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Abstract: Microalgae and cyanobacteria are photosynthetic microorganisms’ sources of renewable
biomass that can be used for bioplastic production. These microorganisms have high growth rates,
and contrary to other feedstocks, such as land crops, they do not require arable land. In addition,
they can be used as feedstock for bioplastic production while not competing with food sources
(e.g., corn, wheat, and soy protein). In this study, we review the macromolecules from microalgae
and cyanobacteria that can serve for the production of bioplastics, including starch and glycogen,
polyhydroxyalkanoates (PHAs), cellulose, polylactic acid (PLA), and triacylglycerols (TAGs). In
addition, we focus on the cultivation of microalgae and cyanobacteria for wastewater treatment. This
approach would allow reducing nutrient supply for biomass production while treating wastewater.
Thus, the combination of wastewater treatment and the production of biomass that can serve as
feedstock for bioplastic production is discussed. The comprehensive information provided in this
communication would expand the scope of interdisciplinary and translational research.

Keywords: microalgae; biomass; bioplastics; polyhydroxyalkanoates; wastewater; environmental impact

1. Introduction

Plastics are high molecular mass synthetic organic polymers mainly derived from
hydrocarbons obtained from fossil fuels, such as crude oil and natural gas. Plastics are
used for several purposes, including packaging, which typically is not recycled but ends
up as waste. In 2015, it was estimated that of the 6300 million metric tons of plastic
generated, around 9% was recycled, 12% incinerated, and 79% deposited in landfills or
the natural environment [1,2]. If the current production and waste management continue
according to these trends (annual growth rate of plastic production around 8.4%), around
12,000 million metric tons of plastic waste will be deposited in landfills or the natural
environment by 2050. Furthermore, it is important to note that plastic degradation can
range from 58 to 1200 years [3]. Together with the high rate of plastic use, this fact has
caused the accumulation of plastics on the planet to be an environmental problem that
requires urgent attention.

Plastic accumulation in the aquatic environment is one issue of emerging concern
because of its possibility of being ingested throughout the food web and accumulated
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by living organisms [4]. To visualize the large consumption of plastics and their global
impact, the UN General Assembly has reported that 13 million metric tons of plastic leak
into the ocean per year. It has been reported that particles of plastic-related products have
several negative effects in living organisms, for instance, on the gut, intestine, lung, and
liver. Polystyrene induces responses, such as oxidative stress, mitochondrial dysfunction,
and inflammation representing a risk factor for the kidneys [4]. In general, microplastics
can be ingested by humans and organisms ranging from plankton and fish to birds and
mammalians throughout the aquatic environment. Additionally, plastics can absorb or
contain several chemical additives acting as vectors for multiple organic pollutants [5–7].

Multiple efforts are needed to deal with plastic waste generation and to reduce its
presence in the aquatic and soil environments. Actions taken worldwide against plastic
generation include new policies on plastic prohibition. For instance, the UK government
implemented a plastic packaging tax in 2022, applicable to all packaging plastic (manufac-
tured or imported into the UK) that does not contain at least 30% of recycled plastic [8].
In Spain, the free delivery of plastic bags to consumers at sale points of products was
prohibited except for plastic bags made of 70% recycled plastic [9]. In New Jersey (USA),
starting 2022, a law will be implemented prohibiting selling or providing single-use plastic
carryout bags [10]. In Mexico City, these laws have also been established, where single-use
plastic carryout bags and plastic straws are prohibited [11].

Bioplastic production emerges as a sustainable alternative to reduce the use of fossil-
based plastics and the required degradation time. It is possible to obtain polylactic acid
(PLA), polyhydroxyalkanoates (PHAs), and polyhydroxybutyrate (PHB) using biological
feedstocks [12–14]. Bioplastics have been formulated from various sources, primarily corn,
wheat, soy proteins, milk proteins, collagen, and gelatin. However, there are concerns about
the long-term viability of these feedstocks, as they compete for land and water resources for
human use [15,16]. Microalgae, including cyanobacteria, are a source of renewable biomass.
They have gained importance because of their potential use in bioplastic production.
Specifically, it is possible to use the entire microalgae, or the polymers synthesized by the
cells (i.e., cellulose, starch, PHA, proteins) for bioplastic production [17,18]. Microalgae and
cyanobacteria can also be used for wastewater treatment, and the biomass obtained from
these processes can be used as feedstock for bioplastic production.

2. Phycoremediation of Wastewater

Microalgae species belonging to different genera, such as Chlorella and Scenedesmus,
have been reported to treat wastewater effluents by assimilation of micro- and macronutri-
ents and adsorption of organic and nonorganic pollutants [19,20]. Table S1 (Supplementary
Materials) compiles the most recent advances in the phycoremediation of different wastewa-
ters. Chlorella species are recognized for their metabolic plasticity. They can grow fast in wild
environment conditions and can exhibit heterotrophic, photoautotrophic, or mixotrophic
growth according to the medium requirements [21]. Diverse studies have evaluated the
potential of Chlorella in wastewater treatment (WWT), in either synthetic or raw wastewater.
For instance, synthetic textile wastewater was remediated by Chlorella vulgaris, and after
13 days of cultivation, 99% of methylene blue was degraded [22]. These studies have in
common that the chemical oxygen demand (COD), nitrogen, and phosphorus removal
reached about 70–95%. The removal of pollutants by Chlorella species and their feasibility in
producing biomass using wastewater as a nutrient source make them a promising candidate
for establishing a large-scale wastewater phycoremediation system.

