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interface, or in the glass matrix itself.[4–6] 
Rawson measured the angular scattering 
spectrum of a pristine optical fiber for the 
first time and linked it to the presence of 
small needle-like structures for which he 
also gave a theoretical description.[7]

More recent experimental research 
has turned toward the scattering loss of 
laser-induced microstructures like fiber 
Bragg gratings (FBGs) and long-period 
fiber gratings (LPFGs). Fonjallaz et al. and 
Janos et al. found an azimuthal scattering 
dependency, where the weakest intensity 
was measured in the direction of the laser 
irradiation which created the modifica-
tions.[8,9] Vesselov et al. on the other hand 

used light scattering on long-period fiber gratings to generate 
customizable side emission.[10] We showed previously how 
deliberately placed femtosecond laser-induced refractive index 
distortions can be used to create light diffusing fiber segments 
with a customizable emission profile.[11]

Meanwhile, the idea of deterministic scattering on tilted 
fiber gratings gave rise to further theoretical development of 
coupling guided to radiation modes. Here, two lines of analysis 
were followed: the mode coupling theory and the volume cur-
rent method. While the first is deemed to be more exact, the 
second offers a more intuitive understanding of the scattering 
effect. Li et al. showed that both approaches are in good agree-
ment, except for very low scattering angles.[12]

Vesselov,[10] as well as our prior study[11] relied on a phenome-
nological model of scattering loss which cannot describe the rela-
tion between the refractive index modification and the scattering 
power or the angular emission profile. These shortcomings 
will be addressed in the present paper, where we develop a new 
approach to the electromagnetic description of the scattering 
process based on the volume current method. From this, we 
are able to explain and predict the angular scattering pattern of 
refractive index modifications just by using Fourier transforms 
and convolutions. These mathematical tools are simple to imple-
ment with current computer technology. As it turns out, this 
method can be applied equally well to scattering of all kinds of 
structures in optical fibers, be it desired or undesired.

For experimental comparison, we study chains of refrac-
tive index modifications in the core of a few-mode optical fiber 
which we created with focused femtosecond laser pulses. Such 
irradiation has the advantage over a continuous wave laser in 
that it can modify the refractive index in any transparent mate-
rial and can induce strong refractive index fluctuations which 
scatter light.[13] The investigation of the refractive index modifi-
cation and far-field scattering pattern was done with the help of 
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1. Introduction

Light scattering normally constitutes undesired loss in optical 
fibers. However, if harnessed appropriately, it can be used to 
turn an optical fiber into a flexible line-shaped light source. 
Such side-emitting fiber underlies several real and potential 
applications, for example, in endoscopy where physical access 
is difficult, and a thin, non-conductive, and chemically stable 
light source is necessary.[1–3]

Early research of light scattering in optical fibers focused on 
the loss aspect. The field was pioneered by Marcuse, describing 
intrinsic fiber loss in the framework of electromagnetic 
theory which he attributed to fluctuations in the core cladding 
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several microscopy methods, that is, shearing, phase-contrast, 
and Fourier microscopy. A combination with modern digital 
image processing techniques allowed us to visualize almost the 
whole solid angle of the far-field scattering pattern of a refrac-
tive index modification in an optical fiber for the first time.

The paper is organized as follows: Section  2 presents the 
derivation of the far-field scattering pattern of a localized refrac-
tive index perturbation in a multimode optical fiber. Section 3 
describes the experimental conditions for the creation of the 
refractive index modification as well as the microscopy tech-
niques for measuring the far-field scattering pattern. Section 4 
examines the results of the laser processing and scattering 
measurements, which we discuss in Section 5 and compare the 
results with the theory from Section 2.

2. Theory: Light Scattering on Stochastic Distortions

When guided light interacts with a (laser-induced) refractive 
index modification Δn in an optical fiber it is scattered in all 
directions with varying power. This results in an angular spec-
trum of the scatted radiation which can be pictured on the unit 
sphere (Figure 1).

In this section, we show that this spectrum is closely related 
to the power spectrum and the shape of the refractive index dis-
tortion by applying a perturbation technique called volume cur-
rent method.[14,15] Here, the interaction of the distortion Δn with 
the guided electromagnetic field E0 induces a polarization cur-
rent density j inside the volume (boldface letters denote vectors). 
This current radiates light Es which effectively results in power 
being removed from the incident field. This scattering process 
is described by the inhomogeneous Helmholtz equation:

( ) 20
2 2

0
2

0 0n k n nk iEE EE EE jjss ss ωµ∇ × ∇ × − = ∆ = − 	 (1)

where the refractive index difference between fiber core and 
cladding has been neglected for simplicity. The interaction 
of the guided electric field with the perturbation causes a 

scattered electromagnetic field which is driven by the current 
density jj EE2 0 0 0i n nω= ∆ ε . Outside the perturbation Δn is zero and 
the differential equation is homogeneous, so the solution is the 
standard eigenmode expansion of the incoming incident field

( ) ( ) ( , )0
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c z x y ei zEE rr EE∑= µ
µ

