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Abstract

Earthquakes are among the largest and most destructive natural hazards known to hu-
mankind. While records of earthquakes date back millennia, and systematic studies of
earthquakes have been conducted for over a century, many questions about their nature
remain open. One particularly interesting question is termed rupture predictability: to
what extent is it possible to foresee the final size of an earthquake while it is still ongoing?
This question is integral to earthquake early warning systems trying to provide informa-
tion about ongoing earthquakes to places where shaking has not yet arrived, thereby
allowing for last moment preparatory action. Still, research on this question so far has
reached contradictory conclusions.

In recent years, the advent of big data and big data analysis techniques opened up
novel opportunities for investigating rupture predictability. The amount of data available
for earthquake research has grown exponentially during the last decades, as for many
other scientific domains, reaching now tera- to petabyte scale, with future growth to be
expected. This wealth of data, while making manual inspection infeasible, allows for
data-driven analysis and complex models with high numbers of parameters. One class of
these models are machine learning methods, in particular, deep learning methods. Deep
learning has gained overwhelming interest across domains in the last decade, driven by
new developments in the field. In seismology, it already led to considerable improvements
upon previous methods for many analysis tasks. Nonetheless, the application of deep
learning methods to seismological observables is still in its infancy.

In this thesis, we develop machine learning methods for the study of rupture pre-
dictability and the closely related task of earthquake early warning. We first study the
calibration of a high-confidence magnitude scale in a post hoc scenario. For this, we
develop a hybrid approach, based on mathematical optimisation and machine learning.
Subsequently, we focus on real-time estimation models based on deep learning. We de-
velop the transformer earthquake alerting model (TEAM), a method for earthquake early
warning, estimating ground motion parameters directly from seismic waveforms. TEAM
outperforms traditional early warning methods in terms of warning times and the relation
between true, false and missed alerts. Based on TEAM, we develop TEAM-LM, a model
for real-time location and magnitude estimation. TEAM-LM outperforms both classical
approaches and previous deep learning approaches. Using TEAM-LM, we study the ad-
vantages and shortcomings of deep learning for earthquake assessment. While showing
excellent average performance, deep learning models exhibits systematic mispredictions in
face of data sparsity. In particular, large magnitudes are systematically underestimated.
We discuss and evaluate strategies for mitigating this issue.

In the last step, we use TEAM-LM and the insights gained through its analysis to
study rupture predictability. For this, we collate a dataset of teleseismic P wave arrivals,
encompassing events and stations worldwide. We complement this analysis with results
obtained from a deep learning model based on moment rate functions. Our analysis shows
that earthquake ruptures are not predictable early on, but only once their peak moment
release has been reached, after approximately half of their duration. Even then, potential
further asperities can not be foreseen. While this thesis finds no rupture predictability,
the methods developed within this work demonstrate how deep learning methods make a
high-quality real-time assessment of earthquakes practically feasible. We hope that these
results will allow improving future earthquake early warning systems, and thereby help
to reduce the harm caused by earthquakes.






Zusammenfassung

Erdbeben gehéren zu den grofiten und zerstorerischsten Naturgefahren auf diesem Pla-
neten. Obwohl das Auftreten von Erdbeben seit Jahrtausenden dokumentiert ist und auch
systematische Studien seit mehr als einem Jahrhundert durchgefiihrt werden, bleiben viele
Fragen zu Erdbeben unbeantwortet. Eine besonders interessante Frage ist die Vorher-
sagbarkeit von Brichen: Inwieweit ist es moglich, die endgiiltige Grofle eines Bebens
zu bestimmen, bevor der zugrundeliegende Bruchprozess endet? Diese Frage ist zen-
tral fiir Frithwarnsysteme. Diese Systeme messen die ersten Erschiitterungen des Bebens
und senden Warnungen an Orte, an denen starke Erschiitterungen zu erwarten sind, um
kurzfristige Schutzmafinahmen zu ermdoglichen. Die bisherigen Forschungsergebnisse zur
Vorhersagbarkeit von Briichen sind widerspriichlich.

big data und Methoden zum Analysieren dieser grofien Datenmengen in den vergan-
genen Jahren haben neue Moglichkeiten zum Studium der Vorhersagbarkeit von Briichen
eroffnet. Die Menge an verfiigbaren Daten fiir Erdbebenforschung wichst exponentiell
und hat den Tera- bis Petabyte-Bereich erreicht. Wahrend viele klassische Methoden,
basierend auf manuellen Datenauswertungen, hier ihre Grenzen erreichen, ermoglichen
diese Datenmengen den Einsatz hochparametrischer Modelle und datengetriebener Ana-
lysen. Eine Art dieser Modelle sind Methoden des maschinellen Lernens, insbesonderes
des deep learning. Gestiitzt durch methodische Durchbriiche hat deep learning in einer
Vielzahl von Anwendungsfeldern grofie Bedeutung gefunden. Auch in Seismologie erzielen
deep learning Ansétze deutliche Verbesserungen gegentiiber klassischen Methoden. Aller-
dings sind viele Moglichkeiten der Anwendung von deep learning in Seismologie noch
unerforscht.

Diese Doktorarbeit befasst sich mit der Entwicklung von Methoden des maschinellen
Lernens zur Untersuchung der Vorhersagbarkeit von Briichen und der Frithwarnung vor
Erdbeben. Wir untersuchen zuerst die Kalibrierung einer hochprazisen Magnitudenskala
in einem post hoc Scenario. Hierfiir entwickeln wir einen hybriden Ansatz, basierend
auf mathematischer Optimierung und maschinellem Lernen. Nachfolgend befassen wir
uns mit Echtzeitanalyse von Erdbeben mittels deep learning. Wir préasentieren TEAM,
eine Methode zur Frithwarnung. TEAM schétzt direkt aus den seismischen Wellenformen
die zu erwartende Stérke von Bodenbewegungen. TEAM ermoglicht lingere Warnzeiten
als traditionelle Ansétze bei einem besseren Verhéltniss von korrekten, falschen und ver-
passten Warnungen. Auf TEAM aufbauend entwickeln wir TEAM-LM zur Echtzeit-
schatzung von Lokation und Magnitude eines Erdbebens. TEAM-LM verbessert die
Magnituden- und Lokationsschéatzungen im Vergleich zu klassichen Modellen und vorange-
gangenen deep learning Ansatzen. Anhand von TEAM-LM analysieren wir die Starken
und Schwiachen von deep learning Modellen zur Erdbebenanalyse. Im Gegensatz zur
ausgezeichneten Durschnittsqualitat zeigt das Modell systematische Fehler fiir Beispiele
mit unzureichenden Trainingsdaten. Wir diskutieren und evaluieren mogliche Losungs-
strategien fiir dieses Problem.

Im letzten Schritt untersuchen wir die Vorhersagbarkeit von Briichen mittels TEAM-
LM anhand eines Datensatzes von teleseismischen P-Wellen-Ankiinften. Dieser Analyse
stellen wir eine Untersuchung von Quellfunktionen grofier Erdbeben gegeniiber. Unsere
Untersuchung zeigt, dass die Briiche grofler Beben erst vorhersagbar sind, nachdem die
Hélfte des Bebens vergangen ist. Selbst dann kénnen weitere Subbriiche nicht vorherge-
sagt werden. Nichtsdestotrotz zeigen die hier entwickelten Methoden, dass deep learning
die Echtzeitanalyse von Erdbeben wesentlich verbessert. Wir hoffen, dass diese Ergebnisse
Frithwarnsysteme verbessern werden und helfen, Schaden durch Erdbeben zu reduzieren.
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1 Introduction

Every day, countless earthquakes occur throughout many regions worldwide, caused by
ruptures of seismic faults [Stein and Wysession), 2003, Shearer, 2009]. While most of these
earthquakes cannot be felt by humans, but are only recorded with sensitive instruments,
some of them cause noticeable ground shaking. Every year, several earthquakes cause
significant damage, and every decade some earthquakes cause widespread devastation
and loss of human life. Some recent examples are the 2015 Gorkha earthquake (Nepal),
the 2010 Haiti earthquake, and the 2004 Sumatra-Andaman earthquake. This renders
earthquakes among the most destructive natural hazards.

Given the threat posed by earthquakes, it is essential to build a deep understanding
of these events. Observations of earthquakes have been documented for several millennia
[Marcellinus|, around 390]. Within the last century, seismic instruments have been de-
ployed worldwide, allowing for quantitative recordings of ground shaking [Richter, 1935].
This has led to a very good understanding of the propagation of the seismic waves emit-
ted by earthquakes. However, many questions about the earthquakes themselves remain
open. For example, while it is possible to assess the likelihood of earthquake occurrence
in a certain region in a time frame of years to tens of years, specific earthquakes can not
be predicted, i.e., it is not possible to pinpoint the time, location and size of a future
earthquake [Jordan et al., 2011].

Given the impossibility of earthquake prediction, a common strategy for reducing the
impact of large earthquakes is earthquake early warning [Allen and Melgar}, 2019]. The
goal of early warning is to detect earthquakes as early as possible after their nucleation and
to provide warnings to affected locations. As the damaging seismic waves usually require
seconds to tens of seconds to travel from the earthquake source to vulnerable targets,
this time can be used to take preparatory action |Allen and Melgar, |2019]. For successful
early warning, it is essential to correctly assess the impact of an earthquake early on,
usually by determining its size in terms of its magnitude. Large earthquakes have rupture
durations of seconds to tens of seconds, the same or sometimes even longer than the travel
time of the seismic waves from the source to the target. To assess the maximum potential
warning times achievable with early warning, it is, therefore, necessary to understand how
well the size of an earthquake can be constrained while its rupture is still ongoing. This
question is known as rupture predictability [Allen and Melgar, 2019]. One one hand, the
size might already be defined at the event onset. On the other hand, the rupture might
be driven by a stochastic process and therefore the final size might be unclear until the
event arrests. Which of these scenarios occurs has a major impact on the warning times
and thereby defines fundamental limitations on the effectiveness of early warning systems.

Traditionally, rupture predictability is studied through model- or hypothesis-driven
research. In a model-driven approach, a physical or empirical model for the rupture pro-
cess, in particular, for its initiation, is proposed. Based on the model, certain observables
can be predicted. By measuring the agreement or disagreement between predicted and
observed data, the model’s validity can be assessed. In hypothesis-driven research, a the-
ory is postulated, for example, a connection between a certain measurable parameter X
and the size of an earthquake. This connection can, again, be verified or falsified using
statistical inference over the observational data. In recent years, a novel approach has
gained popularity: data-driven research. Using data mining techniques, patterns are ex-
tracted from large collections of data. These patterns can then be studied to gain insights
into the underlying question, in this case, rupture predictability. This transition towards
data-driven methods has been described for solid Earth geoscience [Bergen et al., 2019],
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Figure 1.1: Size of the IRIS (Incorporated Research Institutions for Seismology) archive
for seismic waveforms over time. Figure adapted from IRIS, originally available at https:
//ds.iris.edu/files/stats/data/archive/Archive_Growth.jpg, last accessed 16"
February 2022.

but also across other disciplines [e.g. |Carrol and Goodstein) 2009| [Shih and Chai, [2016].
In contrast to hypothesis- or model-driven research, data-driven research can model by far
more complex relationships, even though often at the drawback of lower interpretability
of the findings.

The advent of data-driven research can be attributed to three drivers: the availability
of data, the development of novel methods, and the availability of computational capaci-
ties. These factors have led to breakthroughs throughout scientific disciplines
et al. 2012, |Stokes et all [2020, |Jumper et al.| [2021]. While compute capabilities and
methods are mostly independent of the field of application, data availability is an aspect
specific to a field. Seismology is a data-rich field. Given the large number of both perma-
nently and temporarily deployed seismic stations, the amount of seismic data in archives
has grown exponentially over recent decades (Figure . In addition, not only is the
amount of continuous waveform data large but records have also been associated with
tens of millions of earthquakes, even though mostly with small events.

Most computational methods underlying the major data-driven breakthroughs in re-
cent years used the principles of neural networks and deep learning [LeCun et al., 2015].
Neural networks, developed 80 years ago, were designed to mimic the structure of the hu-
man brain [McCulloch and Pitts| [1943]. Like all machine learning models, neural networks
are trained by fitting them to example data. Through several methodological advances,
it recently has become possible to build and train very large neural networks, a discipline
now called deep learning [LeCun et al., 2015]. Deep learning models have been proven to
be particularly effective when applied to high dimensional data, as is the case for most
seismological observables. In addition, deep learning methods benefit strongly from being
trained on very large collections of examples. As outlined in the previous paragraph, such
data is available in seismology. These factors make data-driven approaches, in particular
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1.1 Goals and contributions

Table 1.1: Overview of the main characteristics for the three methods introduced in
this thesis. The methods are a method for magnitude scale calibration, the transformer
earthquake alerting model (TEAM), and a TEAM adaptation for location and magnitude
estimation (TEAM-LM).

Calibration TEAM TEAM-LM
Time scale post hoc real-time real-time
Input event catalog, waveforms waveforms
waveforms
Features hand designed automatic (CNN) automatic (CNN)
Modelling hybrid (physics deep learning deep learning
motivated
corrections,

gradient boosting)

Output magnitude ground shaking magnitude, location
(probabilistic) (probabilistic)
Reference Chapter Chapter Chapter
[Minchmeyer et al., [Miinchmeyer et al., [Miinchmeyer et al.,
2020] 2021b)| 20214

deep learning, a prime candidate for studying rupture predictability. This might enable
us to identify complex indicators of rupture predictability that could not be derived with
a model- or hypothesis-driven approach.

1.1 Goals and contributions

In this thesis, WGE study earthquake rupture predictability through real-time assessment
of the earthquake source parameters. To this end, we use two observations about the
relation between practical methods and physical limitations of real-time earthquake as-
sessment. First, any practical method is a lower bound on the physical limitations, i.e.,
building a method that achieves a certain precision and timeliness implies the physical
feasibility of the same. Second, by analysing the limitations of high-quality methods
and comparing them to physics-based models, we can infer hypotheses on rupture pre-
dictability and gather evidence for potential physical limitations. Until recently, existing
real-time methods were insufficient to conduct this type of study, lacking either precision
or timeliness. In this thesis, we show how the application of deep learning, combined with
the exponential growth of seismic data, allows building accurate real-time methods for the
study of rupture predictability. As this thesis combines machine learning method devel-
opment with an underlying geophysical question, it takes an interdisciplinary standpoint,
positioned between computer science and seismology.

In conjunction with the central goal of this thesis, we pursue two further, related
aims. First, the limitations of earthquake assessment with machine learning in a post
hoc scenario remain yet unexplored. Exploring these limitations contributes towards

! Throughout this thesis, we use the 1% person plural, highlighting that the results were obtained in a
collaboration of me and all coauthors of the underlying publications presented. The specific contributions
of each author to the publications are described in Chapter Where appropriate, further details on
the contributions are given in the footnotes.
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the main goal, as it provides high-quality reference data and a reference frame for the
performance of real-time methods. Post hoc earthquake assessment is therefore part of
this thesis. Second, real-time assessment methods, besides their relevance for studying
rupture predictability, are essential for earthquake early warning systems. Therefore, this
thesis also studies the application of the developed methods to early warning.

The scientific contributions of this thesis can be split into three categories: method
contributions, theoretical contributions, and seismological insights. On the methods side,
this thesis introduces three new ideas:

e a method for the post hoc calibration of high confidence magnitude scales

e the transformer earthquake alerting model (TEAM), a deep learning based earth-
quake early warning method using real-time waveforms

e TEAM for location and magnitude estimation (TEAM-LM), a deep learning model
for real-time earthquake source parameter estimation

In addition, we introduce an adaptation of TEAM-LM to teleseismic waveforms. Each of
these methods is accompanied by an extensive study of its performance and properties.
An overview of the main characteristics of the different methods is provided in Table

On the theoretical side, we introduce a general, yet comprehensive, formulation of
rupture predictability in terms of stochastic processes and conditional distributions. Using
this model we argue that rupture predictability is an inherently probabilistic question,
and identify shortcomings of the deterministic view on rupture predictability. We show
how the conditional probabilities in our formulation can be estimated from data using
variational inference. This enables probabilistic analyses of rupture predictability, which
we conduct for two sets of observables.

On the seismological side, the first contribution are high confidence magnitude values
for the Northern Chile earthquake catalog by |Sippl et al. [2018]. The second, and main,
contribution is the study of earthquake rupture predictability based on moment rate
functions and teleseismic P arrival waveforms. We show that no signs of early rupture
predictability exists in these observables, not even in a probabilistic sense.

1.2 Outline

This remaining part of this thesis is composed of the scientific background, four chapters
presenting the main contributions, and a conclusion with an outlook on future research
questions. The main text is supplemented by an appendix, providing additional figures
and tables, as well as technical method details. The appendix structure mirrors the
structure of the four main chapters.

Chapter 2] provides the scientific background to the thesis. To account for the interdis-
ciplinary nature of this thesis, the background is constituted of both a part on earthquakes
and seismic waves and a part on machine learning and deep learning. The chapter closes
with an overview of applications and developments of machine learning and deep learning
in seismology. Throughout the chapter, we aim to provide an intuition of each concept
introduced that will aid the understanding of the later main chapters. Therefore, we
derive most concepts from the underlying mathematical principles, rather than providing
a hands-on guide.

Figure [1.2| provides an overview of the four main chapters in the context of an earth-
quake. The earthquakes emits seismic waves. These can be recorded as seismic waveforms,
or more generally speaking observables O; until time ¢. These waveforms are the main
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Figure 1.2: Overview of the four main chapters of this thesis in the context of an earth-
quake. The red star visualises an earthquake, characterised by its magnitude M and its
(hypocentral) location Loc. The dashed lines show travel paths of seismics waves. To the
right, they are recorded at a seismometer (blue triangle) as a seismogramm, the observ-
ables Oy. To the left, they hit a city, causing shaking characterised by the peak ground
acceleration PGA,. The four bottom panels show Chapters [3] to [6] (left to right). Each
panel provides an abbreviated chapter title, the time scale, and the modelled property of
the event.

type of input data we study throughout this thesis. Chapter [3| discusses how to infer the
earthquake source parameters, in particular the magnitude M, from these observables
in a post hoc scenario. To this end, we present a novel method for the calibration of a
high confidence magnitude scale and its application to Northern Chile. Our method is
a hybrid approach consisting of two parts: physics-based attenuation correction terms,
derived using mathematical optimisation, and a combination of waveform features using
gradient boosted trees. We study the properties and characteristics of the method, as well
as the obtained magnitude scales and attenuation functions. Lastly, we apply the method
to augment the highly complete earthquake catalog for Northern Chile from [Sippl et al.
[2018] with high confidence magnitude values.

Seismic waves can cause damaging shaking at targets z, often characterised through
ground motion parameters, e.g., the peak ground acceleration PGA,. To reduce the re-
sulting damage, earthquake early warning methods can be used. Therefore, in chapter
we present the transformer earthquake alerting model (TEAM), an earthquake early
warning method based on deep learning. TEAM is a hybrid method between source
estimation based and propagation based earthquake early warning methods. For evalu-
ation, we use two datasets from highly seismically active regions, Italy and Japan. We
put special emphasis on the performance for large events and show how transfer learning
techniques can considerably improve performance for these cases.

Chapter [p|introduces an adaptation of the TEAM method called TEAM-LM. TEAM-
LM is a method with close architectural similarity to TEAM, but for the estimation of
earthquake source parameters, namely magnitude and location, instead of ground mo-
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tion. This way, TEAM-LM combines the methodology and time scale of Chapter [4] with
the target of Chapter [3] magnitude estimation. In addition to the datasets from Japan
and Italy used for the evaluation of TEAM in Chapter [4 we also evaluate TEAM-LM
on the dataset from the Northern Chile with the high confidence magnitude values from
Chapter [3| Due to the large number of events and the low uncertainties in both location
and magnitude estimates, this catalog serves as a gold standard for several analyses. We
compare TEAM-LM both to classical baselines and deep learning baselines. Furthermore,
we study the impact of training schemes, such as transfer learning or multitask learning,
on TEAM-LM performance. As a key issue, we identify significant performance degrada-
tion in low data scenarios, manifesting, for example, in a systematic underestimation of
large magnitude events. We show that this effect overshadows potential signs of limited
rupture predictability. We conclude that the currently available methods and datasets
are insufficient to draw conclusions on rupture predictability.

Chapter [6] presents a principled analysis of rupture predictability for large earthquakes,
a geophysical question inherent to real-time magnitude assessment. We first introduce a
probabilistic formulation of rupture predictability, posing the question in terms of con-
ditional distributions. We show how to estimate these distributions from data by using
neural networks and variational inference. To address the issue of insufficient data that
we identified in Chapter [f] we introduce two new observables: moment rate functions and
teleseismic waveforms. Due to their global scope, both provide more examples of large
events than the datasets in Chapter [5] mitigating the data sparsity issue. Furthermore,
moment rate functions incorporate physics-derived information, making the magnitude
estimation task easier. For both observables, we do not find any indication of early mag-
nitude predictability. Magnitudes can only be predicted after the peak of the moment
rate function, usually around half of the rupture duration. Even then, it is impossible
to foresee future asperities. This hints at a universal initiation behaviour of earthquakes
independent of their size.

Chapter [7] summarises the findings from Chapters [3|to [ and discusses future research
direction. We evaluate the potentials and limitations of the presented approaches, both
from a technical standpoint and concerning the potential underlying physical mechanism.

1.3 Own prior publications

Some parts of this thesis are based on work that has been published in peer-reviewed
publications. The magnitude calibration method and its evaluation presented in Chapter
have been published as:
J. Miinchmeyer, D. Bindi, C. Sippl, U. Leser, and F. Tilmann. Low uncertainty
multifeature magnitude estimation with 3-D corrections and boosting tree
regression: Application to North Chile. Geophysical Journal International,
220(1):142-159, Jan. 2020. ISSN 0956-540X. doi: 10.1093/gji/gez416

The TEAM method and its evaluation presented in Chapter [4] have been published as:
J. Miinchmeyer, D. Bindi, U. Leser, and F. Tilmann. The transformer earth-
quake alerting model: A new versatile approach to earthquake early warning.
Geophysical Journal International, 225(1):646-656, 2021b. ISSN 0956-540X.
doi: 10.1093/gji/ggaa609

The TEAM-LM method and its evaluation presented in Chapter [5| have been published
as:
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J. Miinchmeyer, D. Bindi, U. Leser, and F. Tilmann. Earthquake magnitude
and location estimation from real time seismic waveforms with a transformer
network. Geophysical Journal International, 226(2):1086-1104, 2021a. ISSN
0956-540X. doi: 10.1093/gji/ggab139

The study on rupture predictability in Chapter [6]is currently under review.

For all these publications, Jannes Miinchmeyer designed, conducted and evaluated the
experiments. Jannes Miinchmeyer wrote the manuscripts for all publications. Frederik
Tilmann, Ulf Leser and Dino Bindi contributed to the study design and the manuscript
preparation for Miinchmeyer et al.| [2020, 2021alb]. Frederik Tilmann and Ulf Leser con-
tributed to the study design and the manuscript preparation for the manuscript forming
the basis of Chapter @ For Minchmeyer et al.| [2020], Christian Sippl provided phase
picks and moment magnitude values, along with a supplementary text describing the
determination procedure for the moment magnitude values.

The SeisBench framework and the pick benchmark summarised in Chapter [7.1] have
been published in Woollam et al. [2022] and Miinchmeyer et al.,| [2022]. SeisBench was
developed by Jannes Miinchmeyer and Jack Woollam. The benchmark code and eval-
uation were implemented by Jannes Miinchmeyer. Jack Woollam wrote the SeisBench
manuscript in collaboration with all coauthors. Jannes Miinchmeyer wrote the bench-
mark manuscript in collaboration with all coauthors.

In a few places, this thesis refers to the master’s thesis from [Hauffe| [2021]. Jannes
Miinchmeyer suggested the study design and supervised the thesis. Viola Hauffe developed
the study design further, conducted and evaluated the experiments, and documented the
results.






2 Background

2.1 Seismic wave propagation

The central objects of study in this thesis are earthquakes. More specifically, this thesis
will analyse earthquakes using seismic observation, i.e., observations of ground motion.
Therefore, this section will present the fundamentals of seismic wave propagation, with the
following sections discussing earthquakes, their observation and characterisation. While
these concepts will be familiar to seismologists, these sections account for the interdisci-
plinary nature of the thesis. Most of the material presented is based on the textbooks by
Shearer| [2009] and Stein and Wysession [2003], as well as the New Manual of Seismological
Observatory Practice [Bormann, 2012].

The theory of seismic wave propagation can in large parts be derived from Newton’s
second law F' = ma, stating that the force F' on a body equals the product of its mass
m and the acceleration a acting on it. This law gives rise to the wave equation, a partial
differential equation (PDE), which for a homogeneous medium in a single dimension is
given as

2 2
Ou_ 20 (2.1)
ot? Ox?

with the displacement field u(t,z) : R?> — R, depending on time ¢ and position z. In
the one dimensional case, there exists one fundamental solution to this PDE, a wave
propagating with a velocity of CE| Note that for now, we only look at the homogeneous
case, i.e., without any outside forces acting on the system.

For the 3D case, a similar wave equation can be derived. The full formula and a
formal derivation is given, for example, in [Shearer, 2009, Chapters 2, 3] or [Stein and
Wysession,, |2003, Chapter 2]. For now, we assume a homogeneous, isotropic medium, i.e.,
a translation and rotation invariant medium, without any outside forces. The 3D seismic
wave equation has two fundamental solutions: P and S waves (Figure [2.1). P waves,
primary or also pressure waves, are longitudinal waves, i.e., they oscillate in the direction
of travel. P waves can travel in both solid and liquid mediaﬂ S waves, secondary or
also shear waves, are transversal waves, i.e., they oscillate in a direction orthogonal to
the direction of travel. S waves can travel only in solid media, but not in liquids. The
propagation velocities of P (v,) and S (vs) waves are properties of the medium. P waves
travel faster than S waves, with typical velocity ratios v,/vs around 1.7, even though
variations between different media are considerable.

The Earth is not homogeneous, with seismic velocity varying laterally and, to an
even larger extent, with depth, impacting seismic wave propagation. To discuss wave
propagation in inhomogeneous media, it is useful to model seismic waves as rays pointing
in the direction of travel of a plane wave. When a seismic wave hits an interface between
two media, it can be refracted or reflected, depending on the velocities in the two media.
For a horizontal interface, a wave passing from a medium with higher velocity into a
medium with lower velocity is refracted towards a steeper incidence angle. Furthermore,
interfaces can introduce conversions between different phases of seismic waves: P waves
can be converted to S waves and vice versa.

2Technically, there is a second solution, the wave with a velocity of —c. This solution only differs by the
direction of propagation. As we will disregard the direction of propagation when analysing the solutions
to the 3D wave equation in the following, we also regard the ¢ and —c solutions as identical here.

3P waves can also travel in gases as acoustic waves, however, this is rarely relevant in traditional
seismology. Nonetheless, P waves in the air caused by earthquakes can under certain circumstances be
recorded on infrasound sensors.
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Figure 2.1: P and S waves in a homogeneous medium travelling from left to right. The
P waves (top) travel through a sequence of compressions and dilations. The S waves
travel through shear displacement. In the visualisation, the polarisation of the S waves
is vertical. For both wave types, a segment of yet undisturbed medium is shown at the
right end. Note that the visualisation omits the third dimension, pointing orthogonal to
the page.

Average seismic velocities in the Earth’s interior can be described by a collection
of vertically stacked, homogeneous layers |[Dziewonski and Anderson, 1981]. Within the
crust and mantle, velocities increase with depth. At the core-mantle boundary (~ 2900 km
depth) seismic velocities drop. As the outer core is liquid, only P waves, but no S waves
can propagate through it. Given the velocity model, we can describe the ray travel paths
of seismic waves inside the Earth. Figure shows P wave travel paths in a regional
scenario, assuming a laterally uniform velocity model. The figure shows a source at
300 km depth and three recording stations at 500 km, 1750 km and 3000 km horizontal
distance. For the closest stations, there is only a single travel path, going directly upwards.
For both of the stations further away, there are multiple travel paths. Following Fermat’s
principle of extremal travel times, all rays depart downwards, as velocities in the lower
layers are higher. The travel paths consist of curved segments within layers with a velocity
gradient, refractions at interfaces, and in some cases reflections at interfaces. The waves
from these different travel paths can be identified as separate phase arrivals in seismic
recordings [Storchak et al., 2003].

A special case of interactions with interfaces are interactions of seismic waves with
free surfaces, as these produce surface waves. The amplitude of these waves decreases
with the distance to the free surface, giving rise to the name surface wave. This stands in
contrast to P and S waves that do not require a free surface and have constant amplitude
along a wavefront. P and S waves are therefore also called body waves. The wavefront of
a body wave from a point source in a homogeneous, isotropic medium is a sphere at any
time. Body wave energy density, therefore, decays with a factor 2 of the distance r from
the source, proportional to the surface of this sphere. In contrast, as surface wavefronts
only occur along a circle on the surface, their energy density only decays with a factor of
r, proportional to the circumference of this circle. Therefore, in far-field observations of
a seismic event (above several thousand kilometres), surface waves are usually the waves
with the highest amplitudes.
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Figure 2.2: Preliminary Reference Earth Model [PREM, [Dziewonski and Anderson, [1981]
for P and S wave velocities (right) and ray paths for P waves at regional distances (left).
The source at 300 km depth is shown by a black dot, the stations at the surface by black
triangles. The different rays show different possible travel paths, including paths with
interface reflections.

2.2 Earthquakes and their observation

An earthquake is the sudden release of seismic energy caused by two blocks of the Earth
suddenly slipping past each other. The interface between these blocks is called the fault
or fault plane (Figure . Earthquakes emit seismic waves that can be recorded and,
for sufficiently large events, also felt. Earthquakes can be caused by tectonic loading, i.e.,
the long-term movement of tectonic plates, but also by other factors such as volcanism or
hydraulic stimulation. The largest earthquakes occur along plate boundaries, as visible
in the map of global seismicity in Figure 2.4l In this section, we describe fundamental
properties of earthquakes that we will refer to throughout this thesis.

2.2.1 Types of faulting and focal mechanisms

Earthquakes exhibit different types of faulting, i.e., the type of motion of the sliding
blocks relative to each other , Chapter 9], which can be represented as focal
mechanisms. The three main types of faulting, strike-slip, normal and reverse/thrust, are
depicted in Figure 2.3] In a strike-slip event, blocks move horizontally along each other
with a vertical fault and no vertical displacement. Normal and reverse faulting occurs on
sloped interfaces. An event is called normal if the upper block moves downwards along
the slope, and reverse if it moves upwards. Reverse events with a shallow slope are called
thrust faulting. In practice, events sometimes exhibit a mixture of faulting types, for
example slipping both along the fault in horizontal direction (strike-slip) and along the
slope of the fault (normal/reverse).