Scenedesmus species are also used for wastewater phycoremediation. They can assim-
ilate nitrogen, phosphorus, organic carbon and reduce COD. Besides that, Scenedesmus
can survive in low-light and polluted environments, such as wastewater from industrial
processes, while showing excellent phycoremediation efficiency [23]. For instance, reports
on Scenedesmus include olive oil mill effluent [24], palm oil mill effluent [25], domestic
wastewater [26], industrial wastewater, and brewery effluent [27]. Scenedesmus obliquus
was cultivated using municipal wastewater, and 0.88 g L−1 of microalgal biomass was
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reached [28]; however, it obtained a lower biomass production compared with BG11
medium [1.3 g L−1]. These studies show the potential of these species to phycoremediate
wastewater due to its high removal rate of COD, phosphorus, and nitrogen. These results
show a promising adaptability of this microalgae to different types of wastewaters.

Phycoremediation of wastewater can be implemented in actual wastewater treatment
plants in different steps, such as after a grit and grease removal process, as a primary and
secondary wastewater treatment process, and as a third treatment before chlorination, as
shown in Figure 1. Few studies are dedicated to studying WWT by microalgae after grit
pretreatment. For instance, in a study of Choong et al. (2020) the grease wastewater used as
a culture medium enhanced lipid content in Scenedesmus and Tetraselmis [29]. Additionally,
Ochromonas danica grown with waste grease as a culture medium accumulated intracellular
lipids between 48% and 79% w w−1 [29–31]. Nevertheless, attention should be paid to
the wastewater turbidity and pollutant concentration. Additionally, the residence time
should be considered when treating wastewater with microalgae. For instance, in López-
pacheco et al. [32], when using wastewater after grit and grease removal, microalgae growth
occurred at a maximum of 75% of raw wastewater [32]. This is because a high concentration
of raw wastewater has high turbidity and organic load that hinders microalgal cell growth.
Therefore, microalgae have a higher potential for WWT as secondary and tertiary treatments.
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2.1. Disinfection Process in Wastewater by Phycoremediation

Stress can play an important role in microalgal production of antibacterial compounds.
Some of these antibacterial compounds (e.g., chlorellin, linolenic acid, phycobiliproteins) are
secondary metabolites that have been a valuable source in developing new pharmaceuticals,
such as antibiotic, anti-inflammatory, and anticancer drugs [33]. The production of these
antibacterial agents depends on the microalgae species; for instance, Chlorella species
demonstrated antibacterial activity against some bacteria (Vibrio bacterial strains) [34]. This
antibacterial potential of microalgae culture can possibly be associated with microalgae
excretion of substances that inhibit the growth of bacterial strains, such as fatty acids. For
instance, in a study by Juttner [35], it was shown that microalgae (diatom consortium
mainly composed of Diatoma elongatum) release fatty acids as a defense mechanism against
grazing predators (e.g., Favella ehrenbergii) [35]. Phaeodactylum tricornutum was also studied
to determine this phenomenon. It was found to liberate fatty acids (capric acid, lauric
acid, myristoleic acid, and palmitoleic acid) through lipase action after cell lysis [36,37].
Additionally, in Chlorella species, a fatty acid (lipophilic substance) has been identified
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and named chlorellin, which is excreted during the initial phase of culture growth. The
liberation of these fatty acids and lipophilic substances is induced by cell lysis of microalgae
already damaged by predators or pathogens. These sacrificial cells protect the culture from
further damage since they act as signals or precursors that activate downstream systemic
defense responses; this mechanism has also been shown in Phaeodactylum tricornutum
cultures [38].

There are some studies on the antibacterial capacity of microalgae in aquaculture
systems. For instance, Chaetoceros calcitrans and Nitzchia sp. completely inhibited a Vibrio
population (Vibrio harveyi) within 24 h of exposure in tiger shrimp (Penaeus monodon)
culture. In the same conditions, Leptolyngbya sp. (cyanobacteria])also reduced Vibrio harveyi
population from 104 to 101 CFU mL−1 [39]. Therefore, this type of coculture can help reduce
bacterial diseases in aquaculture systems and bacterial load in wastewater. Additionally,
there are studies reporting the removal of total and fecal coliforms by microalgae. For
instance, Chlorella sorokiniana removed 68% of total coliforms (log inactivation: 0.76) and 99%
of Escherichia coli (log inactivation: 2.73) from a mixture of sanitary wastewater and swine
manure [40]. In domestic wastewater, Chlorella sp. removed 99% of Pseudomonas aeruginosa
(log inactivation: 2.5), 99% of total coliforms log inactivation: 2.8), 99% of Enterococci (log
inactivation: 2.6), and 98% of Escherichia coli (log inactivation: 2.2) [41]. This remotion of
coliforms is related to an increase in pH during the photosynthetic activity. A pH above 9 is
no longer optimal for aerobic and facultative bacteria activity. During cultivation, H+ is
consumed during the conversion of bicarbonate into CO2, and the produced hydroxyl
ions accumulate in the medium, causing an increase in the pH and inactivating by this
way coliforms; this process is one of the major mechanisms for fecal bacteria remotion in
microalgae ponds [42].

