F. SOFTWARE SIMULATION 

The software simulation for test cases 1 to 4 is described in this section. The 

software used was Matlab. Test cases 1 and 4 use discrete variables to find the worst case 

of emitter-position error, while test cases 2 and 3 use variables with a uniform 

distribution to generate statistics of the emitter-position error. 

For each test case, the main variables and ranges of variables are the same. The 

main variables are sensor differential-distance error, sensor-position error and emitter-

altitude error. The main differences in the test case are the distribution and values used 

for the simulation. 

 Terms Used In The Simulation  

• Test Sample 

A test sample is a scenario consisting of one emitter and n sensors, where n = 3 or 

4. This test sample was evaluated based on the mathematical model and the input 

variables for the test case. For the test sample, the location of the emitter and sensor 

positions were provided in GPS coordinates. 

• Sensor Group 



 26 

A sensor group is a set of sensors which have positions randomly selected for the 

experiment. The sensor groups are labeled A1 to A4 and B1 to B4. The Matlab code was 

written such that it can efficiently calculate a large number of test samples in one run. A 

typical number of test samples is 500, where 500 emitter positions were evaluated with 

the same sensor group.  

 Worst Case of Emitter-Position Error  

a. Test Procedure  

The test procedure was written for one test sample in the three-sensor system but 

is similar for the four-sensor system. 

i. For one test sample, the sensor differential-distance error c∆τij was chosen 
from the first value within the range, such as 10 m. 

ii. The sensor-position error ∆wi and emitter-altitude error ∆he were also 
chosen from the first value within the range, such as 0.2 m. 

iii. The error vector m in Equation (3.29) was created using the values 
obtained in (ii). Each ∆wi takes on the positive error value such as 0.2  m 
or negative error value such as 0.2−  m. As there are four components in 
vector m, the total number of possible combinations for vector m is 16. 

iv. The 16 combinations of m were iterated, and the emitter-position error was 
evaluated for each combination. The RMS of the error was taken and the 
largest RMS error was saved for reference later. 

v. The steps (ii) to (iv) were repeated for the next value of sensor-position 
error ∆wi and emitter-altitude error ∆he. At the end of this step, the largest 
RMS error for one value of c∆τij  is obtained. 

vi. The steps (i) to (v) were repeated for all other discrete values of c∆τij.  
 

b. Tabulation of Results  

At the end of evaluation of one test sample, there was a largest RMS error for 

each ∆wi and c∆τij. The typical number of test samples used was 500. The largest RMS 

error for each ∆wi was averaged among the 500 test samples. The same averaging method 

was performed for c∆τij. The graphs of RMS errors were then plotted against ∆wi and 

c∆τij.  
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 Mean Emitter-Position Error   

a. Test Procedure  

i. For one test sample, the sensor differential-distance error c∆τij is a random 
variable from a uniform distribution within a specified range. The c∆τij 
was randomly selected. 

ii. The sensor-position error ∆wi and emitter-altitude error ∆he were chosen 
as random variables from a uniform distribution. 

iii. The error vector m in Equation (3.29) was created using the values 
obtained in (ii).  

iv. The emitter-position error was evaluated and the RMS error was recorded. 

b. Tabulation of Results  

At the end of evaluation of one test sample, there was one RMS error for each 

emitter. The RMS error was averaged among all 500 test samples. The standard deviation 

was also evaluated from all the test samples. 
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IV. NUMERICAL RESULTS 

The numerical results obtained from the modeling and simulation approach in 

Chapter III is presented here. 

A. RESULTS FOR THREE-SENSOR SYSTEM 

The results for three-sensor system are analyzed in this section. 

 Trends Due to Primary Variables   

The primary variables are the differential-distance error and the sensor-position 

error. Their effects on the RMS emitter-position error are presented, and the results for 

both test cases 1a to 1c and 2a to 2c are compared. 

a. Observations in Test Cases 1A To 1C  

The observations of the effects of differential-distance error and sensor-position 

error are separately discussed in the following sections. 

 RMS emitter-position error v  vs differential-distance error c∆τij  

 
Figure 1.  RMS emitter-position error v  vs differential-distance error c∆τij 

(Test case 1a). 
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The RMS emitter-position error v  increases as the differential-distance error 

c∆τij increases. This is consistent for all test cases 1a to 1c, as shown in Figures 1 to 3. 

The sensor groups A1 to A4 have positions, which are randomly selected, and they gave 

rise to similar results in each test case. 

 
Figure 2.  RMS emitter-position error v  vs differential-distance error c∆τij 

(Test case 1b). 

 
Figure 3.  RMS emitter-position error v  vs differential-distance error c∆τij 

(Test case 1c). 
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 RMS emitter-position error v  vs sensor-position error ∆wi  

 
Figure 4.  RMS emitter-position error v  vs sensor-position error ∆wi (Test 

case 1a). 

 
 

Figure 5.  RMS emitter-position error v  vs sensor-position error ∆wi (Test 
case 1b). 
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Figure 6.  RMS emitter-position error v  vs sensor-position error ∆wi (Test 

case 1c). 

For this analysis, the differential-distance errors c∆τij were taken at discrete values 

from 10 m to 20 m or from 20 m to 40 m. For a fixed differential-distance error, the 

sensor-position error was taken at discrete values from 0.2 m to 2 m or from 1 m to 4 m. 

It is observed that when the sensor-position error ∆wi increases, the RMS position error 

for emitter v  increases. This is consistent for all test cases 1a to 1c, as shown in Figures 

4 to 6. For test case 1c, as shown in Figure 6, there was an unexpected small decrease in 

the RMS emitter-position error for differential-distance error c∆τij greater than 3.2 m. It is 

observed that there was a larger decrease for differential-distance error at 10 m as 

compared to 20 m. This is likely because sensor-position errors which are greater than  

3.2 m form a larger percentage of differential-distance at 10 m as compared to 20 m. 

b. Observations in Test Cases 2A To 2C  

In test cases 2a to 2c, the sensor-position error and differential-distance error were 

modeled as uniform random variables. With a larger differential-distance error c∆τij, the 

RMS emitter-position error and standard deviation were relatively larger, as shown in 

Table 7. Results from test cases 2a and 2b provide the lowest and highest mean of 

emitter-position error, respectively. Test case 2c is indicative in that sensor-position 
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errors of less than 4.0 m contribute to a 32.7% increase in mean emitter-position error as 

compared to test case 2a. 

Table 7.   Emitter-position error for test cases 2a to 2c. 

Test 
case 
no. 