Faulting types can be visualised through their focal mechanisms using so-called beach
balls (bottom row of Figure. Beach balls show the radiation pattern of the P wavefield:
in the black areas the waves are extensional, the first motion of the P wave is outward
from the source, in the white areas the waves are compressional, the first P motion is
towards the source. Along the planes connecting black and white areas, the so-called
nodal planes, no P waves are emitted. Note that in practice, in particular at higher
frequencies, shaking from P waves can be observed in the direction of the nodal planes

11
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Figure 2.3: Faulting types and focal mechanisms. The left column shows left-lateral
strike-slip faulting, the middle column normal faulting, and the right column a reverse
faulting. Reverse faults are called thrust faults if their dip is sufficiently small (roughly
< 45°). Arrows indicate the directions of motion. The bottom row shows beach balls,
visualisations of the faulting mechanisms, assuming a North-South orientation of the
depicted faults.

as well, for example, due to scattering. Each focal mechanism has two nodal planes,
the actual faulting plane and a so-called auxiliary plane with orthogonal orientation to
each other. Slip along the faulting plane produces the same radiation pattern as slip in
opposite direction along the auxiliary plane. The radiation pattern, therefore, does not
uniquely determine the faulting plane and mechanism. To identify along which plane a
rupture occurred, further information is required, such as context regarding the tectonic
setting, geodetic measurements, or, for large events, the distribution of aftershocks.

Notably, focal mechanisms describe the earthquake using a point source. While this
introduces a simplification, this assumption is sufficient for most analysis, in particular
for smaller earthquakes or for observations at large distances or low frequenciesE] Specific
effects of this point source assumption will be discussed in Chapters [4] and [6]

2.2.2 Magnitudes and source scaling relations

Earthquakes can be characterised using their magnitude. Informally speaking, magnitudes
measure the size of earthquakes. However, there are a plethora of magnitude scales,
measuring different properties of an earthquake [Bormann et al., 2013b]. An important,
early instrumental magnitude scale is the local magnitude My [Richter, 1935]. Richter
[1935] defined it using the peak displacement Apax on a Wood-Anderson seismometer, a
specific instrument, at 100 km distance to the earthquake source as

Amax

Here Ag is a normalising value. By varying Ag appropriately, accounting for the attenua-
tion with distance, the local magnitude can also be computed from recordings at distances
other than 100 km.

While well-established, the local magnitude is not based on a physical model of the
earthquake source, but empirically based on observations. As such, it is not per se a
measure of a property of the earthquake source, but rather of observable properties. The

4Not all effects resulting from the spatial extent of the rupture decay with distance. For example,
deviations from the radiation pattern of the focal mechanism due to rupture directivity effects are mostly
insensitive to distance. As these aspects are not relevant to this thesis, we refrain from a detailed discussion.

12
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Figure 2.4: Global seismicity, represented through the events in the Global Centroid
Moment Tensor (GCMT) catalog from 1976 to 2020 [Ekstrom et al., 2012]. Each dot
represents an event, colours encode the moment magnitude M,,. Large events are plotted
on top of smaller ones and with slightly increased size for better visibility.

most common magnitude scale based on source properties is the moment magnitude M,
[Hanks and Kanamori, |1979]. The moment magnitude M, is defined as

2
My = puDA (2.4)

where My is the seismic moment of the event in Nm. It is derived from the shear modulus
i, a property of the material, the average displacement D, and the slip area A. In contrast
to the definition of My, this definition does not immediately imply how to derive M,, from
observables. Instead, estimating M,, requires modelling the earthquake source based on
observations.

Depending on their magnitude, earthquakes release seismic energy at different fre-
quencies. This frequency dependence needs to be taken into account, for example, when
evaluating seismic hazard or analysing seismic waveforms. The distribution of energy
release across different frequencies is called the source spectrum of an earthquake [Bor-
mann et al., |2013b, Chapter 3.1.2.3]. Figure shows prototypical spectra in ground
displacement amplitude (left) and ground velocity amplitude (right). The model shows
a flat spectrum followed by a f~2 decay in displacement amplitude, and consequently an
f increase followed by a f~! decrease in velocity amplitude. The frequency with peak
amplitude in the (smoothed) velocity spectrum is called the corner frequency f.. The
corner frequency is lower the larger an event is, i.e., large events are depleted in high
frequencies. This prototypical model is simplified: while the f~2 decay is observed in real
earthquakes, decay rates can range from -1 to -3. Furthermore, actual source spectra are
considerably less smooth than the presented prototypical ones. Lastly, the spectrum also
depends on other parameters, such as the rupture velocity, or the (static) stress drop, the
average difference of stress on the fault before and after an earthquake |[Shearer, 2009,
Chapter 9.5].

13
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Figure 2.5: Prototypical earthquakes source spectra for different magnitudes M,, in
ground displacement amplitude (left) and ground velocity amplitudes (right). Ampli-
tudes have been rescaled to seismic moment and seismic moment rate. The diagonal line
indicates the corner frequencies f.. Source spectra were calculated assuming a f~2 decay
and a constant stress drop Ao = 3 MPa. Figure modelled after [Bormann et al., 2009,
Fig. 1 and associated text].

Similar to the scaling of the source spectra with magnitude, event duration and rupture
extent scale with magnitude [Gomberg et al., 2016]. To discuss these scaling relations we
deviate from the point source assumption used above and instead consider a rectangular
fault with width W and length L. The seismic moment M, as defined in , can then
be modelled as

My ~ W2L . (2.5)

For unbounded growth, both the width and length grow with similar rupture velocity
vy, consequently yielding My ~ L3. However, in practice the width of the seismogenic
zone is limited, leading to an upper bound on W at the order of tens of kilometres, or for
subduction megathrust events sometimes even above 100 km. Once this bound is reached,
the scaling changes to My ~ L. Assuming a constant rupture velocity v, = L/T, these
relations can be used to derive scaling laws for the rupture duration 7" in the unbounded
and bounded case, using the definition of M,, from My . In the unbounded case,
we get M ~ 2log;y T, in the bounded case M ~ 2/3log;yT. Typical event durations
are around 3 s at M,, = 6, 10 s at M,, = 7, 30 s at M,, = 8, and > 100 s at M,, = 9.
Typical rupture lengths L range from several kilometres (M,, = 6) up to hundreds of
kilometres (M, = 9). These duration and length scaling relationships will be essential
for the discussion of rupture predictability in Chapters [f] and [6}

2.2.3 Earthquake occurrence patterns

So far, we discussed the sources and characteristics of single earthquakes, but not the
occurrence patterns of earthquakes. Extensive knowledge on the distribution of earth-
quakes has been obtained in the field of statistical seismology [Rhoades et al., 2019], of

14
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which we are only going to highlight two aspects: the Gutenberg-Richter distribution of
magnitudes and the seismic cycle.

The Gutenberg-Richter law describes the distribution of magnitude values [Shearer)
2009, Chapter 9.7.1]. For a magnitude threshold M, the number of events N with at least
magnitude M is described by a power law

log;o N ~ a—bM, (2.6)

where a is the total number of earthquakes and b, called the b-value, describes the relative
number of small to large events. The Gutenberg-Richter law holds for a wide range of
regions with typical b-values between 0.8 and 1.2. It also holds globally, at least for
events with M,, > 5.5, with a b-value close to 1. This means, that globally the number of
earthquakes observed above a certain magnitude decreases by a factor of 10 with every
increase of one magnitude unit. Consequently, observations of very large events are rare.
For example, only 5 events with M,, > 9.0 have been observed worldwide in the era of
instrumental seismology (since roughly 80 years). This low sample size poses a difficulty
when conducting quantitative research on very large earthquakes. This effect will also
appear as training data sparsity throughout the main chapters of this thesis.

The occurrence of very large earthquakes and the seismicity on a fault is assumed
to follow a long-term pattern, the so-called seismic cycle, based on the elastic rebound
theory [Scholz, 2012, Chapter 5]. Within this thesis, we need to take the seismic cycle
into account when designing our evaluation procedues, in particular, dataset splits, in
Chapters [4] and The seismic cycle consists of four phases: the inter-, pre-, co-, and
postseismic phases. During the interseismic phase, a fault is loaded, stress is building
up. This usually happens due to tectonic forces and the associated movement of tectonic
plates. During the interseismic phases, there is a low level of seismicity. Seismicity
increases during the preseismic phase, leading up to a major earthquake. These events
are called foreshocks. There are open discussions about whether a preseismic phase needs
to occur in each seismic cycle and which characteristics it shows. At some point, a major
earthquake happens, known as the mainshock. The short time during the earthquake is
called the coseismic period. In the postseismic phase, following the major earthquake,
seismicity levels are strongly elevated but decay towards the background rate over weeks
to years. These earthquakes are called aftershocks. Once the seismic activity decayed to
the background rate, the interseismic phase is reached again and the seismic cycle restarts.
Notably, only in hindsight it is possible to identify which event was the mainshock, i.e., it is
usually not possible to foresee if a larger event is still imminent. While this model describes
the first-order behaviour of most active faults, it leaves several phenomena unaccounted
for, such as earthquake swarms, interactions between fault zones, earthquake triggering,
or aseismic release of stress. All of these are questions of active research [Ide et al., 2007,
Roland and McGuire, 2009} Brodsky and van der Elst| 2014].

2.2.4 The seismic analysis workflow

Within this thesis, we propose novel methods for the analysis of seismic events. As we
will contrast our methods to standard approaches in the four main chapters (Chapters
to @, in this section we give an overview of a typical seismic analysis workflow. The
workflow shows the analysis steps from raw seismic waveforms to source characterisation
(Figure [2.6)).

Ground motion is recorded using seismometers, which record either displacement,
velocity or acceleration [Shearer, 2009, Chapter 11.1]. Modern seismometers typically
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Figure 2.6: Overview of a typical seismic analysis workflow. The first three steps, wave-
form collection, instrument correct and phase picking are usually conducted separately
for each seismic station. The subsequent steps, in this case, phase association, localisa-
tion, and source characterisation, require combining observations from multiple seismic
stations.

record ground motion along three orthogonal axes, one vertical axis and two horizontal
axes. The signal A recorded by a seismometer, called a waveform, is not directly the
ground motion U. Instead, the signal is composed of the ground motion and the so-called
instrument response R. The signal can be written as a function of the frequency w as

A(w) = R(w)U(w) (2.7)

where we apply a complex multiplication in the Fourier domain, equivalent to a convolu-
tion in the time domain. The instrument response describes, for each frequency the factor
between input and output amplitude, called sensitivity, and the phase shift between input
and output. To recover the original signal U from A, the instrument response R needs to
be restituted, a step known as instrument correction. However, this step is numerically
unstable at frequencies with low sensitivity. Figure shows the response R of a modern
broadband seismometer. Notably, both sensitivity and phase are mostly flat in a fre-
quency range from roughly 0.01 Hz to 10 Hz. Consequently, any analysis only concerned
with this frequency range can often be performed without removing the response, but
only correcting for the average sensitivity in the flat part. This alleviates the numerical
instabilities.

After correcting for the instrument response, the next step in a typical analysis work-
flow is identifying events within the waveforms. For this, potential candidates of seismic
phase arrivals are identified [Bormann et al.| 2013a]. Figure shows a waveform con-
taining the P and S arrivals from a seismic event at regional distance. To identify phase
arrivals a wide range of algorithms has been presented, ranging from simple greedy rules
on the signal variance [Trnkoczyl 2009, over sophisticated classical pickers |Baer and
Kradolfer, [1987], to deep learning algorithms [Ross et al., [2018a].

Often the waveform from a single seismic station is insufficient to verify whether a pick
corresponds to an actual phase arrival or is a false pick on noise. For this reason, picks
from multiple seismic stations at different locations are aggregated. As an earthquake
should yield picks at multiple stations, it can be verified whether a set of picks can be
associated with a consistent origin time and location. This consistent origin time and
location identify an earthquake. The process of identifying earthquakes based on phase
picks is called phase association.

Earthquakes can be located using the travel time differences between phase arrivals at
different stations [Shearer, 2009, Chapter 5.7]E| Taking a set of associated picks, i.e., picks

®Technically, earthquake location is also possible using single station recordings. However, given the
large uncertainties in these methods and the abundance of seismic data, single station localisation methods
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Figure 2.7: Instrument response of an STS-2 (generation 3) broadband seismometer with
a period of 120 s and a sensitivity of 1500 Vs/m. The left plot shows the sensitiv-
ity /amplitude response, the factor between input and output. The right plot shows the
phase response. The amplitude response is flat between frequencies of roughly 0.01 Hz
and 10 Hz. Similarly, the phase response is almost flat in a slightly smaller frequency
window. Response information was obtained from https://ds.iris.edu/NRL/sensors/
streckeisen/streckeisen_sts2_sensors.htm, last accessed 15¢ February 2022.
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Figure 2.8: Example three-component waveform from an event in Northern Chile at re-
gional distance. The waveform was recorded using a broadband instrument at the seismic
station CX.PB01. Event information from [Sippl et al.| [2018], magnitude information
from |Miinchmeyer et al|[2020]. The instrument response has been restituted and the
waveforms were bandpass filtered between 0.2 Hz and 20 Hz. The P and S arrivals are
annotated by vertical dashed lines.
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Figure 2.9: Earthquake localisation with good (left) and poor (right) azimuthal coverage
in a 2D scenario with homogeneous velocity structure. Black triangles mark the seismic
stations, the yellow star the maximum likelihood event location, the grey ellipse the
uncertainty, straight lines the travel paths. While the uncertainties are small and the
uncertainty ellipsis is rotation symmetric in the case with good azimuthal coverage, the
uncertainty ellipse is large and elongated away from the network in the case with poor
azimuthal coverage.

belonging to the same event, and a model for the seismic velocities, for every location it
can be evaluated whether the observed arrival times match the predicted ones. Once the
event location has been determined, subsequent analysis steps, such as the determination
of the magnitude or of the focal mechanism, can be performed.

The inferred earthquake origins incur uncertainties from several factors, for example,
errors in the pick times or uncertainties in the underlying velocity model. As it will be
of interest for the discussion in Chapter [5] here we highlight the strong influence of the
azimuthal coverage, i.e., whether recordings to each side of the event are available, on the
location uncertainties. Figure visualises the uncertainties in the case of good (left)
and poor (right) azimuthal coverage. Notably, as the origin time of the event is unknown,
only the travel times differences between the stations can be used for the localisation.
If picks from stations to all sides of the event are available, the location uncertainties
are small, as a change in location would increase the travel time at some stations while
decreasing it at other stations, leading to a clear change in the differential travel times.
In contrast, poor azimuthal coverage leads to an elongated uncertainty ellipse. A change
in the location of the event, in particular along the axis pointing towards the network,
will affect all the pick times at all stations similarly, i.e., only produce minor variations
in the differential travel times.

Two terms are used to define the location of an earthquake: the hypocenter and the
epicenter. The hypocenter is the origin of an earthquake within the Earth. The epicenter
is the projection of the hypocenter onto the Earth’s surface. Correctly constraining the
depth of earthquakes is often challenging, as the station distribution is a special case of
bad azimuthal coverage. For most events, the majority of travel paths from the source
to the stations depart downward from the source (see Chapter , often all with similar
angles. As a consequence, there is a trade-off between depth and origin time: a slightly
earlier /later origin time with a slightly shallower/deeper hypocenter would lead to nearly
the same arrivals. This makes constraining depth difficult.

While the examples in Figures and showed earthquakes at regional distances,
the same analysis steps can also be used to analyse earthquakes at so-called teleseismic
distances, i.e, several thousand kilometers away from the source. This is possible because

are nowadays rarely used. Notable exceptions are studies on extraterrestrial bodies, such as the InSight
mission on Mars [Banerdt et al., [2020].
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the seismic waves emitted from a large earthquake (roughly M,, > 6) can be observed
worldwide [von Rebeur-Paschwitz, 1889]. Recordings of these waves are called teleseismic
waveforms. Teleseismic waveforms usually have a lower frequency content than regional
observations, as high frequencies are attenuated along the travel path. Nonetheless, the
analysis workflow of phase picking, phase association, and event localisation can be per-
formed similarly to the regional case. Once the events have been identified, their source
characteristics, for example, magnitude and focal mechanism, can be determined from
the teleseismic records as well. Teleseismic recordings allow monitoring of large events in
remote regions without good instrumentation, such as mid-oceanic ridges. These teleseis-
mic analyses are regularly performed by global monitoring services [e.g. |U.S. Geological
Surveyl 2017, (Quinteros et al., [2021].

2.3 Seismic hazard and risk

In seismology, two terms need to be distinguished: hazard and risk [Wang, [2009]. Hazard
describes the probability of an earthquake happening. It can, for example, be quantified
by estimating the distribution of events expected within a certain time frame. In contrast,
risk describes the probability of harm created by an earthquake. This means risk is the
combination of hazard and vulnerability. While seismic hazard can not be avoided, seismic
risk can be influenced by reducing the vulnerability, for example, through appropriate
construction guidelines for buildings and infrastructure [Hall et al.l |1995].

While shaking is the most prominent hazard caused by an earthquake, there are sev-
eral related hazards. Even though these are not subjects of this thesis, we give a quick
overview. Through the shaking, earthquakes can cause soil liquefaction, decreasing the
stability of the foundations of buildings and infrastructure. Relatedly, ground shaking
can trigger landslides. Building and infrastructure damage can lead to post-earthquake
fires, which are particularly damaging in industrial or urban areas [Mousavi et al.l 2008].
Certain earthquakes, in particular large, thrust events, can trigger tsunamis, large dis-
placements of seawater that can lead to severe flooding and damage in coastal areas.
Large tsunamis, such as the ones caused by the Sumatra-Andamanen earthquake 2004
[Lay et al., |2005] or the Tohoku earthquake 2011 [Mori et al., [2011] can impact large
regions, even spanning multiple continents.

In the following sections, we discuss several aspects of assessing and reducing seis-
mic risk: quantifying ground motion (Chapter , the principles of earthquake early
warning (Chapter , and the underlying question of rupture predictability (Chapter
2.3.3)).

2.3.1 Quantifying ground motion

Quantifying the ground motion at vulnerable targets is fundamental to assess the impact
and damage caused by an earthquake [Baker, 2013]. Ground motion can be assessed
through measurable quantities, called ground motion parameters, such as peak ground
acceleration or welocity, or the spectral acceleration, i.e., the acceleration at a specific
frequency. The relation between ground motion parameters and earthquake source pa-
rameters is described by ground motion prediction equations (GMPEFEs). Simple GMPEs
account for the scaling of ground motion with magnitude and the attenuation with dis-
tance through a linear model, while modern, more complex GMPEs incorporate more pa-
rameters and nonlinear interactions [Abrahamson et al., 2016]. GMPEs are usually built
by defining a functional form and then fitting the free parameters to observed ground
motion values.
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Figure 2.10: Schematic visualisation of the network based early warn-
ing system ShakeAlert. Image courtesy of the U.S. Geological Sur-
vey, published in Public Domain at https://www.usgs.gov/media/images/
shakealert-earthquake-early-warning-system-us-western-states, last accessed
13" January 2022.

An alternative for quantifying earthquake ground motion is through its intensity, for
example using the Modified Mercalli intensity (MMI) scale , , Chapter 9.7.2].
In contrast to the directly measurable parameters, the MMI is defined through a list of
criteria, such as the level of damage to buildings or the fraction of people noticing the
shaking, that classify the shaking into twelve categories. There exist several empirical
relationships between the intensity and measurable quantities [e.g., Tselentis and Danciul,
. In combination with GMPEs, this allows estimating the intensity at a given location
from the earthquake source parameters.

2.3.2 Earthquake early warning

One option for reducing seismic risk is earthquake early warning [Allen and Melgar, 2019].
The idea of early warning is to detect and assess an ongoing earthquake in the time be-
tween its onset and the arrival of damaging waves at a target, and to use this lead time to
distribute warnings of incoming shaking. These warnings can either initiate automated
actions, e.g., slowing down trains, or can provide information for people to seek shel-
ter. The first operational early warning system was installed by the Japanese railway in
the 1960s, but only in the last three decades has early warning found more widespread
application [Allen et al., 2009]. Crucially, early warning only can provide alerts once
an earthquake has started, and not before its initiation. It is therefore not a form of
earthquake prediction, which is currently not possible and will likely not become possi-
ble anytime in the foreseeable future [Jordan et al., 2011]. In the following, we discuss
different early warning approaches. Our discussion focuses on the underlying algorithms
for assessing ground motion or earthquake source parameters. We do not discuss imple-
mentation aspects, such as telemetry, real-time computation, or alert dissemination. For
this, see for example the survey by [Allen et al.| [2009] and reference therein.

Among early warning methods, two general concepts can be separated: on-site warn-
ing and network based warning [Allen and Melgar] 2019]. In on-site warning, the location
of the measuring instrument is identical to the target. The lead time is achieved by the

20


https://www.usgs.gov/media/images/shakealert-earthquake-early-warning-system-us-western-states
https://www.usgs.gov/media/images/shakealert-earthquake-early-warning-system-us-western-states

2.3 Seismic hazard and risk

Source estimation Propagation

Figure 2.11: Source estimation based and propagation based warning methods. In the
source estimation based approach (left), warnings can be issued once the P wave (solid
red line) has been recorded. Using the recordings at several stations (triangles), the
source characteristics (yellow star) are estimated (green arrows). Based on the source
characteristics, the shaking at the targets is estimated (blue arrows). In the propagation
based approach, warnings can only be issued once strong shaking, usually from the S wave
(dashed red line), has been recorded. Warnings are directly propagated from stations to
nearby targets (blue arrows).

difference in travel time between the P wave and the S and surface waves. While the P
wave travels fast, most damage is caused by later phases. On-site warning is relatively
easy to implement, as it does not require a distributed infrastructure. On the downside, it
usually exhibits low precision. In contrast, network based warning uses a collection of sev-
eral seismic stations to detect and assess an earthquake and distributes warnings to other
targets in the area. Network based approaches can provide longer warning times than
on-site methods, as their lead times do not only depend on the time difference between
P and S waves, but can be prolonged if instruments are located between the earthquake
source and the target. A visualisation of the network based ShakeAlert system is pro-
vided in Figure 2.10] In addition to longer warning times, network bases methods can
usually constrain the expected levels of ground shaking better than on-site methods, as
they can use more comprehensive observations of the event. On the downside, network
based methods are considerably more complex than on-site approaches, both regarding
their algorithms, due to the higher amount and complexity of available recordings, and
regarding their implementation, as they require, for example, real-time telemetry.
Network based early warning algorithms follow either a source estimation based ap-
proach to assess ground shaking, or a propagation based approach (Figure . Source
estimation based approaches aim to characterise the source and then infer the ground
shaking at the target sites from the source properties. The source can either be charac-
terised as a point source, usually through its magnitude and hypocentral location, or as
a finite fault, taking into account the spatial extent of the source. Ground motion is then
calculated using ground motion prediction equations (GMPESs) using the obtained source
characterisation. Source estimation based methods can achieve long warning times, as
first estimates can be obtained as soon as the first P recordings at any station are avail-
able. At the same time, these approaches have rather high uncertainties, as they include
two modelling steps, source estimation and the GMPE, both making simplifying assump-
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tions. In particular, the uncertainties can not go below the inherent uncertainties in
the underlying GMPE. Well known source based algorithms include EPIC [point source,
Allen, 2007], FINDER [finite fault, Bose et al., 2012] and PRESTo [point source, Satriano
et al., 2011].

In contrast to source based approaches, propagation based approaches do not model
the source characteristics but rather infer the expected shaking at a target from record-
ings at surrounding stations. The most common propagation based algorithm is PLUM
[Kodera et al., 2018]. It issues a warning for a certain level of shaking in a region once
this level of shaking has been observed at any surrounding stations, i.e., it expects locally
undamped propagation of shaking. In particular for large events, this approach leads
to good estimates of shaking, as it inherently incorporates aspects such as the radiation
pattern, the frequency content or the regional-scale site conditions. On the other hand,
warning times for propagation based algorithms are considerably shorter than for source
estimation based approaches, as warnings can only be issued once strong shaking has been
observed at a station in close proximity to the target.

The performance of early warning algorithms is commonly assessed using the number
of correct alerts, false alerts, missed alerts, and the achieved warning times [Meier, 2017,
Meier et al., 2020L [Minson et al., 2018, [2019]. All of these metrics are typically calculated
at different levels of shaking. Most algorithms can be tuned to achieve different trade-
offs between those parameters. For example, when reducing the threshold above which
warnings are issued, the number of missed alerts will usually decrease, while the number
of correct alerts and the warning time will increase. On the other hand, this comes at
the cost of an increased number of false alerts. How these metrics should be balanced
depends on the target of interest, in particular the costs associated with missed alerts
and with false alerts. If the cost for missed alerts is considerably higher than the cost
of false alerts, a rather liberal warning strategy is advisable, while vice versa a rather
conservative approach should be used if false alerts are similarly expensive as missed
alerts. Notably, for no currently existing early warning algorithm perfect performance is
expected, i.e., there will always be false or missed alerts [Minson et al., 2019]. This results
from the apparent aleatoric uncertainties of the underlying models, i.e., the fact that the
observations do not give full information about the events and that the algorithms can
not model all aspects of the earthquakes.

2.3.3 Rupture predictability

As discussed above, the warning time is a critical metric for the effectiveness of an early
warning system. Typical warning times range from seconds to tens of seconds, depending
on the relative location of the earthquake origin, the stations and the vulnerable targets.
However, large earthquakes have rupture durations from a few seconds (M,, 6 to 7) to
several minutes (M,, > 9). For large earthquakes, the rupture duration often surpasses
the possible warning time. When the warning is issued, the rupture has not yet been
fully observed. This opens up the question, to which extent the size of an earthquake,
and consequently the resulting ground shaking, can be constrained before the rupture
has terminated. This question is known as rupture predictability and has been subject of
active research in the last decades |Allen and Melgar, [2019).

We point out that rupture predictability needs to be distinguished from the discussion
of a preparatory phase. Rupture predictability discusses the possibility to assess the size of
an earthquake once it nucleated, in particular from its initiation. In contrast, a potential
preparatory phase would happen before the nucleation of an earthquake and lead up to
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Figure 2.12: Schematic visualisation of the cascade and preslip model for earthquake
nucleation. In the cascade model, a sequence of events (1, 2) triggers the breakaway of
the large event (3). In the preslip model, aseismic slip occurs within a nucleation zone of
confined extent (1, 2, grey area). Once this zone reaches a critical size, the slip accelerates
and propagates at high velocity as an earthquake (3). Figure designed after |[Ellsworth
and Berozaj, 1995, Fig.1].

this nucleation. Within this thesis, we will put the focus on rupture predictability (in
particular in Chapter @ We will return to the relation of rupture predictability and a
potential preparatory phase when discussing future work in Chapter [7.4}

There are two basic models for the initiation of a large earthquake: the cascade model
and the preslip model |[Ellsworth and Beroza, 1995|. Both models are visualised in Fig-
ure [2.12] The cascade model proposes that large earthquakes start with a cascade of
sequentially growing events triggering each other: a small failure triggers a bigger failure,
which in turn triggers an even bigger failure, eventually leading up to the main event.
This process is stochastic, and the final size of the event can not be assessed during the
rupture. In contrast, the preslip model suggests that large events start with a period of
aseismic slip in a so-called nucleation zone. Once this slip patch reaches a critical size,
the stable aseismic slip becomes unstable and breaks away at high rupture velocities as an
earthquake. The properties of the nucleation zone, in particular its size and the amount
of accumulated slip before, might then be indicative of the final earthquake size. This
would imply rupture predictability shortly after the onset of the event, at least if the
dimensions of the nucleation zone are sufficient to actually observe it.

Both approaches on rupture predictability have been supported with observational
evidence. In support of a preslip model, studies found differences between small and large
events in the onsets of waveform [Ellsworth and Beroza, [1995], moment rate functions
[Danré et al.,2019], ground motion parameters [Colombelli et al., [2020], or geodetic signals
[Melgar and Hayes, 2017]. On the other hand, similar evidence, in some cases using even
the same observation parameters, has been brought forward for the cascade model. These
studies found an universal initiation behaviour, implying that small and large events can
not be distinguished early one, in moment rate functions |[Meier et al., 2017], waveform
onsets [Ide, |2019], or peak displacement [Trugman et al., [2019]. Furthermore, studies
of rupture predictability are susceptible to artefacts introduced through the observation
process or the analysis, that might be mistaken for signs of predictability. For example,
Scherbaum and Bouin| [1997] highlighted that finite impulse response filters, commonly
used for anti-aliasing in digitisers, can introduce apparent precursory signals, and |Meier
et al.| [2021] pointed out how an apparent predictability in an earlier study results solely
from a sampling bias in the analysis.

All studies mentioned above analysed rupture predictability using observations from
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real world earthquakes. Another line of studies investigates earthquakes in laboratory
experiments. Laboratory setups allow for a high degree of control on the experiment,
good repeatability, and high-quality near-source recordings. Possible experiments include
saw cut samples [Latour et al., 2013, McLaskey and Lockner, |2014], ring shear experiments
[Chang et al., |2012], and block sliders [McLaskey, 2019]. As for real world earthquakes,
observations from laboratory events are contradictory. However, given the much better
possibility for instrumentation, nucleation phases are observed more often. Besides, it
is yet unclear to which degree laboratory results can be transferred to natural faults,
given that natural conditions can not be fully reproduced in aspects such as pressure,
temperature, or complexity of the fault zone.

While the cascade and the preslip model are both well established, they are proto-
typical models, describing either very high or very low levels of predictability. There are
approaches combining aspects of both models. For example, McLaskey| [2019] suggested
a rate-dependent cascade model, backed by laboratory evidence. In this model, an aseis-
mically slipping patch creates a cascade of small events, of which one then triggers the
failure of the large event. Notably, the small events do not trigger each other, but are all
triggered by the aseismic slip, which stands in contrast to the cascade model. At the same
time, the large event is not triggered by an acceleration and breakaway of the aseismic
slip, as in the preslip model, but rather by a small event. While this is only one example
of an intermediate model between preslip and cascade, it illustrates that the question of
rupture predictability is more nuanced than the end member models. We will discuss
these aspects, in particular their inherent probabilistic nature, further in Chapter [6}

2.4 Machine learning

Most analyses in this thesis use machine learning (ML), in particular, supervised learning
methods. This section introduces the fundamentals of supervised ML, with a focus on
the aspects required within this thesis. As such, rather than giving a general overview,
the selection of topics might seem biased, e.g., while most introductions to ML focus on
classification, we will primarily discuss regression. For a more grounded introduction see,
for example, Goodfellow et al.|[2016].

A machine learning algorithm is an algorithm that is able to learn from data |Goodfel-
low et al., 2016]. A supervised ML algorithm is an algorithm that learns a mapping from
input data to output data using examples. More formally, let 2" be a space of possible
input data and % a space of possible output data. The output data are often termed
labels. ML then aims to learn a mapping f : 2" — % according to a set of example pairs
(X,y) € Z x %, called samples. If # is discrete, the task is called classification, if it is
continuous, it is called regression.