Microalgae have also been reported to interact with plants for wastewater phycore-
mediation. Vetiver-Dictyosphaerium sp. c-culture was used in swine wastewater treatment,
where about 35 genera of bacteria were detected; of these, 31 genera decreased throughout
this treatment process. Specifically, some of the bacteria decreased from approximately
2000 operational taxonomic units (OUT) to zero or near zero (1–228 OUT) (e.g., Methanosaeta,
Escherichia, Paenibacillus, Rhodococcus, Ralstonia, and Citrobacter). Additionally, Escherichia
spp. was completely removed by day 15 of wastewater treatment [43].

2.2. Biomass Harvesting

Biomass harvesting is a unique process to consider in microalgae production. In
this way, there are different techniques to recover as much biomass as possible from the
culture system. These methods include flocculation, flotation, centrifugation, and filtration.
The harvesting process may depend on the biomass application and culture scale. For
instance, when using membrane filtration, biomass of good quality with no chemicals
is generated [44]. This is similar to centrifugation, where biomass of good quality is
obtained and has a high recovery efficiency (>90%). On the other hand, flocculation can
be considered a lower-cost alternative. In fact, flocculation has been used for microalgae
harvesting on a large scale and is a common harvesting method in conventional wastewater
treatment [45,46].

3. Sustaining the Unsustainable Products

Microalgae and cyanobacteria are photosynthetic microorganisms that can produce
bioplastics, such as polyhydroxyalkanoates (PHAs). Additionally, both can accumulate
polymers that can be used as feedstocks for bioplastic. In this section, these polymers are
further discussed, including glucose polymers (starch and glycogen) and triacylglycerides
(TAGs) (Figure 2). In addition, the possibility of using microalgae and cyanobacteria for
bioplastic production by using the whole biomass without fractionation is discussed.
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3.1. Biomass

Microalgae and cyanobacteria biomass without further fractionation can be used
in bioplastic production (as an additive and as a main source). This is mostly because
of the carbohydrate content in the biomass (using starch and glycogen in whole cell as
a raw material for bioplastic production). For instance, thermoplastic corn starch films
mixed with microalgae biomass (Nannochloropsis gaditana and Scenedesmus) have been
reported. The results showed that the addition of microalgae biomass to the thermoplastic
corn starch films did not affect the rigidity of the bioplastic [47,48]. In another study, the
addition of Heterochlorella luteoviridis and Dunaliella tertiolecta biomass to cassava starch
films increased their solubility, biodegradability, and opacity. Additionally, the produced
films showed high antioxidant activity, low water vapor permeability, and good mechanical
characteristics, which make them suitable for food packaging. In fact, the authors proved
the use of the films for salmon packaging [49].

Compression molding is the most popular method for producing microalgae–polymer
blends. By this method, biomass, polymers, and additives are mixed, placed in a mold,
and crushed at increased pressure and temperature for a short time to generate bioplastic.
In the existing literature, the temperature, pressure, and time parameters differ substan-
tially: temperatures range between 130 and 160 ◦C with compression pressures ranging
from 20 kPa to 10 MPa and molding times ranging from 3 to 20 min [50]. For instance,
Chlamydomonas reinhardtii biomass was plasticized with glycerol at 120 ◦C using twin-screw
extrusion (processing tool for plasticizing polymers to obtain homogeneous blends), and the
bioplastic obtained had a homogeneous plasticized macrostructure [51]. In another study,
Chlamydomonas reinhardtii biomass was used to produce crude bioplastic beads (7 mm). The
biomass was mixed with glycerol or ammonium persulfate and was autoclaved (121 ◦C
for 20 min) and manually molded into beads. These beads were stable in water for at least
7 days and endured compressive strength to 1.7 MPa [52]. Thus, based on these results, it is
considered that the production and use of bioplastics from microalgae biomass is feasible.

3.2. Biopolymers
3.2.1. PHA and PHB

Polyhydroxyalkanoates (PHAs) are biodegradable polyesters synthesized by microalgae
and cyanobacteria, such as PHB (polyhydroxybutyrate), PHBV (polyhydroxyvalerate), P (4HV)
(Poly (4-hydroxyvalerate)), P (3HB-co-3HV) (poly (3-hydroxybutyrate-co-3-hydroxyvalerate)),
and P (3HB-co-4HB) (poly (3-hydroxybutyrate-co-4-hydroxybutyrate)) [53]. PHAs produced
by microalgae and cyanobacteria have been considered a good substitute for petroleum-
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based plastics because of their similar mechanical properties [54,55]. The presence of
PHB molecules in microalgae cell makes the microalgae-based polymers biodegradable
in nature [56]. According to Madadi et al. [57], PHAs have been found in the range of
1–25% dry weight in some cyanobacteria [57]. For instance, PHA was 3.3% in Synechocystis
sp. [58], 7.4% in Spirulina sp. [59], 14% in Oscillatoria sp. [60], 21% in Nostoc sp. [61], and
25% in Calothrix sp. [62], making these species potential candidates for PHA production.

PHAs appear to be generated by microorganisms in response to physiological stress
caused by nutrient scarcity. Microorganisms use this polymer as an energy storage molecule
that can be digested when other energy sources are unavailable [63,64]. PHA production by
microalgae and cyanobacteria can be enhanced by controlling the amount of phosphorus
and nitrogen availability in the culture medium. When microalgae and cyanobacteria
are deprived of nitrogen, their metabolic process diverts protein to the production of
polymers, including starch (or glycogen in the case of cyanobacteria) and PHAs [65]. For
instance, Arthrospira platensis produced 5.8 mg PHB g−1 when deprived of nitrogen [66].
Mourão et al. [67] reported that Stigeoclonium sp. was able to produce PHB under nitrogen
deprivation and with limited amounts of sodium acetate and sodium bicarbonate [67].
Phosphorus also can be a limiting factor to PHB production [68]. In the case of phosphorus
deprivation, microalgae have also shown an increase in PHA production. For instance,
Scenedesmus sp. produced 29% w w−1 of PHA in phosphorus-deprived conditions [69].