Sensor-position 
error 

Differential-
distance error 

Emitter-position error 
Mean 
(m) 

Standard 
deviation (m) 

2a 0.2 m<|∆wi|<2 m 10 m<|c∆τij|<20 m 8.062 7.863 
2b 1 m<|∆wi|<4 m 20 m<|c∆τij|<40 m 17.1795 16.210 
2c 1 m<|∆wi|<4 m 10 m<|c∆τij|<20 m 10.699 8.311 

c. Comparison of Test Cases 1A To 1C and 2A To 2C  

For all test cases, the mean and standard deviation increased when the 

differential-distance error c∆τij and sensor-position error ∆wi increased. The results of test 

cases 1a to 1c were verified to be the worst case since they are larger than the results of 

test cases 2a to 2c, where uniformly distributed random variables were used. 

Table 8.   Emitter-position error statistics for test cases 1a to 1c and 2a to 2c. 

Test 
case no. 

Sensor-position 
error 

Differential-
distance error 

Emitter-position error 
Mean 
(m) 

Standard 
deviation (m) 

1a 0.2 m<|∆wi|<2 m 10 m<|c∆τij|<20 m 19.734 12.149 
2a 8.062 7.863 
1b 1 m<|∆wi|<4 m 20 m<|c∆τij|<40 m 39.652 24.339 
2b 17.1795 16.210 
1c 1 m<|∆wi|<4 m 10 m<|c∆τij|<20 m 25.229 15.139 
2c 10.699 8.311 

 

 Trends Due To Secondary Variables  

a. Sensor Altitude   

Test cases 3a to 3c were carried out with the emitter-altitude ranges from 0 to 300 

m. It is observed from Table 9 that both larger and random sensor altitudes yielded 

smaller RMS emitter-position errors than sensors at lower altitudes. It is likely that at 

lower altitudes, the distance between emitter and sensors are smaller; hence, any error 
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was greater, resulting in larger RMS emitter-position errors. It is to be noted that sensors 

at random altitudes can achieve localization errors that are as small as that of sensors at 

high altitude. 

Table 9.   Emitter-position error vs sensor altitude. 

 Emitter-position error 
 Sensors at low altitude 

(0 m ≤ hi ≤100 m) 
Sensors at high 

altitude 
(100 m < hi ≤ 300 m) 

Sensors at random 
altitude  

(0 m ≤ hi ≤ 300 m) 
Test case 

no. 
Mean (m) Standard 

deviation 
(m) 

Mean (m) Standard 
deviation 

(m) 

Mean (m) Standard 
deviation 

(m) 
3a 8.216 8.169 7.666 7.312 7.678 7.550 
3b 17.444 16.813 16.367 15.388 15.819 14.713 
3c 10.477 8.399 9.940 8.355 9.905 7.673 

Table 10.   Emitter-position error derived from various maximum ranges. 

 
Test case no. 

 
Maximum  

range 

 
Sensor altitude 

Emitter-position error 
Mean (m) Standard 

deviation (m) 

3a 

1 km 0-300 m 7.678 7.550 
3 km 0-300 m 7.879 7.157 
5 km 300-600 m 9.541 8.669 
10 km 300-1500 m 9.400 8.001 
15 km 300-1500 m 9.244 7.581 
20 km 300-2000 m 9.927 9.104 

3b 

1 km 0-300 m 15.819 14.713 
3 km 0-300 m 15.974 13.283 
5 km 300-600 m 19.791 17.950 
10 km 300-1500 m 18.148 15.895 
15 km 300-1500 m 19.243 15.333 
20 km 300-2000 m 19.875 17.065 

3c 

1 km 0-300 m 9.905 7.673 
3 km 0-300 m 10.383 7.507 
5 km 300-600 m 11.977 9.531 
10 km 300-1500 m 12.106 8.598 
15 km 300-1500 m 12.654 9.279 
20 km 300-2000 m 12.467 9.530 
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b. Range Between Emitter and Sensors  

The position error results for various values of maximum ranges and sensor 

altitudes are presented in Table 10. It is observed that as the maximum range increases, 

the mean error increases; however, for maximum ranges at 10 km and larger, the error 

was very similar for each test case. It seems that the error converges to a maximum after 

10 km. The gain in sensor altitude does not necessarily improve the emitter-position error 

for larger maximum ranges. 

B. SIMULATION RESULTS FOR FOUR-SENSOR SYSTEM 

The following results are for the four-sensor system. They are compared to the 

test cases 1a to 1c for the three-sensor system. 

 Observations In Test Cases 4A To 4C 

The results for the test cases are presented below. Similar to the three-sensor 

system, the emitter-position error from the four-sensor system is almost linearly 

proportional to the sensor differential-distance error (or TDOA error) and the sensor-

position error.  

 RMS emitter-position error v  vs differential-distance error c∆τij  

 
 

Figure 7.  RMS emitter-position error v  vs differential-distance error c∆τij 
(Test case 4a). 
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Figure 8.  RMS emitter-position error v  vs differential-distance error c∆τij 

(Test case 4b). 

 
Figure 9.  RMS emitter-position error v  vs differential-distance error c∆τij 

(Test case 4c). 
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sensor groups B1 to B4 have positions which were randomly selected, and they give rise 

to similar results for each test case. 

 

 RMS emitter-position error v  vs sensor-position error ∆wi  

 
Figure 10.  RMS emitter-position error v  vs sensor-position error ∆wi (Test 

case 4a). 
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Figure 11.  RMS emitter-position error v  vs sensor-position error ∆wi (Test 

case 4b). 

 
Figure 12.  RMS emitter-position error v  vs sensor-position error ∆wi (Test 

case 4c). 
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 Comparison of Test Cases 1A To 1C and 4A To 4C  

The test cases 1a to 1c were for the three-sensor system, while test cases 4a to 4c 

were for the four-sensor system. The results for the three-sensor system, as shown in 

Table 11, was satisfactory as the mean emitter-position error is near the upper limit of the 

differential-distance error for each test case. In test case 1a, the upper limit of differential-

distance error is 20.0 m, and the mean emitter-position error is 19.734 m. This is also true 

for test case 1b. For test case 1c, the mean emitter-position error of 25.229 m is greater 

than the upper limit of differential-distance of 20.0 m. This is likely due to the sensor-

position error. The upper limit of sensor-position error was 4.0 m and constitutes 20% of 

the differential-distance position error.  

The emitter-position errors are smaller for the four-sensor system, as shown in 

Table 11. This is evidence that the four-sensor system performs better than the three-

sensor system, in this case, by more than 13%.  

Table 11.   Emitter-position error statistics for test cases 1a to 1c and 4a to 4c. 

 Emitter-position error 

Test case 
no. 

Mean (m) Decrease in 
the mean (%)  

Standard 
deviation (m) 

1a 19.734 13.55 12.149 
4a 17.058 10.370 
1b 39.652 13.80 24.339 
4b 34.178 20.517 
1c 25.229 15.38 15.139 
4c 21.660 12.660 

 

C. OTHER OBSERVATIONS 

In addition to the effects resulting from the primary and secondary variables, there 

are other observations during the Matlab modeling and simulation phase. 