The term learn is still vague. To this end, let # C {f | f : Z — %} be a set of
candidate functions. We will describe possible sets of functions in the next sections. To
learn a function f based on samples (X,y), means to select a function from .#. This
choice is usually made by minimising a loss function L, a process also-called training the
ML algorithm. We will discuss the properties and examples of loss functions in the next
section.

To illustrate the concepts above, we introduce a simple example: linear regression
for ground motion estimation. Given the magnitude of an earthquake and the distance
to a receiver, we want to estimate the peak ground acceleration in log units. We model
2 = R x R*, pairs of magnitude m and distance d, and # = R, the log peak ground
acceleration pga. For linear regression, our candidate functions are .# = {(m,d) —
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am + bd + ¢ | a,b,c € R}, ie., all linear functions from magnitude and distance to
peak acceleration. Given a set of samples {((mo,dp),pgaop), ..., (Mn—1,dn-1),Pgan-1)},
we now aim to select a function }’ € % . As the loss function, we use the L2 loss defined
as L(y,y") = (y — y')?. Therefore, training the algorithm is equal to solving the following
optimisation problem:

n—1
. _ 1
f=argminges > Ly, f(ma, di)) (2.8)
i=0
1 n—1
= arglinge s > (f(mi, di) — yi)? (2.9)
i=0

While the example is clearly oversimplified from a seismological standpoint, it illustrates
all key concepts of supervised machine learning: input and output sets, candidate func-
tions, and the loss function.

2.4.1 Loss functions and scoring

The choice of loss functions is of key importance for ML algorithms as they define towards
which objective the algorithm is optimised. We present loss functions in the context of
scoring probabilistic forecasts |Gneiting and Raftery, (2007 ]H To reduce the mathematical
overhead, in the following we refrain from discussing all required mathematical condi-
tions, such as the o-algebras or integrability of functions, and rather present the general
concepts. A full technical discussion is given by Gneiting and Raftery [2007].

Let & be a set of probability measures on 2. A choice of probability measure P € &
is called a probabilistic forecast. A loss function is a function S : & x # — R, where
R = RU {—00,0}. If a forecast P is given and y € % materialises, the loss is L(P,y).
For a true distribution @ € &2, we write the expected loss L(P, Q) = Ey~qL(P,y). A loss
function is called proper relative to &2 if

L(Q.Q) < L(P.Q) |VP,Q € 2. (2.10)

It is called strictly proper, if equality holds only for P = @. In other words, for a (strictly)
proper loss function, the minimal loss is achieved if (and only if) the forecast matches the
true distribution.

An example of a strictly proper loss function is the negative log-likelihood, defined
by L(P,y) = —log P(y). It is commonly used for classification tasks, where it is also
referred to as cross-entropy loss [Goodfellow et al.. |2016, Chapter 6.2]. Notably, also the
the common L2 loss used in regression can be regarded as a log-likelihood. To this end, we
interpret a deterministic prediction § as a normal distribution P = .4 (¢, 0?) with mean
7 and fixed standard deviation o. The resulting negative log-likelihood can be written as:

—log P(y) = —log < ! e_é(%flP) (2.11)

— —log (1> + %(B)2 (2.12)

As o is constant, the first term is a constant. Disregarding the equally constant factor
of ﬁ in the second term, we reproduce the simple squared loss (y — 9)?, but now with

5Note that we discuss loss functions, while|Gneiting and Raftery| [2007] discuss scoring rules. However,
these concepts only differ with regard to the sign convention: loss functions are minimised, while scoring
rules are maximised.
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an interpretation in terms of loss functions. We use this loss in Chapter 3| and in slightly
modified forms in Chapters [4] and

A particular loss function for forecasts on R that will be used in Chapter [6] is the
continuous ranked probability score [CRPS, Matheson and Winkler, [1976]. The key reason
for developing the CRPS is the inability of other scores, such as the negative log-likelihood,
to take the distance between prediction and true value into account. For example, a
prediction with point mass 1 at a location y’ will always be scored with oo under the
negative log-likelihood, as long as 3’ # y, with a materialising value of y. However, in
many scenarios a forecast with 3/ close to y should still be regarded as considerably better
than one with ¢ further from gy, which is not reflected in the negative log-likelihood. In
contrast, the CRPS incorporates this aspect of distance. It is defined as

[e.e]

CRPS(P,y) = / (F(t) — Lysyy)?dt (2.13)
—0o0

with F' defined as the cumulative distribution function of the predicted distribution P

and 1>,y the indicator function taking value 1 if ¢ > y and 0 otherwise. The CRPS is

a strictly proper scoring rule. The CRPS can also be computed as

1
CRPS(P,y) = = EyymplY =Y+ EyplV —y (2.14)

where Y,Y” are two independent random variables distributed according to P [Gneiting
and Raftery, |2007]. The identity allows to compute the CRPS analytically for
many types of distributions and, furthermore, to evaluate the CRPS using Monte Carlo
sampling for others.

To discuss how loss functions for probabilistic forecasts relate to supervised ML, we
need to introduce a slight generalisation of our definition for supervised ML. So far, we
discussed functions f : & — %, i.e., deterministic predictors. We extend this notion
by introducing probabilistic predictors. Let again & be a set of probability measures on
% . Learning probabilistic predictor now means selecting a function f : 2" — £, with
the goal that f(z) ~ P(y|z), i.e., a function describing the distribution of labels y given
the data x. Often deterministic predictions are implicitly interpreted as a probabilistic
forecast: in the example above, showing that the L2 loss is equivalent to the log-likelihood
of a Gaussian, the deterministic point prediction was interpreted as a Gaussian with fixed
standard deviation. We will return to this point in more detail in Chapter [2.5.7

To assess the quality of the fit f(z) ~ P(y|z), loss functions can be used, i.e., the goal
of the ML algorithm is minimising L(f(x),P(y|z)). Clearly, this term does not only need
to be minimised for a fixed z but in expectation over all x, giving:

Ex[L(f(z),P(y|z))] = Ex[Eyx [L(f(z),y)]] (2.15)
= Exy[L(f(2),y)] (2.16)

The first equality is simply the notational convention defined above. The second equality
results from the law of total expectation. We use the subscripts of the expectation to
indicate the random variable that is integrated over: Ex is the expectation with respect
to X, Ey|x the conditional expectation, and Ey y the expectation with respect to X and
Y. The last term can be approximated using a set of samples {(zo, y0), - .. (Tn—1,Yn—1)} C
X XY,

n—1
LS L)) S By (L7 @), )] (217)
=0
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Notably, this estimation is possible even without having samples from P(y|z) available for
all possible z.

While the discussion of proper loss functions allows to derive theoretical guarantees
on the optimality of models, these guarantees rely on several critical assumptions: (i) a
sufficiently rich class of models, (ii) identically, independently distributed data and (iii)
infinitely many samples. Assumption (i) refers to the class of probability measures &
and mappings .#. So far, we assumed that the true distribution @ € . However, this
will often not be the case, for example, when looking at the simple Gaussian error model
introduced to derive the L2 loss. Still, loss functions can be used to derive an element of
Q € 2 that is close to Q, i.e., that has a low loss. The difference between Q) and Q is
called the approzimation error. However, we will later show (Chapter that using
deep learning, models &2 can be chosen sufficiently expressive to effectively disregard this
error.

Assumption (ii), independently, identically distributed data, will in most cases not
be fully satisfied in real world data. First, the data generation process will often be
non-stationary, i.e., the generating distribution might change over time. Second, the
independence of samples is often not given. For example, in a dataset of earthquakes, the
independence would be violated by fore- and aftershock sequences, or on a larger scale
even by the seismic cycle. Therefore evaluating a model requires careful assessment to
which extent the assumptions of independence and identical distribution are satisfied.

Assumption (iii), infinitely many samples, is relevant as the approximation in equation
only converges in the limit. With a finite amount of data, instead of selecting the
optimal predictor Q € 2, the loss will be minimised for Q*. The difference between Q
and Q* is called estimation error. The magnitude of this error depends critically on the
number of samples used. This does not only mean the total number of samples overall
but also samples for certain ranges of x or y. We will encounter the impact of this
limitation throughout this thesis (Chapters [3[to |§[) when discussing degraded estimation
performance in low data scenarios.

2.4.2 Training and evaluating ML algorithms

As shown in the previous section, several aspects need to be taken into account when
using loss functions for training ML algorithms. Therefore, in this section we discuss how
to train and evaluate ML algorithms given these considerations [Goodfellow et al., 2016},
Chapter 5].

We will start of at limitation (iii), finite data. Given a finite collection of samples

{(l‘o, yo), ceey (-rnfly yn71>} ~Q, (218)

the most likely distribution generating this sample, at least when making no further
assumptions about the generating process, is an equally weighted collection of point
masses Q = %Z?:_ol (2, Consequently, for the conditional distributions we get
P(ylz) = é > ijv—x; Oy;- Notably, this distribution is not defined for any x for which
we do not have any sample. In addition, this model, while fitting perfectly the empirical
distribution of our samples, might not actually fit the underlying generating distribution
@, which usually differs from Q This concept, a model fitting the empirical distribution
well but not the underlying generating distribution, is known as overfitting. In practice,
this would mean predictions on previously unseen data would likely be incorrect. Equiv-
alently, one says that the model shows poor generalisation ability from the training data
[Goodfellow et al., 2016, Chapter 5.2].

27



2 BACKGROUND

The key idea for addressing overfitting is to assume some notion of smoothness in
the conditional distributions. For x and 2’ close, the conditional distributions P(y|z)
and P(y|z’) will likely be close as well. This smoothness is commonly enforced through
reqularisation. One way of regularisation is introducing an additional penalty term R :
Z# — R on the model that penalises complex models. This stands in agreement with
Occam’s razor [Duignan, 2021], favouring simple models. Instead of optimising the loss
alone, one optimises the sum of the loss and the penalty term:

A

argmin e 7 L(f (), Q) + AR(f) (2.19)

The parameter A can be used to adjust the strength of regularisation.

While regularisation can reduce or even eliminate overfitting using a single collection
of samples, we actually cannot easily measure whether our model overfits or shows ap-
propriate fit. Therefore, a common practice in ML is to split the available samples into
a training set and a test set. We furthermore introduce a third set, disjoint from the
other two, called the development set, which we will justify belowm The ML algorithm is
now trained on the training set and then evaluated on the test set. If the test set is an
independent sample from @, it is not affected by the overfitting and the performance on
the test set gives a reliable estimate of the model performance on Q.

In most cases, the ML algorithm has parameters controlling its behaviour that are not
part of the optimisation, such as the weight term A of the regularisation in . These
parameters are called hyperparameters and their optimisation is called hyperparameter
tuning. The usual way for tuning hyperparameters is training multiple models with dif-
ferent hyperparameters and comparing their performance. If one would use the test set
for this performance comparison, one becomes susceptible to hyperparameter overfitting,
i.e., one might choose hyperparameters that fit the test set particularly well. In other
words, by selecting between models based on their performance on the test set, the esti-
mate of their performance becomes unreliable. To this end, the development set is used
instead. One selects the best model using the performance on the development set and
then evaluates it on the test set, thereby obtaining a reliable performance estimate.

The reliability of the performance estimate depends on limitation (ii), the indepen-
dence and identical distribution of the data set. If training, development and test data
are not independent, potential overfitting on the training set might still give a (positively)
biased performance assessment on the development and test set. It the obtained model is
then applied to actual independent data, the performance will likely be WOI‘SQH In prac-
tice, it will often be impossible to achieve actual independence and identical distribution
between training and test set, for example, because the underlying generating distribu-
tion is non-stationary. Therefore, it is required to choose splits to resemble the envisioned
application scenario. For this reason, we will explicitly discuss the choice of splits and
how the splitting could potentially affect our results in the main chapters (Chapters [3| to

[6).-

"While we adapt the terminology training/development /test set, the sets are sometimes also referred
to as training/validation/test. We decided on the first option to avoid confusion, as the term validation
set is sometimes also used to refer to the test set.

8We highlight that independence here needs to be interpreted in a purely mathematical sense, i.e., as
independence of random variables. The samples should be independent between training and test set in a
stochastic sense. In contrast, they should result from the same generating distribution and, in particular,
follow the same conditional distributions P(Y'|X). In this sense, one might commonly call these samples
not independent, as they expose the same governing laws. However, this is not the notion of independence
used here.
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2.4 Machine learning

So far, we discussed evaluating model performance using loss functions. However, often
the quality of a model in practical applications is not fully reflected by the loss but rather
in terms of a downstream metric directly relevant for the application. For example, when
training a model for fast ground motion estimation in the context of early warning, the
evaluated metric will usually depend on the true, false, and missed warnings, as well as the
warning time, instead of the loss itself. ML models are usually trained using loss functions,
as these are easier to optimise than these downstream metrics, e.g., because of smoothness
and differentiability properties. In this sense the loss function serves as a surrogate for
the metric. When selecting models or model hyperparameters however, an optimisation
task that is commonly performed by comparing separately trained models and where
optimisation requirements as for the loss functions do not apply, the downstream metric
should be used as selection criterion rather than the loss.

2.4.3 Calibration

Many commonly used metrics for evaluating machine learning models hide the proba-
bilistic aspects of the prediction. For example, classification tasks are often evaluated
using accuracy, regression tasks using the root mean squared error. In both cases, it is
disregarded that the model might give an assessment of its confidence or vice versa its un-
certainty. However, high quality uncertainty estimates are essential for making informed
decision, for example, to ensure that predictions with high uncertainties are not relied
on. Recent studies [Guo et al., [2017} [Snoek et al 2019] showed that while developments
in deep learning (see Chapter considerably improved, for example, the accuracy of
models, the quality of their uncertainty estimates decreased. The models are overconfi-
dent, i.e., overestimate their confidence and underestimate their uncertainty. This can be
interpreted as overfitting in the probability domain. As within this thesis, we are taking
a probabilistic viewpoint on the machine learning methods and underlying seismological
questions, we also need to analyse the quality of the uncertainty estimates (Chapters
to @

One way to analyse the quality of uncertainty estimates is through their calibration.
For illustration purposes we first discuss calibration for a simple binary classification task
between classes -1 and 1. In this task, the prediction from a machine learning model f
is simply the probability p € [0,1] of a sample belonging to class 1. Let Sp, 1. be the
set of samples with a predicted probability between p and p + 5E| A model f is now well
calibrated if for all p

1 Y e {2 € Sppra [y =1} (2.20)

1S [p,p+e] | ( |5 [p,p+e] |

w,y)GS[p,p+5]

where |.| is the cardinality of a set. We note that the left term, by definition of Sy, )\,
will fall between p and p + €. Rephrasing equation , a model is well calibrated if
among all predictions with probability p the fraction of samples actually belonging to
class 1 is p as well. If this condition is not met, a model is called miscalibrated. Note
that calibration alone is not a sufficient condition for a useful classifier. For example, the
marginal distribution P(y) is by definition a perfectly calibrated model, at the same time
it is not a useful model.

For continuous predictions, such as in regression tasks, calibration needs to be analysed
differently, as predictions are not associated with probability mass but rather densities.

9This is simply an approximation of the predictions with probability p required due to the finite sample
size. For a practical discussion on how to choose ¢, see |Guo et al.|[2017] or [Snoek et al|[2019].
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Figure 2.13: Schematic visualisation of a decision tree of depth two. Given an input
vector € R the tree uses the entries i, j and k to determined the value to assign. At
each node the tree checks whether the provided condition is fulfilled (Y) or not (N). The
tree leafs indicate the assigned values w.

We only discuss calibration analysis for single dimensional predictions. For a sample
(i,9i), let F,, be the cumulative distribution function predicted by the model using
sample x;. We now calculate the quantile ¢; at which the correct label y; occurs as ¢; =
F.,(yi). For a well calibrated model, following the definition of the cumulative distribution
function, ¢; must be distributed according to a uniform distribution % ([0, 1]). This can
be verified using the samples qo, . .., q,—1, for example, through a Kolmogorov—Smirnov
test [Kolmogorov, (1933| |Smirnov, [1948].

2.4.4 Decision tree ensembles and gradient boosted trees

After introducing the fundamentals of machine learning, we now present different machine
learning methods. We start with a classical approach, decision tree ensembles, before
presenting deep learning in the subsequent Chapter [2.5

Decision tree ensembles are machine learning models applicable to both regression
and classification [Chen and Guestrin, 2016]. We will use decision tree ensembles for
magnitude scale calibration in Chapter [3] A decision tree ensemble is a collection of
decision trees fo,..., f;m—1. Each decision tree f; partitions the input space 2  into
pairwise disjoint subspaces 2o U ...U 2,1 = 2 and assigns a label wy, ..., wp_1 to
each subspace. The function f; is a piecewise constant function:

filx) = {wi |z € 2 (2.21)

Partitioning is performed along thresholds of single features, yielding a tree-like structure
as visualised in Figure [2.13] and giving rise to the name decision tree.

Based on these single decision trees, an ensemble function f, the decision tree ensem-
ble, is defined as the sum of the ensemble members:

flz) = Z fi(z) (2.22)

Notably, as every decision tree is a piecewise constant function, decision tree ensembles
are piecewise constant as well. This implies, that their output space is discrete rather
than continuous, which stands in contrast to other regression methods, for example, linear
regression. However, in practice the number of outputs can be very high, given a sufficient
number of trees and sufficient tree depth. Therefore, the discretisation error will usually
be far below the remaining uncertainties in the model.
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2.4 Machine learning

There are different ways to train a decision tree ensemble. Here we present gradient
boosting, as we use this approach in Chapter [3] For a detailed mathematical derivation
of gradient boosting, see [Chen and Guestrin) 2016]. Gradient boosting iteratively adds
trees to the ensemble, starting from a constant tree fy = c. Each new tree models the
residual between the current prediction and the actual labels. To train this new tree, two
aspects need to be optimised: the partitions and the value for each partition.

We first discuss how to choose the values for each partition, given fixed partitions,
before discussing how to determine the partitions. For this, we take a single sample
(x0,y0) with € Z; of the new tree f;. The sample is assigned value w; in the new tree
and we aim to find the optimal value w;. The loss for the corresponding sample can be
expressed as:

k—1

k
L <907Zfi(xo)> =L (yo,
1=0 =0
k—1
=L <y0, Z fi(zo) + wj> (2.24)

k—
~ (yo, fi(:co)) +w;g+ w?h (2.25)
i=0

fi(zo) + fk(%)) (2.23)

The approximation in equation (2.25)) is the second order Taylor approximation, with g
the gradient and h the Hessian with respect to the second component of the loss:

k1
g= 0L <y0, ‘ fi(ﬂﬁo)) (2.26)

ke
h =051 (3/0, A fi($0)) (2:27)

Here we write 0y to indicate the partial derivative with respect to the second component
of L. The Taylor approximation in equation is a second order function of the weight
w; and can be minimised analytically. The same holds true when adding up the loss for
all training samples. Consequently, assuming a given partition, an approximation of the
optimal weights can be chosen efficiently.

In addition to providing the (approximate) optimal weights, the analytic expression
allows to quantify the improvement achieved by adding a new tree with a given partition.
This property can be used to find suitable partitions by simply iterating over possible
partitions. As enumerating all possible partitions is combinatorically intractable, the loss
is optimised greedily level by level. In every level, a one-dimensional feature is selected
and the optimal threshold in terms of the loss reduction is calculated. This process is
iterated until the maximum number of levels is reached or the addition of a new level
does not reduce the loss any further.

In addition to providing a computationally efficient way of training decision tree en-
sembles, gradient boosting gives a way for interpreting the importance of each features.
Each time a feature is used for splitting partitions, a reduction in the loss is associated
with this split. The average loss reduction for each feature, therefore, describes how
relevant each feature is towards the task. A feature with high loss reduction is consid-
ered more relevant than a feature with lower loss reduction. We use this approach for
interpreting feature importance in Chapter
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Figure 2.14: Schematic visualisation of a multi-layer perceptron, a simple type of neural
network. The input layer is shown in green, hidden layers in blue and the output layer in
red. Each value in each layer is called a neuron, visualised by a circle. The connections
indicate linear combinations. Bias terms and non-linearities are not shown. The arrows
on the top show the forward pass, the sequential application of the layers. The bottom
arrows show the backward pass, a series of multiplications of the derivatives of the layers.

2.5 Deep learning

A subdiscipline of machine learning that has gained widespread attention in the last
decade is deep learning [LeCun et al. 2015]. At the basis of deep learning are artificial
neural networks (ANNs or simply NNs). Neural networks are parameterised functions f :
R% — R% mapping inputs z to outputs y. The parameters 6 are called weights. Neural
networks are constituted of several simple subfunctions fgo : R¥% — R g’fll :
R-1 — R%  also-called layers, such that f = fg_‘ll 0---0 go. The number of layers n
is called the depth of the network. A neural network is called deep if it consists of several
layers, giving rise to the term deep learningH The maximal number of dimensions max; d;
is called the width of the network. A simple example network is shown in Figure

Each layer outputs an intermediate representation z; 11 = ff" (2i), where zp = x. As for
the functions, the intermediate representations are sometimes also referred to as layers:
the input layer x = zg, the hidden layers zi,...,z,—1, and the output layer y = z,.
By transforming between the different representations, the neural network aims to find
a representation in which the targeted estimation problem is easily solvable, e.g., where
classification can be achieved with a linear classifier. For this reason, neural network
algorithms belong to the representation learning methods.

A key difference between deep learning algorithms and most classical approaches is
the role of features. Classical machine learning algorithms typically need to be provided
with hand-crafted features. Features are representations of the input data, for example,
seismic waveforms could be described by their mean, standard deviation or certain quan-
tiles. Feature engineering, the process of designing appropriate features, is laborious and
requires expert knowledge. In contrast, through the representation learning approach,
neural networks can usually be fed with raw data that can be very high dimensional or

0There is no universal agreement on the number of layers required to qualify as deep, with some
advocating that already a NN with depth 2 is deep. As this is only a question of terminology, we do not
take a stand and stick to the informal “several layers”.
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2.5 Deep learning

even of structured nature, such as graphs [Battaglia et al., 2018]. Neural networks then
learn to extract features themselves by finding representations useful for the task at hand.
Several architectures, i.e., choices of layers fl-e ¢ exist. The simplest form of a neural
network layer is the fully connected layer [Goodfellow et al., 2016, Chapter 6]. The
function f; : R%-1 — R% for a fully connected layer is given as
ff" () =o(Ax +b) (2.28)
where A € R%*di-1 is a matrix, b € R% a bias vector, and ¢ : R — R a non-linearity,
that is applied pointwise to each entry of the vector. The matrix A and the bias vector
b constitute the parameters 6;. f; is the combination of an affine transformation with
a non-linearity ¢. Common non-linearities o are the hyperbolic tangent or the RelLu
function [Nair and Hinton, 2010|, given by o(x) = max(0,z). A stack of multiple fully
connected layers is called a multilayer perceptron (MLP). A visualisation can be found in

Figure

2.5.1 The universal approximation theorem

While simple in structure, MLPs are very versatile, as shown by the different variants of
the universal approzimation theorem |Goodfellow et al., 2016, Chapter 6.4.1]. Informally
speaking, the universal approximation theorem states that for every continuous function
g : K — R™ there exists an MLP that approximates it arbitrarily well. More formally,
for any compact subset K C R™ and € > 0 there exists a MLP f with width at most
m + n + 2, such that

sup [|g(z) — f(z)]| <e. (2.29)
zeK

A similar result holds for two-layer ML.Ps with unbounded width of the hidden layer. Both
results can be proven under mild assumptions on the non-linearity o. In other words,
neural networks are dense in the space of continuous functions C'(K,R™) with respect to
the Lo norm. By choosing a sufficiently large neural network, the approximation error
(introduced in Chapter can be made arbitrarily small.

While the universal approximation theorems only hold in the limiting case of infinitely
sized neural networks, in practice the error ¢ already becomes neglectable small for most
applications when using MLPs with practically feasible numbers of layers and neurons.
The additional assumption of a compact subset K rather than the full space R" is equally
unimportant for practical applications, as the input data is usually bounded and thereby
lies within a compact subset. This also explains why assumption (i) introduced in Chapter
the requirement of a sufficiently rich class of functions, is usually not a concern in
deep learning. The universal approximation property of neural networks makes them
particularly suitable for our analyses in Chapters [4] to [6]

2.5.2 Training neural networks

While the universal approximation theorem showed that neural networks can represent
arbitrary functions, we did not yet discuss how to find the network weights, i.e., how
to train neural networks. Training a given neural networks architecture means selecting
good parameters 0. Let f7 be the neural network, (zo,%0), ... (Tn_1,Yn_1) € Z X ¥ the
training examples and L the loss function. The parameter selection can be represented
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6 = argmin, L(6) (2.30)
n—1

L(#) = % > L (i), i) (2.31)
1=0

We use L(6) as a shorthand notation for the loss given the parameter choice 6. As 6
usually has a very high number of dimensions, this optimisation problem can rarely be
solved exactly. Instead, the term is typically minimised using a gradient descent algorithm
[Goodfellow et al., |2016, Chapter 8].

For gradient descent, first, starting parameters 6 are initialised. Different schemes
for initialisation exist, which can have a major impact on the final network performance
[Glorot and Bengio, 2010, Frankle and Carbin, 2018|. Second, gradient update steps are
performed. For this, the parameters 6 are updated using a rule of the form

0 := 0 — nVL(0) (2.32)

with V representing the gradient with respect to # and n a constant, called the learning
mteE As long as the gradient is non-zero and the learning rate 7 is sufficiently small,
the new parameters # will have a lower loss than the old ones.

In the gradient is calculated across the full training dataset. In practice, eval-
uating the gradient on the full training dataset is computationally expensive and often
even infeasible. For this reason, neural networks are usually trained using minibatch
gradient descent, also known as stochastic gradient descent (SGD)B Here, instead of
evaluating the gradient on the full training set, one estimates the gradient on a subset
(Tig, Yio)s - - -5 (Ti,, 15 Yiy,_, ) Of the training dataset. The number of examples m is called
the batch size. The resulting update rule and gradient approximation are:

0:=0— %UVL’(Q) (2.33)

[ay

VL) = S VL(f%(xi,), yi,) = VL(0) (2.34)

J=0

1
m

Stochastic gradient descent usually converges significantly faster than batch gradient de-
scent in terms of the number of evaluations of L on each sample. Furthermore, SGD has
a regularising effect, often leading to models with better generalisation ability [Wilson
and Martinez, 2003)|.

The rules presented in and are very simplistic examples of update rules.
In practice, often further terms are added, for example, momentum [Qian, |1999| or adap-
tive learning rate terms [Kingma and Ba, 2014]. These lead to better convergence be-
haviour than vanilla SGD which has been verified both theoretically and empirically. For
a comprehensive overview of gradient descent strategies for deep learning see Ruder| [2016].

"The vast majority of algorithms used for optimising neural networks only use first order derivatives
and can be expressed using a similar update rule as provided in . Methods using higher order
derivatives, such as the L-BFGS algorithm, are usually not computationally feasible for neural network
optimisation |Goodfellow et al, 2016, Chapter 8.

12Gradient descent using the gradient of the full training set is sometimes referred to as batch gradient
descent. As this term might lead to confusion with minibatch/stochastic gradient descent, we abstain
from using it. The confusion is particularly problematic, as the term “batch” is commonly used to refer
to a single “minibatch” in minibatch gradient descent.
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2.5 Deep learning

To apply gradient descent methods efficiently to neural networks, one needs to calcu-
late the gradient of the loss function with respect to the parameters 6 efficiently. This
can be done using backpropagation |Goodfellow et al., 2016, Chapter 6.5]. Backpropa-
gation relies on the structure of a neural network f = f,_10---0 fp and the chain rule
Dy (uow) = Dyz)v- Dyu, where Dyu denotes the total derivative of u at x. We introduce
the shorthand notation f* = fi_j o---o fy for the first k layers in the network. The
derivative of f can be computed as:

Doy f = Dizg)(fa-10 f™) (2.35)
= D(fin-1(2),0)fn—1 * Dz g [ (2.36)
- D(fnfl(q:)ﬁ)fn—l N D(f:n72($)76)fn_2 . D(I,e)f’l’b—2 (237)

Similarly, applying the chain rule to the loss term we obtain:

D oyL(f(.),y) = D(f(2),0)L(-,y) - Dz o) f (2.38)

This means that the total differential, and thereby the gradient with respect to 6, can be
calculated iteratively by calculating the derivative of each layer. This process is called
backpropagation or backward pass: the neural network is “applied backward”, i.e., gradi-
ents of each layer are calculated sequentially backwards from the loss towards the inputs
(see also Figure . The only requirement is that all layers f; need to be differentiable.
For all layer types presented in this thesis, differentiability is given.

2.5.3 Stabilising training for deep networks

While in principle very deep networks can easily be built by stacking many layers, in
practice deeper networks turn out to be significantly harder to train than shallow ones
[Bengio et all {1994] |Glorot and Bengio, 2010, He et al. |2016]. One cause for this be-
haviour is wvanishing/exploding gradients [Bengio et al., 1994} |Glorot and Bengio| [2010],
i.e., gradients with either very small or very large norms. Vanishing/exploding gradients
can be explained with the backpropagation algorithm. With each step of backpropaga-
tion, i.e., each multiplication with the derivative of a layer, the norm of the gradients
changes. If the norm of the derivative of the layers constantly is larger than 1, the norm
of the gradients will explode for the early layers. Similarly, if the norm is constantly
below zero, the norm of the gradients will vanish. In both cases, it is impossible to choose
an appropriate learning rate for all layers jointly, as the gradients can differ by orders
of magnitude between layers. Therefore, gradient descent will effectively only train some
layers while leaving others untouched (vanishing gradients) or making significantly too
large steps (exploding gradients).

Vanishing /exploding gradients can be mitigated by choosing an appropriate param-
eter initialisation |Glorot and Bengiol [2010], and by adding intermediate normalisation
layers. As appropriate parameter initialisation is nowadays usually handled automati-
cally by most deep learning frameworks, we only present two normalisation layers: batch
normalisation and layer normalisation.

Batch normalisation recenters and rescales a hidden representation using statistics of
the current minibatch used in training [Ioffe and Szegedy, 2015|. Let 2°,...,2™"! € R? be
the hidden representations at a fixed layer corresponding to inputs xzg,...,Z,—1. Batch
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normalisation first calculates the mean vector u and variance vector o2 over z.
1 m—1
i
_ 2.
p=— Z z (2.39)
=0
1 m—1
2 4 i 02
o= — (2" — ) (2.40)
=0
Using these summary statistics, the outputs 2° are calculated as
.y 2=
2 =y—+p. (2.41)

Vo2 +4e

€ > 0 ensures the stability of the division and the derivative of the square root at 0.
7,8 € R? are learnable parameters, representing the new mean and standard deviation
of the data. During the evaluation phase, in contrast to during the training, calculating
batch statistics is not desirable, as predictions for each sample should be independent
of the batching. Therefore, © and o are not derived from the evaluation samples, but
instead, the population mean and standard deviation of the training set are used.