µ
βµ 	 (2)

which we assume to be transversal and unpolarized or circularly 
polarized. For the scattered field we use a standard procedure 
to solve the inhomogeneous Helmholtz equation with the aid 
of a vector potential A and the Lorentz gauge.[15] The solution 
outside of the fiber core in terms of the scattered electric and 
magnetic field strength is

i
in k

EE ee ee AA HH ee AAss rr rr ff ss rr ff( ), ( )0

0

ω
µ

= × × = − × 	 (3)

Here Af is the far-field vector potential, made up by the 
superposition of outgoing spherical wavelets caused by the cur-
rents ( )jj rr′  enclosed in the volume V0 of our scattering center:
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Now, we calculate the pointing vector SS EE HHss ss1 2( )*= ×  to obtain 
the direction and intensity of the far-field scattered radiation  
(* denotes the complex conjugate). For that, we perform the 
integration from Equation (4) two times, which we donate with 
the two integration variables r1 and r2 and their corresponding 
differential volume elements dV1 and dV2:
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Figure 1.  Schematics (left) and experimental data (right) of the far-field scattering pattern of a refractive index modification located in the middle of 
the sphere. iiββ  is the wave vector of the incoming light with the polarization directions ee⊥  and 



ee . ssββ  is the wave vector of the scattered light, which 
spans the polar angle θ with respect to the incoming wave. ββ∆∆  is the scattering vector. φ is the azimuthal angle of the scattered light.
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In Equation (5), we used the vector triple product where one 
term is equal to zero due to orthogonality. For Equation  (6), 
we used that j has the same direction as E0 (Equation  (1)) 
which is unpolarized or circularly polarized, therefore 

E jEE ee ee jj ee ee1 2( ) 1 2( )0 0 

= + → = +⊥ ⊥ . This leads to two 
cross products 1ee eerr × =⊥  and sin( / 2 ) cos



ee eerr π θ θ× = − = , as 
shown in Figure 1.

Next, we introduce the cutoff function V which is V(r) = 1 if 
r is inside V0 and zero elsewhere and acts as a 3D aperture. It 
represents the shape and the volume of the modification and 
removes the limits of integration.

Furthermore, we perform a change of variables and get the 
corresponding volume element with the aid of the Jacobian 

2dV dVrr rr rr22 11= − → = . Also, the shorthand for the propagation 
constant n0k = βs is introduced in the exponent, and we write 
the integral from Equation (7) as

( ) ( ) ( ) ( )*
1e V j V j dV dVi s rr rr rr rr rr rree rr

11 11 11 11
rr∫∫ − −β−
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One group of functions just depends on r1 and the other, which 
is complex conjugate, on r1 − r, therefore the integral in dV1 is 
actually the autocorrelation function ( ) ( )*

1P P dV P P�rr rr rr11 11∫ − = . 
The second integral in dV turns out to be the 3D Fourier trans-
form 3F . At last, we make use of the Wiener–Khinchin theorem 

{ } { } { } | { } |3 3 3 * 3 2P P P P PF � F F F= =  and find that the far-field 
scattering pattern is proportional to the power spectrum of the 
current density in the volume.

To our knowledge, this elegant result has been derived for the 
first time but it has one disadvantage in it requiring knowledge 
of the specific realization of the stochastic functions j(Δn, E0). To 
deal with this inconvenience we will compute the expected scat-
tering behavior of one scattering center by taking the ensemble 
average S〈 〉  after inserting the current density. At first, this will 
deviate from our elegant result, but in the end the structure of 
this solution will be recovered. The ensemble average
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is applied only to the autocorrelation function because it con-
tains the stochastically varying functions Δn and E0. We see that 
the whole scattering power scales with k4 (and thus λ−4) similar 
to Rayleigh-scattering as already mentioned by Marcuse.[4]

From this point on, the factor in front of the integral will no 
longer change, therefore we introduce the shorthand notation

( )
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µ π
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We insert the eigenmode expansion Equation  (2), where the 
summation index belonging to r1 is denoted with μ and the 

other one belonging to rr rr rr22 11= −  is denoted with ν. Similarly, 
we denote the dependency of other functions on r1 or r2 with 
the subscript 1 or 2:
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Due to their interaction, the only stochastic functions are 
Δn and c. Now we follow the argument of Marcuse[5] that 
the amplitudes and the refractive index perturbations are 
uncorrelated:

( ) ( ) ( ) ( )1 1
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2 2 1
*

2 1 2c z n c z n c z c z n n〈 ∆ ∆ 〉 = 〈 〉〈∆ ∆ 〉µ ν µ ν 	 (13)

Furthermore, we assume that the phases of the complex field 
amplitudes are sufficiently random, so their product is always 
zero for unequal indices c z c z c c( ) ( )1

*
2 ,1 ,2

*δ δ〈 〉 = 〈 〉µ ν µν µ µ µν . This 
property removes the summation over ν, and we can express 
the ensemble average of the pointing vector as
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Now we rewrite the exponent as a scalar product of two 
vectors:

i z i is see rr ee ee rr rrrr zz rr( ) ( ) βββ β β β ∆∆− = − = −µ µ µ 	 (15)