 Comparison of Two Solution Methods  

As explained in the mathematical model, the modified least-squares solution is 

used to give a better estimate of the errors in x-, y-, and z-coordinates. To illustrate the 
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explanation, the two solution methods were given the same input variables, and the 

results are presented in Table 14. 

Table 12.   Comparison of localization error from two solution methods. 

Localization 
error 

Least-squares method 
(m) 

Modified least-squares 
method (m) 

∆x −32.0 8.0 
∆y 1248.0 −16.0 
∆z 0 10.8 

 

The least-squares method results in a poor estimation of the localization error; 

therefore, the modified least-squares method is used in our final model. 

 Error Is Larger Near The Equator  

In [4], it was observed that error is larger when the user position is near the 

equator. This is due to the inherent characteristics of the geocentric Cartesian coordinate 

system. Although larger errors were observed for areas near the equator, as shown in 

Table 15, the errors are still acceptable. 

Table 13.   Emitter-position error vs latitude. 

Test Case Latitude Emitter-position 
error mean (m) 

Emitter-position 
error standard 
deviation (m) 

2a 
45 ̊ N 7.678 7.550 
10 ̊ N 8.121 7.244 
5 ̊ N 10.811 9.020 

2b 
45 ̊ N 15.819 14.713 
10 ̊ N 17.081 14.130 
5 ̊ N 22.666 18.038 

2c 
45 ̊ N 9.905 7.673 
10 ̊ N 12.623 9.364 
5 ̊ N 18.214 15.724 
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D. RESULTS AND ANALYSIS  

It is observed that, in the three-sensor system, the error position of the emitter 

increases almost linearly with the increase in sensor differential-distance errors (or 

TDOA error) and sensor-position errors. The worst case is test case 1b, where the 

differential-distance error was as large as +/-40 m, and the localization error was 39.652 

m. This is evidence that the mathematical model is able to provide a localization error 

which is approximately equal to the differential-distance error.  

The higher sensor altitude was predicted to provide a smaller error; however, this 

was not the case, as the random sensor altitude resulted in an error as small as that of the 

higher sensor altitude. The difference may not be evident in the numerical results; 

however, simulation for a highly urbanized environment could provide better insight into 

the effects of sensor altitude on the localization error of the emitter. 

The localization error is directly proportional to the maximum range when the 

maximum range is 10 km or less. When the maximum range is greater than 10 km, the 

localization error does not get worse. This is due to the fact that sensors are placed at a 

higher altitude in order to get line-of-sight communications with the emitter. 

The four-sensor system was proven to perform better than the three-sensor 

system. This may not be practical in localization applications as the resources may be 

limited. Nonetheless, four sensors are preferred. 

The variable with the greatest effect on localization error was the TDOA error. 

The TDOA errors directly impact the emitter-position error due to the mathematical 

model used. The TDOA errors rely heavily on the accuracy of TDOA algorithms. Future 

work should include improvements to the algorithms mentioned in Chapter II.  

The variable with the least effect was the altitude of the sensors. Although the 

altitude of sensors does not have a large impact on emitter-position error, we predict that 

sensor altitude may pose problems in practical applications in a highly urbanized 

environment.  
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This chapter concludes the TDOA error analysis, which forms part one of the 

thesis. In the next two chapters, the adaptive localization strategies are discussed. 

 

 



 43 

V. REVIEW OF IEEE 802.22 

IEEE 802.22 is the first standard to fully integrate the CR concept in the wireless 

network [2]; hence, it is used as a reference for the discussion of adaptive localization 

methods of CRs in Chapter VI. A summary and analysis of the CR capability in IEEE 

802.22 cognitive radio network (CRN), in particular the SSF and spectrum-sensing 

technique and geolocation mechanism, is discussed in this chapter.  

A. PURPOSE 

IEEE 802.22 is the standard for wireless regional area networks (WRAN) which 

use the unused spectrum, or white spaces, in the television (TV) frequency spectrum [13]. 

The objective of IEEE 802.22 is to allow the sharing of unused TV spectrum within a 

geographical area by using CR methods so as not to cause interference [13] and aims to 

bring broadband access to rural and low population density areas [13].  

The TV spectrum is desirable not only because of its low utilization but also its 

propagation characteristics. The network, which uses the TV frequency bands, can span 

up to 100 km [13]. 

B. CONCEPT OF OPERATION AND SYSTEM ARCHITECTURE 

The TV frequency bands are fragmented into channels, and some channels are 

occupied by registered transmitters or incumbents within an area [13]. Other unoccupied 

channels are available for WRAN transmission, and spectrum allocation is carried out in 

real-time as spectrum availability varies with time. The system architecture has cognitive 

mechanisms, which use real-time information to make active frequency selection while 

preventing interference with incumbents [13]. The frequency agility capability is an 

important feature of CR due to the time-varying spectrum availability.  

The entities in the network are known as the base station (BS) or customer 

premise equipment (CPE). The BS is required to meet regulations for protection of the 

incumbents and provides access to a regional database of incumbents [13]. Both the BS 

https://en.wikipedia.org/wiki/White_space_(telecommunications)
https://en.wikipedia.org/wiki/Television
https://en.wikipedia.org/wiki/Cognitive_radio
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and CPEs utilize cognitive radio techniques, geolocation functions and spectrum-sensing 

processes to detect occupants in the TV bands [13]. 

The BS controls the medium access to all associated CPEs within an IEEE 802.22 

cell. The downstream medium access from BS to CPE is time-division multiplexed. The 

upstream transmissions from CPE to BS are shared by CPEs using orthogonal frequency-

division multiple access (OFDMA). Each BS and CPE has a 48-bit medium access 

control (MAC) address for authentication purposes. The BS MAC address is part of the 

superframe control header (SCH) and is broadcast periodically. Each WRAN device also 

periodically broadcasts its device identification number and serial number. 

C. SPECTRUM MANAGER AND SPECTRUM-SENSING AUTOMATON 

The spectrum manager and spectrum-sensing automaton are the two entities, 

which control the SSF.  

The spectrum manager (SM) in the BS plays a central role in the network 

architecture as it holds a global perspective of the spectrum availability within its 

coverage area. It retrieves information from the database and collects scanning results 

from the SSF of CPEs. This information is combined with pre-existing policies and 

regulations to aid in managing the channel lists, scheduling and coexistence 

functionalities [11]. The SM also gathers geolocation information of the BS and all 

associated CPEs before carrying out the assignment of channels to the CPEs.   

The spectrum-sensing automaton (SSA) present in each device conducts both in-

band and out-of-band sensing when required. In-band sensing is carried out during 

initialization of the device, pre-association of CPE to BS, change in operating channel, or 

during assigned in-band quiet periods. In-band quiet periods are assigned time intervals at 

which in-band spectrum-sensing is performed. The out-of-band sensing is conducted only 

when the device is not transmitting.  