The PHA granules from microalgae can be extracted by cell disruption by chemical
(sodium hypochlorite), physical (ultrasound and homogenizer mills), and biological meth-
ods (use of some enzymes, such as lysozymes, protease, and nucleases). For instance, the
use of some solvents, such as 1-butanol, generates a separation process through gelation of
PHAs when the mixture is cooled down. Then the solvent can be separated with a rotary
evaporator, leaving only the PHAs extracted [54,70,71].

The PHAs obtained from microalgae has a good plasticizing capacity and biodegrad-
ability. For instance, Chlorella sp., Oscillatoria salina, Leptolyngbya valderiana, and
Synechococcus elongatus were used for PHA production under photoautotrophic culture
conditions [72]. The PHAs were extracted with sodium hypochlorite (solvent extraction
method) and had a glass transition temperature ranging from 4 to 10 ◦C and a melting
temperature ranging between 79 and 116 ◦C [72]. These characteristics would allow the
use of PHAs in the production of bioplastics for medical, agricultural, industrial, food
packing, and storage of materials [73]. This leads to considering that the PHAs obtained
from microalgae and cyanobacteria are a feasible feedstock for bioplastic production.

3.2.2. Starch and Glycogen

Starch is the major energy reservoir in microalgae and glycogen of cyanobacteria.
Both glycogen and starch are glucose polymers accumulated during photosynthesis and
can reach about 50% biomass dry weight [74]. Studies have reported that these polymers
show very similar characteristics (size of starch granules, amylose/amylopectin content,
swelling power, solubility, and turbidity) with commercial corn starch [74]. Thus, starch
and glycogen from microalgae and cyanobacteria can also be used for bioplastic production,
and they are easily biodegradable [75]. Starch levels in microalgae and cyanobacteria vary
significantly. For instance, the red microalga Porphyridium marinum has been reported to
have 5% biomass dry weight [76], while higher levels of starch content have been reported
in other species, such as 6–13% dry weight in Chlorella species, 7–18% in Parachlorella, and
up to 62% in Tetraselmis [77,78]. In the case of cyanobacteria, glycogen content has been
reported have a 12–24% dry weight in Synechocystis sp. PCC 6803 [79,80] and a 27% dry
weight in Anabaena variabilis [81].

Starch and glycogen accumulation can be enhanced during stress conditions, including
nutrient starvation and high light intensity. For instance, Chlorella has been reported to
increase its starch concentration when is cultivated in a sulfur- and nitrogen-deprived
medium [82]. Chlamydomonas reinhardtii accumulated 49% w w−1 of starch after 20 days
of culture with sulfur deprivation, resulting in a starch concentration of 5 g L−1 [51].
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Starch content in Chlorella sorokiniana reached 38% w w−1 (0.17 kg m−3 day−1) when
cultivated under high light intensity (300 µmol m−2 s−1) and low nitrogen concentration
(32 mg L−1) [83]. In the case of cyanobacteria, high light intensity (600 µmol photons
m–2 s−1) was reported to induce up to 31% w w−1 glycogen accumulation in Arthrospira
compared to cultures grown under low light intensity (50 µmol photons m–2 s−1) in
which the glycogen content was 9.4% w w−1 [84]. Nitrogen starvation also induces the
accumulation of glycogen in cyanobacteria. For instance, Depraetere et al. [85] reported
74% dry weight of carbohydrates, of which about 80 % was identified as glycogen [85].
Similarly, in a study of Hasunuma et al. [86] Synechocystis and Arthrospira reached about
40% and 60% dry weigh of glycogen during nitrogen starvation [86].

For bioplastic production, starch and glycogen can be extracted from the cells by
ultrasonication, bead-beating, and physicochemical methods, such as alkaline and acid
hydrolysis with NaOH, HCl, and H2SO4 [87,88]. For instance, about 90% of the starch in
biomass of Chlamydomonas fasciata was recovered after 30 min of ultrasonic treatment [89].
In the case of Nannochloropsis gaditana, surfactant (Triton X-100)-aided sonication (physico-
chemical method) was proved to be the most efficient for cell disruption compared with the
ultrasonication method [47]. In the case of glycogen, mechanical disruption, such as bead
beating, thermolysis (boiled at 100 ◦C for 40 min), and alkaline hydrolysis (using KOH),
are commonly reported [90].

Molding processes, including extrusion, can be applied to produce starch/glycogen–
based bioplastics. In this process, glycerol can be added to reduce starch degradation
during shear stress and as a plasticizer [91,92]. Gelatinization, compression molding, and
the foaming process can also be applied for starch/glycogen processing [93]. Finally, some
compounds can be added to starch/glycogen to optimize the bioplastic properties [94].
These compounds include cellulose and laver flack (fiber), which have been reported to
improve the mechanical properties of the bioplastic and to reduce the gas permeability,
making this material useful for food packing [95].