With this conversion, we recover the 3D Fourier transform 
3Fµ , which is now dependent on the summation index μ and 

transforms from r space to ββ∆∆ µ  space. This is the space of 
the scattering vector added to the incident light to produce the 
change in direction as shown in Figure 1.
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The next step is to recover the autocorrelation of the whole 
integral. We process the autocorrelation function 〈Δn1Δn2〉 by 
splitting it into the autocovariance Cnn = 〈Δn1Δn2〉 − 〈Δn1〉〈Δn2〉 
and the product of the mean values 〈Δn1〉〈Δn2〉. This separates 
the deterministic mean from the stochastic part which is now 
represented by the autocovariance. We apply the same proce-
dure to the slowly varying amplitude c to obtain its autocovari-
ance Ccc and its mean ,1 ,2

*c c〈 〉〈 〉µ µ  and get:
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When we insert this result back into Equation  (16), we 
obtain four terms. We now assume that both stochastic pro-
cesses are homogeneous, so their autocovariance is only 
dependent on r and can be taken out of the integral ∫dV1. Then 
what remains inside is in all cases the autocorrelation func-
tion. Furthermore, we can write the autocorrelation separate 
from the autocovariance by using the convolution theorem 

{ } { } * { }3 3 3AB A BF F F=µ µ µ
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As the last step to simplify the equation, we use the Wiener–
Khinchin theorem to turn the autocovariance into the absolute 
square of its Fourier transform which we call the variance spec-
tral density function of the refractive index fluctuations Snn or 
the mode power amplitude Scc. The same procedure is applied 
to the autocorrelations to get their respective spectral densi-
ties. We arrive at the final most general result of the scattering 
problem for the expected scattering pattern:
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Our solution to the scattering problem is the sum of four 
terms, which all contain a deterministic diffraction part in the 
form of several power spectral densities. The influence of the 
stochastic processes appears as the convolution with the respec-
tive variance spectral density of the noise process. If it is far 
from its maximum value, for example, the dominant fluctua-
tion wavelength is way larger than the wavelength of the scat-
tering light, its shape can be approximated as a normalized 
radial exponential: Sxx exp{ | | / }ββ τ∆∆∝ − .[16]

The result of the scattering problem includes the transfor-
mation from real into Δβ space which has its point of origin at 
the pole of the sphere in Figure  1. Geometrically, all permitted 
vectors iβ  and sβ  have their tips confined to a spherical shell 
with the radius | | | |i sβ β=  centered on the scattering center, also 
shown in Figure 1. This stems from the restriction to elastic scat-
tering of a monochromatic wave, which must obey the phase 
matching condition i see eezz rrβββ β∆∆+ = . This means that the ββ∆∆  
vector always has a z-component in the range [−2βi, 0], so it is 
either negative or zero, positive z-values are not accessible.

2.1. Approximations to Improve the Usability

The previously derived model is useful to calculate a scattering 
pattern if all properties of the modification are known. For the 
experimentally observed scattering patterns the shape of the 
modification and the power spectral densities depend on a 
variety of experimental parameters that are partially stochastic. 
To be able to compare experiment and theory, we need to make 
some simplifying assumptions.

The first simplification is that the fiber core has only a slightly 
different refractive index compared to the cladding (which is 
fulfilled in the experiment, see Section 3), so we can apply the 
weakly guiding case, where all propagation constants merge into 
one βμ ≈ β ≈ n0k.[4] It follows that the 3D Fourier transform in 
Equation (19) no longer depends on μ. Also, we assume that the 
electric field across the modification is approximately constant, 

which effectively turns all the modes into plane waves with the 
transversal electric field E and the amplitude 〈c〉. The induced 
mean refractive index difference 〈Δn〉 is also assumed to be con-
stant. This enables us to factor out these constants including the 
integrated volume V2  = (∫VdV)2 from the scattering problem. 
Additionally, we use the distributive property of the convolution 
to pull | { } |3 2VF  out of the brackets. This leaves a term with the 
δ-function as the identity operation of the convolution:
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We recall from Equation (10) that the θ dependence is due to 
polarization and can be suppressed by observing the scattering 
through a polarizer to obtain Q(θ) = Q. This formula shows that 
under these simplifying assumptions the total scattering power 
of a modification scales quadratically with V, c & Δn. This prop-
erty can act as a rule of thumb to estimate the scattering power 
of a modification and how to enhance or diminish the extent 
of light scattering. Additionally, the plane wave is no longer 
required to be a guided wave, therefore this formula can also 
be used to calculate the scattering of external waves, which pass 
thought the fiber cladding from the outside.

2.2. Random-Shaped V

The preceding calculations assumed that the volume V of 
the ensemble of the scattering centers is always the same. If 
we want to find the expected value by averaging measure-
ments, we also must consider that the shape of the scattering 
volume is changing: the surface is fluctuating about a mean. 
This can be implemented by applying the ensemble average 
in Equation  (12) also to V1V2 and assume it is uncorrelated 
to the refractive index fluctuations and mode amplitudes 
in Equation  (13). Then | { }|3 2VF  in Equation  (20) has to be 
replaced by V V SVV| { }| | { }| *3 2 3 2F F〈 〉 ≈ . We make the approxi-
mation, that it is sufficient to convolute the volume with the 
power spectrum of the surface fluctuations to account for the 
random shape.