D. BACKUP AND CANDIDATE CHANNEL SETS 

The SM manages the channel lists and assigns the channels to the following 

states: (1) disallowed, (2) operating, (3) backup, (4) candidate, (5) protected, and (6) 
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unclassified. All channel states are exclusive to each other except when the self-

coexistence mechanism is active [13]. The two channel states which are of interest are 

“backup” and “candidate.” The backup channel set contains backup channels, which are 

ready to be used in the event that interference is detected in the operating channel. The 

candidate channel set contains candidate channels, which are monitored for some time 

and are evaluated to be possible backup channels. 

The channel states are constantly updated and stored at the SM. The SM creates 

priorities for channels in the backup and candidate channel sets based on the spectrum 

etiquette rule [13]. This rule aims to minimize channel collision probability and 

maximize channel selection pool among WRAN neighboring cells by taking into 

consideration of the channel sets used in neighboring cells.  

E. GEOLOCATION  

There are two geolocation mechanisms used in the IEEE standard 802.22, namely 

satellite-based and terrestrial-based geolocation [13]. Satellite-based geolocation is 

mandatory since all BS and CPEs are required to share their location before transmission 

is allowed to occur [13]. Terrestrial-based geolocation is an option to locate a CPE based 

on distance measurement between CPE and BS, or CPE and reference CPEs. These two 

mechanisms are available to localize the CPEs [5]. 

The geolocation information allows the BS and CPEs to access the regional 

database information such as location of the licensed users, their transmission power, 

operating frequencies and schedules [13].  

F. SPECTRUM-SENSING TECHNIQUES 

Several sensing techniques and their individual performance are described in 

Annex C of IEEE 802.22 Standard. Sensing techniques are possible implementations of 

the SSF [13]. There are two types of sensing, blind-sensing and feature sensing. Blind-

sensing does not require any features of a specific signal, while feature sensing requires 

the features of a specific signal type. The sensing techniques can be categorized as fine-

sensing or coarse-sensing. Fine-sensing techniques allow signal detection at a specified 
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signal power level, while coarse-sensing techniques do not guarantee signal detection for 

specified signal power levels [13]. 

 Blind-Sensing Techniques   

The three types of blind-sensing techniques are energy detector, eigenvalue-

based, and multi-resolution. They are all coarse-sensing techniques. The energy detector 

is the simplest and has the lowest computational cost but is subject to noise uncertainty. 

The eigenvalue-based technique is dependent on both SNR and the signal statistical 

properties; hence, more time is needed to improve the performance of detection. The 

multi-resolution technique allows for a configurable frequency window for either faster 

but less accurate sensing or slower but more accurate sensing. 

 Signal-Specific Sensing Techniques  

The signal-specific sensing techniques can be classified into the following 

categories: (1) matched filtering, (2) spectral correlation, (3) cyclostationary, and (4) 

statistical covariance, which are all coarse-sensing techniques. 

The matched filtering techniques provide the best performance if there is 

complete knowledge of the received signal. The a priori information can be a signature 

sequence or pilot symbol of the specific signal type. The spectral correlation is similar to 

the matched filtering, except that the correlation is conducted in the spectral domain. The 

cyclostationary method is able to perform in low SNR conditions, but the computational 

cost is high. The statistical covariance method does not require a priori information of the 

signal [15] and has an advantage over matched filtering and spectral correlation.  
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VI. ADAPTIVE LOCALIZATION 

A summary of CR capability in IEEE 802.22 CRN was discussed in Chapter V. 

Since IEEE 802.22 is the first standard to fully integrate the CR concept in a wireless 

network [2], the required functions to support CRNs in 4G networks would be adopted 

from IEEE 802.22 and included in the proposed adaptive localization methodology 

discussed in this chapter. 

The motivation of the proposed adaptive localization methodology in this chapter 

is to locate a 4G-CR target using an external wireless sensor network. A number of 

related works are discussed. The adaptive localization methodology consists of (1) 

enhanced cooperative spectrum sensing (ECSS) with active monitoring of channels-of-

interest and (2) localization through iterative, non-linear least-squares methods with a 

Kalman filter from [16]. The first part of the methodology is a modification of the 

cooperative spectrum-sensing function in [5] and [16]. The second part of the 

methodology is adopted from the localization method used in [16]. 

A. OBJECTIVE 

In a 4G network such as LTE-advanced or WiMAX 2, the unused channels are 

available for the commercial, public safety, and military communities [3]. The Defense 

Advanced Research Projects Agency (DARPA) is exploring the wireless adaptive node 

network (WANN) project to attain significant gains in throughput via cognitive radios 

[2]. 4G-CRs will play a pivotal role in the 4G network because they are able to employ 

spectrum overlay, or opportunistic spectrum access, to achieve spectrum efficiency and 

flexibility. The applications of 4G-CR include optimization of 4G networks internally 

and interoperability in heterogeneous communications networks of different service 

providers and radio standards [2].  

The 4G-CRs can be utilized as primary and secondary users in a CRN. The 

primary users (PUs) are the authorized devices in the network in the specific area, while 

secondary users (SUs) are allowed to use the spectrum in an opportunistic manner 

without causing interference with the primary users. In an era of cyber warfare, an 
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adversary can exploit a group of 4G-CRs after they have been registered as SUs in the 

network. This adversary can send manipulated information to the BS or misuse the 

network for harmful purposes.  

The localization of 4G-CR signal is challenging due to changes in spatial and 

frequency components with time. Current localization methods are not sufficient to adapt 

and continuously track the CR signal.   

The objective of the thesis is to employ an external wireless sensor network to 

locate the target 4G-CR using adaptive localization method.  

B. RELATED WORK 

The references [5] and [16] are the most relevant papers in terms of adaptive 

localization. In [5], the extended semi-range based (ESRB) algorithm was proposed to 

detect and localize a cognitive radio. The four aspects of the algorithm are (1) 

cooperative spectrum-sensing, (2) spectrum environment mapping, (3) localization 

through an iterative, non-linear least-squares method, and (4) position refinement [5]. 

Firstly, each sensor conducts spectrum-sensing by using the energy detection method for 

each channel. Then the decision making sensor, or decision maker (DM), collects all 

spectrum-sensing results for data fusion and produce a spectral environment map in real-

time. The DM checks the geolocation database and eliminates PUs based on the spectral 

information; hence, the SUs of interest remain. These SUs are localized, and their 

positions together with their operating frequency are recorded. The spectrum-sensing 

cycles are repeated, and the newly obtained positions of SUs are correlated to previous 

positions to achieve more precise positioning. The SUs are tracked by their positions and 

operating frequency channels. 

While the ESRB algorithm is able to track the spatial and frequency changes [5], 

there are some weaknesses inherent in the method. The algorithm does not allow SUs to 

have overlapping paths, so that their moving positions can be correlated between 

consecutive spectrum-sensing cycles. Furthermore, this means the method cannot support 

a large number of SUs which have paths that overlap with one another. There is also 
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some knowledge required that the SU is moving. The DM also temporarily loses track of 

the SU if the SU is unable to find a channel to occupy.  