3.2.3. Cellulose

Cellulose is an appealing choice for bioplastic production due to its broad availability
and biodegradability [96]. Cellulose can be found in virtually all photosynthetic species,
including plants, seaweeds, tunicates, bacteria, and microalgae. Furthermore, cellulose
fibers can be manipulated at the nanoscale, which may generate sophisticated cellulosic bio-
materials [97]. The variety and development of cellulose-synthesizing terminal complexes
in microorganisms play an important role in the process of industrialization. Cellulose
synthesis is carried out by membrane-bound cellulose synthase terminal complexes (related
to size, crystallinity, and shape of cellulose microfibril arrangement), containing cellulose
synthases [98]. Cellulose in microalgae is found in the cell wall, and it has a different
geometry (hexagonal, rosette, single and multiple rows arrangement) that depends on
the microalgae taxa [97]. The cell wall in microalgae represents 2% to 10% of the biomass
dry weight [99]. The cell wall of Nannochloropsis sp. is 75% cellulose (25% of the dry
weight) [100,101], 22–25% hemicellulose in Chlorella vulgaris, and 23% hemicellulose in
Kirchneriella lunaris [102]. The cyanobacteria cell wall resembles that of Gram-negative
bacteria, which lack cellulose. However, in recent studies, cellulose and cellulose-like
structures have been detected in the cell wall of a few species, including Synechococcus,
Nostoc, and Oscillatoria [103], making these species good candidates for cellulose extraction.

Cellulose can be used as an additive of starch/glycogen-based bioplastics or polylactic-
acid-based bioplastics to improve the bioplastic mechanical properties, such as tensile
modulus [104]. After starch is gelatinized by the addition of water and glycerol, cellulose
can be added to the mixture. Then, the mixture is casted on acrylic plates and air-dried.
The films obtained from this process can be pelletized prior to further use [105]. Hydrogels
can also be formed from cellulose [106]. These hydrogels could be formed with LiOH/urea
aqueous solution and are further dried (e.g., at 190 ◦C and 0.1 MPa). Then, cellulose-
based bioplastic sheets can be obtained after applying pressure (e.g., 60 MPa at 90 to
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190 ◦C) [107]. The acetylation process is a chemical reaction where the number of hydroxyl
interactions is reduced by introducing an acetyl functional group (CH3CO) into an organic
chemical compound (e.g., cellulose) [108,109]. For instance, cellulose acetate can be formed
by adding polyethylene glycol 600 as a plasticizer during the acetylation process [110].
Compared with other polymers, cellulose is not a major fraction in microalgae. However,
other compounds of interest, such as pigments, lipids, or starch, can be parallelly extracted
besides cellulose, making use of the whole biomass [111].

3.3. Miscellaneous Products
3.3.1. Triacylglycerol

Triacylglycerols (TAGs) can be used for bioplastic production; they are derived from
a glycerol molecule and three fatty acids. TAGs are the main lipid class in some microal-
gae species, approximately from 65% to 91%, such as in the case of Chlorella pyrenoidosa,
Chlorella vulgaris, Phaeodactylum tricornutum, Isochrysis galbana, Nannochloropsis salina, and
Scenedesmus sp. [112]. Nutrient stress, such as nitrogen starvation, is known to pro-
mote the production of TAGs. In these conditions, Chlorella vulgaris, Chlorella zofingiensis,
Neochloris oleoabundans, and Scenedesmus obliquus are reported to accumulate 30–40 w w−1

of TAG with a productivity of up to 300 mg TAG L−1 day−1 [113]. Starvation of other
elements, including magnesium, sulfur, and phosphorus, is known to promote TAG pro-
duction in microalgae [114].

The TAG extraction is usually performed by chemical methods. Some solvents (e.g.,
methanol, chloroform, hexane, dichloroethane, N-ethylbutylamine, and butanol) are re-
ported as solvents for the extraction of TAGs from microalgal dry biomass. Solvent extrac-
tion can recover 69–96% of the total lipids [115,116]. Additionally, the TAG extraction can
be performed by ultrafiltration in a single step, using a membrane of regenerated cellulose
with molecular weight cutoff of 30 kDa [117]. Additionally, TAG can be recovered and
fractionate (mono- and polyunsaturated TAG) by supercritical carbon dioxide extraction;
this technology can be scalable at the industrial level [118]. Plastic films from Soybean
TAGs were reported by Yu et al. [119]. In their work, the TAGs were dehydrated (60 ◦C)
and mixed with glycerol as a plasticizer at 120 ◦C. After, the mixture was dried at 110 ◦C
for a week to obtain the plastic films [119].

3.3.2. PLA

Polylactic acid (PLA) can be produced by bacteria fermentation of microalgae and
cyanobacteria biomass (e.g., Lactobacillus pentosus and Lactobacillus plantarum) [120,121].
PLA is produced by the polymerization of lactic acid monomers derived from the fermen-
tation of glucose polymers, such as starch and glycogen. PLA can be used usually as food
packaging material and electronics products. PLA can be degraded during composting
usually after 60 days at 60 ◦C. Therefore, it has a great potential as a bioplastic due to
its high biodegradability [122]. PLA has similar mechanical properties to those of PET,
including high tensile strength, hardness, and relatively high elongation [123,124]. PLA
production from microalgae biomass has a high productivity; for instance, fermentation
of Chlorella vulgaris biomass reached a productivity of 9.93 g L−1 h−1 [120], higher than
that reported for cassava bagasse (0.9 g L−1 h−1) [125], rice straw (2.01 g L−1 h−1) [126],
whey of the dairy industry (2.36 g L−1 h−1) [127], corn stover (2.32 g L−1 h−1) [128],
and glucose (1.72 g L−1 h−1) [129]. For bioplastic production from PLA, glycerol can be
used as a plasticizer and extrusion at a temperature range of 90 to 150 ◦C, as reported by
Abdullah et al. [130]. Additionally, in the same study, the compression molding process at
150 ◦C and pressure at 4.9 MPa for 5 min are reported [130]. The bioplastics obtained from
PLA can resist water molecules better than bioplastics without this compound, and they
can be considered light bioplastics because PLA decreases the density of bioplastics. It has
been shown that bioplastic produced with PLA has a lower density than those obtained
with other compounds, such as glycerol. Additionally, PHB can be mixed with PLA for
bioplastic production [131]. Although there are not many studies about the production of