While abundant empirical evidence has proven the effectiveness of batch normalisation,
its theoretical underpinning is still purely understood [Santurkar et al., |2018]. Initial
publications suggested that batch normalisation reduces the so-called internal covariate
shift, describing that the means and standard deviations of the inputs of layers change
over time during training [loffe and Szegedy, 2015]. However, later research suggested
that internal covariate shift does not explain the success of batch normalisation. Instead,
Santurkar et al. [2018] argue that batch normalisation makes the optimisation landscape
more smooth and thereby makes the gradient estimates more stable. Note that, as batch
normalisation depends on minibatch statistics, it introduces a further dependency of the
learning behaviour on the batch size.

An alternative to batch normalisation that does not rely on batch statistics in layer
normalisation. Layer normalisation can be interpreted as a transposed batch normalisa-
tion: the statistics for normalisation are calculated along the feature dimension of each
sample individually instead of along the batch dimension. Given a hidden representation
z € R%, mean and variance are calculated as

d
1
p=- Z 2 (2.42)

) 1¢ 2
ot =4 Z(Zi — W) (2.43)

where z; indicates the i¢th element in the vector z. In contrast to batch normalisation, here
p and o are not vectors, but scalar values. The inputs are then rescaled using the same
formula as for batch normalisation , just with the alternative definition of p and
0. As the mean and standard deviation for the layer normalisation can be derived from
a single sample, the same normalisation can be applied in both training and evaluation.
Similar to batch normalisation, layer normalisation has become commonly used in many
architectures [Ba et al.l 2016, [Vaswani et al., 2017].

Even with appropriate initialisation and intermediate normalisation layers, sufficiently
deep networks still show degraded performance in comparison to shallower ones [He et al.,
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2016]. This is surprising, as a network with more layers is in principle more expressive,
i.e., it can in principle model a larger class of functions. This follows directly from the
fact that any added layer might simply learn an identity function, thereby reproducing a
network with fewer layers. In practice, however, learning this identity function is difficult
to achieve [He et al., 2016], leading to the degraded performance for deeper networks.
To mitigate this, residual connections, also termed skip connections were introduced. In
a skip connection, the input x to a layer f is added to its output, giving a new output
f'(x) = f(z) + . The function f now only needs to model the residual to an identity
function. In particular, this makes learning the identify function itself easily feasible, as
it only requires learning the constant function f = 0. Residual connections can not only
be established around single layers but also around stacks of layers, as long as input and
output shapes agree. Using residual connections, deeper networks can be trained that
outperform shallow networks considerably. Consequently, they have found widespread
application in state of the art models [Ronneberger et al., [2015| He et al.l |2016|, Vaswani
et al., 2017].

2.5.4 Overparametrisation and equivariance

After discussing training strategies and methods for stabilising the training, we now turn
towards specific neural network architectures. To motivate the need for these architec-
tures, we first introduce the problem of overparametrisation. The universal approximation
theorem guarantees that any smooth function can be approximated arbitrarily well with
an MLP. However, it gives no indication of the amount of training data required to ac-
tually achieve a certain quality of estimation. In practice, neural networks are usually
massively overparametrised. This means that the optimal weights can not be properly
constrained from the training data alone [Goodfellow et al. 2016, Chapter 7], i.e., there
are different sets of weights explaining the training data similarly well. It is however un-
clear, which choice of weights fits the underlying generating distribution best and would
yields the best model. To mitigate this issue, models are given a so-called inductive bias,
either through regularisation, as discussed in general terms before, or through particular
network architectures, which we are going to discuss below.

Neural network architectures can be interpreted through their symmetries using the
concept of equivariance |Bronstein et al., 2021]. Simply speaking, a function is equivariant
with respect to a transformation, if applying the transformation to the input only changes
the output of the function by a similar transformation. For example, a function is shift-
equivariant if applying a shift to the input data leads to an identical shift to the output
data. To use equivariance in neural network design, one needs to identify the symmetries
in the data. For example, when analysing waveform data from a collection of seismic
stations, the result should be independent of the order of stations in the input, i.e., there
is a permutation invariance. A neural network for this task should be designed to be
permutation-equivariant. This greatly reduces the number of parameters in comparison
to a neural network modelling all possible functions and thereby can be optimised using
fewer samples.

For a formal definition of equivariance, let f : X — Y be a function and G be a group
with (left) group actions on both X and Y. f is called equivariant with respect to G
if for all x € X and g € G the condition f(g-x) = g - f(z) is fulfilled. For example,
let f: R4 — R™¥92 he a function and S, be the permutation group of n elements.
The function f is called equivariant with respect to S, if for all (zg,...,z,_1) € R?*%
and 7 € S, the equality f(7(zo,...,2n-1)) = 7(f(z0,...,2n—1)) holds. In other words,

37



2 BACKGROUND

ﬂ*
¢

Pooling Convolution

Figure 2.15: Schematic visualisation of a 1D convolution and a pooling layer. The input
sequence is visualised in green, the convolution kernel in grey, the sequence after the
convolution in blue, and the sequence after pooling in red. For visualisation purposes,
only a single channel is shown. In practice, the input can have multiple channels and the
convolutional kernel will be of size kernel width X input channels x output channels.
The output sequence of the convolution is shorter than the input sequence as no padding
was applied to the sides. The shown pooling layer has both a stride of 2 and a pooling
width of 2.

the function is equivariant if a permutation of the inputs leads to the same permutation
of the outputs, but no change in the values of the outputs. A neural network f? is
called equivariant if equivariance holds for all . Notably, the concatenation f o g of two
equivariant functions is again equivariant. Therefore, if all layers of a neural network are
equivariant, the network is equivariant as well. If the group action of G on Y is trivial,
ie,g-y=yforall g € G and y € Y, the function is called invariant to G. A simple
example of a permutation invariant function would be the mean of a set of real numbers.

We note that often it is sufficient to find approximate symmetries in the data or de-
sign network architectures that are nearly equivariant to gain the advantages regarding
overparametrisation. Such only approximate symmetries emerge commonly because sym-
metry transformations become invalid at the boundaries of the data, for example, at the
beginning and the end of a time series.

2.5.5 Convolutional neural networks

A symmetry commonly observed in data is translation equivariance. For example, in
image processing, a key task is to discover certain structures, like edges or corners. Sim-
ilarly, in seismology, certain local waveform characteristics need to be identified. These
features are translation invariant, i.e., they have the same characteristics irrespective of
the position within the image or time series. An architecture incorporating this trans-
lation equivariance are convolutional neural networks (CNNs) |Goodfellow et al., [2016],
Chapter 9]. In this thesis, we use CNNs for feature extraction from waveforms (Chapters
to @

The main components of CNNs are convolutional layers, performing a convolution
of the input data with a kernel. As an example, we take the 1D caseE Let x =
(z0,...,Tp—1) € R™ € be an input with n samples along the time axis and ¢ channels. A
convolutional kerne[™] K with kernel size 25 + 1 and ¢’ output channels is defined as a
matrix of shape K = (K_g, ... K,) € R®+)x¢Xc The convolution K *z can be written

131D here refers to the spatial/temporal axis, i.e., the axis along which translation equivariance is given.
We do not make any assumptions about the additional channel dimension.

YFor mathematical simplicity and because this is also commonly used in practice, we only discuss
kernels with odd kernel size.
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2.5 Deep learning

as

(K*l’)t = i Kixtfi- (244)

1=—35

The same convolutional kernel is applied locally at each position of the input trace. This
is visualised in Figure In contrast to a fully connected layer, a convolutional layer
has considerably fewer parameters, because through the convolution operation it shares
the parameters between all positions in the input trace. In addition to the convolution
itself, a convolutional layer f usually incorporates a bias term b € R and a pointwise
non-linearity o : R — R, giving as full formula

f(z) =0(K %z +b). (2.45)

We note that the addition of the bias b needs to be interpreted as pointwise addition. As all
operations in a convolution are either applied locally or pointwise, the same convolutional
layer can be applied to inputs of different lengths. This flexibility regarding the input
length is not present for fully connected layers.

Another layer type commonly used in CNNs are pooling layers. Pooling layers ag-
gregate features over multiple samples. This reduces the dimensionality of the data and
redundancy commonly observed between neighbouring samples. We again discuss the 1D
case with input x = (xq,...,xp—1) € R™° A pooling layer f with stride s, pooling size
p and aggregation function p : R? — R is given as

f(.ill‘)t = p([Et*s, e ;xt*s—l—p—l): (246)

where the aggregation function p is applied separately to each channel. Note that the
output of a pooling layer will only be of length n/s. Common pooling functions are either
the maximum or the mean function, with the resulting pooling layers called mean or
maximum pooling layers. An example pooling with a stride of 2 and pooling size of 2 is
shown in Figure [2.15

Two aspects need to be mentioned regarding the translation equivariance of CNNs:
border effects and alias effects. Border effects occur because the trace is not of infinite
length. In the terms z_g,...,x—1 and xy, ..., ZTnts—1 Occur, which are not defined.
To mitigate this, either the output can be truncated to n — 2s samples or sensible values
can be chosen for the undefined terms. Both strategies are used in practice, but in both
cases, translation equivariance is violated at the trace borders. The second issue, alias
effects, arises from the stride s in pooling layers. Given this stride, pooling operations
are only translation equivariant (up to border effects) for translations by a multiple of s.
Other translations might show alias effects. Anti-alias techniques exist, but so far have
not found widespread adoption [Zhang, [2019).

2.5.6 Transformers

As the last example of a NN architecture, we introduce the transformer, designed for
data with a permutation symmetry [Vaswani et al., 2017]. The specific transformer
architecture presented here was originally termed transformer encoder [Vaswani et al.,
2017], but referring to it simply as transformer has quickly become customary |Devlin
et al., 2018]. Inputs to a transformer f are x = (zg,...,2Z,—1) € R™*¢ and outputs are
¥y = (Y0,---,Yn—1) € R €. For a permutation 7, it holds that f(w(z)) = «(f(z)), i.e.,
permuting the input vectors will permute the output vectors in the same way, but will
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Figure 2.16: Schematic visualisation of the self-attention mechanism calculating the out-
put corresponding to the first input. The inputs are shown at the bottom in grey. Each
input is projected to a key (red) and a value (green) vector, using linear transformations
K and V. Furthermore, the query (blue) from the first input, computed using a linear
transformation @), is shown. The query is matched with every key using a dot product,
yielding a score. Scores are normalised to sum to 1 using a softmax function, yielding
the attention weights (not shown). The weight for each input is multiplied with its value,
yielding a set of weighted values (yellow). The sum of the weighted values gives the out-
put (grey, on top) corresponding to the first input. While only the computation for the
first output is shown, the same procedure is applied to obtain an output for each input.
Queries for this are generated from the other input vectors using the same projection Q.

not affect their values in any way. This is particularly useful for inputs without a natural
ordering on them, for example, measurements from different instruments. Furthermore,
the number of parameters in a transformer is independent of the number of inputs n.
Therefore, transformers can be applied to inputs with a variable number of input vectors.
We use transformers for combining information across seismic stations in Chapters [ to
(6}

Transformers consist of two main components: multi-head attention layers and point-
wise feed-forward layers. Multi-head attention is a way to combine information from a set
of input vectors in a learnable way, i.e., it allows the transformer to identify meaningful
connections between the inputs. It is based on the key-value attention mechanism, which
we are going to explain first, before introducing its application within the multi-head
attention. Key-value attention can be understood as a differentiable lookup table. Given
a query vector ¢ € R a set of key vectors k = (ko,...,k,—1) € R"*¢ and a set of value
vectors v = (vg,...,vn—1) € R™¢ key-value attention calculates an output vector that
represents a combination of the values weighted by the similarity of the keys to the query.
This combination is given as:

n—1
attention(q, k,v) = Z w;iv (2.47)
=0
e’
;= ————— 2.48
" (2.49
5= L (2.49)

NG

Here, ¢ - k; denotes the scalar product of the query and key vector. The weights w; are
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called attention weights, calculated from the similarity scores s;, and describe how much
relevance is given to each input.
Based on this attention mechanism, we define the self-attention layer. Given in-

puts * = (zg,...,2p—1) € R"™ ¢ the self-attention layer calculates a set of queries
g = (g0, qno1) € R™ a set of keys k = (kg,...,kn_1) € R"*“ and a set of val-
ues v = (vg,...,Vp—1) € R™*<', These are usually computed through linear projections

Q, K,V € R¥*¢, such that ¢; = Qx; and analogously for keys and values. These projec-
tion matrices are the learnable parameters of a self-attention layer and define the way the
inputs are recombined. The output y; corresponding to the input x; of a self-attention
layer is given by

y; = attention(q;, k,v). (2.50)

In other words, the self-attention layer calculates its output for each query by calculating
the key-value attention between the query and all keys and values. A self-attention layer
is visualised in Figure [2.16

Transformers use a slight extension of self-attention, the multi-head attention. For
this, several self-attention layers, called heads, with different projection matrices are ap-
plied to the same input and their outputs are concatenated. Another linear projection is
applied to the concatenated output. Usually one chooses the output dimension ¢’ and the
number of heads h such that ¢ = ¢’h, giving identical input and output dimensions. In
contrast to simple self-attention, multi-head attention can jointly attend to information
from different subspaces. This allows to model different relationships between the inputs
at once.

The second main component of a transformer are pointwise feed-forward layers. These
are simple MLPs, usually with one hidden layer and ReLLU activation. The MLPs are
applied individually to each input vector x; and are hence called pointwise. The most
common feed-forward layer is given by

FFN(z;) =Wy max(0, Wiz + b1) + ba, (2.51)

where Wy € RY>*d W, € R are the weights and b € R? by € R? are the bias
vectors. Usually one chooses d’ > d, for example d’ = 2d, as this has shown to yield good
performance.

A transformer consists of multiple transformer layers. Each transformer layer consists
of one multi-head attention, one pointwise feed-forward layer, a set of residual connections
and two layer normalisations. A transformer layer is visualised in Figure It can be
written as:

Transformer Layer(z) = Layer Norms(z' + FFN(z')) (2.52)
2’ = LayerNormy(x + MHA(z)) (2.53)

where FFF'N denotes the feed-forward layer and M H A denotes the multi-head attention.
A full transformer consists of several transformer layers that are applied sequentially.
All components of a transformer layer are permutation equivariant, consequently mak-
ing the full transformer permutation equivariant as well. While this reduces the over-
parametrisation of the neural network, it disregards potential additional input structure.
For example, if x = (z9,...,2,—1) iS a sequence, i.e, if there exists a natural ordering
of the inputs, this information is not accessible to the transformer. To solve this issue,
Vaswani et al.| [2017] introduced positional encodings. Let p = (po,...,pn—1) € & be
metadata associated with the inputs z, called positions. In the sequence example above,
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Multi-head attention

Feed forward

Figure 2.17: Schematic visualisation of a transformer. Inputs are shown in green, outputs
in red. The main box shows one transformer layer, consisting of a multi-head attention
layer, a feed-forward layer, and residual connections around both of these layers. The
residual connections are coupled with a layer norm, indicated by the circles with the
pluses.

p is simply (0,...,n — 1), denoting the position in the sequence. A position encoding is
a mapping Pos : 2 — R? mapping each position to a vector. These positions are then
added elementwise to the input of the transformer. Instead of providing x directly to the
transformer, we use x’ as input with

x; = z; + Pos(p;). (2.54)

This way, the transformer can incorporate the position information associated with the
inputs into its computations. Position encodings can either be predefined functions [e.g.
Vaswani et al., 2017], or can be parametrised as well and optimised jointly with the
remaining neural network weights [e.g. Devlin et al., |2018].

2.5.7 Variational approximations and mixture density networks

An important question for neural networks is how their output is interpreted. This ques-
tion is tightly coupled to the definition of the loss function. For example, a regression
neural network might have as the last layer a fully connected layer with a single output
9. When using the L2 loss for training, there are several options to interpret this out-
put. First, one can interpret it as the mean estimator, i.e., the mean of the posterior
distribution P(y|z), as it can be shown that this mean estimator minimises the L2 loss.
Second, one can interpret the output as a Gaussian distribution .4 (9, 0?) with mean §
and fixed variance O'QE The L2 loss is identical to the log-likelihood of this distribution

15 As shown in Chapter [2.4.1] the particular choice of the value ¢ only accounts for a constant offset in
the loss value. We can therefore assume any o. It is however crucial that we assume the same o for each
output, as the network does not provide an estimate of o.
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2.6 Machine learning in seismology

(see Chapter [2.4.1)). A4 (¢,02) is called a variational approzimation to P(y|x), described
by its parameter ¢ [Blei et al.l 2017].

However, in many cases, this model will be overly simplistic. First, the problem might
exhibit heteroskedasticity, i.e., the uncertainties ¢ might depend on the inputs z. Second,
the distribution P(y|z) might not be Gaussian. Therefore, the concept of variational
approximation can be generalised. A variational approximation Qg,(y) to P(y|z) is a
distribution that is described by its parameters 6. In the example above, Q was a normal
distribution with 6 = {§}.

One option to parametrise Qg(,)(y) are mixture densities, where the density fq is

given as the weighted average of the densities fy,..., fn—1 of n simple base distributions:
n—1
0;
faoy) =Y aifi'(y) (2.55)
i=0
The parameters 6 = {«;,0; | i = 0,...,n — 1} consist of the mixture weights «; and the

parameters of the base distributions ;. To ensure fg, is a density function, we require
that «; € [0,1] for all i and Z:‘L;ol a; = 1. The parameters 6(z) can then be estimated
with a neural network, called a mizture density network [Bishopl [1994]. The network can
be trained with any proper loss function as introduced in To this end, the loss
value needs to be derived given the true value and the parametrised distribution, i.e., one
needs to derive the loss as a function of the distribution’s parameters. Throughout this
thesis we use closed-form representations of the loss functions but some losses can also be
calculated through other means, such as Monte Carlo sampling.

One example of a mixture density network is the Gaussian mixture network. Here the
base distributions are Gaussians, parameterised by their means p; and standard deviations
0. The resulting density is

n—1
fl) =3 o (L, (2.56)
1=0

o

where ¢ is the density of a standard normal distribution. In the limiting case with in-
finitely many mixture components, Gaussian mixtures have a universal approximation
property [Bengio et al.l [2017], i.e., under mild smoothness assumptions on the target dis-
tribution, any distribution can be approximated arbitrarily well by a Gaussian mixture.
A Gaussian mixture network outputs the mixture weights «;, the means p; and the stan-
dard deviations o;. Note that this parameterisation can be used for both one dimensional
and higher dimensional Gaussian distributions. In the latter case, rather than a scalar
o, the network needs to output a covariance matrix ;. Care needs to be exercised to
ensure positive definiteness of 3;. A simple, even though restrictive option, is assuming
independence of the different components, i.e., a diagonal matrix ¥; with positive entries
on the diagonal. We use Gaussian mixture density networks to calculate probabilistic
estimates in Chapters [ to[6] We use multi-dimensional Gaussian mixtures in Chapter

2.6 Machine learning in seismology

After presenting the fundamentals of both seismology and machine learning, we now dis-
cuss applications of machine learning in seismology, focusing on recent developments.
For a general overview, see, for example, the surveys by Bergen et al. [2019] or Kong
et al. [2019]. Research on and application of machine learning in seismology has greatly
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increased in the last years. Consequently, several key contributions were developed con-
currently to the work presented in this thesis, which was conducted from 2018 to 2022. In
this chapter, we present an overview of key developments, including recent publications.
Additionally, we will point out relevant concurrent developments in later chapters where
appropriate.

Machine learning approaches for seismic data have been developed since the early 90s,
with early works primarily focusing on event detection and phase picking |[Dowla et al.,
1990, [Dysart and Pulli, 1990, Dai and MacBeth, 1995]. Subsequent research tackled
further tasks, such as source parameter estimation for earthquake early warning [Bose
et al., [2008]. However, none of these approaches was competitive to classical approaches.
Driven by the growth in available data, computing capabilities, and the development in
data mining and machine learning in the last years, deep learning approaches evolved.
Again, first approaches covered event detection and phase picking [Yoon et al. 2015,
Mousavi et al.,2019b|, Perol et al., [2018| Ross et al.,|2018b} |[Zhu and Beroza, [2019]. Closely
related methods were developed for polarity picking [Ross et al.,[2018a] and pairwise phase
association [Ross et all [2019]. The detection and picking methods offer a considerable
improvement above previous, non-ML approaches, as evidenced by the recently published
“deep catalogs” |Tan et al., 2021, Park et al., [2021} Jiang et al., 2022]. These “deep
catalogs” are earthquake catalogs with a low magnitude of completeness and high precision
locations that were obtained using deep learning methods.

A range of further tasks has been addressed with machine learning recently. Several
methods have been published for the assessment of earthquake source parameters, such
as magnitude or location [Perol et al., 2018, Lomax et al., 2019, [Kriegerowski et al., 2019,
Mousavi and Berozal [2020b,bl van den Ende and Ampuero, 2020, Zhang et al., [2021]. In
the context of early warning, neural networks for ground motion estimation were proposed
[Jozinovi¢ et al. [2020, Otake et al., 2020]. However, none of these methods has yet
found widespread application. We will discuss the reasons for this missing adoption in
Chapters and [7] Besides the assessment of earthquakes, machine learning methods
were presented for seismic signal processing, such as denoising [Zhu et al., 2019, seismic
tomography [Earp and Curtis, 2020} |[Zhao et al., 2022], and the unsupervised exploration
of seismic waveform data [Seydoux et al., 2020]. Given their recent development, it is yet
unclear how their performance compares to traditional methods.

To foster future development and comparability, several benchmark datasets were
compiled, such as STEAD [Mousavi et al., 2019a], INSTANCE [Michelini et al., [2021], or
LenDB [Magrini et al., 2020]. However, just as the recent wave of models for diverse seis-
mological tasks, these benchmark datasets have only been published lately. Consequently,
there exist no large scale comparison of the performance of different models using such
datasets. The only exception known to us is our recent benchmark for seismic picking and
detection models [Minchmeyer et al., 2022]. Many publications presenting new models
do not compare their results to previous methods. It is therefore practically impossible to
identify state-of-the-art methods for most tasks. We provide a more in-depth discussion
of standardisation and benchmarking needs and efforts in Chapter

Machine learning has not only been applied to natural seismic recordings, but also to
laboratory data. As laboratory data is recorded under more controlled environments than
real data, applications to this type of data can serve as prototypes for later real-world
models. Rouet-Leduc et al.| [2017] and Hulbert et al.| [2019] showed that machine learning
can predict the timing and duration of large stick-slip events in laboratory double direct
shear experiments. Through interpretation of their models, they identified key frequency
features for the prediction and related them to acoustic emission activity. They transferred
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their results to a real-world scenario, showing that noise variations in the seismic signal
allow predicting geodetic displacement related to aseismic processes in the Cascadia region
[Rouet-Leduc et al., 2019]. |Corbi et al. [2019] successfully used machine learning on
laboratory geodetic data to predict the timing of large failures. |Johnson et al. [2021]
conducted a challenge for predicting failure in laboratory experiments on the data science
competition platform Kaggle, attracting more than 4,500 teams. The challenge was won
by a team consisting exclusively of members without an Earth science background. While
the results did not provide novel insights into the underlying physical processes, they
showcased how proper data engineering can lead to significant improvements in applying
models to seismological tasks.

Most of the approaches in the previous paragraphs are so-called black-box approaches.
This means, that the models are exclusively derived from the training data, but do not
incorporate further knowledge, such as physical constraints. An alternative approach are
models incorporating such constraints derived from physics. [Smith et al. [2020] devel-
oped EikoNet, a neural network solving the eikonal equation that describes the travel
times of seismic waves. Once trained, EikoNet provides estimates of seismic travel times
at significantly lower computational cost than traditional methods, while achieving com-
petitive accuracy. In addition, the derivatives of the travel time with respect to source
and target location can be calculated through the neural network structure. Using this
property, Smith et al.|[2022] built HypoSVI, a method for seismic event localisation us-
ing variational inference. Along similar lines, Gao et al.| [2021] used EikoNet to develop
a probabilistic, physics informed seismic travel time tomography method. |[Yang et al.
[2021] and |Song et al.| [2022] presented different approaches for solving the seismic wave
equation with deep learning with the goal of developing a fast and exact method for the
forward modelling of seismic waveforms. It is yet unclear, how the performance of these
approaches compares to traditional methods. We discuss the potential of physics informed
networks for real-time assessment further in Chapter

In addition to the research on machine learning methods in seismology, these methods
are adopted in routine seismological operations. The U.S. Geological Survey National
Earthquake Information Center (NEIC) use CNN models in their global seismic mon-
itoring to improve the quality of their phase pick, generate phase labels and estimate
distances [Yeck et all 2021]. The GEOFON group |Quinteros et al.l [2021] is currently
testing CNN methods for pick reﬁnementm While quantitative evaluations are still out-
standing, early results suggest a considerable improvement upon the previously employed
classical method. Both the number of picks at a low signal to noise ratio and the temporal
precision of the picks are improved using the DL methods. In addition to the monitor-
ing for catalog generation, machine learning systems start being deployed for real-time
application. Within the ShakeAlert early warning system on the US West Coast, deep
learning methods are used to reduce the number of false positive triggers [Kong, 2021]. In
addition, the suitability of the TEAM-LM method (Chapter [5)) for use within ShakeAlert
is currently evaluated "]

16 Jannes Miinchmeyer is contributing to this project.
17 Jeff McGuire, personal communications, February 2022
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3 Post hoc calibration of a high confidence magnitude scale

In the first main chapter, we discuss magnitude calibration in a post hoc scenario, i.e.,
once all observations about an event are availablelr_g] More specifically, we will discuss
magnitude calibration based on seismic waveforms and a high quality earthquake cata-
log. Magnitudes are key metrics for characterising earthquakes, required, for example, in
statistical seismology or to assess the impact of earthquakes in disaster response. These
tasks require high precision of the magnitude scale as well as quantified uncertainties. In
this chapter, we calibrate interpretable magnitude scales with low uncertainties. Within
this thesis, this post hoc analysis fulfils two goals. First, by quantifying the level of
uncertainty on the magnitude values in a post hoc scenario, we get an lower bound on
the possible uncertainties in a real-time scenario. The post hoc analysis thereby helps
interpreting the performance of the real-time methods. Second, using the method devel-
oped in this chapter, we obtain a seismicity catalog with high precision magnitude values.
This catalog will serve as a gold standard for the detailed analysis of real-time magnitude
estimation methods in Chapter

In this chapter, we focus on magnitudes derived from simple waveform features. The
first magnitude of this kind was the local magnitude My, as defined by Richter| [1935],
which was based on the peak horizontal displacement recorded with a particular instru-
ment, the Wood-Anderson seismometer. While many different magnitude scales exist
for a multitude of use cases, local magnitude remains popular, in particular, for regional
scenarios and small events. An extensive overview of magnitude scales is provided by [Bor-
mann [2012]. The local magnitude M|, has the advantage of a simple definition, allowing
for fast and robust determination. On the downside, M} and similar magnitude scales
require distance-dependent attenuation correction functions, which need to be calibrated
for each region to take the local earth structure into account "]

Attenuation functions are typically expressed as non-parametric models [Brillinger
and Preisler, |1984]. Savage and Anderson [1995] proposed a simple 1D model with a
linear interpolation that can be fit using quadratic optimisation. For this, magnitude
values and attenuation functions are jointly calculated using a seismicity catalog and
peak displacement measurements at several seismic stations. For the study area used in
this Chapter, Northern Chile, Bindi et al.| [2014] calibrated a magnitude scale using 106
events from the Iquique sequence 2014.

While these attenuation terms are well established, they have several deficiencies,
leading to inconsistency and uncertainty in the magnitude scale. First, while modelling
attenuation as a function of hypocentral distance is a good approximation for crustal
events, for which the scale was originally developed [Richter, 1935], the approximation
is less suitable for subduction zones. In these zones, where both crustal and interface
seismicity is present, the events experience different attenuation for the same hypocentral
distance, given the different travel paths and therefore different anelastic and geometric
focusing effects experienced for crustal and deep events. Second, the attenuation terms
do not take into account the spatial variation of attenuation within a region. This is
equivalent to the ergodicity assumption in ground motion estimation, which has lately
been shown to be a limiting factor to the model performance [Kotha et al.,2016]. Third,

18This chapter has been published as [Miinchmeyer et al., |2020]. Compared to the publication, the
Introduction and Conclusion of this chapter have been modified to highlight the context of the chapter
within this thesis. Minor modifications were introduced to the remaining text and figures.

19Within this chapter, when using the term attenuation, we refer to the combined effects of (physical)
attenuation and geometric spreading. Both will usually reduce the recorded amplitudes with the distance
travelled by the waves.
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My, is based on a single feature, the peak displacement on the horizontal components.
This feature is noisy, i.e., it includes a stochastic component, leading to uncertainties
in the magnitude estimate. To reduce the uncertainties from these limitations, usually
measurements from multiple seismic stations are averaged. However, the uncertainties
of the average still depend linearly on the single-station uncertainties, i.e., any reduction
in the single-station uncertainties will translate into lower uncertainties of the network
average.

In this chapter, we develop a novel method for magnitude scale calibration that ad-
dresses the issues discussed above. For this, we focus on reducing the uncertainties of the
single-station magnitude estimates, leading to lower uncertainties for the magnitude val-
ues averaged across seismic stations. We develop a three-step approach. In a first step, we
define 110 physically motivated features that can be easily derived from the single station
waveform. For selecting these features, we took inspiration from features proposed in the
context of early assessment [Zollo et al., [2006, Festa et al., 2008, Lancieri and Zollol 2008,
Picozzi et al.| [2018], Spallarossa et al., 2019]@ In a second step, we model the attenuation
using a 2D grid function, together with a station-specific, adaptive 3D source correction
function to account for the complex subduction zone geometry. The 2D attenuation ac-
counts for the depth dependence of attenuation, the 3D correction for spatial variations.
Finally, we add a third step where we combine the single station features using boosting
tree regression to obtain more precise magnitude estimates. By combining multiple fea-
tures, we address the uncertainty from the noisy single features. We apply our method
to the TPOC catalog for Northern Chile by |Sippl et al. [2018], featuring a high number
of earthquakes and high quality location estimates. As a result, we get high-confidence
magnitude values with quantified uncertainties for the approach.

Our approach in this chapter is multi-stepped based on hand-crafted, physics-inspired
features. This stands in contrast to end-to-end machine learning, where machine learning
is used to directly model the relation of the waveforms to the magnitude. For the post hoc
analysis, this has several advantages. First, the resulting scales are more interpretable, as
the different steps can be analysed individually. This includes analysis of the correction
functions, comparison of the scales to each other and interpretation of the key features for
the boosting tree regression. Second, true magnitudes are not known or even necessarily
well defined, as most magnitude scales, except, e.g., My and Mg, are defined through
measured features rather than through independent physical source properties. Therefore,
our approach uses bootstrapping by first creating high-quality single feature network-
average magnitudes using extended correction functions, and then applying boosting tree
regression with these magnitudes as labels and the corrected measurements as features. In
contrast to this chapter, we will focus on end-to-end methods in the subsequent Chapters
to[6], where the multi-step approach becomes infeasible due to the real-time requirements.