A more efficient scheme where the Kalman filter is incorporated into the ESRB 

algorithm in [5] is described in [16]. The results show an improvement in estimating the 

trajectory of the CR over time. 

C. ADAPTIVE LOCALIZATION OF COGNITIVE RADIO IN COGNITIVE 
RADIO NETWORK (CRN) 

The 4G network is assumed to be a CRN with the same cognitive radio capability 

in the IEEE 802.22 WRAN since both networks utilize the opportunistic spectrum access 

(OSA) method. The main adopted CR functions from IEEE 802.22 and challenges of a 

4G CRN are discussed. The adaptive localization method is conceptualized based on 

these inputs. 

 Adopted CR Functions from IEEE 802.22 For 4G CRN 

The spectrum-sensing functions of BS and SUs are to be similar to those 

described in IEEE 802.22. Within a 4G CRN cell, the spectrum manager in the BS plays 

a central role and manages all frequency channels among the PUs and SUs.  

Similar to IEEE 802.22, the SUs in 4G CRN periodically scan the spectrum for 

both backup and candidate channel sets and update the BS. The backup channels allow 

the SUs to switch channels without disruption to their operation. The spectrum-sensing 

automaton in each 4G CRN device allows both in-band sensing and out-of-band sensing, 

where in-band sensing occurs at pre-allocated time slots, and out-of-band sensing occurs 

when the device is not transmitting. 

The network cell prepares for smooth transition in channel changes by keeping 

channel sets consisting of backup channels and candidate channels. These channel sets 

are constantly updated after every spectrum-sensing cycle. The SM prioritizes the 

channels in the channel sets based on the spectrum etiquette rule [13] so as to maximize 

the channel selection pool among neighboring CRN cells. 
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Since the locations of the BS and SUs are critical for obtaining accurate 

geolocation database information, the 4G CRN supports two geolocation mechanisms, 

namely satellite-based and terrestrial-based. Satellite-based geolocation is mandatory, 

while terrestrial-based geolocation serves as a backup and ad-hoc option for localization 

of SUs. 

The wide range of spectrum-sensing technique in IEEE 802.22 is also allowed in 

the 4G CRN.   

The SUs establish connection with the BS and provide the necessary information 

such as location and transmission power. The BS in turn provides the information on the 

licensed users and the spectrum used.  

 Challenges and Issues of A 4G CRN 

The main challenges and issues of locating a 4G-CR in a 4G CRN are (1) 

mobility of SUs, (2) frequent changes in channel, and (3) high amount of traffic. 

 One challenge is that in a 4G network, the mobile phone and wireless devices are 

always mobile. For a cyber warfare threat, it is possible that the target is either moving or 

stationary.  

Since the 4G devices are always moving, the occupied channels change when the 

devices move from one cell to another. The spectral map within a CRN cell is frequently 

updated for occupied and unoccupied channels.  

Unlike the TV spectrum in which IEEE 802.22 operates, the 4G communications 

network spectrum are expected to be almost fully occupied and there are limited available 

channels to be used as backup and candidate channels. This may not be a disadvantage as 

explained in the adaptive localization method. 

 Proposed Adaptive Localization Methodology  

The 4G-CR is capable of frequently changing its spatial and spectral parameters 

with time. A localization method for 4G-CR requires localization techniques which can 

anticipate the change in channel occupancy by the adversary. 



 51 

 The adaptive localization methodology presented in this thesis consists of the 

following parts: (1) enhanced cooperative spectrum sensing (ECSS) with active 

monitoring of channels-of-interest and (2) localization through an iterative, non-linear 

least-squares method with a Kalman filter [16]. 

Similar to the cooperative spectrum-sensing in [5], the DM carries out data fusion 

from each sensor’s spectrum-sensing result to gain a global perspective of the network 

cell. The DM then produces a spectral map of the network coverage area within the cell. 

Cooperative spectrum-sensing is required to overcome physical and environmental 

problems such as multipath fading, non-line-of-sight communications and hidden nodes 

as mentioned in [17] and [18]. Based on the information gathered from multiple sensors, 

the cooperative spectrum-sensing technique allows the DM to carry out three functions: 

(1) identify occupied and unoccupied channels, (2) eliminate channels occupied by PUs 

by checking the database, and (3) store occupied channels by SUs. In this case, it is 

assumed that the DM in the wireless sensor network has access to the primary network’s 

geolocation database so that it can determine if the detected user is a primary or 

secondary user. The ECSS includes a fourth function to monitor the unoccupied channels, 

which are available for selection as backup or candidate channels.  

In a regular cooperative spectrum-sensing cycle, the entire spectrum is scanned, 

and the first three functions are carried out. In the ECSS technique, there are two types of 

sensing cycles, namely the full spectrum and monitored channels. The full spectrum scan 

is a search on all channels on the entire spectrum for incumbents. The monitored 

channels scan is a search on channels of interest only. When the enhanced cooperative 

sensing technique is used, the first spectrum-sensing cycle is a full spectrum scan which 

carries out the four functions mentioned above. The channels to be monitored are the 

channels occupied by SUs, backup channels and candidate channels. Subsequent 

spectrum-sensing cycles monitor these channels instead of the full spectrum.  

This ECSS technique is advantageous over the cooperative spectrum-sensing 

technique in [5] because it does not carry out full spectrum scans at each sensing cycle. 

This greatly reduces the sensing cycle period and allows localization to be carried in 
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shorter periods. This provides more localization information and is more effective for 

moving targets.  

Another advantage of ECSS is that it is able to track a target more efficiently if 

the target frequently changes its channel usage. By monitoring the smaller pool of 

channels, the ECSS is able to quickly identify a new incumbent in these channels and 

carry out localization of the signal. 

The localization of the signals in [16] was verified to be effective for moving 

targets and is used as part of the adaptive localization method.  
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VII. CONCLUSION 

The objectives of the thesis were (1) to conduct the error analysis for the three 

proposed TDOA localization methods in [8] and (2) to propose strategies for adaptive 

localization of 4G-CR. The error analysis of the TDOA localization methods was 

conducted and the results were analyzed. While the TDOA localization methods in [8] 

proved to have good error performance, the localization of the 4G-CR cannot solely rely 

on these conventional localization methods due to the dynamic changes in spatial, 

frequency and temporal parameters of the signal. The adaptive localization methodology 

was proposed and discussed in Chapter VI. 

A. SUMMARY OF RESULTS 

In the error analysis of the TDOA localization method, the localization error was 

found to be directly proportional to the sensor differential-distance error (or TDOA error) 

and sensor-position error.  