3. Experimental Section

The fiber, a commercially available step index optical fiber 
(Nufern 20/400 Precision Matched Passive LMA Double Clad 
Fiber: Core [NA = 0.065, 20∅ =   µm], Cladding [NA 0.46= , 

400∅ =  µm]), was clamped to a motorized xy-table. The trans-
parent plastic fiber coating was removed, and femtosecond 
laser pulses were focused into the fiber core with an NA = 0.25 
microscope objective. The laser was a Ti:Sapphire regenera-
tive laser amplifier system (Spectra Physics, Spitfire) emitting 
pulses at λ  = 800 nm with a duration of FWHM = 200 fs. A 
pulse energy of 2.5  µJ and 1 kHz repetition rate was used. A 
mechanical shutter was set to 2 s opening time, so the number 
of pulses per scattering center was approximately 2000. After 
one refractive index modification was induced into the fiber 
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core, the fiber was moved and the procedure was repeated at 
a distance of 200  µm along the fiber. In this way, a chain of 
similar refractive index modifications was created in the fiber 
core. Sketches and images of the scattering center preparation 
can be found in ref. [11].

To measure the generated modifications and their scattering 
performance, the fiber was removed from the laser irradiation 
set up and coupled a green laser diode (λ = 520 nm) with a max-
imum power of 100 mW into one fiber end. The initial linear 
polarization of the diode was converted to circular with the aid 
of a quarter wave plate. The modified fiber segment was then 
placed under a microscope (Jenapol Interphako), where the 
scattering of the light on the modifications as well as the refrac-
tive index distortions themselves was observed. For real space 
images, phase contrast objectives (NA = 0.65, Mag = 40) were 
used to enhance the visibility of the scattering centers.

The principle of the angular scattering measurement is 
shown in Figure  2. Here, the property that light in the front 
focal plane, by passing through the objective, is decomposed 
into its angular components whose intensity distribution is 
then projected onto the back focal plane, was made use of.[7] 
This well-known behavior gives direct access to the far-field 
scattering pattern; it is often called the Fourier-transform capa-
bility of lenses, hence, the name Fourier microscopy. The back 
focal plane is imaged with the help of a Bertrand lens, which 
is placed in the beam path of the microscope[19] (in polariza-
tion microscopy this method is also known as conoscopy). An 
NA = 1.3 oil immersion objective with a magnification of 100 
was used for side scattering; for forward and backward scat-
tering, a long-working-distance NA = 0.6 air objective with a 
magnification of 50 and a custom made mirror prism with a 
hole for the fiber was employed. Interference microscopy with 
the immersion objective was also used to approximate the 
induced refractive index change inside of the modification.

4. Results

The focused femtosecond laser irradiation produces a localized 
refractive index modification in the fiber core, which can be 
imaged with phase contrast microscopy, as shown in Figure 3. 
In all observed instances, the modifications have a very similar 
shape, but the interior consists of refractive index fluctuations 
which differ significantly from one modification to the next. 
This is readily visible in the side view of Figure 3. When com-
paring top and side-view, we find that the modifications are 
approximately ellipsoidal, with dimensions of 11.1 µm (length) 
by 15.2 µm (height) by 1.7 µm (width). In the inner regions, we 
determined an average refractive index change of 〈Δn〉 = 0.023 ± 
0.007 relative to the fiber core by means of microscope shearing 
interferometry. When light of the green laser diode is coupled 
into the fiber, the refractive index distortion visibly scatters the 
light (Figure 3 right). From this scattering image as well as the 
shearing microscopy we observe that the effective scattering 
volume might be smaller than the limits of the modification 
visible in phase contrast.

4.1. Scattering Pattern of a Single Modification

Light scattered by modifications in the core is transported 
away from the fiber with almost no refraction due to the index-
matching oil. This light eventually forms the far-field scattering 
pattern of the chain of scattering centers. If one modification is 
placed in the focus of the high NA objective, its far-field scat-
tering pattern can be observed individually. The two observation 
directions presented in Fourier space (Figure 4) correspond to 
the real space directions shown in Figure 3.

In side view the scattered light forms a pattern of smooth but 
otherwise random-shaped bright grains which are separated by 

Adv. Optical Mater. 2020, 8, 2000633

Figure 2.  Fourier-microscopy for side, forward, and backward scattering. a) Rays spanning an angle α with the optical axis (dashed) are transformed 
into parallel rays with a distance ρ by refraction on the reference sphere (blue) according to the Abbe sine condition sin α = ρ/f. Glycerol (n0 = 1.46) 
immersion eliminates refraction on the fiber surface. b) Rays with small scattering angles are reflected upward (α → θ) by a 45° mirror and collected 
with a long working distance microscope objective. Backscattering is measured by reversing the mirror. Both set ups were calibrated with a diffuse 
transmittance standard (opal glass Qsil-ilmasil[17]) to compensate for the objectives polarization dependent angular attenuation.[18]
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dark boundaries; a structure that is very similar to a laser speckle 
pattern. The grains are brighter on the right side (small θ)  
of the picture than on the left side (large θ), which means that 
the modification is predominately forward scattering.