3.1 Data and Methods
3.1.1 Earthquake catalog and stations

Our analysis is based on the earthquake catalog of Sippl et al.|[2018]. The catalog covers
the region of the Northern Chile forearc and contains 101,601 events. The events were
extracted from 8 years of continuous seismic data between 2007 and 2014 using automatic

29The quantitative results in these studies were obtained in the context of early warning. Consequently,
they can not be directly compared to the results of this study. Nonetheless the methods share the idea of
choosing appropriate features to minimise single station uncertainties. We will study real-time earthquake
assessment in the subsequent Chapters [] to @
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Figure 3.1: Event distribution (from [Sippl et al. [2018]) and broadband station locations.
Stations with additional strong motion instruments are denoted by a black triangle. The
sharp boundaries on the North, East and South side of the study area are due to the
event selection criteria in the original catalog.

event detection and phase picking routines. The magnitudes range from < 2 up to 7.7
and the estimated magnitude of completeness for My, is ~ 2.8 [Sippl et al, 2018]. All
event hypocenters were double-difference relocated. The catalog is based on data from
the IPOC network [CX, |GFZ German Research Centre For Geosciences and Institut Des|
Sciences De L’Univers-Centre National De La Recherche CNRS-INSU] [2006]. Additional
seismic data were obtained from the GEOFON [GE, GEOFON Data Centre, [1993], CSN
[C, C1, [Universidad de Chile, [2013], WestFissure [8F, [Wigger et all, 2016], Iquique [IQ,
|Cesca et al., 2009] and Minas [5E, |Asch et al., [2011] networks. A full map showing the
detected events and the stations used can be found in Figure 3.1

Sippl et al.|[2018] use this catalog to analyse the double seismic zone of the Northern
Chile forearc. The catalog events are classified into upper plate, plate interface, upper
plane and lower plane, based on their location. In addition, the authors identify an
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Figure 3.2: Distribution of the measurements over epicentral distance and event depth.

intermediate depth cluster, which is assigned a separate class. The catalog features some
events belonging to none of the classes mentioned, mostly events at the border of the
study area. We removed these events from our analysis as they are expected to have
higher location uncertainties, resulting in a total number of 96,185 events included in this
study. For further information on the classification, catalog and study region, we refer to
Sippl et al.| [2018].

We use the catalog to evaluate our method, as it is both consistent and challenging,
while offering a large amount of data. The consistency is achieved by the low temporal
variability in the station coverage, a consistent tool chain and double difference relocated
hypocenters. This consistency is a prerequisite for the consistent and low uncertainty
calibration of magnitude scales. The catalog is challenging, due to the wide range of
magnitudes and the different types of seismicity present in the subduction zone.

For our analysis, we use the same seismic stations as Sippl et al| [2018], but also
incorporate data from strong motion instruments. A list of all 31 stations can be found
in the Table [B:4] In total, we use ~ 1,100,000 P picks and ~ 650,000 S picks from the
catalog. We predicted a further 450,000 S picks using the 1D velocity model of [Graeber
and Asch| [1999].

Figure shows the distribution of measurements across distance and depth. Nearly
all measurements were taken at distances below 400 km and depths shallower than 150 km,
while few additional measurements exist up to 500 km distance and 200 km depth. We
observe multiple peaks in the depth distribution, with two smaller peaks around 5 km
and 30 km and one large peak around 110 km. These are caused by the different types
of seismicity present, namely crustal events and events in the intermediate depth cluster.
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Figure 3.3: Example trace with extracted features denoted by circles. The trace shows
the vertical component from station PB01 for a M,, = 6.3 event at a depth of 21km and
an epicentral distance of 193km.

For further details on the catalog and seismicity in Northern Chile, we refer to the original
publication of the catalog by |Sippl et al.| [2018].

3.1.2 Feature extraction

The feature extraction process encompasses some common preprocessing steps and the
actual feature generation. A schematic overview of the workflow for each waveform is
shown in Figure For each event we generate the features for all stations, for which
the catalog contained at least one phase pick.

We generally use broadband records. Only for clipped traces, we use strong motion
records instead. We assume a clipped trace if its peak value exceeds 80% of the maximum
output of the digitiser, as estimated from its bit count [Cauzzi et al.l 2016]. If no strong
motion data is available, the record is discarded. We also discard traces with gaps.

We remove the instrument response using the inventories provided by GEOFON. We
apply a cosine taper in the frequency domain with corner frequency parameters 0.005 Hz,
0.01 Hz, 30 Hz, 35 Hz before the deconvolution. Whenever strong motion data is used,
the data is integrated to obtain velocity traces.

As the recorded signal is often below the noise level in the broadband records, we high-
pass filter the data to increase the signal-to-noise ratio (SNR), while retaining as much
of the low frequency information as is possible. To this end we use a greedy strategy:
for a set of frequency intervals fiow, fuigh, We check whether the mean spectral amplitude
increases at least by a factor of 4 between the 30 s before the P pick and the 30 s after.
The lowest frequency interval from a pre-defined set of candidates (Table fulfilling
these conditions is used. The data is then high-pass filtered with the corner frequency
flow- The frequency fiign is only used for frequency selection, but is discarded for the
filtering of the actual data. This strategy is applied as we observed sufficient SNRs for
high frequencies for all events. Therefore we only need to identify the lowest band, where
the SNR is still sufficient for the following steps. More details on the applied filtering and
the distribution of selected frequencies can be found in Appendix As a final step of
the pre-processing, we detrend the filtered data using the best linear fit in a 300 s window
around the event.
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The resulting velocity trace is differentiated to obtain the acceleration trace and in-
tegrated to obtain the displacement trace for the vertical (Z), radial (R) and transverse
component (T). We use the absolute value of all horizontal components (NE) as well as
the absolute value of all components (ZNE) as additional traces where we compute the
absolute value from the vectorial sum of the single components.

From each trace we export six values, as shown in Figure We extract the peak
values of the P and S wave. For the P wave peak we use the waveform between the P pick
and the S pick minus a safety margin in order to avoid interference from the S waves. As
the safety margin we use 5% of the measured or estimated S wave travel time, but always
at least 0.5 s. For the S wave peak, we restrict the search window to the first 30 s after
the S pick to minimise the possibility of overlapping events.

In addition, we extract values from the P and S wave envelopes. We calculate the
signal envelope and low-pass filter it at 0.5 Hz. We then export the values at 5 and 20
s after the P and S picks. We do not report the envelope values for the P wave in case
the time difference between the P and S pick is less than the lag time. We include the
envelope values as we expect them to be less influenced by the radiation pattern and
distance uncertainties. We chose delays of 5 and 20 s because the 5 s envelope value
should be representative of the energy in the direct arrival for moderately sized events
but less variable than the peak, while the 20 s value represents a compromise between
accessing, for most event-station pairs, the late coda where the wavefield is fully diffusive
but still retaining signal levels well above the noise level for practically all events. For
further details on the choice of envelope times we refer to appendix

In addition to the features from the displacement, velocity and acceleration traces, we
export the energy, and the peak value of a simulated Wood-Anderson instrument. We
calculate the energy as the integral of the squared velocity trace. We export both the
integral over the time between P and S pick and the integral over the first 30 s after the
S pick. For the Wood-Anderson instrument, we report the peak values from the P and S
waves as before. All resulting feature values are logarithmised with base 10.

We rescale the resulting energy features by a factor of 2/3. Following the analysis by
Deichmann| [2018b], the factor of 2/3 is the theoretically derived scaling factor between
M7, and log E. The different scaling of energy E compared to the displacement scale is
further discussed in Section 3.2

In total we extract 110 features, 22 from each component or combination thereof. Of
the 22 features half are from the P wave and half from the complete waveform. The fea-
tures are energy and the simulated Wood-Anderson peak as well as the peak, 5 s envelope
and 20 s envelope values from displacement, velocity and acceleration (see Table .

In our dataset, features might be incomplete due to missing waveform data for single
components or because the P envelope values are later than the S arrival. All features
are present in at least 98.8% of the measurements. The only exceptions are the 5 s P
wave envelope value with only 97.7% availability and the P envelope value at 20 s with
only 21.4%. This lower availability is expected, as the value can only be measured at a
significant distance to the event.

3.1.3 Correction terms and normalisation

To correct the measurements for the source-receiver distance, station bias and source
conditions, we employ a set of non-parametric correction functions. The classical approach
of Richter| [1935] uses a table of hypocentral distance correction values. We extend this
method by using a non-parametric 2D correction function incorporating source-receiver
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distance and source depth, as well as by adding a station correction and a station-specific
source correction term. The latter will be mostly affected by propagation effects related to
three-dimensional heterogeneity, but could theoretically also incorporate radiation pattern
effects if certain mechanisms are dominant in some area.

Let E be the set of events and S be the set of stations. Let E C E be the subset
of events measured at station s € S. For station s € S and event e € FE5 we model the
difference between the measured feature Y? and the corresponding event magnitude M®
through an attenuation function I', a station specific source correction term Lg, and a
station correction B,. With an error term €§, we obtain

YE— M®=T(r%,d°) + Ly(p°) + By + € (3.1)

where 7¢ is the epicentral distance between event and station, d® the event depth, and
p¢ the hypocenter. We formulate a quadratic minimisation problem on the squared error
objective function

Obj =~ 3" S0 (3.2)

s€S ecFEy

Here, n denotes the number of error terms or equivalently the number of measurements
for the feature. We now describe the definitions of the different correction terms, as well as
their normalisation and regularisation. This will also lead to an extension of the objective
function for the quadratic optimisation.

The attenuation function I' is defined as a two dimensional non-parametric function
on a grid of epicentral distances and depth values. We use a grid G with 50 linearly spaced
distance values between 20 and 500 km and 20 linearly spaced depth values between 10
and 200 km. Values between the grid points are interpolated bilinearly between the four
adjacent values.

We enforce smoothing of the attenuation function by introducing a penalty term
derived from the 2°4 order finite difference approximation of the Laplacian with a regu-
larisation term

1 02T\ 02T\
Rr = @ Z Ar <(97"2> + A\d <5d2> . (3-3)
(r,d)e@

For clarity reasons we write the continuous version of the Laplacian here, rather than
its finite difference approximation. The factors A\, and Ay are model hyperparameters
describing the level of smoothing. We use |G| to denote the cardinality of the set G, i.e.
the number of grid points.

To account for source location specific systematic errors, we introduce a source specific
correction function L, for each station s. We randomly sample a set of events E, C Fj
and assign to each of the events e € F a correction term [¢. The correction for a single
event is defined through the correction terms of the k£ nearest neighbours:

L=y > & (3.4)
e/ €kNN(e,E5)

Here kNN (e, E;) is the set of the k nearest neighbours of e in E. For our experiments we
chose k = 10 and FE such that |E,|/|Es| ~ 0.1. As distance metric for the determination
of the nearest neighbours we use the euclidean distance between the hypocenters, but scale
the depth difference with a factor of 3, to account for the high importance of the depth.

93
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We use the average over the set of neighbours to obtain a smoothly varying function of
position. As the density of events is not uniform over the region, the nearest neighbour
based function can represent higher variability in regions with many events, while being
smoother in regions where a high resolution function would not be well constrained. The
subsampling E from E, is necessary for performance reasons, as each element in F,
introduces an additional free parameter. We choose one subset E, C Ey for each feature
and station.
The location correction is normed and regularised by:

1 1
Ry =g > = > 1& (3.5)
‘S’ seS |ES| ecEy
Vs€S5: Y Lie) =0 (3.6)
eEEs

The factor Az is a hyperparameter to adjust the level of regularisation.
For each station s, we add a station bias B to account for site effects. We constrain
the biases of all stations to sum up to zero:

> B.=0 (3.7)

seS

The magnitude scale needs to be anchored, i.e., aligned to a reference, as the system
would otherwise be underdetermined. Specifically attenuation with depth can not be
extracted from the data, as the depth is only event but not station specific as opposed to
the distance. The Richter definition resolves attenuation with depth by using hypocentral
distance. Due to the separation of depth and distance in our approach, the standard
Richter definition of assigning magnitude 3.0 to a 1 mm displacement at a distance of
100 km is not applicable. Therefore we calibrate our scale against M,,, which also includes
information on the attenuation in depth direction.

We obtain a total of 155 M,, values from the Global CMT Project [Dziewonski et al.,
1981, [Ekstrom et al., [2012]. As we do not expect a linear scaling between M,, and our
magnitude scales for the full range of magnitudes covered by Global CMT, we only used
the 114 events with magnitudes between 5.0 and 6.0 in the calibration. To incorporate
the information into our model, let Ej;, denote the events for which a moment tensor
solution is available. We then define an objective by:

. 1
ObjMw = )\Mwm

> (M- M) (3.8)

EEEA{w

The factor Ay, controls the trade-off between fitting to M,, and smoothness of the cor-
rection functions. For our analysis we use Apz, = 0.1.

We use a weak connection between M€ and M, instead of setting M°¢ = M, for
multiple reasons. First, we do not expect the features to correspond 1:1 with M, as they
also depend on parameters other than the seismic moment, e.g. the stress drop, which
influences the high frequency content in particular. We investigate this scaling in more
detail in section [3.2.1] Second, we only have values for M, for a small subset of the
dataset available. In conclusion, enforcing equality to M,, would introduce perturbations
into the correction functions. The weak connection resolves the underdetermination of
our system, while minimising the perturbation on the correction functions.
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All correction functions and bias terms are optimised concurrently using quadratic
optimisation on the full objective:

min(Obj. + Objyr, + Rr + Ry (3.9)

It consists of the primary objective, the calibration against M, and the regularisation
terms for I' and L. It is additionally constrained by the relations and . The
free parameters are the event magnitudes M€, the values of the grid G, the values of the
correction function I', the correction terms {I$} g .cp,, and the station biases {Bs}ses-

While the source-path correction term could in principle incorporate the whole at-
tenuation function, we still decided to split the attenuation into the distance-depth, the
source-path and the station term for multiple reasons. First, the source-path term is
station-specific, while the distance-depth term is universal for all stations. This enables
a by far better calibration of the attenuation with distance and depth, especially for
stations and ranges with only few measurements. Second, we can formulate a sensible
regularisation more easily: the distance-depth correction is forced to be smooth, whereas
the source-path correction is damped towards zero to ensure deviations from the generic
distance-depth correction are only introduced where required by the data. Thus, the cor-
rection functions are easier to interpret, as the station-specific and the mean attenuation
effects are separated. For details on the interpretation see Section [3.3.3

3.1.4 Multi-feature magnitude estimation

The methods proposed so far only use each feature separately, but do not leverage combi-
nations of features. As a framework for combining multiple features and obtaining a joint
magnitude estimate, we state a regression problem: given all features of a single station
estimate a chosen target network magnitude. We use the term network magnitude to
refer to the average across all single station magnitude estimates. We want to emphasise
that the key point is estimating network-wide information from single-station features.
The target magnitude scale can be chosen arbitrarily among the scales derived using the
calibration functions, for example, the network magnitude from peak displacement on the
horizontal components. Due to the limited amount of data, we do not use M,, as a target
magnitude.

The regression problem has a canonical baseline: the station magnitude estimated
from the feature corresponding to the target magnitude. If for example, the target mag-
nitude is the peak displacement magnitude averaged over all stations, the baseline pre-
diction from a single station would be its peak displacement magnitude estimate. The
error level of this baseline is exactly the error from the modelling obtained in the previous
step. The task of the regression problem is to estimate network-wide information from
the combined features of a single station.

We use boosting trees [Friedman| |[2002] for regression, training one common model for
all stations. Boosting trees are a special class of gradient boosting models and use decision
trees as the underlying classifiers. They are a popular regression technique for non-linear
problems. We use a non-linear approach to model complex dependencies between the
features. We show by quantitative comparison to linear regression that those complex
dependencies are indeed present.

Boosting trees are better suited for our problem than other non-linear approaches like
support vector machines or neural networks. Support vector machines suffer from long
training times for our problem size and are therefore intractable. Neural networks are
harder to train in the presence of missing values, as they represent smooth functions.
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We tried multiple imputation techniques to alleviate this problem but were not able to
achieve the performance level of boosting trees using neural networks. Boosting trees can
handle this problem by learning a default action for splits at missing data points (for
details see |(Chen and Guestrin| [2016], algorithm 3).

An additional upside of boosting trees is their interpretability regarding feature im-
portance. We can analyse the information gain through splits at specific features to get a
view of their internal workings. This is in strong contrast to neural networks, where such
an interpretation is not easily possible.

As boosting trees rely on decision trees, their value range is discrete. While this poses
a theoretical limitation, the number of values inside the range is high enough that the
discretisation is barely observable. The residuals in the regression predictions are still
by far higher than those added by the discretisation. This effect is only causing higher
approximation errors for events with high magnitudes, as their number in the training set
is limited.

3.1.5 Evaluation

We split our data into a training, a development, and a test set with the ratios 60:10:30.
All measurements for one event are guaranteed to be in the same split. The sets contain
~ 670,000, ~ 110,000 and ~ 330,000 measurements and ~ 58,000, ~ 9,600 and ~ 29,000
events. We split randomly between the events, but keep the splits fixed for all evaluation
steps and across all features. All models are trained only on the training set. This includes
the correction functions as well as the boosting tree for feature combination. We use the
development set for hyperparameter selection and report the scores on the test set. An
overview of hyperparameter values can be found in Tables and We discuss the
choice of hyperparameters and advise on the adaptation to other datasets in appendix
B2

To evaluate the uncertainty of our models we are using the root mean square error
(RMSE) between station magnitude and event magnitude. Using the definitions from
Section B.1.3] we define the RMSE as:

RMSE = % D) e (3.10)

s€S e€FE

To compare the uncertainty of different scales with each other we need to normalise the
scales. This is necessary to ensure a fair comparison, as the different scales show different
slopes. We normalise by dividing the RMSE by the difference between the 25" and
75t percentile of the predicted magnitudes. We rescale all magnitudes by multiplying
by the 25" and 75" interquantile distance of the Wood-Anderson magnitude on the
horizontal components. Thereby we obtain RMSE values that approximately resemble
local magnitude units. We chose these quantile values as all scales show a relatively linear
dependency with each other between those values. We only use scaling to compare the
scales with each other. For our experiments on the combination of multiple features, we
use the plain RMSE, as we only compare the uncertainty between scales with the same
value range.

For the multi-feature regression, we always report the RMSE between the predictions
from the single station and the network magnitude from the target feature. We do not
optimise for the mean of all multi-feature predictions, as this would trivially converge
against a constant.
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Table 3.1: Normalised RMSE (in local magnitude units) for all analysed features and com-
ponents on the test set. The second column indicates whether the features are extracted
from the full wave (P+S) or the P wave (P) only. The third column indicates if peak or
envelope values are used. The best combination of peak or envelope, wave and component
for each feature class is highlighted in bold. The columns denote the components, where
NE is the absolute value of all horizontal components and ZNE is the absolute value of all
components. The rightmost column indicates the average normalisation factor applied.
The norm factor does not vary significantly between different components of the same
feature and is therefore only given as average across the components. We note that mea-
surements for the 20 s envelope value on the P wave are only possible for the ~ 30% of
the event-station pairs with sufficiently large distances to achieve at least 20 s separation
between P- and S arrivals. They are thus skewed towards larger magnitudes.

Z R T NE ZNE | @ Norm factor
Peak 0.191 0.195 0.195 0.194 0.190 1.01
Full Env5s | 0241 0.243 0.243 0.232 0.225 1.01
Displacement Env 20 s | 0.279 0.266 0.264 0.248 0.241 1.28
Peak 0.270 0.285 0.302 0.297 0.290 1.39
P Env5s | 0322 0.328 0.347 0.330 0.320 1.47
Env 20 s | 0.263 0.259 0.295 0.254 0.252 1.48
Peak 0.147 0.164 0.162 0.163 0.155 0.94
Full Env5s | 0172 0.199 0.201 0.195 0.184 0.91
Velocity Env 20 s | 0.132 0.138 0.138 0.129 0.120 1.02
Peak 0.183 0.191 0.194 0.194 0.191 1.03
P Env5s | 0.141 0.162 0.168 0.158 0.144 1.06
Env 20 s | 0.143 0.149 0.155 0.144 0.138 1.13
Peak 0.160 0.171 0.170 0.172 0.165 0.98
Full Envb5s | 0.169 0.193 0.196 0.190 0.179 0.94
Acceleration Env 20 s | 0.128 0.132 0.133 0.125 0.117 1.03
Peak 0.181 0.187 0.187 0.189 0.187 1.01
P Env5s | 0137 0.146 0.150 0.142 0.132 1.01
Env 20 s | 0.119 0.124 0.125 0.120 0.116 1.02
Wood-Anderson Full Peak 0.195 0.195 0.197 0.193 0.188 1.02
P Peak 0.292 0.308 0.332 0.320 0.301 1.58
Full 0.124 0.134 0.134 0.132 0.122 0.75
Energy
P 0.144 0.160 0.165 0.160 0.147 0.81

Our feature extraction is based on Obspy |Beyreuther et al.l 2010]. The extraction is
parallelised event-wise and conducted on a compute cluster. As no dependencies between
events exist, parallelisation can easily be scaled to clusters of arbitrary size. To optimise
our models, we used the Gurobi optimiser [Gurobi Optimization LLC| 2018] using a free
academic license. Optimization took ~ 3 hours per model using 64 threads on four
Intel Xeon E7-4870 CPUs and required ~ 120 GB of main memory. All boosting tree
experiments were conducted using XGBoost [Chen and Guestrin, 2016 on four Intel Xeon
E7-4870 CPUs. Each training process took less than 30 minutes.

3.2 Results

We report the average RMSE for all extracted features and components in Table
Differences in RMSE depend more on the feature than on the component. Nonetheless, we
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see differences between the components as well. For the peaks of the P wave, the average
normalised RMSE over all feature classes (i.e., displacement, velocity and acceleration)
is 0.216 on the Z component and 0.239 on the T component. In between are the ZNE,
R and NE components (in this order). This matches the characteristics of the P wave
as a longitudinal wave, which is expected to have smaller amplitudes on the transverse
than on the vertical and radial components. The effect is also observable for the envelope
values, although the combinations of components tend to perform similarly or even better
in this case.

For the peak amplitude measurements of the full waveform, all components achieve
nearly identical RMSE values. For the envelope values, the differences are more pro-
nounced, especially for the 20 s envelope values. The best scoring component at 20 s
is ZNE with 0.162 normalised RMSE and the worst is Z with 0.183 normalised RMSE.
We suspect that taking the absolute value of all components effectively reduces noise and
thereby improves envelope performance.

We see major differences regarding the normalised RMSE between the different feature
classes. For the peaks of the full trace, the lowest average RMSE across all components
occurs for velocity (0.163), followed by acceleration (0.172), Wood-Anderson (0.197) and
displacement (0.198). Energy (0.134) achieves a better score than all peak values.

Envelope values behave differently for different features. For displacement, the enve-
lope derived scales show considerably higher RMSE on most components. In contrast,
the best 20 s velocity and acceleration envelope values have a 23% and 29% lower RMSE
than the respective best peak scales. Scales derived from features on the P wave show a
higher normalised RMSE in all cases. The increase is up to 69% for the Wood-Anderson
instrument compared to the full wave.

The lowest normalised RMSE values overall are the 20 s envelope values of acceleration
and velocity on the ZNE component (0.120 and 0.117). The best peak derived feature
is velocity on the Z component with 0.147. The best combination of peak or envelope,
wave, and component for each feature class is highlighted in Table

3.2.1 Relations between the scales

We now compare the scales obtained from the peak values of the ZNE components for
the different feature classes and energy (Fig. . As a reference scale we use peak
displacement, as this scale shows no saturation effects. We denote the scale by M4 as
proposed by |Deichmann| [2018a]. The scatter visible in the plot reflects both systematic
effects of earthquake physics and the uncertainties of both M4 and the other scale under
consideration.

As all scales are tied to M,, between 5.0 and 6.0, they match between those values.
They deviate outside this range. The Wood-Anderson based magnitude scales 1:1 with
the displacement magnitude for magnitudes below 6.0 and slowly saturates above. Un-
surprisingly, it shows the lowest variance in comparison with the displacement scale. The
velocity magnitude scales 1:1 with displacement for small magnitudes and increases more
slowly for M4 > 5.0. The acceleration shows a similar behaviour as the velocity, but
nearly completely saturates for M4 > 6.0. The saturation effects for velocity and accel-
eration have previously been observed and are due to the shifted frequency spectra [e.g.,
Katsumata, 2001]. Interestingly, the variance of the acceleration magnitude is highest
among the scales, suggesting a high variability of peak acceleration compared to peak
displacement.

The energy magnitude grows slightly stronger than M4 below 4.0 and scales nearly
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Wood-Anderson Velocity

Acceleration Energy

Figure 3.4: Comparison of the different magnitude scales, all relative to the scale based
on displacement (My). All scales use the ZNE component of the full waveform. Wood-
Anderson, velocity and acceleration scales use the peak values, the energy scale uses the
integrated square velocity. The identity line has been added in black for comparison.

1:1 above, exhibiting scatter similar to the velocity magnitude. Below 2.0, the energy
magnitude compared to M, approximately follows a 4:3 scaling. Combined with the factor
of 2:3 in the definition of our energy features, this scaling provides empirical evidence for
the 2:1 scaling between Mg and M|, derived by Deichmann| [2018b]. For large magnitudes,
this scaling only holds compared to My, caused by the Wood-Anderson response, but not
for My4.

We compare the magnitude scales to M,, using 155 moment tensor solutions from
the Global CMT project and 507 further solutions we determined using regional moment
tensor inversion (see Appendix . Figure shows the relation between M,, and the
scales generated from different features. Due to the calibration used, all scales match
M, fairly well between 5.0 and 6.0. Strong differences can be seen outside this range,
especially for larger events. Saturation effects cause velocity and acceleration magnitudes
both to underestimate large events. The saturation effect also causes them to overestimate
smaller events, as the saturation already affects the calibration magnitude range M5 to
M6. The Wood-Anderson magnitude shows a saturation effect only above M ~ 6.5.

The trends of M4 and energy magnitude match My, approximately over the whole
range of magnitudes. The energy magnitude exhibits more scatter, possibly related to
varying source properties, e.g. stress drop, although ambient noise could also affect the
measurements. Deichmann| [2018a] proposed M4 as a non-saturating alternative to M.
Our empirical results support this proposal.
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Figure 3.5: Estimated magnitudes from different features in comparison to M, from
Global CMT and additional solutions. Comparisons to Global CMT are shown as circles,
comparisons to our moment tensor solutions as triangles. All magnitudes were determined
from the peak values of the ZNE component of the full waveform (except energy). The
identity line has been added in black for comparison. We report R? scores as a further

orientation.
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Figure 3.6: Residual analysis for displacement magnitudes on the NE components. Three
plots show the dependency of RMSE on depth, M4 and epicentral distance. My4 refers
to the peak displacement magnitude on the horizontal components. All traces represent
running square means. The averaging window widths are 20 km (epicentral distance),
10 km (depth) and 0.2 m.u. (My4). The bottom-right plot shows the distribution of the
residuals in comparison to a normal distribution as a Q-Q plot.

3.2.2 Residual distribution

We analyse the residuals as a function of depth, M4, hypo- and epicentral distance
(Fig. . While residuals do not depend strongly on depth, we observe a near dou-
bling of residuals with distance and presumably a weak increase with M 4. The increase
with distance can be easily understood, as the SNR decreases with distance.

Varying residuals could also be caused by implicit frequency dependencies of the cor-
rection terms. The increased RMSE for larger magnitude values could be caused by the
lower dominant frequency of large events compared to the small events composing the
majority of the training events. Lower frequency waves might encounter less physical
attenuation and scattering, therefore experiencing reduced amplitude decay with larger
distances. As site response might be frequency-dependent, we expect a weak distance
dependence in the station term. On the other hand, this effect is offset by the source-
path correction, as it is station-specific. While frequency effects can not be accounted
for by the linear single-feature model, we expect the boosting tree regression to mitigate
them, as it has access to spectral information through the combined use of displacement,
velocity and acceleration features.

We observe different RMSE values for different types of seismicity. We use the classi-
fication from Sippl et al.|[2018] to classify events into upper plate, plate interface, upper
plane, lower plane and intermediate-depth cluster events. The lowest RMSE for peak
displacement on the combined horizontal components occurs for crustal and intermediate-
depth events, a 0.02 higher RMSE for lower plane and plate interface events and another
0.01 for upper plane events. Results are similar for other features.

The Q-Q plot in Figure 3.6]shows that the residual distribution deviates from a normal
distribution, as it exhibits heavy tails. Those likely indicate measurement errors, caused
by overlapping events, instrument issues or wrong frequency selection, causing low SNR.
We observe a general positive skewness of outlier residuals, i.e., magnitudes are more
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Table 3.2: Test set RMSE for models based on the combinations of multiple features.
Separate columns represent different feature sets. A plus sign indicates that further
information was added, a minus sign indicates that all features of the respective type
were removed. Unadjusted refers to the plain features, on which no correction terms
have been applied. Please note that the RSME values are not normalised, therefore
comparisons of absolute values are only valid inside each column, but not between the
columns.

Features Displacement NE | Acceleration Z
Single (Baseline) 0.196 0.159
All + Timing 0.103 0.097
All 0.105 0.099
All - Env 0.113 0.108
All - P wave 0.110 0.103
All - Env - P Wave 0.121 0.112
Only Z component 0.111 0.101
Only velocity 0.122 0.115
Unadjusted + Timing 0.162 0.162
Unadjusted 0.177 0.176
Unadjusted P-wave 0.203 0.199

likely to be grossly overestimated than underestimated. This holds for all stations except
APO1, LVC, PINT and S100 which exhibit a negative skewness. In the appendix, we give
a further analysis of the residuals for each station (Figure , possible time dependency
(Figure and the effect of different SNR thresholds (Appendix [B.4)).

3.2.3 Multi-feature magnitude estimation

For the experiments with multi-feature magnitude estimation, we use the peak horizontal
displacement and the peak vertical acceleration as target scales. We choose horizontal
displacement because of its similarity to the standard M, for smaller magnitudes and no
observed saturation effects and we choose vertical acceleration as a challenging benchmark,
as it already has a low RMSE.

A joint boosting tree predictor is trained on the multi-feature sets for all stations
simultaneously (Table . We achieve the best results for both target scales using
the full feature set with additional features measuring temporal information, i.e. the
difference between P and S pick time and the time at which each feature was extracted
relative to the P pick. For horizontal displacement, we reduce the RMSE by 47%; for
vertical acceleration the reduction is 39%. The smaller improvement for acceleration
is likely caused by the already lower RMSE of this feature. To elucidate the effect of
different features on prediction quality, we removed certain features from the full feature
set. The RMSE still improves significantly compared to the single feature for all tested
combinations, although of course, the prediction accuracy decreases somewhat (see the
top part of Table . To evaluate the benefit of combining features from velocity,
displacement and acceleration, we conducted an experiment solely on velocity features.
The resulting RMSE is 16% higher than for the full feature set. The information gain
from including features from the displacement, velocity and acceleration traces can be
explained with the different frequency bands effectively covered by the features. While
acceleration covers the higher frequency ranges, displacement covers mostly the lower
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Table 3.3: RMSE for different subsets of the correction functions. Full refers to the
complete correction function, as described in section |3.1.3] Distance-Depth only contains
the I' term and the station corrections, but not the source corrections. Distance, in
addition, reduces the I'" function to a 1D function using hypocentral distance.