It was predicted that the greater the sensor altitude, the better the localization error 

would be; however, results showed that there was no such effect. It is to be noted that the 

Matlab simulation did not take into account the obstruction to the line-of-sight 

communications in an urbanized environment. The variable with the largest effect on 

localization error was the TDOA error. The variable with the least effect was the altitude 

of the sensor. Although the altitudes of sensors do not lead to a large impact on the 

emitter-position error, it is predicted that they may pose a problem in practical 

applications in a highly urbanized environment. It was concluded that the four-sensor 

system has a better performance than the three-sensor system; although, the improvement 

in performance is not significant. 

Due to the dynamic behavior of 4G-CR, the current localization methods are not 

sufficient to localize the 4G-CR. The proposed adaptive localization method for 4G-CR 

takes into consideration the changes in spatial, frequency and temporal aspects of the 4G-

CR signals. In particular, the ECSS is an improvement to the cooperative spectrum-

sensing technique in [5]. 
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B. RECOMMENDATIONS 

The localization error was concluded to be most affected by the TDOA error. 

Since the TDOA error is dependent on the accuracy of TDOA algorithms, future work is 

required to improve the algorithms in [8].  

The localization-error analysis was conducted based on passive and static sensors, 

including hovering drones; however, the error analysis can be extended for drones 

moving up to 160 km/h [19].  

The challenges of the cognitive radio system are constantly evolving due to 

demands of remaining stealthy and high utilization of the RF spectrum. The methodology 

for adaptive localization of cognitive radios, where an external wireless sensor network is 

used to localize the secondary user target, was described. For faster sensing time, the 

existing secondary users can be used to detect the secondary user target.  

The current method of spectrum overlay, or opportunistic spectrum access, where 

SUs use the unoccupied channels, may not be sufficient for the future high demands of 

the 4G network spectrum. Spectrum underlay can be used, and localization of the 

underlay system is another challenge. 

 
  



 55 

APPENDIX 

Matlab Codes: 

(1) Version 1 – Using 3 sensors to find worst case of emitter position error 

%% (1) Initialize constants and variables 
sym speedofLight; 
speedofLight = 3e8; %meters/sec 
sym earthRadius; 
earthRadius = 6378e3; %mean equatorial radius in meters 
  
% number of sensors 
numofSensors = xlsread('input2.xlsx','constants','B1'); 
% number of emitters 
numofEmitters = xlsread('input2.xlsx','constants','B2'); 
% uncertainty of distance between sensors - start limit 
sensorDistErrorMin = xlsread('input2.xlsx','constants','B3'); 
% uncertainty of distance between sensors - end limit 
sensorDistErrorMax = xlsread('input2.xlsx','constants','B4'); 
% uncertainty of distance between sensors - increment between limits 
sensorDistErrorInc = xlsread('input2.xlsx','constants','B5'); 
% uncertainty of sensor position error - min limit 
sensorPosErrorMin = xlsread('input2.xlsx','constants','B6'); 
% uncertainty of sensor position error - max limit 
sensorPosErrorMax = xlsread('input2.xlsx','constants','B7'); 
% uncertainty of sensor position error - increment between limits 
sensorPosErrorInc = xlsread('input2.xlsx','constants','B8'); 
 
%% (2) Find and save positions of emitter and sensors from GPS coordinates 
  
% Read GPS coordinates of emitter and sensors 
GPS_posEmitterTable = readtable('input2.xlsx','Sheet','GPSposEmitter'); 
GPS_posSensorTable = readtable('input2.xlsx','Sheet','GPSposSensor'); 
GPS_posEmitterArray = table2array(GPS_posEmitterTable); 
  
% Convert latitude,longtitude to x,y,z coordinates 
posEmitterTable = zeros(3,numofEmitters); 
posSensorTable = zeros(3,numofSensors); 
posEmitterTable = latLong2xyz(GPS_posEmitterTable, numofEmitters, earthRadius); 
posSensorTable = latLong2xyz(GPS_posSensorTable, numofSensors, earthRadius); 
posEmitterArray = table2array(posEmitterTable); 
posSensorArray = table2array(posSensorTable); 
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%% (3) Iteratively obtain matrix A, and find max RMS of emitterPosError for each 
emitter, each sensorDistError 
  
%Initialize variables 
sensorDistError_rowSize = 1+uint8((sensorDistErrorMax - 
sensorDistErrorMin)/sensorDistErrorInc) 
maxRmsResult = zeros(sensorDistError_rowSize,numofEmitters); 
sensorPosError_rowSize = (1+uint8((sensorPosErrorMax - 
sensorPosErrorMin)/sensorPosErrorInc)) 
sensorPosMaxRMSemitterResult = 
zeros(sensorPosError_rowSize*sensorDistError_rowSize,numofEmitters); 
XYmatrix = zeros(3,3);   
rowPos = 0; 
  
for EP=1:numofEmitters 
    
    currEmitterPos = posEmitterArray(:,EP); 
    currGPSEmitterPos = GPS_posEmitterArray(:,EP); 
     
    for sensorDistError = sensorDistErrorMin:sensorDistErrorInc:sensorDistErrorMax  
        sensorDistError_currRow = 1+uint8((sensorDistError - 
sensorDistErrorMin)/sensorDistErrorInc); 
               
        for sensorPosError = sensorPosErrorMin:sensorPosErrorInc:sensorPosErrorMax  
            sensorPosError_currRow = 1+uint8((sensorPosError - 
sensorPosErrorMin)/sensorPosErrorInc); 
             
            % generate A, where A = rate of change of TDOA_ij w.r.t. x or y or z 
            A = zeros(4,3);    
            A = TDOArateofChange (speedofLight, earthRadius, currGPSEmitterPos, 
currEmitterPos, posSensorArray, numofSensors, sensorPosError); 
         
%% (4) for 8 combinations of TDOAerrorVector (u), iteratively solve emitterPosError 
vector v 
  
            %initialize 
            combination = 2^4; %num of combinations 
            emitterPosErrorResult = zeros(combination,3); 
            rmsEmitterPosErrorResult = zeros(combination,1);  
            meanSqEmitterPosErrorResult = zeros(combination,1); 
            TDOAerrorVectorResult = zeros(combination,3+1);  
            count = 1; 
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            %find 16 combinations of TDOA error vector, since 2^4=16 
            TDOAerror = sensorDistError/speedofLight; 
            for a = -1:2:1 
                for b = -1:2:1 
                    for c = -1:2:1 
                        for d = -1:2:1 
                        % generate the TDOA error vector  
                        TDOAerrorVector = TDOAerror.*[a; b; c; 1]; 
                        TDOAerrorVector(4,1) = d*sensorPosError; %altitude error of emitter 
                         
                        % Modified least square method 
                        deltaXY = findDeltaXY (A,TDOAerrorVector); 
                        emitterPosError = findDeltaZ(A,TDOAerrorVector,deltaXY); 
 
                        % find RMS of emitter position error, which is ||v|| 
                        rmsEmitterPosErrorResult(count,1) = RMS(emitterPosError); 
  