In top view, we see a similar granular pattern to the broad-
side but with a wide dark band in the middle, crossing the 
picture horizontally. In the area of the dark band the grains 
appear less intense and vertically elongated. Also, the overall 
brightness in top view is lower than in side view: the imaging 
required roughly five times the exposure time.

Both pictures were taken with the analyzer polarization per-
pendicular to the direction of light propagation in the fiber 
while the light guided in the fiber is circularly polarized. If we 
set the analyzer polarization parallel to the fiber and look at the 
broadside of the scattering center, a vertical dark band appears 
in the center of the back focal plane image, crossing the image 
from the top to the bottom. This is a damping of the radiation 
which is strongest if the light is scattered perpendicular to the 
direction of propagation. The same phenomena of θ dependent 
damping is also observed for the small side and independent of 
fiber rotation around the z-axis (not shown).

4.2. Forward and Backward Scattering

Light scattered at very small or very large angles cannot be 
captured with the large NA immersion objective, because its 
opening angle is limited to αmax = ±62.9° (27.1° < θ < 152.9°). 
To extend the observable angular range of the microscope, 
we used a mirror to reflect the forward and backward scat-
tered light into the objective where we again image the back 
focal plane.

The images in Figure 5 of forward (left) and backward (right) 
scattering show a central hole surrounded by concentric rings 
(very faint in backscattering). This pattern decreases in inten-
sity and in distance in between the rings with increasing radius. 
Also, the brightness around the hole varies in magnitude: Its 
angular dependency is characterized by two bright lobes on 
opposing sides which are separated by a wider and dimmer 
scattering pattern.

The backward scattering shows almost now distinguish-
able pattern even though the exposure time in backscattering 
was 450 times longer than in forward scattering. Contrary to 
the side scattering in the previous subsection, the forward 

Adv. Optical Mater. 2020, 8, 2000633

Figure 4.  Back focal plane images of different perspectives and observation polarizations of the far-field scattering pattern from an excitation wave-
length of 540 nm with circular polarization. Brighter colors mean more light exposure. The patterns were enhanced with histogram equalization, so 
they only allow for qualitative comparison. Views correspond to the real space images in Figure 3. Guided light crosses the pictures from the left to the 
right and is circularly polarized. Light on the right side of the circle is small angle forward scattering and on the left is large angle backward scattering. 
These images correspond to viewing the sphere from Figure 1 along the βx- or βy-axis.

Figure 3.  Phase contrast microscope images of the laser modifications in the fiber core. Top view is in the direction of laser irradiation and side view 
is orthogonal to it. Four images of similar scattering centers are provided (zoom in). The boundary of the fiber core shows up as two blurry horizontal 
lines in the background.
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scattering does not show a strong polarization dependency in 
the intensity distribution on the picture.

The dark irregular shaped hole in the middle of the picture is 
where the fiber is threaded through the mirror. The fiber itself 
can be seen as two dark horizontal lines. In Section  5, it will 
turn out that the rings are probably a diffraction effect caused 
by the cylindrical shape of the fiber, they are not the main focus 
of this paper.

5. Discussion

The form of the scattering center is a product of overlapping 
femtosecond laser pulses in the focal spot in the core of the 
fiber. Before the focal spot is formed, the converging beam 
undergoes a refraction on the cylindrical fiber surface which 
introduces aberrations and turns the rotationally symmetric 
focal spot into a flat ellipsoid. Then, the overlapping of several 
laser pulses causes an evolutionary process inside the irradiated 
volume, which results in an average increase of the refractive 
index and the formation of stochastic fluctuations.[20]

The change in refractive index is attributed to the generation of 
a hot electron plasma which quickly (<10 ps) transfers its energy 
to the glass matrix. Micro explosions[21] for high pulse energies 
like in the present case produce random density fluctuations. It is 
well-known that fast heating and quenching leads to an increase 
in the glass’ fictive temperature,[22,23] which, in the case of fused 
silica, is associated with an increase in refractive index.[13]

The measured mean value of 〈Δn〉 = 0.023 is very high for a 
modification in fused silica created with a femtosecond laser. 
Typical values recorded on optical waveguides are in the range 
of up to 10−3 with a threshold value of 3 × 10−3.[24,25] When 
higher pulse energies are applied for inscription, the wave-
guides start to be too strongly scattering to be functional. Both 
the energy range and the scattering effect are consistent with 
the present light scattering modifications which were produced 
at 2.5 μJ.

5.1. Speckles

The far-field grain pattern which is observed in the back focal 
plane of the objective as shown in Figure 4 is the result of the 
interaction of the laser light with the refractive index distortion. 
The shape of the grains is very similar to a laser speckle pat-
tern which can be observed when a rough surface interacts 
with coherent monochromatic light.[26] Laser speckles are 
caused by the overlapping spherical wavelets with uncorrelated 
phase which are generated by multiple scattering regions on a 
rough surface.