Corrections Displacement NE ‘ Acceleration Z
Full 0.196 0.159
Distance-Depth 0.227 0.202
Distance 0.237 0.221

frequencies. [Hanks and McGuire|[1981] discuss the relations between acceleration, velocity
and displacement and argue that their values are affected differently by attenuation and
that their peaks are expected to occur at different times in the waveform. This gives a
further explanation for the information gains from incorporating all three feature classes.

We additionally trained a boosting tree on the plain features from step one, without
applying the correction functions from step two. In addition, we removed all features
based on the radial and transverse components, as they can only be obtained if the
epicenter location is known. It, therefore, uses no information about the location or time
of the event, but only information gained from the single station. We experiment with
both, a feature set with and without temporal information. In particular, the S-P arrival
time difference represents a strong constraint on the hypocentral distance, which controls
the dominant term of the correction function. For horizontal displacement, both reduced
feature sets still clearly outperform the (corrected) single feature baseline. The reduction
in RMSE is 17% with timing and 10% without timing (Table bottom part). For
acceleration, the RMSE is nearly identical with timing and 11% higher without. We
conclude that, when properly combined, the uncorrected features are already competitive
with the single corrected features. As is natural, boosting tree regression on the corrected
features outperforms the uncorrected features.

To employ our method in an early warning context, the system needs to deliver its
estimate rapidly. Therefore we run an additional experiment using only the uncorrected
data from the P wave. This information is available at the time of the S arrival. For
the displacement magnitude, the RMSE is only 4% worse than the single feature after
applying corrections. For acceleration, the RMSE is 25% higher.

We want to emphasise that the complete feature set can be made available only 30
s after the S arrival. All P wave features are already available at the moment of the S
arrival. While this is interesting for fast magnitude estimates, its applicability to early
warning is limited. This is caused by the catalog consisting mostly of small, non-hazardous
events and the relatively far source station distance of up to 500 km. Applicability to
early warning would need to be assessed on an appropriate catalog.

3.3 Discussion
3.3.1 Influence of different correction functions

We conduct an ablation study to quantify the impact of different correction terms on
the residuals. We compare the full model to a model without source correction, and a
model without source correction and only a 1D hypocentral distance correction. Simi-
larly to Section we conduct the analysis for horizontal displacement and vertical
acceleration. The results are shown in Table [3.3]

Both features incur an improvement from both the 2D correction as well as the source
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Figure 3.7: Spatial distribution of the residuals at station PBO1 for displacement magni-
tude on the horizontal components with and without source correction. The location of
the station is denoted by a cross. The circles indicate the distance to the 10** nearest
neighbour with a correction term to visualise the adaptive window size. While the source
correction uses the 3D location, we reduced the picture to 2D for simplicity.

correction. The improvement from the 2D source correction is around 4.2% for displace-
ment and 8.6% for acceleration. The effect of the source correction is by far greater,
with an additional improvement of 14% for displacement and 21% for acceleration. The
combined improvement is 17% for displacement and 28% for acceleration compared to a
classic distance-only correction function.

We next analyse the spatial distribution of the residuals with and without source cor-
rection. Figure [3.7] shows the residuals for station PB01. Without source correction, they
show clear spatial biases, while with source correction there is no bias visible. Without
source correction, there are strong azimuthal dependencies. This suggests that the resid-
uals are dominated by path effects, which are similar across a wide distance range with
the same azimuth while being less affected by the properties of the physical source such
as radiation pattern. While residuals with source correction show no spatial bias, they
still appear heteroskedastic, i.e., their variance shows a spatial variation.

Changing the correction terms alters the resulting magnitude calibration. While re-
moving the source correction only has a minor impact, switching from a 2D to a 1D
correction introduces a depth-dependent offset between the scales. Unlike distance and
source corrections, the depth is an inherent property of the event not improved by aver-
aging. Therefore, the magnitude calibration is performed essentially for each depth level.
For depth levels without events in the training set, magnitudes can only be determined
by interpolation or extrapolation. This also implies that the calibration of the 2D correc-
tion could be more fragile, requiring careful testing of the performance with the test and
validation sets (see also the section [3.3.2]).

Figure compares the distance and depth correction functions obtained with and
without the source correction. The correction function without the source correction is
significantly rougher than the one with the source correction. This suggests that the depth
and distance correction function derived without a source correction term represents a
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Figure 3.8: Comparison of correction functions with and without source correction terms
for peak horizontal displacement.

biased estimate influenced by the particularities of the event distribution. Concurrent
optimisation of source correction and distance and depth correction, therefore, does not
only yield a good source correction but also improves the smoothness of the distance and
depth correction. This suggests that it captures the actual average attenuation in the
study region rather than the specifics of the dataset.

3.3.2 Stability of the correction functions

Due to the high number of parameters in our model, it might be susceptible to overfitting.
We estimate the level of overfitting in our model by comparing the RMSE on the training
and test sets. A high level of overfitting suggests that the model is not well constrained
and poses an issue to interpretability. On average the RMSE on the test set is 2.7%
larger than on the train set. This increase is fairly consistent across the different features,
varying from 1.0% to 3.9%. The only exceptions are 20 s P wave envelope values. Their
RMSE on the test set is on average 8.3% higher than on the training set, probably because
there are far fewer measurements. To assess the significance of the increases in RMSE,
we evaluated the uncertainty of the RMSE values under the assumption that errors are
uncorrelated and identically distributed. In this case, the standard deviation of the RMSE
is simply the RMSE divided by the square root of the number of samples, which comes
out at around 0.1% of the RMSE. Therefore all differences in the RMSE discussed here
are significant. While these results show that the source correction functions are slightly
underdetermined, the ablation study in section shows that this does not negatively
impact their predictive performance.

We investigate how well the parameters of the correction functions are constrained by
the given measurements. To this end, we partition the set of events randomly into ten
equal-sized, disjoint subsets and calibrate a model for each of those. Due to the source
correction, the changed numbers of events and measurements also change the number of
model parameters. To ensure that the model differences are not dominated by changing
the subset of events used for calibration with My, we always add the events with M, to
the subsets. We analyse models for peak horizontal displacement.

Results show that the station bias terms are robust. For stations with more than
2,000 measurements in the complete dataset, the standard deviation between the ten
sets is below 0.01. For stations with few measurements (< 2,000), we observe standard
deviations up to 0.036. We emphasise that these deviations apply between the sliced
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sets containing less than 200 measurements each for these stations. On the full set, this
implies that we expect the uncertainty of the station biases to be below 0.01 for all
stations. Biases, uncertainties and number of measurements for each station are shown
in Figure [B.§

The distance and depth correction is also very robust, albeit with a higher level of un-
certainty than the station biases (see Figure . At distances below 250 km and depths
shallower than 100 km the standard deviation is always below 0.05. Higher standard
deviations occur at large distances and depths, as data are very sparse there. Standard
deviations of more than 0.1 solely occur for distances above 400 km and depths below
175 km. We want to emphasise that uncertainties on the final model are likely to be even
smaller by a factor around \/ﬁ, as it has been trained on ten times the data.

To assess the stability of the source correction, we evaluate the standard deviation
between the ten subsets for 100, 000 randomly chosen measurements. The mean standard
deviation is 0.027. The 90" percentile is 0.039. The parameter uncertainties in the model
are clearly below the random effects in the measurements.

To analyse the stability of the boosting tree scales, we split the dataset event-wise into
three equal-sized partitions A, B and C. We train one boosting tree on A and another
one on B, both using the full feature set including timing. We compare the predictions
of the boosting trees on C and also compare them to the non-boosting predictions on C.
The target scale is again the horizontal peak displacement of the full wave. The event
magnitude, averaged across all stations, differs between the non-boosting predictions and
the boosting trees by 0.062 (0.063 for tree B) in quadratic mean. The two boosting tree
scales only differ by 0.015 in this measure, even though they are trained on completely
disjoint sets. The significantly smaller difference between the boosting scales suggests
that the boosting trees are indeed reducing estimation errors on the event magnitude.
This does not hold for the largest events (>6.0), as only relatively few of these events
occurred in the observational period. We experience higher differences between boosting
and non-boosting scales for those events, which are likely caused by sparse training data.
Boosting tree scales should therefore not be used for the largest events.

3.3.3 Analysis of the correction functions

To analyse the different correction functions, we first need to emphasise the intercon-
nections between them. Without regularisation, the full distance correction could be
incorporated into the source correction function, only requiring an offset to calibrate the
correction function. We chose our regularisation constants in a way that penalises putting
distance corrections into the source correction function by regularising this function to-
wards zero (see equations and ) Nonetheless, both interact, and separation of
the effects is not fully possible. In addition, our stations and events are not uniformly
distributed. Therefore, the distance correction function, being a mean across all stations
and events, incorporates effects from the average paths, which do not necessarily reflect
the average ground structure.

We compare the absolute values of the distance and depth correction functions between
the different displacement, velocity and acceleration features. Due to different units, abso-
lute values are not comparable between displacement, velocity and acceleration. Absolute
differences in the correction function represent differences in the magnitude of the signal.
For peaks from the full wave, the signal level is similar for the R and T components, but
around 0.15 orders of magnitude smaller on the Z component. For the P wave the signals
are strongest on the Z and R component and about 0.1 orders of magnitude smaller on
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Figure 3.9: Distance and depth correction functions for selected features on the Z com-
ponent. All corrections are shifted to 0 at a distance of 50km and a depth of 30km, to
better visualise the relative differences. The shifts are denoted in brackets after the title.
White areas indicated attenuation values below the minimum value in the colour scale.
They only occur in regions where the attenuation is poorly constrained.

the T component. The envelope derived values are on average 0.4 orders of magnitude
smaller after 5 s and 0.5 after 20 s.

Figure [3.9| shows the comparison of four selected normalised correction functions. We
focus on different features rather than components, as we observed no major differences
between the different components. Comparing the peak displacement of the complete
waveform with the peak P wave displacement, we see that the peak displacement shows
a stronger attenuation with both distance and depth. The peak acceleration shows the
strongest decay with distance while being only weakly dependent on depth at near offsets.
For far offsets (> 250 km), deeper events are less attenuated than shallower events (oppo-
site the pattern for displacement). This effect could arise from the dominant importance
of physical attenuation over geometric spreading.

In contrast, the 20 s envelope displacement amplitudes only show a relatively weak
dependence on distance. This lower attenuation stems probably from the fact that the
envelope is made of scattered waves; the theory of coda normalisation predicts that energy
will be distributed equally through all space and degrees of freedom after an asymptot-
ically long time after the event [Sato et al., |2012]. The remaining decay with distance
stems most likely from the fairly short time window of 20 s used. This window is necessary
to account for the many small events in the catalog, for which the envelope values tend
to fall below the noise quickly.

Figure shows sections through the source correction terms of the stations WF05
and WF23 at 20.8°S. The two stations are both located approximately 150 km from the
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Figure 3.10: Sections through the source correction terms for peak horizontal displacement
of the stations WF05 and WF23 at 20.8°S, the latitude in the middle of the two stations.
The positions of the stations are marked by red triangles. For orientation, events inside
20.8 £ 0.2°S are shown by black dots. Note that in areas without any seismicity, the
correction term will be effectively controlled by the nearest seismicity, even if that is far
from the point under consideration. While the source-specific correction term in those
areas is likely to be biased, this normally does not matter, because hardly any seismicity
occurs in these poorly constrained areas in any case. Out of scale values are plotted in
white instead of clipped to avoid suggesting constant correction values in these areas.

coastline, with a distance of only about 40 km between each other. The source correction
terms for the two stations are quite similar, which is consistent with the explanation that
the source correction terms indeed capture large-scale path effects. The source correction
terms also exhibit tectonic features. The most prominent is the sudden change for shallow
earthquakes around 69°W. In addition, the source corrections resolve the slab, which can
be seen as a diagonal boundary in the corrections, approximately matching the slab
determined by |Sippl et al.| [2018].

By comparing sections at different latitudes, we observed that the resolution of struc-
tural features becomes worse for sections further away from the station. As the source
correction measures both source and path effects, for large distances it is dominated by
aggregated path effects. Therefore the resolution of structural features gets worse. In
contrast, the similarity between the corrections for nearby stations stays similar, as the
paths get even more similar. We inspected several sections through the source correction
volumes of different stations. All sections showed the clear change for shallow earthquakes
around 69°W and an imprint of the slab geometry. In general, the sections for stations
located close to each other were mostly very similar.

3.3.4 Insights into the multi-feature estimation

As boosting trees use decision trees as their base classifiers, they inherently lead to a
ranking of features regarding their feature importance. Feature importance is derived from
the information gain of the splits using this feature. We analyse the feature importance
for the two target scales used in section (Table .

While we are not able to state the reason for the importance of these features with
certainty, we provide some intuition. P wave features on the vertical and radial compo-
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Table 3.4: Top 10 features in the boosting regression ordered by importance. The columns
denote whether the feature is from peak (no annotation) or envelope, whether the feature
is from the P wave, the trace it was exported from, and the component. NE refers to
the horizontal components, ZNE to the combination of all components. We abbreviate
displacement (DISP), velocity (VEL) and acceleration (ACC).

DISP NE ACC Z
P VEL 7 P VEL 7
P VEL R P VEL R
5s P DISP Z 5s P DISP Z
P VEL T P VEL T
5s P ACC R 5s P ACC R
5s ACC T P ACC 7Z
5s P DISP R 5s ACC T
P ACC 1Z 5s P DISP R
5s P DISP T 5s P DISP T
ACC 7Z VEL Z

nents are least affected by local site conditions. As shown before, the vertical component
features from P waves have the lowest RMSE values among the P wave components. The
envelope values are less affected by the radiation pattern as well as uncertainties in the
location or correction functions. Both P wave features and envelope values have worse
signal-to-noise ratios than features from the full waveform, making them less precise scales
using only single features, while the combination of those features can likely be used to
better separate signal from noise. We attribute the dominance of velocity features to two
factors. In contrast to acceleration features, velocity features show less saturation, as
discussed earlier. In addition, as our underlying data are velocity traces, velocity is not
affected by artefacts from integration that occur for displacement.

To verify the presence of complex interactions, we compare the boosting tree to a
simple linear regression. We use the full parameter set without timing information and
the same target scales. Similar to boosting trees, linear feature combination significantly
reduces RMSE. For displacement, the RMSE is 0.133 (0.103 for the boosting tree) and for
acceleration, it is 0.120 (0.097). This highlights that, although parts of the gain can be
achieved with linear regression, a significant part of the improvement from the boosting
tree is due to its capability to model non-linear relationships and complex interactions
between multiple parameters.

3.3.5 Magnitudes for the IPOC catalog

Following our analysis, we provide well-calibrated magnitude values for the IPOC catalog.
For each event, we provide magnitude estimates from both the Wood-Anderson instrument
and the peak displacement on the horizontal components. The former is chosen for its
close resemblance to the standard local magnitude My, while the second offers a non-
saturating alternative, which we refer to as M4 as proposed by |Deichmann| [2018a).

We additionally report uncertainty values for the magnitude estimates. We derive
those uncertainties from the residuals between the stations. The detailed procedure for
uncertainty estimation is described in Appendix

We apply multiple steps to further increase the quality of the published scales. After
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calibrating and applying the correction functions, we remove all outliers. Outliers are
defined as measurements with a residual of at least twice the global RMSE. We recalibrate
the correction functions on the set without outliers. Due to overfitting, we can not use a
global boosting tree for the full dataset. We therefore randomly split the dataset event-
wise into three equal-sized sets A, B and C. We train one boosting tree on each pair of
these sets and use it to produce predictions on the last set. The analysis in section [3.3.2]
suggests that these predictions are consistent between the different boosting trees. This
is especially the case, as, contrary to section the training sets of the trees are not
disjoint. Following the results from section we use the non-boosting estimates for
events with magnitude > 6.0. For events with magnitude < 5.5, we use the boosting tree
scales. We interpolate linearly for events of magnitude between 5.5 and 6.0 to obtain
continuously defined scales.

3.4 Conclusion

In this chapter, we developed a method to calibrate high confidence magnitude scales us-
ing mathematical optimisation and machine learning. Our method consists of three steps:
feature extraction, physically-motivated attenuation functions, and machine learning for
the combination of different waveform features. We showed that our method reduces un-
certainties on the magnitude values by up to ~ 57%, of which ~ 23% can be attributed to
the improved attenuation functions and the remainder to the usage of multiple waveform
features. In conclusion of our analysis, we provide calibrated magnitude values M4 and
peak Wood-Anderson based magnitude values, similar to standard My but with a richer
calibration function, and their estimated uncertainties for the catalog of [Sippl et al.| [2018].

For our method, we did not explicitly consider frequency dependencies, but rather
investigated effects on a broad frequency band. We pursued this approach to capture the
wide magnitude range present in the catalog. We acknowledge that attenuation functions
are frequency-dependent, as shown for example by Dawood and Rodriguez-Marek! [2013]
for the Japan subduction zone. This possibly is the cause of the increased RMSE values
for larger magnitudes in our estimates, which will be based on longer period data less
affected by physical attenuation. Incorporating frequency dependency into the model
could also open up a perspective for applying the model to ground motion prediction.

While we applied the method to a catalog of ~ 100,000 events, our analysis in Sec-
tion [3.3.2]suggests that our method could also be applied to significantly smaller datasets.
All correction terms are already well defined with 10,000 events and we expect the boost-
ing tree to work as well. For catalogs with more measurements per event, we even expect
a far lower number of events required.

The results from multi-feature estimation, especially the results from the experiments
with uncorrected features, give a hint at the wealth of information contained in a single
trace. This information is of major interest for reliable magnitude estimation in the
context of early warning. However, the method developed in this chapter requires high-
quality location estimates and full waveform recordings and is, therefore, not applicable to
early warning. In contrast, convolutional neural networks (CNNs) might be a promising
tool for real-time assessment. CNNs have recently been shown to be beneficial for several
seismological tasks, including earthquake localisation [Kriegerowski et al., 2019], phase
picking and polarity determination |[Ross et al., [2018a], or magnitude estimation [Lomax
et al.l2019]. We will focus on CNN models for earthquake assessment in the next chapters,
focusing on early warning in Chapter 4] on real-time magnitude and location estimation
in Chapter 5] and on rupture predictability in Chapter [6]
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Resource availability

As a result of this study, we publish the catalog with the calibrated magnitude values.
In addition, to enable in-depth analysis, we provide the full set of extracted features
and magnitude predictions on the station level in CSV format. For convenience, we also
provide the calibrated correction functions for each feature in the dataset. The catalog
with magnitude values, and the additional data are available at https://doi.org/10.
5880/GFZ.2.4.2019.004. We provide our code to calibrate correction functions and train
boosting tree models at https://github.com/yetinam/magnitude-calibration.
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4 End-to-end early warning with machine learning

After analysing magnitude estimation in a post hoc scenario, we now turn towards earth-
quake early WarningE-] Compared to the previous chapter, this changes our scope in
three ways. First, instead of a post hoc scenario, we discuss real-time methods, as such
methods are required for early warning. Second, instead of estimating magnitude, we
directly estimate ground motion from seismic waveforms. This approach is beneficial for
early warning, as ground shaking is a proxy for the expected damage at a target, while
the magnitude only describes the source. Third, instead of feature-based, parametric ap-
proaches, we now develop deep learning approaches. This is necessary, as feature-based
approaches are difficult to define for the real-time application and deep learning consid-
erably outperforms these approaches in this scenario.

The concept of earthquake early warning has been around for over a century, but
the necessary instrumentation and methodologies have only been developed in the last
three decades [Allen et al., 2009} Allen and Melgar, 2019|. Early warning systems aim to
raise alerts if shaking levels likely to cause damage are going to occur. Existing methods
are split into two main classes: source estimation based and propagation based. The
former, like EPIC [Chung et al.,[2019] or FINDER [Bose et al., 201§], estimate the source
properties of an event, i.e., its location or fault extent and magnitude, and then use a
ground motion prediction equation (GMPE) to infer shaking at target sites. They provide
long warning times but incur a large apparent aleatoric uncertainty due to simplified
assumptions in the source estimation and in the GMPE [Kodera et al.l 2018|. Propagation
based methods, like PLUM [Kodera et al., 2018], infer the shaking at a given location from
measurements at nearby seismic stations. Predictions are more accurate, but warning
times are reduced, as warnings require measurements of strong shaking at nearby stations
[Meier et al., 2020].

Recently, machine learning methods, particularly deep learning methods, have emerged
as a tool for the fast assessment of earthquakes. They led to improvements in various
tasks, e.g., estimation of magnitude |[Lomax et al., 2019, Mousavi and Berozal, 2020b], lo-
cation [Kriegerowski et al.,|2019, Mousavi and Beroza, 2020a] or peak ground acceleration
(PGA) [Jozinovi¢ et al., [2020]. Nonetheless, no existing method applies to early warning
because they lack real-time capabilities and instead require fixed waveform windows after
the P arrival. Furthermore, the existing methods are restricted in terms of their input
stations, as they use either a single seismic station as input [Lomax et al., |2019, [Mousavi
and Berozal, 2020b] or a fixed set of seismic stations, that needs to be defined at training
time [Kriegerowski et al., 2019, |Jozinovié¢ et al., 2020]. While single station approaches
miss out on a considerable amount of information obtainable from combining waveforms
from different sources, fixed stations approaches can not adapt to changes in the underly-
ing seismic network. However, such changes in the underlying network occur regularly in
practical applications, as, for example, for large, dense networks the stations of interest,
i.e., the stations closest to an event, will change on a per-event basis. Finally, existing
methods systematically underestimate the strongest shaking and the highest magnitudes,
as these are rare and therefore underrepresented in the training data (Fig. 6, 8 in [Jozi-
novi¢ et al|[2020], Fig. 3, 4 in Mousavi and Berozal [2020b]). However, early warning
systems must also be able to provide reliable warnings for earthquakes larger than any

21This chapter has been published as [Miinchmeyer et al.| 2021b]. Compared to the publication, the
Introduction and Conclusion of this chapter have been modified to highlight the context of the chapter
within this thesis. Furthermore, we moved several figures from the supplementary material into the main
text. Minor modifications were introduced to the remaining text and figures.
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Figure 4.1: Map of the station (left) and event (right) distribution in the Japan dataset.
Stations are shown as black triangles, events as dots. The event colour encodes the event
magnitude. There are ~20 additional events far offshore, which are outside the displayed
map region in the catalog. The magnitude values are using the M jyra scale.

previously seen in a region.

In this chapter, we present the transformer earthquake alerting model (TEAM), a
deep learning method for early warning, combining the advantages of both classical early
warning strategies while avoiding the deficiencies of prior deep learning approaches. We
evaluate TEAM on two datasets from regions with high seismic hazard, namely Japan
and Italy. Due to their complementary seismicity, this allows evaluating the capabilities
of TEAM across scenarios. We do not use the Northern Chile catalog from Chapter [3] for
the study of TEAM. Due to the small number of very large events and the high distance
between seismic stations, the catalog only contains very few instances of strong shaking,
and is therefore not applicable to early warning. We will, however, use this catalog for
studying real-time magnitude and location estimation in Chapter[5] We compare TEAM
to two state-of-the-art warning methods, of which one is prototypical for source based
warning and one for propagation based warning. TEAM will furthermore serve as a basis
for TEAM-LM, the magnitude and location estimation model introduced in Chapter
and applied in Chapter [6]

4.1 Data and Methods
4.1.1 Datasets

For our study, we use two nation-scale datasets from highly seismically active regions
with dense seismic networks, namely Japan (13,512 events, years 1997-2018, Figure
and Italy (7,055 events, years 2008-2019, Figure . Their seismicity is complementary,
with predominantly subduction plate interface or Wadati-Benioff zone events for Japan,
many of them offshore, and shallow, crustal events for Italy. We split both datasets into
training, development and test sets with ratios of 60:10:30. We employ an event-wise
split, i.e., all records for a particular event will be assigned to the same subset. We use
the training set for model training, the development set for model selection, and the test
set only for the final evaluation. We split the Japan dataset chronologically, yielding
the events between August 2013 and December 2018 as test set. For Italy, we test on
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Figure 4.2: Map of the station (left) and event (right) distribution in the Italy dataset.
Stations present in the training set are shown as black triangles, while stations only
present in the test set are shown as yellow triangles. Events are shown as dots with the
colour encoding the event magnitude. All events with magnitudes above 5.5 are shown
as stars. The red stars indicate large training events, while the yellow stars indicate large
test events. The inset shows the central Italy region with intense seismicity and high
station density in the test set. Moment magnitudes for the largest test events are given
in the inset. The magnitude values are either My, (> 90% of the events), mp (< 1%) or
My, (< 10%), as provided in the INGV catalog.

all events in 2016, as these are of particular interest, encompassing most of the Central
Italy sequence with the M,, = 6.2 and M,, = 6.5 Norcia events [Dolce and Di Bucci,
. Especially the latter event is notably larger than any in the training set (M, = 6.1
L’Aquila event in 2007), thereby challenging the extrapolation capabilities of TEAM. We
do not explicitly split station-wise but, due to temporary deployments, there are a few
stations in the test set which have no records in the training set (Figure .

Both datasets consist of strong motion waveforms. For Japan, each station comprises
two sensors, one at the surface and one borehole sensor, while for Italy only surface
recordings are available. As the instrument response in the frequency band of interest
is flat, we do not restitute the waveforms but only apply a gain correction. This has
the advantage that it can trivially be done in real-time. The data and preprocessing are
further described in Appendix

4.1.2 The transformer earthquake alerting model

The early warning workflow with TEAM encompasses three separate steps (Figure :
event detection, PGA estimation and thresholding. We do not further consider the event
detection task here, as it forms the base of all methods discussed and affects them simi-
larly. The PGA estimation, resulting in PGA probability densities for a given set of target
locations, is the heart of TEAM and is described in detail below. In the last step, thresh-
olding, TEAM issues warnings for each target location where the predicted exceedance
probability p for fixed PGA thresholds surpasses a predefined probability «.

TEAM conducts end-to-end PGA estimation: its inputs are raw waveforms, its out-
put predicted PGA probability densities. There are no intermediate representations in
TEAM that warrant an immediate geophysical interpretation. The PGA assessment can
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Figure 4.3: Schematic view of TEAM’s early warning workflow for the October 2016
Norcia event (M,, = 6.5) 2.5 s after the first P wave pick (~3.5 s after origin time).
a. An event is detected through triggering at multiple seismic stations. The waveform
colours correspond to the stations highlighted with orange to magenta outlines. The
circles indicate the approximate current position of P (dashed) and S (solid) wavefronts.
b. TEAM’s inputs are raw waveforms and station coordinates; it estimates probability
densities for the PGA at a target set. A more detailed TEAM overview is given in Figure
44 c. The exceedance probabilities for a fixed set of PGA thresholds are calculated
based on the estimated PGA probability densities. If the probability exceeds a threshold
a, a warning is issued. The figure visualises a 10%g PGA level with a = 0.4, resulting in
warnings for the stations highlighted. The colours correspond to the stations with green
outlines in a. d. The real-time shake map shows the highest PGA levels for which a
warning is issued. Stations are coloured according to their current warning level. The
table lists all stations for which warnings have already been issued.

be subdivided into three components: feature extraction, feature combination, and den-
sity estimation (Figure . Inputs to TEAM are three, respectively six (3 surface, 3
borehole), component waveforms at 100 Hz sampling rate from multiple stations and the
corresponding station coordinates. Furthermore, the model is provided with a set of out-
put locations, at which the PGA should be predicted. These can be anywhere within
the spatial domain of the model and need not be identical with station locations in the
training set.

TEAM extracts features from input waveforms using a convolutional neural network
(CNN). The feature extraction is applied separately to each station but is identical for all
stations. CNNs are well established for feature extraction from seismic waveforms, as they
can recognise complex features independent of their position in the trace. On the other
hand, CNN based feature extraction usually requires a fixed input length, inhibiting real-
time processing. We allow real-time processing through the alignment of the waveforms
and zero-padding: we align all input waveforms in time, i.e., all start at the same time
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Figure 4.4: Architecture overview of the transformer earthquake alerting model, showing
the input, the feature extraction, the feature combination, the PGA estimation and the
output. For simplicity, not all layers are shown, but only their order and combination
is visualised schematically. For the exact number of layers and the size of each layer
please refer to Tables and Please note that the number of input stations and the
number of targets are both variable, due to the self-attention mechanism in the feature
combination. An ensemble of ten instances of this network is trained and the results are
averaged in probability space. Training is conducted independently for each ensemble
member.

to and end at the same time ¢1. We define ty to be 5 s before the first P wave arrival at
any station, allowing the model to understand the noise characteristics. For ¢; we use the
current time, i.e., the amount of available waveforms. We obtain constant length input,
by padding all waveforms after ¢; with zeros up to a total length of 30 s. The feature
extraction is described in more detail in Appendix

TEAM combines the feature vectors and maps them to representations at the targets
using a transformer |[Vaswani et al., 2017]. Transformers are attention-based neural net-
works for combining information from a flexible number of input vectors in a learnable
way. To encode the location of the recording stations as well as of the prediction targets,
we use sinusoidal vector representations. For input stations, we add these representations
component-wise to the feature vectors, for target stations we directly use them as inputs
to the transformer. This architecture, processing a varying number of inputs, together
with the explicitly encoded locations, allows TEAM to handle dynamically varying sets
of stations and targets. The transformer returns one vector for each target representing
predictions at this target. Details on the feature combinations can be found in Appendix
[C.2.2
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From each of the vectors returned by the transformer, TEAM calculates the PGA
predictions at one target. Similar to the feature extraction, the PGA prediction network
is applied separately to each target but is identical for all targets. TEAM uses mixture
density networks [Bishop), |1994] returning Gaussian mixtures, to compute PGA densities.
Gaussian mixtures allow TEAM to predict more complex distributions and better capture
realistic uncertainties than a point estimate or a single Gaussian. The full specifications
for the final PGA estimation are provided in Appendix

TEAM is trained end-to-end using a negative log-likelihood loss. To increase the
flexibility of TEAM and allow for real-time processing, we use training data augmentation.
We randomly select the stations used as inputs and targets in each training iteration. In
addition, again in each training iteration, we randomly replace all waveforms after a time
t with zeros, matching the input representation of real-time data, to train TEAM for
real-time application. These data augmentations and the complete training procedure
are further described in Appendix

To mitigate the systematic underestimation of high PGA values observed in previous
machine learning models, TEAM oversamples large events and PGA targets close to the
epicenter during training, which reduces the inherent bias in data towards smaller PGAs.
When learning from small catalogs or when applied to regions where events substantially
larger than all training events can be expected, e.g., because of known locked fault patches
or historic records, TEAM additionally can use domain adaptation. To this end, the
training procedure is modified to include large events from other regions that are similar
to the expected events in the target region. While records from those events will differ
in certain aspects, e.g., site responses or the exact propagation patterns, other aspects,
e.g., the average extent of strong shaking or the duration of events of a certain size, will
mostly be independent of the region in question. The domain adaptation aims to enable
the model to transfer the region immanent aspects of large events, at the cost of a certain
blurring of the specific regional aspects of the target region. TEAM aims to mitigate the
blurring of regional aspects by the choice of the training procedure.