Mar. Drugs 2022, 20, 601 9 of 20

PLA with microalgae and cyanobacteria biomass, these photosynthetic microorganisms are
a feasible option to produce PLA bioplastics because of their PLA potential production, the
coupling of biomass production processes such as wastewater bioremediation, and lack of
lignin. Some of the methods for the bioplastic production with PLA and other compounds
obtainable from microalgae biomass can be seen in Figure 3.
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4. Genetic Engineering to Increase Bioplastic Yield in Microalgae and Cyanobacteria

Genetic engineering is a potential method for modifying the genes of microalgae
and cyanobacteria to improve the synthesis of desired polymers, such as starch, TAGs,
or PHB [132]. For instance, TAG production in Neochloris oleoabundans was increased by
co-overexpression of lipogenic genes (plastidial lysophosphatidic acid acyltransferase and
endoplasmic-reticulum-located diacylglycerol acyltransferase 2). With this transforma-
tion, Neochloris oleoabundans increased 1.6-fold the lipid content and 2.1-fold TAG produc-
tion [133]. The authors also reported a long-term stability of the modified strain since this
productivity was maintained for 4 years.

The increase in PHB by using genetic engineering tools has also been reported. In
order to induce the production of PHB in Chlamydomonas reinhardtii, Chaogang et al. [134]
utilized two expression vectors containing the phbB and phbC genes from Ralstonia eutropha,
both encoding PHB synthase [134]. The presence of PHB granules in the cytoplasm of the
transgenic cells resulted in a favorable outcome, producing 6 µg g−1 of PHB compared with
no PHB production in the wild-type strain. Synechocystis sp. PCC6803 also was modified for
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enhanced PHB production by the overexpression of a heterologous phosphoketolase (XfpK)
from Bifidobacterium breve, which is used as a strategy to improve acetyl-CoA levels. Using
this technique, a PHB production of 232 mg L−1 (12% w w−1) was obtained under nitrogen
depletion conditions, greater PHB production from Synechocystis sp. without mutation
(1.8% w w−1) [135]. Additionally, overexpression of the phaAB gene in Synechocystis sp.
PCC 6803 enhanced PHB production, obtaining a PHB concentration of 35% w w−1 growth
in nitrogen-deprived medium; also, this technique increased acetyl-CoA levels [136].

Most algal transgenics now employ constitutive promoters to express the recombinant
gene throughout algal biomass synthesis, which might have a detrimental influence on
growth due to the increased metabolic burden or a potential toxicity on the cell [137]. Thus,
a preferable technique is to activate the expression of genes near the end of the growth phase
by utilizing tightly controlled promoters with a wide dynamic range in conjunction with
good codon optimization, boosting the development efficiency and ultimate production of
the targeted gene output. Another problem is the urgent need to create effective chloroplast
and mitochondria transformation procedures for most useful microalgal species, as these
organelles play critical roles in cellular metabolism. Despite the fact that many projects are
underway to generate genome, transcriptome, and proteome information for many microal-
gal species, it is indeed essential to decode the full annotation of genes and the connectivity
of biosynthetic processes in order to fully exploit the prospects of microalgae species.

5. Bioplastics from Microalgae and Cyanobacteria Grown in Wastewater

The synthesis of bioplastics from biomass of microalgae and cyanobacteria can be com-
plemented with wastewater treatment. This would allow to grow cellular biomass without
requiring synthetic culture medium while also treating wastewater [138]. Nevertheless,
up to date, there are few studies that have evaluated this approach. In a study by López
Rocha et al. [139], blends of microalgae biomass grown in municipal wastewater were pre-
pared with glycerol. The consortium evaluated in the study included Scenedesmus obliquus,
Desmodesmus communis, Nannochloropsis gaditana, and Arthrospira platensis. Following in-
jection molding of the blends at 140 ◦C, bioplastic materials were obtained. Further char-
acterization of the bioplastics formed showed that they had a high thermal stability with
low water absorption [139]. In another study, Desmodesmus sp. and Tetradesmus obliquus
biomass grown in municipal wastewater was also evaluated to produce bioplastics [140].
In that study, microalgae biomass and glycerol were mixed. The results showed that these
bioplastics had similar mechanical properties to bioplastics derived from soy and rice
proteins [140].

Most studies on wastewater treatment by microalgae and/or cyanobacteria have fo-
cused on PHB production. For instance, PHB from Botryococcus braunii grown in sewage
wastewater obtained a final PHB of 247 mg L−1 [141]. Synechocystis salina cultivated in
digestate from an anaerobic reactor fed with thin stillage was also evaluated for PHB
production [142]. Results showed that at the pilot scale (200 L), 4.8% w w−1 of PHB accu-
mulated in Synechocystis, similar to that in control cultures grown in synthetic medium [142].
Thus, the PHB production by microalgae/cyanobacteria using wastewater as a culture
medium could be feasible.