In Section  2, we show that the pattern is a result of over-
lapping spherical wavelets generated by the interaction of the 
guided light with the refractive index fluctuations inside the 
modified volume. Also, due to the finite correlation length of 
the autocorrelation function, we obtain different contributing 
regions. We conclude that in the present case we generate 
volume speckles while common speckles are generated on 
a surface. The presence of speckles also signifies the spatial 
limitation of the (stochastic) interior of the modification: if the 
number of contributing regions would be large enough, the 
pattern becomes finer and smoothed-out; if there is a direc-
tional spatial limitation, the speckles get elongated as in the top 
view in Figure 4.

We also observe a strong dependency of the speckle 
pattern on polarization: one direction shows a strong θ 
dependency. This is a result of the cos θ factor stemming 
from the polarization component 



ee  derived in Equation (7). 
Light, which is polarized parallel to the plane spanned by the 
incident and the scattered wave vector, cannot be scattered 
parallel to the polarization direction. This supports our idea 
that it is sufficient to image the ee⊥  component of the scat-
tering pattern via filtering to obtain an undisturbed picture. 
Furthermore, this is also in agreement with the observation 
that forward and backward scattering patterns have no polar-
ization dependence because in this angular range the cosine 
is almost unity.
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Figure 5.  Forward and backward scattering pattern captured by reflecting the scattered radiation on a tilted mirror. In the middle of the picture is the 
hole where the fiber is threaded through the mirror (Figure 2). The optical fiber is bound by two dark horizontal lines and distorts the image beneath it. 
A pattern of concentric rings is centered on the hole, whose underlying intensity distribution shows an angular dependency: two bright lobes emerging 
from the hole pointing upward and downward. Rings in backscattering are very faint.
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5.2. Assembling an All-Around View and Averaging

The Fourier-plane images of Figure  4 show only a segment of 
the whole spherical far-field scattering pattern, which makes it 
difficult to compare the brightness of the angular distribution 
around the fiber. To obtain a more complete picture, we assem-
bled a full 360° view in φ by stitching together 8 perspectives 
which were imaged in steps of Δφ  = 45°. The result is shown 
in Figure 6. It represents a map of the far-field side scattering 
pattern, which is still limited to 0.47 < θ < 2.67 due to the max-
imum opening angle of the objective. Wrapping this map on 
a sphere comes closest to a true representation of the far-field 
scattering pattern where the modification is in the middle of the 
sphere as shown in Figure 1. The pattern itself consists of many 
small speckles. These are present on the whole map, but their 
brightness follows an enveloping pattern which depends on θ 
and φ. Their presence is harder to detect for large scattering 
angles θ without enhancing the contrast of the pictures as in 
Figure 4. We average the normalized maps of 90 similar modifi-
cations for an estimate of the enveloping intensity distribution. 
This leads to the smooth average distribution in Figure 6b.

Both maps show the same overall features in θ and φ: A 
strong increase in scattering power with decreasing polar 
angel θ, which means that the modifications are preferentially 
forward-scattering. Furthermore, the map shows a sinusoidal 
dependency of the brightness with the azimuthal angle φ. By 
comparing the real space and the Fourier images we find that 
the bright lobes coincide with the broad side of the scattering 
center and the dark bands with the small side of the scattering 
center. This is consistent with the forward scattering pattern 
which shows the same feature as the two side lobes.

For very large scattering angles (θ > π/2), the far-field inten-
sity approaches a low but constant value. This is the Rayleigh 
scattering background[7] caused by the increase in glass’ fictive 
temperature[22,27,28] inside the modified volume. In the frame-
work of our model, this can be treated as white noise back-
ground fluctuation which has a flat power spectrum.[4] Rayleigh 
scattering has no angular dependency in the present polari-
zation direction, so it is treated as an additive constant to the 
angular scattering pattern.

Comparison of the single and the average map shows four 
important properties: First, the grain pattern is the noisy power 
spectrum of one realization of the stochastic fluctuations inside 
the modification (Equation (9)). Second, the feature of two bright 
and two dark regions in φ as well as the increase in scattering 
for small θ is a general property that all scattering centers share. 
Third, the φ-dependency is a consequence of the ellipsoidal 
shape of scattering volume. Fourth, the decline of scattering 
power with θ is rotational symmetric in φ and therefore is caused 
by the radial functions Snn and Scc. The preferential forward scat-
tering indicates that the power spectrum of the fluctuations has 
its maximum at way larger wavelengths than the scattered light. 
Therefore, it can be approximated by a radial exponential.

5.3. Computed Scattering Pattern

Having obtained the average scattering map, we now show 
that we can reproduce a qualitatively similar scattering pattern 
as laid out in Section 2. From Equation (20) we know that the 
average angular scattering distribution is caused by the super-
position of four terms which all consist of a convolution with 
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Figure 6.  a) Maps of the far-field scattering pattern of a single modification assembled from eight back focal plane pictures which were imaged by 
rotating the fiber in steps of 45°. It shows the angular dependency of the far-field grain pattern. b) Average scattering map of 90 modifications. It shows 
the enveloping distribution which governs all scattering patterns. Both maps have constant spacing in polar θ and azimuthal φ angle.
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the absolute square of the 3D Fourier transforms of the modi-
fied volume | { } |3 2VF .