Our Italy dataset is an example of this situation. Accordingly, TEAM applies domain
adaptation to this case: It first trains a joint model using data from Japan and from Italy,
which is then fine-tuned using the Italy data on its own, except for the addition of a few
large, shallow, onshore events from Japan. We chose these events, as for Italy one also
expects large, shallow, crustal events due to its tectonic setting and earthquake history.
As we use events from Italy in both training steps and in particular in the second step the
overwhelming number of events are from Italy, we expect that this scheme only results in
a small degradation in the modelling of the regional specifics of the Italy region.

4.1.3 Baseline methods

We compare TEAM to two state-of-the-art early warning methods, one using source
estimation and one propagation based. As a source estimation based method, we use
an estimated point source approach (EPS), which estimates magnitudes from peak dis-
placement during the P-wave onset [Kuyuk and Allen| 2013| and then applies a GMPE
[Cua and Heatonl 2009] to predict the PGA. For simplicity, our implementation assumes
knowledge of the final catalog epicentre, which is impossible in real-time, leading to overly
optimistic results for EPS. As a propagation based method, we chose an adaptation of
PLUM [Kodera et all 2018], which issues warnings if a station within a radius r of the
target exceeds the level of shaking. In contrast to the original PLUM, which operates on
the Japanese seismic intensity scale, 17374 [Shabestari and Yamazaki, 2001], our adapta-
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tion applies the concept of PLUM to PGA, thereby making it comparable to the other
approaches. Whereas Ijpr4 is also a measure of the strongest acceleration and is thus
strongly correlated with PGA, it considers a narrower frequency band and imposes a
minimum duration of strong shaking. As such, although the performance might vary
slightly for our PLUM-like approach compared to the original PLUM, it still exhibits its
key features, in particular the effects of the localised warning strategy. Additionally, we
apply the GMPE used in EPS to catalog location and magnitude as an approximate up-
per accuracy bound for point source algorithms (Catalog-GMPE or C-GMPE). C-CMPE
is a theoretical bound that can not be realised in real-time. It can be considered as an
estimate of the modelling error for point source approaches. A detailed description of the
baseline methods can be found in Appendix

4.2 Results
4.2.1 Alert performance

We compare the alert performance of all methods for PGA thresholds from light (1%g) to
very strong (20%g) shaking, regarding precision, the fraction of alerts actually exceeding
the PGA threshold, and recall, the fraction of issued alerts among all cases where the PGA
threshold was exceeded [Meier, 2017, Minson et al.l 2019]. Precision and recall trade-off
against each other depending on the alert threshold a. The PGA predictions of TEAM,
EPS and the C-GMPE are probabilistic, with the probability distribution describing the
uncertainty of the models, e.g., for the GMPE the apparent aleatoric uncertainty from
aspects not accounted for. The thresholding transforms the predictions into alerts or
non-alerts. The uncertainty in the prediction means that false and missed alerts are
inevitable. The threshold value « controls the trade-off between both types of errors, and
its appropriate value will depend on user needs, specifically, the costs associated with false
and missed alerts. Therefore, to analyse the performance of the models across different
user requirements, we look at the precision-recall curves for different thresholds a. In
addition to precision and recall, we use two summary metrics: the F'I score, the harmonic
mean of precision and recall, and the AUC, the area under the precision-recall curve. The
evaluation metrics and full setup of the evaluation are defined in detail in Appendix

TEAM outperforms both EPS and the PLUM-like approach for both datasets and
all PGA thresholds, indicated by the precision-recall curves of TEAM lying to the top-
right of the baseline curves (Figure [4.5p). For any baseline method configuration, there
is a TEAM configuration surpassing it both in precision and in recall. Improvements are
larger for Japan, but still substantial for Italy. To compare the performance at fixed «,
we selected « values yielding the highest F1 score separately for each PGA threshold and
method. Again, TEAM outperforms both baselines on both datasets, irrespective of the
PGA level (Figure [4.5b). Performance statistics in numerical form are available in Tables
and

All methods degrade with increasing PGA levels, particularly for Japan. This degra-
dation is intrinsic to early warning for high thresholds due to the very low prior probability
of strong shaking [Meier, 2017, Minson et al., 2019, Meier et al., 2020]. Furthermore, the
shortage of training data with high PGA values results in less well-constrained model
parameters.

Using domain adaptation techniques, TEAM copes well with the Italy data, even
though the largest test event (M,, = 6.5) is significantly larger than the largest train-
ing event (M, = 6.1), and three further test events have My, > 5.8. To assess the
impact of this technique, we compared TEAM’s results to a model trained without it
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Figure 4.5: Warning statistics for the three early-warning models (TEAM, EPS, PLUM)
for the Japan and Italy datasets. In addition, statistics are provided for C-GMPE, which
can only be evaluated post-event due to its reliance on catalog magnitude and location. a.
Precision and recall curves across different thresholds o = 0.05,0.1,0.2,...,0.8,0.9,0.95.
As the PLUM-like approach has no tuning parameter, its performance is shown as a
point. Enlarged markers show the configurations yielding the highest F'1 scores. Numbers
in the corner give the area under the precision-recall curve (AUC), a standard measure
quantifying the predictive performance across thresholds. b. Precision, recall and F1
score at different PGA thresholds using the F1 optimal value a. Threshold probabilities
« were chosen independently for each method and PGA threshold. c. Number of events
and traces exceeding each PGA threshold for training and test set. Training set numbers
include development events and show the numbers before oversampling is applied. For
Italy, training and test event curves are overlapping due to similar numbers of events.

(Figures . While for low PGA thresholds differences are small, at high PGA
levels they grow to more than 20 points F1 score. Interestingly, for large events, TEAM
strongly outperforms TEAM without domain adaptation even for low PGA thresholds.
This shows that domain adaptation does not only allow the model to predict higher PGA
values, but also to accurately assess the region of lighter shaking for large events. Do-
main adaptation, therefore, helps TEAM to remain accurate even for events far from the
training distribution.
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Figure 4.6: True positives (TP), false negatives (FN) and false positives (FP) for the
events in the Italy test set causing the largest shaking. The methods are the transformer
earthquake alerting model without domain adaptation (TEAM base), the transformer
earthquake alerting model (TEAM), the estimated point source algorithm (EPS) and the
PLUM-based approach. In addition, a GMPE with full catalog information is included
for reference (C-GMPE). Values a were chosen separately for each threshold and method
to yield the highest F1 score for the whole test set, but are kept constant across all
events. TEAM with domain adaptation outperforms TEAM without domain adaptation
consistently across all thresholds. This indicates that the domain adaptation not only
allows TEAM to better predict higher levels of shaking but also to better assess large

events in general.
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Figure 4.7: Warning time statistics. a. Area under the precision-recall curve for different
minimum warning times. All alerts with shorter warning times are counted as false
negatives. b. Warning time histograms showing the distribution of true alerts across
distances for the different methods. Please note that the total number of true alerts differs
by method and is not shown in this subplot. Therefore the values of different methods can
not be directly compared, but only the differences in the distributions. TEAM and EPS
are shown at Fl-optimal «, chosen separately for each threshold and method. Warning
time dependence on hypocentral distance is shown in Figure

4.2.2 Warning times

In application scenarios, a user will require a certain warning time, which is the time
between issuing of the warning and the first exceedance of the level of shaking. This
time is necessary for taking action. As the previous evaluation considered prediction
accuracy irrespective of the warning time, we now compare the methods while imposing
a certain minimum warning time. TEAM consistently outperforms both baselines across
different required warning times and irrespective of the PGA threshold (Figure @a)
While the margin for TEAM compared to the baselines is smaller for Italy than for
Japan, TEAM shows consistently strong performance across different warning times. In
contrast, EPS performs worse at short warning times, the PLUM-based approach at
longer warning times. The latter is inherent to the key idea of PLUM and makes the
method only competitive at high PGA thresholds, where potential maximum warning
times are naturally short due to the proximity between stations with strong shaking and
the epicenter [Minson et al., 2018]. We further note that while the PLUM-like approach
shows slightly higher AUC than TEAM for short warning times at 20 %g, this is only
a hypothetical result. As PLUM does not have a tuning parameter between precision
and recall, this performance can only be realised for a specific precision/recall threshold,
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where it performs slightly superior to TEAM (Figure bottom right).

Warning times depend on a: a lower o value naturally leads to longer warning times
but also to more false positive warnings. At Fl-optimal thresholds «, EPS and TEAM
have similar warning time distributions (Figure , Table S3), but lowering « leads to
stronger increases in warning times for TEAM. For instance, at 10%g, lowering « from
0.5 to 0.2 increases the average warning times of TEAM by 2.3 s/1.2 s (Japan/Italy), but
only by 1.1 8/0.1 s for EPS. Short times as measured here are critical in real applications:
First, they reduce the time available for countermeasures. Second, real warning times will
be shorter than reported here due to telemetry and compute delays. However, compute
delays for TEAM are very mild: analysing the Norcia event (25 input stations, 246 target
sites) for one time step took only 0.15 s on a standard workstation using non-optimised
code.

4.3 Discussion
4.3.1 Calibration of uncertainty estimates

Even though TEAM and EPS give probabilistic predictions, it is not clear whether these
predictions are well-calibrated, i.e., if the predicted confidence values correspond to ob-
served probabilities. Calibrated probabilities are essential for threshold selection, as they
are required to balance expected costs of taking action versus expected costs of not taking
action. We note that while good calibration is a necessary condition for a good model, it
is not sufficient, as a model constantly predicting the marginal distribution of the labels
would be always perfectly calibrated, yet not very useful.

To assess the calibration, we use calibration diagrams (Figures for Japan
and Italy at different times after the first P arrival. These diagrams compare the pre-
dicted probabilities to the observed fraction of occurrences. In general, both models
are well-calibrated, with a slightly better calibration for TEAM. Calibration is generally
better for Japan, where only EPS is slightly underconfident at earlier times for the high-
est PGA thresholds. For Italy, EPS is generally slightly overconfident, while TEAM is
well-calibrated, except for a certain overconfidence at 20%g. We suspect that the worse
calibration for the largest events is caused by the domain adaptation strategy, but the
better performance in terms of accuracy weighs out this downside of domain adaptation.

4.3.2 Insights into TEAM

We analyse differences between the methods using one example event from each dataset
(Japan: Figure Italy: Figure . All methods underestimate the shaking in the
first seconds (left column Figures . However, TEAM is the quickest to detect
the correct extent of the shaking. Additionally, it estimates even fine-grained regional
shaking details in real-time (middle and right columns). In contrast, shake maps for EPS
remain overly simplified due to the assumptions inherent to GMPEs (right column and
bottom left panel). For the Japan example, even late predictions of EPS underestimate
the shaking, due to an underestimation of the magnitude. The PLUM-based approach
produces very good PGA estimates but exhibits the shortest warning times.

Notably, TEAM predictions at later times correspond even better to the measured
PGA than C-GMPE estimates, although these are based on the final magnitude (top
right and bottom left panels). For the Japan data, this is not only the case for the exam-
ple at hand but also visible in Figure showing higher accuracy of TEAM’s prediction
compared to C-GMPE for all thresholds except 20%g on the full Japan dataset. We as-
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Figure 4.8: Scenario analysis of the 22nd November 2016 M; = 7.4 Fukushima earth-
quake, the largest test event located close to shore. Maps show the warning levels for each
method (top three rows) at different times (shown in the corners, t = 0 s corresponds to
the P arrival at the closest station). Dots represent stations and are coloured according to
the PGA recorded during the full event, i.e., the prediction target. The bottom row shows
(left to right), the catalog based GMPE predictions, the warning time distributions, and
the true positives (TP), false negatives (FN) and false positives (FP) for each method,
both at a 2%g PGA threshold. EPS and GMPE shake map predictions do not include
station terms, but they are included for the bottom row histograms.
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Figure 4.9: Scenario analysis of the 30th October 2016 M,, = 6.5 Norcia earthquake, the
largest event in the Italy test set. See Figure for further explanations. The bottom
row diagrams for this scenario analysis use a 10%g PGA threshold.

sume TEAM’s superior performance is rooted in both global and local aspects. Global
aspects are the abilities to exploit variations in the waveforms, e.g., frequency content, to
model complex event characteristics, such as stress drop, radiation pattern or directivity,
and to compare to events in the training set. Local aspects include understanding regional
effects, e.g., frequency-dependent site responses, and the ability to consider shaking at
proximal stations. We note that for our Italy experiments, the modelling of local aspects
resulting from regional characteristics might be slightly degraded by the domain adap-
tation. However, the first-order propagation effects such as, e.g., amplitude decay due
to geometric spreading, are similar between regions and therefore not negatively affected
by the domain adaptation. In conclusion, combining a global event view with propa-
gation aspects, TEAM can be seen as a hybrid model between source estimation and
propagation.
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Figure 4.10: Precision recall curves for the Japanese dataset using the chronological split
(top) and using the events in 2011 as test set (bottom). The year 2011 contains the
M, = 9.1 Tohoku event as well as its aftershocks.

4.3.3 TEAM performance on the Tohoku sequence

We evaluated TEAM for Japan on a chronological train/dev /test split, as this split ensures
the evaluation closest to the actual application scenario. On the other hand, this split
put the M = 9.1 Tohoku event in March 2011 into the training set. To evaluate the
performance for this very large event and its aftershocks, we trained another TEAM
instance using the year 2011 as test set and the remainder of the data for training and
validation. Figure [£.10] shows the precision-recall curves for the chronological split and
the year 2011 as test set. In general, the performance of all models stays similar when
evaluated on the alternative split. A key difference between the curves is, that TEAM,
in particular for high PGA thresholds, does not reach similar levels of recall for 2011
as for the chronological split, while achieving higher precision. As we will describe in
the next paragraph, this trend probably results from a tendency to underestimate true
PGA amplitudes, which will naturally reduce recall and boost precision. We suspect that
this tendency for underestimation is either caused by the higher number of large events
in the 2011 test set compared to the chronological split or by the lower number of high
PGA events in the training set without 2011. Nevertheless, the performance of TEAM
as quantified by the AUC improves, and significantly so for the highest thresholds.

Figure[C.3|presents a scenario analysis for the Tohoku event. All models underestimate
the event considerably, with the strongest underestimation for the EPS method. Even
20 s after the first P wave arrival, all methods underestimate both the severity and the
extent of shaking. Due to its localised approach, the PLUM-based model achieves the
highest number of true warnings, albeit at short warning times and a certain number
of false positives, which due to the underestimation are absent from TEAM and EPS
predictions. The performance of both EPS and TEAM is likely degraded by the slow
onset of the Tohoku event [Koketsu et al, [2011]. According to Koketsu et al. [2011]
the main subevent with a displacement of 36 m only initiated 20 s after the onset of
the Tohoku event. Therefore only the first P waves for EPS or at most the first 25 s
of waveforms for TEAM is most likely insufficient to correctly estimate the size of the
Tohoku event.

For Italy, we showed that underestimation for large events can be mitigated using
transfer learning. However, the Tohoku event clearly shows the limitations of this strategy,
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as practically no training data for events of comparable size are available, even when using
events across the globe. Therefore, for the largest events, alternative strategies need to
be developed, e.g., training using simulated data. Furthermore, the 25 s of waveforms
used by TEAM in the current implementation may, for a very large event, not capture
the largest subevent. While we decided to use only 25 s of event waveforms, as there
is only insufficient training data of longer events, this window could be extended when
developing training strategies and models for the largest events.

4.4 Conclusion

In this chapter, we presented the transformer earthquake alerting model (TEAM). We
compared TEAM to two prototypical existing early warning methods, one source estima-
tion based and one propagation based approach. TEAM outperforms both approaches in
terms of alert performance and warning time. Using a flexible machine learning model,
TEAM extracts information about an event from raw waveforms and leverages the infor-
mation to model the complex dependencies of ground motion. Towards the goal of this
thesis, the main contributions of this chapter are to prove that real-time assessment of
earthquakes with deep learning is possible and to provide a model to conduct this assess-
ment. Furthermore, our experiments with transfer learning and the scenario analyses gave
us a first impression of the characteristics, limitations, and possible training strategies of
this real-time assessment model. Building upon TEAM, we will develop TEAM-LM, a
model for real-time magnitude and location estimation in the next chapter. We will use
TEAM-LM to study the characteristics of real-time models in more detail.

Concurrently and subsequently to the publication of this chapter [Munchmeyer et al.,
2021b|, several closely related studies were published. [Zhang et al. [2021] developed a
CNN based model for real-time magnitude and location estimation and applied it to the
Central Italy sequence of 2016 that was also studied in this chapter. While motivating
their approach with early warning, they did not explicitly evaluate the alert performance.
In contrast to TEAM, their approach is not flexible with regard to the set of input
stations. As TEAM, the approach provides real-time capabilities but uses a sliding window
approach instead of zero-blinding. [Jozinovi¢ et al., 2022] conducted a study on transfer
learning for ground motion prediction from waveforms, comparing different approaches
regarding their performance. They used a multi-station approach but employed a fixed
set of stations. They did not study real-time application, and consequently also did
not discuss alert performance. van den Ende and Ampuero| [2020] presented a method
for magnitude and location estimation from a flexible set of seismic stations using global
pooling of features. We will compare their approach in detail to our work in the subsequent
Chapter [, where we present and study TEAM-LM, an adaptation of TEAM to magnitude
and location estimation.

Resource availability

The code for TEAM is available at https://doi.org/10.5880/10.1093/gji/ggaa609
and https://github.com/yetinam/TEAM. We made the Italy dataset publicly available
at https://doi.org/10.5880/GFZ.2.4.2020.004. Due to licensing restrictions, we are
not able to redistribute the Japan dataset, but instructions and code to convert it from
the source files are available in the TEAM software repository.
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5 Real-time earthquake magnitude and location estimation

In the previous chapter, we developed TEAM, an end-to-end approach for estimating
ground motion parameters from waveforms in real-time. While we conducted some anal-
yses of the predictions and experiments with transfer learning, many questions remain
open. For example, under which circumstances does the model fail; how does the model
performance depend on training data; which impact do different training strategies have
on the performance? Similar questions arise from other studies of deep learning for earth-
quake assessment, where these questions are also not discussed [e.g., Lomax et al., 2019,
Mousavi and Berozal, 2020b|, van den Ende and Ampuerol |2020]. To address theses ques-
tions, in this chapter, we develop TEAM-LM, a method for real-time magnitude and
location estimate, and conduct an in-depth analysis of the failure modes, the influence of
the training data, and potential training strategiesF_Z] In contrast to the previous chapter,
where we discussed ground motion, a key metric for early warning, we now investigate
two source parameters: magnitude and location. This is beneficial for our analysis, as
the source parameters are not affected by site conditions acting as confounding factors,
which stands in contrast to ground motion parameters.

Recently, multiple studies investigated deep learning for the fast assessment of earth-
quake source parameters, such as magnitude [e.g., Lomax et al., 2019, Mousavi and
Beroza, 2020b, ivan den Ende and Ampuero|, 2020] and location [e.g., Kriegerowski et al.,
2019, Mousavi and Berozal, [2020a;, van den Ende and Ampuero|, [2020]. Deep learning is
well suited for these tasks, as it does not rely on manually selected features, but can learn
to extract relevant information from the raw input data. This property allows the models
to use the full information contained in the waveforms of an event. However, several
desirable properties are missing from these models. First, the models can not be applied
in real-time, instead requiring a fixed amount of waveforms after the event onset. Second,
except for the model by van den Ende and Ampuero| [2020], all models process either
waveforms from only a single seismic station or rely on a fixed set of seismic stations
defined at training time. However, this is desirable, as outlined in the introduction of
Chapter {4 The model by van den Ende and Ampuero [2020] enables the use of a variable
station set but combines measurements from multiple stations using a simple pooling
mechanism. While it has not been studied so far in a seismological context, it has been
shown in the general domain that set pooling architectures are in practice limited in the
complexity of functions they can model [Lee et al. 2019].

In this chapter, we introduce a new model for magnitude and location estimation
based on the architecture of TEAM (Chapter [)), a deep learning based earthquake early
warning model. While TEAM estimated the PGA at target locations, our model estimates
the magnitude and the hypocentral location of the event. We call our adaptation TEAM-
LM, TEAM for location and magnitude estimation. We use TEAM as a basis due to its
flexible multi-station approach and its ability to process incoming data effectively in real-
time, issuing updated estimates as additional data become available. Similar to TEAM,
TEAM-LM uses mixture density networks to provided probability distributions rather
than merely point estimates as predictions.

To perform a comprehensive evaluation of TEAM-LM, we use three large and diverse
datasets: the regional broadband dataset from Northern Chile with magnitudes calibrated
in Chapter 3, and the two strong motion datasets from Japan and Italy that were intro-

22This chapter has been published as [Miinchmeyer et all |2021a]. Compared to the publication, the
Introduction and Conclusion of this chapter have been modified to highlight the context of the chapter
within this thesis. Minor modifications were introduced to the remaining text and figures.
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duced in Chapter These datasets differ in their seismotectonic environment (Northern
Chile and Japan: subduction zones; Italy: dominated by both convergent and divergent
continental deformation), their spatial extent (Northern Chile: regional scale; Italy and
Japan: national catalogs), and the instrument type (Northern Chile: broadband, Italy
and Japan: strong motion). This selection of diverse datasets allows for a comprehensive
analysis, giving insights for different use cases.

For magnitude estimation, our model outperforms two state-of-the-art baselines, one
using deep learning [van den Ende and Ampuero, 2020] and one classical approach [Kuyuk
and Allen, 2013]. For location estimation, our model outperforms a deep learning base-
line [van den Ende and Ampuero, 2020] and shows promising performance in comparison
to a classical localisation algorithm. However, our analysis also reveals limitations of
the model. The performance degrades significantly when faced with training data spar-
sity: large magnitudes are systematically underestimated, events in previously seismically
quiet regions systematically mislocated. Our experiments show that the characteristics
of TEAM-LM are rooted in the principle structure, i.e., the black-box approach of learn-
ing a very flexible model from data, without imposing any physical constraints. As this
black-box approach is common to all current fast assessment models using deep learning,
we expect that our results can be generalised, i.e., that other deep learning models for
earthquake assessment will exhibit similar characteristics. This finding is further backed
by comparison to the results reported in previous studies.

5.1 Data and Methods
5.1.1 Datasets

For this study, we use three datasets (Table Figure : one from Northern Chile,
one from Italy and one from Japan. The Chile dataset is based on the catalog by |Sippl
et al. [2018] with the magnitude values obtained in Chapter |3 While there were minor
changes in the seismic network configuration during the time covered by the catalog, the
station set used in the construction of this catalog had been selected to provide a high
degree of stability of location accuracy throughout the observational period [Sippl et al.,
2018]. Similarly, we calibrated the magnitude scale carefully to achieve a high degree of
consistency in spite of significant variations of attenuation (Chapter . This dataset,
therefore, contains the highest quality labels among the datasets in this study. For the
Chile dataset, we use broadband seismogramms from the fixed set of 24 stations used for
the creation of the original catalog and magnitude scale. Although the Chile dataset has
the smallest number of stations of the three datasets, it comprises three to four times as
many waveforms as the other two due to a large number of events.

The datasets for Italy and Japan are identical to the ones used in the previous chapter.
Here, we give a brief recap of their characteristics. The two datasets are more focused
on early warning than the Chile dataset, containing fewer events and only strong motion
waveforms. They are based on catalogs from the INGV [ISIDe Working Group), 2007] and
the NIED KiKNet |[National Research Institute For Earth Science And Disaster Resiliencel,
2019], respectively. The datasets each encompass a larger area than the Chile dataset and
include waveforms from significantly more stations. In contrast to the Chile dataset, the
station coverage differs strongly between different events, as only stations recording the
event are considered. In particular, KiKNet stations do not record continuous waveforms,

28We did not use the Chile dataset for the evaluation of TEAM in Chapter [4] as it is lacking relevant
characteristics to evaluation early warning: recordings are primarily from broadband instruments rather
than from strong motion instruments and the spacing between the stations is too wide.
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Figure 5.1: Overview of the datasets. The top row shows the spatial station distribution,
the second row the spatial event distribution. The event depth is encoded using color.
Higher resolution versions of the maps can be found in Figures The
bottom row shows the distributions of the event magnitudes. The magnitude scales are
the peak displacement based M4, local magnitude My, moment magnitude My, body
wave magnitude my and Mjyva, a magnitude primarily using peak displacement.

but operate in trigger mode, only saving waveforms if an event triggered at the station.
For Japan each station comprises two sensors, one at the surface and one borehole sensor.
Therefore for Japan we have 6 component recordings (3 surface, 3 borehole) available
instead of the 3 component recordings for Italy and Chile. A full list of seismic networks
used in this study can be found in Table

For each dataset we use the magnitude scale provided in the catalog. For the Chile
catalog, this is M4, a peak displacement based scale, but without the Wood-Anderson
response and therefore saturation-free for large events [Deichmann| [2018b]. For Japan,
Miyma is used. Myva combines different magnitude scales but, similarly to M 4, primarily
uses horizontal peak displacement . For Italy, the catalog provides different
magnitude types approximately dependent on the size of the event: M (>90 % of the
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Table 5.1: Overview of the datasets. The lower boundary of the magnitude category is
the 5th percentile of the magnitude; this limit is chosen as each dataset contains a small
number of unrepresentative very small events. The upper boundary is the maximum
magnitude. Magnitudes are given with two digit precision for Chile, as the precision of
the underlying catalog is higher than for Italy and Japan. The Italy dataset uses different
magnitude scales for different events, which are My, (>90 % of the events), My (<10 %)
and my (<1 %). For depth and distance minimum, median and maximum are stated.
Distance refers to the epicentral distance between stations and events. Note that the
count of traces refers to the number of waveform triplets (for Chile and Italy), or groups
of six waveforms (for the Japanese stations). The sensor types are broadband (BB) and
strong motion (SM).

Chile Italy Japan
Years 2007 - 2014 2008 - 2019 1997 - 2018
Training 01,/2007-08/2011 01/2008 - 12/2015 01/1997 - 03/2012

& 01/2017 - 12/2019

Test 08/2012 - 12/2014 01/2016 - 12/2016 08/2013 - 12/2018
Magnitudes 1.21 - 8.27 2.7-6.5 2.7-9.0
Magnitude scale My My, My, my Mypnvia
Depth [km] 0-102- 183 0-10-617 0-19-682
Distance [km] 0.1 - 180 - 640 0.1 -180 - 630 0.2 - 120 - 3190
Events 96,133 7,055 13,512
Unique stations 24 1,080 697
Traces 1,605,983 494,183 372,661
Traces per event 16.7 70.3 27.6
Sensor type BB SM SM & SM-borehole
Catalog source | Miinchmeyer et al.|[2020] INGV NIED

events), My (<10 %) and m; (<1 %). We note that while the primary magnitude scales
for all datasets are peak-displacement based, the precision of the magnitudes vary, with
the highest precision for Chile. This might lead to slightly worse magnitude estimation
performance for Italy and Japan. We do not have quantitative data on the uncertainties
of the magnitude values for the Italy and Japan datasets.

For all datasets, the data were not subselected based on the type of seismicity but
only based on the location (for Chile and Italy) or depending on if they triggered (Japan).
This guarantees that, even though we made use of a catalog to assemble our training data,
the resulting datasets are suitable for training and assessing methods geared at real-time
applications without any prior knowledge about the earthquakes. We focus on earthquake
characterisation and do not discuss event detection or separation from noise; we refer the
interested reader to, e.g., Perol et al.| [2018] or [Mousavi et al. [2019b)].

We split each dataset into training, development and test set. For Chile and Japan, we
apply a simple chronological split with approximate ratios of 60:10:30 between training,
development and test set, with the most recent events in the test set. As the last 30%
of the Italy dataset consist of less interesting events, in particular missing large events,
we instead use all events from 2016 as test set and the remaining events as training and
development sets. We reserve all of 2016 for testing, as it contains a long seismic sequence
in central Italy with two mainshocks in August (My = 6.5) and October (My = 6.0).
Notably, the largest event in the test set is significantly larger than the largest event in
the training set (M,, = 6.1 L’Aquila event in 2007), representing a challenging test case.
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Figure 5.2: Overview of the adapted transformer earthquake alerting model (TEAM-
LM), showing the input, the feature extraction, the feature combination, the magni-
tude/location estimation and the output. For simplicity, not all layers are shown, but
only their order and combination is visualised schematically. For the exact number of
layers and the size of each layer we refer to Tables [D.2] to [D-4] Please note that the
number of input stations is variable, due to the self-attention mechanism in the feature
combination.

For Italy, we assign the remaining events to training and development set randomly with
a 6:1 ratio. The splits for Japan and Italy are identical to the ones used in Chapter [4]

5.1.2 The transformer earthquake alerting model for magnitude and location

In the last chapter we built TEAM, a method for real-time end-to-end estimation of
ground shaking. Here, we adapt TEAM to calculate real-time probabilistic estimates of
event magnitude and hypocentral location. As our model closely follows the architec-
ture and key ideas of TEAM, we use the name TEAM-LM to refer to the location and
magnitude estimation model.

Similar to TEAM, TEAM-LM consists of three major components (Figure : a
feature extraction, which generates features from raw waveforms at single stations, a
feature combination, which aggregates features across multiple stations, and an output
estimation. Here, we briefly discuss the core ideas of the TEAM architecture and training
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and put a further focus on the necessary changes for magnitude and location estimation.

The input to TEAM consists of three component seismogramms from multiple stations
and their locations. TEAM aligns all seismogramms to start and end at the same times
to and t1. We choose ty to be 5 seconds before the first P arrival at any station. This
allows the model to understand the noise conditions at all stations. We limit ¢; to be at
latest o 4+ 30 s. In a real-time scenario t; is the current time, i.e., the available amount of
waveforms, and we use the same approach to imitate real-time waveforms in training and
evaluation. The waveforms are padded with zeros to a length of 30 s to achieve constant
length input to the feature extraction.

TEAM uses a CNN architecture for feature extraction, which is applied separately at
each station. The architecture consists of several convolution and pooling layers, followed
by a multi-layer perceptron (Table . To avoid scaling issues, each input waveform is
normalised through division by its peak amplitude. As the amplitude is expected to be a
key predictor for the event magnitude, we provide the logarithm of the peak amplitude as
a further input to the multi-layer perceptron inside the feature extraction network. We
ensure that this transformation does not introduce a knowledge leak by calculating the
peak amplitude based only on the waveforms until ¢;. The full feature extraction returns
one vector for each station, representing the measurements at the station.