                        % find and store max RMS of emitter position error for current value of  
                        % current value of TDOA error and each value of 
                        % sensorPosError 
                        if (rmsEmitterPosErrorResult(count,1)> 
sensorPosMaxRMSemitterResult((sensorDistError_currRow-1) * 
sensorPosError_rowSize + sensorPosError_currRow,EP)) 
                            sensorPosMaxRMSemitterResult((sensorDistError_currRow-1) * 
sensorPosError_rowSize + sensorPosError_currRow,EP) = 
rmsEmitterPosErrorResult(count,1); 
                        end 
                         count = count+1;%next combination of TDOA error vector 
                        end %d 
                    end %c 
                end %b 
            end %a 
         
            % find and store max RMS of emitter position error for 
            % current value of TDOA error  
            if (sensorPosMaxRMSemitterResult((sensorDistError_currRow-1) * 
sensorPosError_rowSize + sensorPosError_currRow,EP)> 
maxRmsResult(sensorDistError_currRow,EP)) 
                maxRmsResult(sensorDistError_currRow,EP) = 
sensorPosMaxRMSemitterResult((sensorDistError_currRow-1) * 
sensorPosError_rowSize + sensorPosError_currRow,EP); 
            end     
        end %sensorPosError 
    end %sensorsDistError 
end %numofEmitters 
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(2) Version 2 – Using 3 sensors to find emitter position error with uniformly distributed 

variables  

%% (1) Initialize constants and variables 
  
format long; %display long fixed-decimal format 
sym speedofLight; 
speedofLight = 3e8; %meters/sec 
sym earthRadius; 
earthRadius = 6378e3; %mean equatorial radius in meters 
  
% number of sensors 
numofSensors = xlsread('input2.xlsx','constants','B1'); 
% number of emitters 
numofEmitters = xlsread('input2.xlsx','constants','B2'); 
% uncertainty of distance between sensors - start limit 
sensorDistErrorMin = xlsread('input2.xlsx','constants','B3'); 
% uncertainty of distance between sensors - end limit 
sensorDistErrorMax = xlsread('input2.xlsx','constants','B4'); 
% uncertainty of distance between sensors - increment between limits 
sensorDistErrorInc = xlsread('input2.xlsx','constants','B5'); 
% uncertainty of sensor position error - min limit  
sensorPosErrorMin = xlsread('input2.xlsx','constants','B6'); 
% uncertainty of sensor position error - max limit  
sensorPosErrorMax = xlsread('input2.xlsx','constants','B7'); 
% uncertainty of sensor position error - increment between limits 
sensorPosErrorInc = xlsread('input2.xlsx','constants','B8'); 
  
%% (2) Find and save positions of emitter and sensors from GPS coordinates 
% Read GPS coordinates of emitter and sensors 
GPS_posEmitterTable = readtable('input2.xlsx','Sheet','GPSposEmitter'); 
GPS_posSensorTable = readtable('input2.xlsx','Sheet','GPSposSensor'); 
GPS_posEmitterArray = table2array(GPS_posEmitterTable);  
  
% Convert latitude,longtitude to x,y,z coordinates 
posEmitterTable = zeros(3,numofEmitters); 
posSensorTable = zeros(3,numofSensors); 
posEmitterTable = latLong2xyz(GPS_posEmitterTable, numofEmitters, earthRadius); 
posSensorTable = latLong2xyz(GPS_posSensorTable, numofSensors, earthRadius); 
posEmitterArray = table2array(posEmitterTable); 
posSensorArray = table2array(posSensorTable); 
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%% (3) Iteratively obtain matrix A, and find max RMS of emitterPosError for each 
emitter, each sensorDistError 
  
%Initialize variables 
sensorDistError_rowSize = 1+uint8((sensorDistErrorMax - 
sensorDistErrorMin)/sensorDistErrorInc);  
maxRmsResult = zeros(sensorDistError_rowSize,numofEmitters); 
sensorPosError_rowSize = (1+uint8((sensorPosErrorMax - 
sensorPosErrorMin)/sensorPosErrorInc));  
sensorPosMaxRMSemitterResult = 
zeros(sensorPosError_rowSize*sensorDistError_rowSize,numofEmitters); 
XYmatrix = zeros(3,3);   
rowPos = 0; 
sensorDistErrorMatrix = zeros(3,numofEmitters);%analysis purpose 
sensorPosErrorMatrix = zeros(3,numofSensors*numofEmitters); %analysis purpose 
altErrorMatrix = zeros(1,numofEmitters); %analysis purpose 
TDOAerrorVector = ones(4,1); 
  
for EP=1:numofEmitters 
    %emitter x,y,z coordinates and GPS coordinates 
    currEmitterPos = posEmitterArray(:,EP); 
    currGPSEmitterPos = GPS_posEmitterArray(:,EP); 
     
    %uniform random variable sensorDistError  
    sensorDistError = findSensorDistError (sensorDistErrorMin, sensorDistErrorMax); 
          
    % uniform random variable matrix sensorPosError  
    sensorPosError = findSensorPosError (numofSensors, sensorPosErrorMin, 
sensorPosErrorMax); 
               
     % generate A, where A = rate of change of TDOA_ij w.r.t. x or y or z 
     A = TDOArateofChange (speedofLight, earthRadius, currGPSEmitterPos, 
currEmitterPos, posSensorArray, numofSensors, sensorPosError); 
             
%% (4) for values of TDOAerrorVector (u), iteratively solve emitterPosError vector v 
  
            %initialize 
            emitterPosErrorResult = zeros(8,3); 
            rmsEmitterPosErrorResult = zeros(8,1);  
            meanSqEmitterPosErrorResult = zeros(8,1); 
            TDOAerrorVectorResult = zeros(8,3+1); %LWS: (8,3) 30Apr 
            count = 1; 
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            % generate the TDOA error vector  
            TDOAerrorVector([1:3],1) = sensorDistError./speedofLight; %x,y,z 
            altError = findAltError(sensorPosErrorMin, sensorPosErrorMax); %h 
            TDOAerrorVector(4,1) = altError; 
             
                        % Modified least square method 
                        deltaXY = findDeltaXY (A,TDOAerrorVector); 
                        emitterPosError = findDeltaZ(A,TDOAerrorVector, deltaXY); 
                         
                        %store emitterPosError for each 8 combinations of TDOA 
                        %error vector 
                        emitterPosErrorResult(1,[1,2,3]) = transpose(emitterPosError); 
 
                        % find RMS of emitter position error, which is ||v|| 
                        rmsEmitterPosErrorResult(1,1) = RMS(emitterPosError);  
 
                        % find Mean squared error of v 
                        % find and store max RMS of emitter position error for 
                        % current value of TDOA error and each value of 
                        % sensorPosError  
                        if (rmsEmitterPosErrorResult(1,1)> 
sensorPosMaxRMSemitterResult(1,EP)) 
                            sensorPosMaxRMSemitterResult(1,EP) = 
rmsEmitterPosErrorResult(1,1); 
                        end 
                         