Although not many studies have considered the production of bioplastics from other
macromolecules besides PHB from wastewater-grown microalgae and/or cyanobacteria, it
is possible discuss their potential based on the carbohydrate (including starch and glycogen)
and lipid (TAGs) content reported in the literature. For instance, Chlorella vulgaris grown in
aquaculture wastewater obtained a cell density of 3.2 g L−1 with a high accumulation of
carbohydrates (39% w w−1) [143]. Isochrysis galbana reached a cell density of 3.2 g L−1 with
an accumulation of 37% w w−1 carbohydrates grown in aquaculture wastewater [143], and
Desmodesmus spp. grown in landfill leachate and municipal wastewater accumulated 41%
w w−1 of carbohydrates and 20% w w−1 of lipids [144]. Additionally, in that study, it was
determined that low concentrations of nitrogen enhance starch production of microalgae
culture growth in treated wastewater.
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Chlorella sp. and Scenedesmus sp. grown in domestic wastewater were able to achieve
cell growth of 1.78 g L−1 and accumulated 34 % w w−1 of lipids [145]. Tetraselmis sp. grown
in municipal wastewater achieved 1.57 g L−1 of microalgae biomass with 38% w w−1 of
lipids [146]. Additionally, Chlorella sorokiniana accumulated 43% w w−1 of lipids when
grown in aquaculture wastewater [147]. Chlorella sp. grown in swine wastewater (wastew-
ater characterized for having a high organic load) increased lipid production, including
triacylglycerols (2.5 higher times compared with standard medium) [148]. In addition, as
it was mentioned before, the used grease wastewater as culture medium enhanced lipid
content in microalgae biomass [149]; hence, the use of this wastewater for microalgae
culture can also increase the production of bioplastics from these cultures. In Table 1,
the production of biopolymers from microalgae grown in different types of wastewaters
is expressed.

Table 1. Production of biopolymers from microalgae and cyanobacteria grown in wastewater.

Microorganism Wastewater Type Polymer Content References

Botryococcus braunii Sewage wastewater PHB: 247 mg L−1 [141]

Synechocystis salina
Digestate from stirred
anaerobic tank reactor, fed
with thin stillage

PHB: 6.3% w w−1 (laboratory-scale)
and 4.8% w w−1 (pilot scale)

[142]

50% Scenedesmus obliquus,
30% Desmodesmus communis,
10% Nannochloropsis gaditana,
10% Arthrospira platensis

Wastewater treatment plant
Dried consortium biomass with
glycerol (60 × 10 × 1 mm
rectangular-shaped mold)

[139]

Desmodesmus intermedius,
Desmodesmus magnus,
Desmodesmus communis,
Desmodesmus opoliensis, and
Tetradesmus obliquus

Municipal wastewater

Estimated protein in dried biomass
(60%) with glycerol (40%)
(60 × 10 × 1 mm
rectangular-shaped mold)

[140]

Chlorella sp. and Scenedesmus sp. Domestic wastewater Cell density: 1.78 g L−1

Lipids: 34% w w−1 [145]

Chlorella sp. Seafood processing
wastewater

Cell density: 0.89 g L−1

Lipids: 28% w w−1 [150]

Chlorella vulgaris Aquaculture wastewater

Cell density: 3.2 g L−1

Proteins: 30% w w−1

Carbohydrates: 39% w w−1

Lipids: 6% w w−1

[143]

Chlorella sorokiniana Swine wastewater

Cell density: 3.3 g L−1

Proteins: 59% w w−1

Carbohydrates: 23% w w−1

Lipids: 3% w w−1

[149–152]

Chlorella sorokiniana Aquaculture wastewater Cell density: 0.16 g L−1

Lipids: 43% w w−1 [147]

Chlorella pyrenoidosa Tofu whey wastewater
Cell density: 2 g L−1

Proteins: 34% w w−1

Lipids: 17% w w−1
[153]

Scenedesmus obliquus Aquaculture wastewater

Cell density: 2.2 g L−1

Proteins: 35% w w−1

Carbohydrates: 30% w w−1

Lipids: 8% w w−1

[143]

Parachlorella kessleri Municipal wastewater Cell density: 1.25 g L−1

Lipids: 4.3% w w−1 [146]

Tetraselmis sp. Municipal wastewater Cell density: 1.57 g L−1

Lipids: 38% w w−1 [146]