The first step of the computation is to define the computa-
tional volume: The edge length in real space (l = 20 µm) defines 
the smallest resolvable Δβmin  = 1/l vector due to the scaling 
property of the Fourier transform. The relation between the 
largest Δβmax  = βi/2 and the smallest defines the resolution 
Δβmax/Δβmin. Here the amount of computer memory available 
is the limiting factor for increasing the resolution because the 
data increases with the volume and therefore with resolution 
to the power of three (for this reason we choose only half of βi 
to reduce computational effort). The modification is defined in 
the center of the computation grid as an ellipsoid (1 = x2/a2 + 
y2/b2 + z2/c2) with the semi-axis corresponding to the measure-
ments from Figure 3: a = 15.2 µm, b = 1.7 µm, and c = 11.1 µm.

From this, we calculate the discrete Fourier transform and 
store it into an array. Additionally, we blur it with a normalized 
radial exponential SVV (τ = 0.3 cm−1) to account for the random 
surface. Then the three other terms are computed by calcu-
lating the convolution with two different normalized exponen-
tials representing Snn (τ = 2 cm−1) and Scc (τ = 3 cm−1) (the latter 
just acts in the z-direction). The τ-values are chosen by hand to 
fit the measured curve and the results are weighted and added 
up. The final result is a 3D array in Δβ-space, where we find the 
observed scattering pattern by extracting only the values on the 
spherical shell from Figure 1 by interpolation.

The general trend for forward and side scattering is repro-
duced by adjusting the weight of Snn to 5% and of Scc to 3.5% 
of the deterministic diffraction pattern | { }|3 2VF . This is pre-
sented in Figure 7 where we compare the calculations to both 
measurements. Since the angular range for side and forward 
scattering doesn’t overlap, both measured curves require dif-
ferent normalization. Two graphs on the top left show the scat-

tering power over Δβ in comparison to the calculation viewed 
as a slice through the maximum (βy-βy-plane) and minimum 
(βx-βy-plane). The contributions of the different convolutions 
are broken down in the corresponding images below: it shows 
that the expected scattering pattern for large Δβ is determined 
by Scc; for intermediate by Snn and for small by V SVV| { }| *3 2F .  
The latter also causes the asymmetry between minimum and 
maximum. The Snn * Scc term has almost no effect because it is 
too spread out.

Still, there are some noticeable deviations between compu-
tation and observation especially when we compare the whole 
map for sideward scattering in Figure 7 on the right. The mod-
eled scattering lobes (maxima) are narrower than the observed 
ones even though they have almost the same amplitude. This 
is a consequence of the simple geometry of our calculated scat-
tering center: the high aspect ratio of the ellipsoid leads to a very 
narrow diffraction pattern due to the reciprocal scaling property 
of the Fourier transform. This mismatch indicates that the real 
scattering center has a significantly more complex shape with a 
broader spectrum of large Δβ components. Nevertheless, even 
the chosen simple geometry reproduces the same general prop-
erties in φ and θ which were observed in the experiment.

All deviations from the ideal optical fiber scatter light, there-
fore the presented model also helps to understand the observa-
tions made by other researchers.[8,9] Fonjallaz et  al. and Janos 
et al. reported that light scattering of their fiber Bragg grating 
shows a similar azimuthal dependency with respect to the laser 
writing direction as in this experiment. We argue that this is 
also caused by the asymmetry of the refractive index modifica-
tions in the optical fiber; it is ultimately a consequence of the 
asymmetry of the focal volume: it is tighter focused in y than in 
z-direction due to the refraction of the femtosecond laser on the 
fiber surface. Consequently, the inverse scaling property of the 
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Figure 7.  Comparison of the calculated scattering pattern with the experimental data. a) Top: Comparison of the Δβ dependency of the calculated scat-
tering pattern with the measurements in forward and sideward scattering. The dip for small Δβ is due to the hole in the mirror (gray area). Bottom: 
Contributions of the convolution terms from Equation (20) to the computed cumulative scattering pattern 〈S〉. b) φ dependency of the calculated scat-
tering pattern compared to the measured side scattering pattern. The patterns have been integrated with respect to θ to yield the graph at the bottom.
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Fourier transform turns the scattering pattern brighter in the 
direction of the smaller extent.

An important consequence of this finding is that the shape 
of the modification can be used to influence the φ-dependency 
of the scattering pattern: If one wants to have it constant in φ, 
the scattering center should be rotationally symmetric; if one 
wants to have a certain number of maxima in φ, the modifi-
cation should reflect this requirement in its symmetry. On the 
other hand, homogeneous scattering in θ would require a flat 
power spectrum of Snn in the range of the phase matching con-
dition [−2Δβ, 0]. As of writing this document, it is unknown 
how to selectively influence the spectra of the refractive index 
fluctuations with femtosecond laser irradiation. In a previous 
work,[11] we found the maximum scattering loss for similar 
modifications to be around 900 nm, which means that a max-
imum of Snn could be in that range. So, while the modification 
is predominantly forward scattering in the visible, in the near 
infrared it could already be homogeneous.