            % find and store max RMS of emitter position error for 
            % current value of TDOA error 
            if (sensorPosMaxRMSemitterResult(1,EP)> maxRmsResult(1,EP)) 
                maxRmsResult(1,EP) = sensorPosMaxRMSemitterResult(1,EP); 
            end 
                 
end %numofEmitters 
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(3) Version 3 – Using 4 sensors to find emitter position error with uniformly distributed 

variables 

%% (1) Initialize constants and variables 
  
sym speedofLight; 
speedofLight = 3e8; %meters/sec 
sym earthRadius; 
earthRadius = 6378e3; %mean equatorial radius in meters 
  
% number of sensors 
numofSensors = xlsread('input3.xlsx','constants','B1'); 
% number of emitters 
numofEmitters = xlsread('input3.xlsx','constants','B2'); 
% uncertainty of distance between sensors - start limit 
sensorDistErrorMin = xlsread('input3.xlsx','constants','B3'); 
% uncertainty of distance between sensors - end limit 
sensorDistErrorMax = xlsread('input3.xlsx','constants','B4'); 
% uncertainty of distance between sensors - increment between limits 
sensorDistErrorInc = xlsread('input3.xlsx','constants','B5'); 
% uncertainty of sensor position error - min limit  
sensorPosErrorMin = xlsread('input3.xlsx','constants','B6'); 
% uncertainty of sensor position error - max limit  
sensorPosErrorMax = xlsread('input3.xlsx','constants','B7'); 
% uncertainty of sensor position error - increment between limits  
sensorPosErrorInc = xlsread('input3.xlsx','constants','B8'); 
  
%% (2) Find and save positions of emitter and sensors from GPS coordinates 
% Read GPS coordinates of emitter and sensors 
GPS_posEmitterTable = readtable('input3.xlsx','Sheet','GPSposEmitter'); 
GPS_posSensorTable = readtable('input3.xlsx','Sheet','GPSposSensor'); 
GPS_posEmitterArray = table2array(GPS_posEmitterTable); 
  
% Convert latitude,longtitude to x,y,z coordinates 
posEmitterTable = zeros(3,numofEmitters); 
posSensorTable = zeros(3,numofSensors); 
posEmitterTable = latLong2xyz(GPS_posEmitterTable, numofEmitters, earthRadius); 
posSensorTable = latLong2xyz(GPS_posSensorTable, numofSensors, earthRadius); 
posEmitterArray = table2array(posEmitterTable); 
posSensorArray = table2array(posSensorTable); 
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%% (3) Iteratively obtain matrix A, and find max RMS of emitterPosError for each 
emitter, each sensorDistError 
  
%Initialize variables 
sensorDistError_rowSize = 1+uint8((sensorDistErrorMax - 
sensorDistErrorMin)/sensorDistErrorInc); %15may 
maxRmsResult = zeros(sensorDistError_rowSize,numofEmitters); 
sensorPosError_rowSize = (1+uint8((sensorPosErrorMax - 
sensorPosErrorMin)/sensorPosErrorInc));%09jul 
sensorPosMaxRMSemitterResult = 
zeros(sensorPosError_rowSize*sensorDistError_rowSize,numofEmitters); 
XYmatrix = zeros(3,3);   
rowPos = 0; 
  
for EP=1:numofEmitters 
     
    currEmitterPos = posEmitterArray(:,EP); 
    currGPSEmitterPos = GPS_posEmitterArray(:,EP); 
     
    for sensorDistError = sensorDistErrorMin:sensorDistErrorInc:sensorDistErrorMax  
        sensorDistError_currRow = 1+uint8((sensorDistError - 
sensorDistErrorMin)/sensorDistErrorInc); 
               
        for sensorPosError = sensorPosErrorMin:sensorPosErrorInc:sensorPosErrorMax  
            sensorPosError_currRow = 1+uint8((sensorPosError - 
sensorPosErrorMin)/sensorPosErrorInc); 
             
            % generate A, where A = rate of change of TDOA_ij w.r.t. x or y or z 
            A = zeros(4,3);    
            A = TDOArateofChangeVer2 (speedofLight, earthRadius, currGPSEmitterPos, 
currEmitterPos, posSensorArray, numofSensors, sensorPosError); 
         
%% (4) for 8 combinations of TDOAerrorVector (u), iteratively solve emitterPosError 
vector v 
  
            %initialize 
            combination = 2^4; %num of combinations 
            emitterPosErrorResult = zeros(combination,3); 
            rmsEmitterPosErrorResult = zeros(combination,1);  
            meanSqEmitterPosErrorResult = zeros(combination,1); 
            TDOAerrorVectorResult = zeros(combination,3+1);  
            count = 1; 
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            %find 16 combinations of TDOA error vector, since 2^4=16 
            TDOAerror = sensorDistError/speedofLight; 
            for a = -1:2:1 
                for b = -1:2:1 
                    for c = -1:2:1 
                        for d = -1:2:1 
                        % generate the TDOA error vector  
                        TDOAerrorVector = TDOAerror.*[a; b; c; 1];   
                        TDOAerrorVector(4,1) = d*sensorPosError; %altitude error of emitter 
 
                        % Modified least square method  
                        deltaXY = findDeltaXY (A,TDOAerrorVector);                         
                        emitterPosError = findDeltaZ(A,TDOAerrorVector,deltaXY); 
  
                        % find RMS of emitter position error, which is ||v|| 
                        rmsEmitterPosErrorResult(count,1) = RMS(emitterPosError); 
  
                        % find and store max RMS of emitter position error for 
                        % current value of TDOA error and each value of 
                        % sensorPosError  
                        if (rmsEmitterPosErrorResult(count,1)> 
sensorPosMaxRMSemitterResult((sensorDistError_currRow-1) * 
sensorPosError_rowSize + sensorPosError_currRow,EP)) 
                            sensorPosMaxRMSemitterResult((sensorDistError_currRow-1) * 
sensorPosError_rowSize + sensorPosError_currRow,EP) = 
rmsEmitterPosErrorResult(count,1); 
                        end 
                         count = count+1;%next combination of TDOA error vector 
                        end %d 
                    end %c 
                end %b 
            end %a 
         
            % find and store max RMS of emitter position error for 
            % current value of TDOA error  
            if (sensorPosMaxRMSemitterResult((sensorDistError_currRow-1) * 
sensorPosError_rowSize + sensorPosError_currRow,EP)> 
maxRmsResult(sensorDistError_currRow,EP)) 
                maxRmsResult(sensorDistError_currRow,EP) = 
sensorPosMaxRMSemitterResult((sensorDistError_currRow-1) * 
sensorPosError_rowSize + sensorPosError_currRow,EP); 
            end                 
        end %sensorPosError 

end %sensorsDistError 
end %numofEmitters 
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