6. Environmental Impact of Bioplastics

The environmental impacts of plastics are extremely important and have become a
scientific, social, and political issue. Common plastics of petrochemical origin are widely
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used in different applications due to their low price, durability, and strength. In the last
years, derived from their high demand and incorrect disposal, environmental problems
have risen due to their accumulation and persistence in terrestrial and aquatic ecosystems.
Bioplastics have emerged as an alternative to conventional plastics. They can be produced
from materials of biological origin and have a lower impact on the environment [154,155].
Bioplastics are classified in three categories: (1) those that are biobased and biodegradable,
(2) fossil-based and biodegradable, and (3) biobased and not biodegradable (Figure 4). Stan-
dard plastics (i.e., fossil-based and nonbiodegradable) are not bioplastics. Biodegradable
bioplastics can be decomposed by the environment and microorganisms and are thus reinte-
grated into the ecosystem. For instance, starch-based bioplastics, PLA, and PHA/PHB can
be easily degraded in small fragments that are digested by microorganisms. Production of
bioplastics is, however, a relatively recent development, and there are still some constrains
to be solved, as discussed below.
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Land plant crops, such as corn, are currently used for bioplastic production. However,
the use of these biomass feedstocks is controversial. They require large areas of cultivation,
time, water, fertilizers, and pesticides. These grains are no longer used as food source
but in the production of bioplastics and biofuels (e.g., ethanol). In fact, estimations report
that a quarter of the cultivated land is currently used to produce biofuels and bioplastics,
which has generated a marked increase in the prices of basic foods [156]. Walker and
Rothman [156] compared bioplastics from PHB and PLA with plastics of petrochemical
origin and determined that the production of bioplastics was more polluting due to the
use of fertilizers and pesticides in crops [156]. Nevertheless, Elsawy et al. [157] reported
that bioplastics, such as PLA, which are biodegradable and compostable, produce 70%
less greenhouse gas emissions during their manufacturing compared with conventional
plastics [157]. Therefore, the use of renewable biomass or organic waste can be a strategy to
produce ecological bioplastics with lower greenhouse gas emissions [158].

The production of bioplastics using the biomass of microalgae produced from wastew-
ater generates at least two positive impacts on the environment. Microalgae can reduce
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more than 80% of the nitrogen and COD present in the wastewater; likewise, different
types of wastewaters can be used in this process, which demonstrates the versatility of
the process [27,28]. Additionally, microalgae could be produced in established wastewater
treatment plants, which would not mean the use of arable land for this purpose [159]. On
the other hand, the cultivation of microalgae can help reduce the concentration of CO2 in
the atmosphere, since for every kg of biomass of microalgae produced, 1.8 kg of CO2 can
be captured in the process [160]. In addition, as stated above, the rate of decomposition of
a bioplastic is lower than that of conventional plastics [161], so its use would reduce the
production of garbage and reduce the use of land for landfills.

7. Economic and Future Perspectives

In 2017, PHA and PLA had prices of USD 5.5 and USD 21 per kilogram, respec-
tively [162]. These prices are considerably high compared with plastics of petrochemical
origin (fossil-based plastics), such as polyurethane and polypropylene, with costs of USD
1.7 and USD 1.3 per kilogram, respectively [162]. Although the prices of bioplastics have
been reduced to USD 2–6 per kilogram, the prices of conventional plastics of petrochemical
origin are still about half, that is, USD 1–2 per kilogram [163]. The cost–benefits of microal-
gae culture using wastewater culture as a culture medium (the analysis was performed for
a flux of 150 m3/d of municipal wastewater) were estimated, and it was calculated that the
amortization cost (including construction, mechanical, electrical, piping and fittings, and
footprint) is approximately USD 249,821. The amortization cost (including construction,
mechanical, electrical, piping and fittings, and footprint) is approximately USD 249,821.
The operating costs (including reagents, electricity consumption, pumping and mixing,
staff, and maintenance costs) were calculated to be USD 29,702 per operation year. The
environmental benefits were calculated to be approximately USD 16,885 per operation year,
this considering the environmental prices of the undesirable outputs of COD, nitrogen,
and phosphorus [28]. Estimating that about 1 g of biomass can be produced every 16 days
using wastewater as culture medium, at least 3300 kg of biomass can be obtained per year
in the process.

The main limitation of the production and use of bioplastics is the profitability of the
process compared with the costs of conventional plastics, which results in more expensive
products. Bioplastic production costs can be reduced by exploring and potentiating abun-
dant and low-cost raw materials, such as agricultural, forestry, and food waste; macroalgae
and microalgae (including cyanobacteria); technology innovation; and the implementa-
tion of a comprehensive biorefinery process based on a circular economy [158,164]. This
approach would allow us to increase the profitability of bioplastics and compete with
fossil-based plastics.

Bioplastics represent about <1% of the 368 million tons of fossil-based plastic produced
annually [165]. Nevertheless, there is an increased demand for bioplastic production and
a continuous development of technologies that reduce their production costs. In 2020,
2.11 million tons of bioplastics were produced, and it is estimated that by 2025, 2.87 million
tons of bioplastics will be produced. Particularly, 60% of the bioplastics currently produced
use PHA, PLA, and starch derivatives as feedstock. Bioplastic production is expected to
increase significantly in the coming years associated with new investments and legislation
implemented in the USA and Europe [166].

8. Conclusions

Bioplastic from microalgae and cyanobacteria biomass can be a great option to reduce
the use of petroleum for the production of plastics and also to reduce the decomposition
time of these materials. These microorganisms can produce a large amount of biomass
in a short time, and compounds such as starch and glycogen, polyhydroxyalkanoates
(PHAs), cellulose, polylactic acid (PLA), and triacylglycerols (TAGs) can be used to produce
bioplastics. The processes of extraction and processing of bioplastics that have been used up
to now have generated bioplastics with optimal characteristics, so it has been proven that it



Mar. Drugs 2022, 20, 601 14 of 20

is possible to use these microorganisms for this purpose. Additionally, the production of
microalgae and cyanobacteria biomass can be carried out in wastewater, used as a culture
medium. In this way, a bioremediation process is carried out and a commercial by-product
is obtained. Therefore, by using both processes in combination, an important environmental
impact can be generated, helping to solve two major current environmental problems: the
treatment of complex wastewater and the plastic pollution crisis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md20100601/s1, Table S1: Phycoremediation of wastewater.
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