5.4. Forward Scattering Pattern

The concentric rings are the most prominent feature of the 
forward and backward scattering pattern. They were already 
observed by Rawson[7] in his investigation of scattering loss 
in unmodified optical fibers. He gave the interpretation that 
they are the circular symmetric equivalent of laser speckles. 
If this explanation can also be applied in this case, then aver-
aging several pictures of them should remove the rings and 
give us the enveloping function like in the previous subsec-
tions. The average intensity distribution from 100 different 
positions is shown in Figure 8b. It shows that even though the 
rings become less sharp, a visible ring pattern remains, which 
implies the presence of a deterministic diffraction pattern.

This is unlikely a product of the modifications themselves 
because when we compute the scattering pattern as in the pre-
vious section, we obtain the result shown in Figure  8a. Here, 
we see two lobes emerging from the center of the computed 
forward scattering pattern, which neatly correspond to the 
observed lobes in forward scattering. This is the pattern of the 

modification. The two-lobe shape is again due to the reciprocal 
scaling effect of the Fourier transform, it causes the scattering 
to be dominant in the direction of the smallest extend of the 
modification in real space. In this way the elliptical cross sec-
tion is imprinted on the forward scattering as it was the case 
for the side scattering. The difference between the computed 
and the observed scattering pattern is because the shape of the 
real scattering center is only approximately an ellipsoid as we 
already mentioned in Section  5.3. We additionally computed 
the diffraction pattern of two modifications with a distance 
of 200  µm, which shows the same two-lobe diffraction pat-
tern (not shown), so we can rule out an interaction of several 
scattering centers.

Regarding an explanation for the circular ring pattern we 
argue that it originates either from the core–cladding or from 
the cladding–oil transition because it resembles an Airy disc. 
To demonstrate this in the framework of our present theoretical 
approach, we model the diffraction behavior by treating a sec-
tion of the core itself as a refractive index distortion interacting 
with a plane wave. For modeling, we chose a cylindrical seg-
ment with a diameter of 20  µm and a length of 30  µm. The 
computational volume in real space was as long as the core seg-
ment in the z-direction but was extended to 80  µm in x and 
y. This zero padding was done in order to increase frequency 
resolution to help to resolve the ring pattern.

The result of the calculation is shown in Figure 8c. The dif-
fraction pattern shows concentric rings whose distance and 
intensity decreases from the inside to the outside. From this 
similarity we conclude that the pattern could be caused by 
the fiber core itself. The light flux fueling this phenomenon is 
probably the main diffraction lobe of the modification which 
is shown in Figure  7a but cannot be observed due to experi-
mental restrictions (the hole in the mirror). This would make 
this a very low angle scattering effect no longer covered by the 
volume current method. This almost unknown effect could 
have implications for the development of long period fiber grat-
ings because it could influence the coupling from core to clad-
ding modes.[29]

There is certainly much ambiguity in setting the values of the 
equations. The problem at hand is that very little independently 

Figure 8.  Images of the forward scattering pattern: a) Calculated scattering pattern for an ellipsoidal modification shows diffraction lobes but no ring 
structure. b) Measured average forward scattering pattern shows side lobes with visible rings. The white lines are the min/max cross sections where the 
forward scattering curves from Figure 7 were taken from. c) Calculated diffraction of a plane wave on the fiber core shows concentric rings (log scale).
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measured data are available on the properties involved in the 
scattering process, especially the mean refractive index change 
and its variance. Nevertheless, future experiments could extract 
the power spectrum of the fluctuations from a fiber transmis-
sion measurement. Then the volume and the average refractive 
index change can be measured with microscopy techniques and 
the resulting scattering pattern could be calculated with less 
ambiguity and compared to the scattering measurements.

6. Conclusions

In conclusion, we derived an equation for the scattering pattern 
of a stochastic refractive index distortion of arbitrary shape in an 
optical fiber. This enables the calculation of the angular emis-
sion behavior as well as the interpretation of measurements for 
any kind of refractive index modification. The scattering power 
scales quadratically with the average induced refractive index 
change and the volume of the modification, which allows for 
precise quantitative control of the scattering process.

We experimentally determined the far-field scattering pat-
tern of many similar refractive index modifications created 
with focused femtosecond laser irradiation: almost the full 
solid angle far-field scattering pattern was successfully imaged. 
This showed that while a single pattern is dominated by laser 
speckles, the average of several patterns follows an enveloping 
intensity distribution.

Several remarkable features of the scattering process could 
be assigned to different properties of the refractive index dis-
tortion by qualitatively comparing the calculated and the meas-
ured scattering patterns. We conclude that it is ultimately the 
shape of the scattering volume which determines the azimuthal 
dependency and that the power spectrum of the refractive index 
fluctuations determines the polar angle dependency. This prop-
erty can now be used to engineer the angular distribution of 
the scattering pattern, which paves the way to a completely new 
class of tailored optical fiber emitters.
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