The feature vectors from multiple stations are combined using a transformer network
[Vaswani et al., 2017]. Transformers are attention based neural networks, originally intro-
duced for natural language processing. A transformer takes a set of n vectors as input,
and outputs again n vectors which now incorporate the context of each other. The atten-
tion mechanism allows the transformer to put special emphasis on inputs that it considers
particularly relevant and thereby model complex inter-station dependencies. Importantly,
the parameters of the transformer are independent of the number of input vectors n, al-
lowing to train and apply a transformer on variable station sets. To give the transformer
a notion of the position of the stations, TEAM encodes the latitude, longitude and eleva-
tion of the stations using a sinusoidal embedding and adds this embedding to the feature
vectors.

TEAM adds the position embeddings of the PGA targets as additional inputs to the
transformer. In TEAM-LM, we aim to extract information about the event itself, where
we do not know the position in advance. To achieve this, we add an event token, which is
a vector with the same dimensionality as the positional embedding of a station location,
and which can be thought of as a query vector. This approach is inspired by the so-
called sentence tokens in NLP that are used to extract holistic information on a sentence
[Devlin et al., 2018|. The elements of this event query vector are learned during the
training procedure.

From the transformer output, we only use the output corresponding to the event to-
ken, which we term event embedding and which we pass through another multi-layer
perceptron predicting the parameters of a Gaussian mixture [Bishopl [1994]. We use
N = 5 Gaussians for magnitude and N = 15 Gaussians for location estimation. For
computational and stability reasons, we constrain the covariance matrix of the individual
Gaussians for location estimation to a diagonal matrix to reduce the output dimensional-
ity. Even though uncertainties in latitude, longitude and depth are known to generally be
correlated, this correlation can be modelled with diagonal covariance matrices by using
the mixture.

The model is trained end-to-end using a log-likelihood loss with the Adam optimiser
[Kingma and Bay, 2014]. We train separate models for magnitude and for location. As we
observed difficulties in the onset of the optimisation when starting from a fully random
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initialisation, we pretrain the feature extraction network. To this end we add a mixture
density network directly after the feature extraction and train the resulting network to
predict magnitudes from single station waveforms. We then discard the mixture density
network and use the weights of the feature extraction as initialisation for the end-to-end
training. We use this pretraining method for both magnitude and localisation networks.

Similarly to the training procedure for TEAM, we make extensive use of data aug-
mentation during training. First, we randomly select a subset of up to 25 stations from
the available station set. We limit the maximum number to 25 for computational reasons.
Second, we apply temporal blinding, by zeroing waveforms after a random time ¢;. This
type of augmentation allows TEAM-LM to be applied to real-time data. We note that
this type of temporal blinding would most likely work for the previously published CNN
approaches as well, making them applicable to real-time prediction. To avoid knowledge
leaks for Italy and Japan, we only use stations as inputs that triggered before time ¢; for
these datasets. This is not necessary for Chile, as there the maximum number of stations
per event is below 25 and waveforms for all events are available for all stations active
at that time, irrespective of whether the station actually recorded the event. Third, we
oversample large magnitude events, as they are strongly underrepresented in the train-
ing dataset. We discuss the effect of this augmentation in further detail in the results
section. In contrast to the station selection during training, in evaluation we always use
the 25 stations picking first. Again, for Italy and Japan, we only use stations and their
waveforms as input once they triggered, thereby ensuring that the station selection does
not introduce a knowledge leak.

5.1.3 Baseline methods

Recently@ van den Ende and Ampuero [2020] suggested a deep learning method capable
of incorporating waveforms from a flexible set of stations. Their architecture uses a
similar CNN based feature extraction as TEAM-LM. In contrast to TEAM-LM, for feature
combination it uses maximum pooling to aggregate the feature vectors from all stations
instead of a transformer. In addition they do not add predefined position embeddings, but
concatenate the feature vector for each station with the location coordinates and apply a
multi-layer perceptron to get the final feature vectors for each station. The model of jvan
den Ende and Ampuero| [2020] is both trained and evaluated on 100 s long waveforms.
In its original form it is therefore not suitable for real-time processing, although the real-
time processing could be added with the same zero-padding approach employed for TEAM
and TEAM-LM. The detail differences in the CNN structure and the real-time processing
capability make a comparison of the exact model of van den Ende and Ampuero [2020]
to TEAM-LM difficult.

To still compare TEAM-LM to the techniques introduced in this approach, we im-
plemented a model based on the key concepts of van den Ende and Ampuero| [2020]. As
we aim to evaluate the performance differences from the conceptual changes, rather than
different hyperparameters, e.g., the exact size and number of the convolutional layers, we
use the same architecture as TEAM-LM for the feature extraction and the mixture density
output. Additionally we train the model for real-time processing using zero padding. In
comparison to TEAM-LM we replace the transformer with a maximum pooling operation
and remove the event token.

We evaluate two different representations for the position encoding. In the first,
we concatenated the positions to the feature vectors as proposed by van den Ende and

“*Compared to the original publication of the TEAM-LM method in [Miinchmeyer et al., [2021a].
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Ampuero [2020]. In the second, we add the position embeddings element-wise to the
feature vectors as for TEAM-LM. In both cases, we run a three-layer perceptron over
the combined feature and position vector for each station, before applying the pooling
operation.

We use the fast magnitude estimation approach [Kuyuk and Allen, [2013] as a classical
baseline for magnitude estimation, i.e., a baseline method not using deep-learning. The
magnitude is estimated from the horizontal peak displacement in the first seconds of
the P wave. As this approach estimates the attenuation using the hypocentral distance,
it requires knowledge of the event location. We simply provide the method with the
catalog hypocenter. While this would not be possible in real-time, and therefore gives the
method an unfair advantage over the deep learning approaches, it allows us to focus on
the magnitude estimation capabilities. Furthermore, in particular for Italy and Japan,
the high station density usually allows for sufficiently well constrained location estimates
at early times. For a full description of this baseline, see Appendix

As a classical location baseline we employ NonLinLoc [Lomax et al., [2000] with the
1D velocity models from |Graeber and Asch [1999] for Chile, from Ueno et al. [2002] for
Japan, and from Matrullo et al|[2013] for Italy. For the earliest times after the event
detection usually only few picks picks are available. Therefore we apply two heuristics.
Until at least 3/5/5 (Chile/Japan/Italy) picks are available, the epicenter is estimated
as the arithmetic mean of the stations with picked arrivals so far, while the depth is set
to the median depth in the training dataset. Until at least 4/7/7 picks are available,
we apply NonLinLoc, but fix the depth to the median depth in the dataset. We require
higher numbers of picks for Italy and Japan, as the pick quality is lower than in Chile but
the station density is higher. For a constant number of stations, this leads to worse early
NonLinLoc estimates in Italy and Japan compared to Chile, but improves the performance
of the heuristics.

5.2 Results
5.2.1 Magnitude estimation performance

We first compare the estimation capabilities of TEAM-LM to the baselines in terms of
magnitude (Figure. We evaluate the models at fixed timest = 0.5s,1s,2s,4s, 85,
16 s, 25 s after the first P arrival at any station in the network. In addition to presenting
selected results here, full tables with the results of further experiments are available in
the supplementary material (Tables SM 5-SM 15) of |[Miinchmeyer et al., 20213]@
TEAM-LM outperforms the classical magnitude baseline consistently. On two datasets,
Chile and Italy, the performance of TEAM-LM with only 0.5 s of data is superior to the
baseline with 25 s of data. Even on the third dataset, Japan, TEAM-LM requires only
approximately a quarter of the time to reach the same precision as the classical baseline
and achieves significantly higher precision after 25 s. The RMSE for TEAM-LM stabilises
after 16 s for all datasets with final values of 0.08 m.u. for Chile, 0.20 m.u. for Italy and
0.22 m.u. for Japan. The performance differences between TEAM-LM and the classical
baseline result from the simplified modelling assumptions for the baseline. While the
relationship between early peak displacement and magnitude only holds approximately,
TEAM-LM can extract more nuanced features from the waveform. In addition, the rela-
tionship for the baseline was originally calibrated for a moment magnitude scale. While

25Contrary to the remaining supplementary materials of the publications we decided not to include the
tables in the appendix due to their enormous space requirements.
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Figure 5.3: RMSE of the mean magnitude predictions from TEAM-LM, the pooling model
with sinusoidal location embeddings (POOL-E), the pooling model with concatenated
positions (POOL-C) and the classical baseline method. The time indicates the time
since the first P arrival at any station, the RMSE is provided in magnitude units [m.u.].
Error bars indicate +1 standard deviation when training the model with different random
initialisations. For better visibility error bars are provided with a small x-offset. Standard
deviations were obtained from six realisations. Note that the uncertainty of the provided
means is by a factor v/6 smaller than the given standard deviation, due to the number of
samples. We provide no standard deviation for the baseline, as it does not depend on a
model initialisation.

all magnitude scales have an approximate 1:1 relationship with moment magnitude, this
might introduce further errors.

We further note that the performance of the classical baseline for Italy is consistent
with the results reported by [Festa et al.|[2018]. They analysed early warning performance
in a slightly different setting, looking only at the 9 largest events in the 2016 Central Italy
sequence. However, they report a RMSE of 0.28 m.u. for the PRESTO system 4 s after
the first alert, which matches approximately the 8 s value in our analysis. Similarly,
Leyton et al. [2018] analyse how fast magnitudes can be estimated in subductions zones
and obtain residuals of 0.01 £ 0.28 (mean and standard deviation) across all events and
—0.70 £ 0.30 for the largest events (M,, > 7.5) at 30 s after origin time. This matches
the observed performance of the classical baseline for Japan. For Chile, our classical
baseline performs considerably worse, likely caused by the many small events with bad
SNR compared to the event set considered by [Leyton et al.| [2018]. However, TEAM-LM
still outperforms the performance numbers reported by Leyton et al.|[2018] by a factor of
more than 2.

Improvements for TEAM-LM in comparison to the deep learning baseline variants are
much smaller than to the classical approach. Still, for the Japan dataset at late times,
TEAM-LM offers improvements of up to 27 % for magnitude. For the Italy dataset, the
baseline variants are on par with TEAM-LM. For Chile, only the baseline with position
embeddings is on par with TEAM-LM. Notably, for the Italy and Japan datasets, the
standard deviation between multiple runs with different random model initialisation is
considerably higher for the baselines than for TEAM-LM (Figure error bars). This
indicates that the training of TEAM-LM is more stable regarding model initialisation.

The gains of TEAM-LM can be attributed to two differences: the transformer for sta-
tion aggregation and the position embeddings. In our experiments, we ruled out further
differences, e.g. size and structure of the feature extraction CNN, by using identical net-
work architectures for all parts except the feature combination across stations. Regarding
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Figure 5.4: RMSE comparison of the TEAM-LM mean magnitude predictions for dif-
ferent magnitude buckets. Line styles indicate the model type: trained only on the
target data (solid line), using transfer learning (dashed), classical baseline (dotted). For
Chile/Ttaly /Japan we count events as small if their magnitude is below 3.5/3.5/4 and as
large if their magnitude is at least 5.5/5/6. The time indicates the time since the first P
arrival at any station, the RMSE is provided in magnitude units [m.u.].

the impact of position embeddings, the results do not show a consistent pattern. Gains for
Chile seem to be solely caused by the position embeddings; gains for Italy are generally
lowest, but again the model with position embeddings performs better; for Japan, the
concatenation model performs slightly better, although the variance in the predictions
makes the differences non-significant. We suspect these different patterns to be caused
by the different catalog and network sizes as well as the station spacing.

We think that gains from using a transformer can be explained with its attention
mechanism. The attention allows the transformer to focus on specific stations, for ex-
ample, the stations which have recorded the longest waveforms so far. In contrast, the
maximum pooling operation is less flexible. We suspect that the high gains for Japan
result from the wide spatial distribution of seismicity and therefore very variable station
distribution. While in Italy most events are in Central Italy and in Chile the number of
stations is limited, the seismicity in Japan occurs along the whole subduction zone with
additional onshore events. This complexity can likely be handled better with the flexibil-
ity of the transformer than using a pooling operation. This indicates that the gains from
using a transformer compared to pooling with position embeddings are likely modest for
small sets of stations, and highest for large heterogeneous networks.

5.2.2 Magnitude estimation performance for large events

In many use cases, the performance of magnitude estimation algorithms for large magni-
tude events is of particular importance. In Figure we compare the RMSE of TEAM-
LM and the classical baselines binned by catalog magnitude into small, medium and
large events. For Chile/Italy/Japan we count events as small if their magnitude is below
3.5/3.5/4 and as large if their magnitude is at least 5.5/5/6. We observe a clear depen-
dence on the event magnitude. For all datasets, the RMSE for large events is higher than
for intermediate-sized events, which is again higher than for small events. On the other
hand, the decrease in RMSE over time is strongest for larger events. This general pattern
can also be observed for the classical baseline, even though the difference in RMSE be-
tween magnitude buckets is smaller. As both variants of the deep learning baseline show
very similar trends to TEAM-LM, we omit them from this discussion.

We discuss two possible causes for these effects: (i) the magnitude distribution in the
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Figure 5.5: True and predicted magnitudes without upsampling or transfer learning (left
column), with upsampling but without transfer learning (middle column) and with up-
sampling and transfer learning (right column). All plots show predictions after 8 seconds.
In the transfer column, for Chile and Japan, we show results after fine-tuning on the tar-
get dataset; for Italy, we show results from the model without fine-tuning as this model
performed better. For the largest events in Italy (M > 4.5), we additionally show the
results after fine-tuning with pale blue dots. We suspect the degraded performance in
the fine tuned model results from the fact that the largest training event (My = 6.1) is
considerably smaller than the largest test event (My = 6.5). Vertical lines indicate the
borders between small, medium and large events as defined in Figure [5.4] The orange
lines show the running 5th, 50th and 95th percentile in 0.2 m.u. buckets. Percentile lines
are only shown if sufficiently many data points are available. The very strong outlier for
Japan (true ~7.3, predicted ~3.3) is an event far offshore (>2000 km).
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training set restricts the quality of the model optimisation, (ii) inherent characteristics of
large events. Cause (i) arise from the Gutenberg-Richter distribution of magnitudes. As
large magnitudes are rare, the model has significantly fewer examples to learn from for
large magnitudes than for small ones. This should impact the deep learning models the
strongest, due to their high number of parameters. Cause (ii) has a geophysical origin.
As large events have longer rupture durations, the information gain from longer waveform
recordings is larger for large events. At which point during the rupture the final rupture
size can be accurately predicted is a point of open discussion [e.g., [Meier et al., 2017,
Colombelli et al., |2020]. We probe the likely individual contributions of these causes in
the following.

Estimations for large events not only show lower precision but are also biased (Figure
middle column). For Chile and Italy, a clear saturation sets in for large events.
Interestingly the saturation starts at different magnitudes, which are around 5.5 for Italy
and 6.0 for Chile. For Japan, events up to magnitude 7 are predicted without obvious bias.
This saturation behaviour is not only visible for TEAM-LM but has also been observed in
prior studies [e.g., Mousavi and Berozal 2020b, Fig. 3, 4]. In their work, with a network
trained on significantly smaller events, the saturation already sets in around magnitude
3. The different saturation thresholds indicate that the primary cause for saturation is
not the longer rupture duration of large events or other inherent event properties, as in
cause (ii), but is instead likely related to the low number of training examples for large
events, rendering it nearly impossible to learn their general characteristics, as in cause
(i). This explanation is consistent with the much higher saturation threshold for the
Japanese dataset, where the training dataset contains a comparably large number of high
magnitude events, encompassing the year 2011 with the Tohoku event and its aftershocks.

As a further check of cause (i), we trained models without upsampling large magnitude
events during training, thereby reducing the occurrence of large magnitude events to the
natural distribution observed in the catalog (Figure left column). While the overall
performance stays similar, the performance for large events is degraded on each of the
datasets. Large events are on average underestimated even more strongly. We tried
different upsampling rates but were not able to achieve significantly better performance
for large events than the configuration of the preferred model presented in the paper.
This shows that upsampling yields improvements but can not solve the issue completely,
as it does not introduce actual additional data. On the other hand, the performance
gains for large events from upsampling seem to cause no observable performance drop
for smaller events. As the magnitude distribution in most regions approximately follows
a Gutenberg-Richter law with b ~ 1, upsampling rates similar to the ones used in this
paper will likely work for other regions as well.

The expected effects of cause (ii), inherent limitations to the predictability of rupture
evolutions, can be approximated with physical models. To this end, we look at the model
from [Trugman et al. [2019], which suggests weak rupture predictability, i.e., predictability
after 50 % of the rupture duration. [Trugman et al. [2019] discuss the saturation of early
peak displacement and the effects for magnitude predictions based on peak displacements.
Following their model, we would expect magnitude saturation at approximately magni-
tude 5.7 after 1 s; 6.4 after 2 s; 7.0 after 4 s; 7.4 after 8 s. Comparing these results to
Figure the saturation for Chile and Italy occurs below these thresholds, and even for
Japan the saturation is slightly below the modelled threshold. As we assumed a model
with only weak rupture predictability, this makes it unlikely that the observed satura-
tion is caused by limitations of rupture predictability. This implies that our result does
not allow us to draw any conclusions on rupture predictability, as the possible effects of
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rupture predictability are masked by the data sparsity effects.

5.2.3 Location estimation performance

We evaluate the epicentral error distributions in terms of the 50", 90", 95" and 99" error
percentiles (Figure . In terms of the median epicentral error, TEAM-LM outperforms
all baselines in all cases, except for the classical baseline at late times in Italy. For all
datasets, TEAM-LM shows a clear decrease in median epicentral error over time. The
decrease is strongest for Chile, going from 19 km at 0.5 s to 2 km at 25 s. For Italy, the
decrease is from 7 km to 2 km, for Japan from 22 km to 14 km. For all datasets, the error
distributions are heavy-tailed. While for Chile even the errors at high quantiles decrease
considerably over time, these quantiles stay nearly constant for Italy and Japan.

Similar to the difficulties for large magnitudes, the characteristics of the location
estimation point to insufficient training data as the source of errors. The Chile dataset
covers the smallest region and has by far the lowest magnitude of completeness, leading
to the highest event density. Consequently, the location estimation performance is best
and outliers are very rare. For the Italy and Japan datasets, significantly more events
occurred in regions with only a few training events, causing strong outliers. The errors
for the Japanese dataset are highest, presumably related to a large number of offshore
events with consequently poor azimuthal coverage.

We expect a further difference from the number of unique stations. While for a small
number of unique stations, as in the Chile dataset, the network can mostly learn to iden-
tify the stations using their position embeddings, it might be unable to do so for a larger
number of stations with fewer training examples per station. Therefore the task is signifi-
cantly more complicated for Italy and Japan, where the concept of station locations has to
be learned simultaneously to the localisation task. This holds even though we encode the
station locations using continuously varying position embeddings. Furthermore, whereas
for moderate and large events waveforms from all stations of the Chilean network will
contain the earthquake and can contribute information, the limitation to 25 stations of
the current TEAM-LM implementation does not allow full exploitation of the informa-
tion contained in the hundreds of recordings of larger events in the Japanese and Italian
datasets. This will matter in particular for out-of-network events, where the wavefront
curvature and thus event distance can only be estimated properly by considering stations
with later arrivals.

Looking at the classical baseline, we see that it performs considerably worse than
TEAM-LM in the Chile dataset in all location quantiles; better than TEAM-LM in all
but the highest quantiles at late times in the Italy dataset; and worse than TEAM-LM
at late times in the Japan dataset. This strongly different behaviour can largely be
explained with the pick quality and the station density in the different datasets. While
the Chile dataset contains high-quality automatic picks, obtained using the MPX picker
[Aldersons, |2004], the Italy dataset uses a simple STA/LTA and the Japan dataset uses
triggers from KiKNet. This reduces location quality for Italy and Japan, in particular in
the case of a low number of picks available for location estimation. On the other hand,
the very good median performance of the classical approach for Italy can be explained
from the very high station density, giving a strong prior on the location. An epicentral
error of around 2 km after 8 s is furthermore consistent with the results from [Festa et al.
[2018]. Considering the reduction in error due to the high station density in Italy, we note
that the wide station spacing in Chile likely causes higher location errors than would be
achievable with a denser seismic network designed for early warning.
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Figure 5.6: Violin plots and error quantiles of the distributions of the epicentral errors for
TEAM-LM, the pooling baseline with position embeddings (POOL-E), the pooling base-
line with concatenated position (POOL-C), TEAM-LM with transfer learning (TEAM-
TRA), and a classical baseline. Vertical lines mark the 50, 90t" 95! and 99*" error
percentiles, with smaller markers indicating higher quantiles. The time indicates the time
since the first P arrival at any station. We compute errors based on the mean location
predictions. A similar plot for hypocentral errors is available in Figure [[El
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In addition to the pick quality, the assumption of a 1D velocity model for NonLinLoc
introduces a systematic error into the localisation, in particular for the subduction regions
in Japan and Chile where the 3D structure deviates considerably from the 1D model.
Because of these limitations, the classical baseline could be improved by employing more
proficient pickers and fine-tuned velocity models. Nonetheless, in particular the results
from Chile, where the classical baseline has access to high-quality P picks, suggest that
TEAM-LM can, given sufficient training data, outperform classical real-time localisation
algorithms.

For magnitude estimation no consistent performance differences between the baseline
approach with position embeddings and the approach with concatenated coordinates, as
originally proposed by van den Ende and Ampuero| [2020], are visible. In contrast, for
location estimation, the approach with embeddings consistently outperforms the approach
with concatenated coordinates. The absolute performance gains between the baseline with
concatenation and the baseline with embeddings is even higher than the gains from adding
the transformer to the embedding model. We speculate that the positional embeddings
might show better performance because they explicitly encode information on how to
interpolate between locations at different scales, enabling improved exploitation of the
information from stations with few or no training examples. This is more important for
location estimation, where an explicit notion of relative position is required. In contrast,
magnitude estimation can use further information, like frequency content, which is less
position-dependent.

5.2.4 Transfer learning

A common strategy for mitigating data sparsity is the injection of additional information
from related datasets through transfer learning [Pan and Yang, [2009], in our use case,
waveforms from other source regions. This way the model is supposed to be taught
the properties of earthquakes that are consistent across regions, e.g., attenuation due to
geometric spreading or the magnitude dependence of source spectra. Note that a similar
knowledge transfer implicitly is part of the classical baseline, as it was calibrated using
records from multiple regions.

Here, we conduct a transfer learning experiment inspired by the transfer learning used
for TEAM. We first train a model jointly on all datasets and then fine-tune it to each of
the target datasets. This way, the model has more training examples, which is of special
relevance for the rare large events but still is adapted specifically to the target dataset. As
the Japan and Italy datasets contain acceleration traces, while the Chile dataset contains
velocity traces, we first integrate the Japan and Italy waveforms to obtain velocity traces.
This does not have a significant impact on the model performance, as visible in the full
results tables.

Transfer learning reduces the saturation for large magnitudes (Figure right col-
umn). For Italy, the saturation is eliminated. For Chile, while the largest magnitudes
are still underestimated, we see a lower level of underestimation than without transfer
learning. Results for Japan for the largest events show nearly no difference, which is
expected as the Japan dataset contains the majority of large events and therefore does
not gain significant additional high-magnitude training examples using transfer learning.
The positive impact of transfer learning is also reflected in the lower RMSE for large and
intermediate events for Italy and Chile (Figure . These results do not only offer a
way of mitigating saturation for large events but also represent further evidence for data
sparsity as the reason for the underestimation.
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We tried the same transfer learning scheme for mitigating mislocations (Figure [5.6).
For this experiment, we shifted the coordinates of stations and events such that the
datasets spatially overlap. We note that this shifting is not expected to have any influ-
ence on the single dataset performance, as the relative locations of events and stations
within a dataset stay unchanged and nowhere the model uses absolute locations. The
transfer learning approach is reasonable, as mislocations might result from data sparsity,
similarly to the underestimation of large magnitudes. However, none of the models shows
significantly better performance than the original models, and in some instances, perfor-
mance even degrades. We conducted additional experiments where shifts were applied
separately for each event, but observed even worse performance.

We hypothesise that this behaviour indicates that the TEAM-LM localisation does
not primarily rely on travel time analysis, but rather employs some form of fingerprinting
of earthquakes. These fingerprints could be specific scattering patterns for certain source
regions and receivers. Note that similar fingerprints are exploited in the traditional tem-
plate matching approaches [e.g., Shelly et al.,|2007]. While the travel time analysis should
be mostly invariant to shifts and therefore be transferable between datasets, the finger-
printing is not invariant to shifts. This would also explain why the transfer learning,
where all training samples were already in the pretraining dataset and therefore their fin-
gerprints could be extracted, outperforms the shifting of single events, where fingerprints
do not relate to earthquake locations. Similar fingerprinting is presumably also used by
other deep learning methods for location estimation, e.g., by |[Kriegerowski et al.| [2019] or
by [Perol et al. [2018]. However, further experiments are required to prove this hypothesis.

5.3 Discussion
5.3.1 Multi-task learning

While transfer learning is one option to improve model performance in face of data sparsity
by incorporating further information, other approaches exist. One common method is
multi-task learning [Ruder, 2017, i.e., having a network with multiple outputs for different
objectives and training it simultaneously on all objectives. This approach has previously
been employed for seismic source characterisation |[Lomax et al. [2019], but without an
empirical analysis on the specific effects of multi-task learning.

We perform an experiment, in which we train TEAM-LM to predict magnitude and
location concurrently. The feature extraction and the transformer parts are shared and
only the final MLPs and the mixture density networks are specific to the task. This
method is known as hard parameter sharing. The intuition is that the individual tasks
share some similarity, e.g., in our case the correct estimation of the magnitude likely
requires an assessment of the attenuation and geometric spreading of the waves and
therefore some understanding of the source location. This similarity is then expected to
drive the model towards learning a solution for the problem that is more general, rather
than specific to the training data. The reduced number of free parameters implied by
hard parameter sharing is also expected to improve the generality of the derived model
if the remaining degrees of freedom are still sufficient to extract the relevant information
from the training data for each sub-task.

Unfortunately, we actually experience a moderate degradation of performance for
either location or magnitude in any dataset when following a multi-task learning strategy
(see full results tables in the supplement of Miinchmeyer et al| [2021a]). The RMSE of
the mean epicenter estimate increases by at least one third for all times and datasets, and
the RMSE for magnitude stays nearly unchanged for the Chile and Japan datasets, but
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increases by ~20% for the Italy dataset. Our results, therefore, exhibit a case of negative
transfer.

While it is generally not known, under which circumstances multi-task learning shows
positive or negative influence [Ruder} 2017], a negative transfer usually seems to be caused
by insufficiently related tasks. In our case, we suspect that while the tasks are related
in a sense of the underlying physics, the training dataset is large enough that similarities
relevant for both tasks can be learned already from a single objective. At the same
time, the particularities of the two objectives can be learned less well. Furthermore, we
earlier discussed that both magnitude and location might not actually use travel time or
attenuation based approaches, but rather frequency characteristics for magnitude and a
fingerprinting scheme for location. These approaches would be less transferable between
the two tasks. We conclude that hard parameter sharing does not improve magnitude and
location estimation. Future work is required to see if other multi-task learning schemes
can be applied beneficially.

5.3.2 Location outlier analysis

As all location error distributions are heavy-tailed, we visually inspect the largest de-
viations between predicted and catalog locations to understand the behaviour of the
localisation mechanism of TEAM-LM. We base this analysis on the Chile dataset (Figure
, as it has generally the best location estimation performance, but observations are
similar for the other datasets (Figures and .

Nearly all mislocated events are outside the seismic network and location predictions
are generally biased towards the network. This matches the expected errors for tradi-
tional localisation algorithms. In contrast to traditional algorithms, events are not only
predicted to be closer to the network but they are also predicted as lying in regions with a
higher event density in the training set (Figure inset). This suggests that not enough
similar events were included in the training dataset. Similarly, Kriegerowski et al. [2019]
observed a clustering tendency when predicting the location of swarm earthquakes with
deep learning.

We investigated two subgroups of mislocated events: the Iquique sequence, consisting
of the Iquique mainshock, foreshocks and aftershocks, and mine blasts. The Iquique
sequence is visible in the North-Western part of the study area. All events are predicted
approximately 0.5° too far east. The area is both outside the seismic network and has
no events in the training set. This systematic mislocation may pose a serious threat in
applications, such as early warning, when confronted with a major change in the seismicity
pattern, as is common in the wake of major earthquakes or during sudden swarm activity,
typical periods of heightened seismic hazard.

For mine blasts, we see one mine in the North-East and one in the South-West (marked
by red circles in Figure . While all events are located close by, the locations are both
systematically mispredicted in the direction of the network and exhibit scatter. Mine-
blasts show a generally lower location quality in the test set. While they make up only
~1.8% of the test set, they make up 8% of the top 500 mislocated events. This is surprising
as they occur not only in the test set but also in similar quantities in the training set.
We, therefore, suspect that the difficulties are caused by the strongly different waveforms
of mine blasts compared to earthquakes. One waveform of each, a mine blast and an
earthquake, recorded at a similar distances are shown as an inset in Figure While for
the earthquake both a P and an S wave are visible, the S wave can not be identified for
the mine blast. In addition, the mine blast exhibits a strong surface wave, which is not
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Figure 5.7: The 200 events with the highest location errors in the Chile dataset overlayed
on top of the spatial event density in the training dataset. The location estimations
use 16 s of data. Each event is denoted by a yellow dot for the estimated location, a
green cross for the true location and a line connecting both. Stations are shown by black
triangles. The event density is calculated using a Gaussian kernel density estimation and
does not take into account the event depth. The inset shows the event density at the
true event location in comparison to the event density at the predicted event location for
the 200 events. Red circles mark locations of mine blast events. The inset waveforms
show one example of a waveform from a mine blast (top) and an example waveform of an
earthquake (bottom, 26 km depth) of similar magnitude (M4 = 2.5) at a similar distance
(60 km) on the transverse component. Similar plots for Italy and Japan can be found in

Figures [D.5] and [D.6]
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Figure 5.8: RMSE for magnitude and epicentral location at different times for models
trained on differently sized subsets of the training set in Chile. The line colour encodes
the fraction of the training and validation set used in training. All models were evaluated
on the full Chilean test set. We note that the variance of the curves with fewer data is
higher, due to the increased stochasticity from model training and initialisation.

visible for the earthquake. The algorithm therefore can not use the same features as for
earthquakes to constrain the distance to a mine blast event.

5.3.3 The impact of dataset size and composition

Our analysis so far showed the importance of the amount of training data qualitatively. To
quantify the impact of data availability on magnitude and location estimation, we trained
models using only fractions of the training and validation data (Figure . We use the
Chile dataset for this analysis, as it contains by far the most events. We subsample the
events by only using each k" event in chronological order, with k = 2,4, 8,16, 32, 64. This
strategy approximately maintains the magnitude and location distribution of the full set.
We point out, that TEAM-LM only uses information of the event under consideration and
does not take the events before or afterwards into account. Therefore, the ‘gaps’ between
events introduced by the subsampling do not negatively influence TEAM-LM.

For all times after the first P arrival, we see a clear increase in the RMSE for magnitude
when reducing the number of training samples. While the impact of reducing the dataset
by half is relatively small, using only a quarter of the data already leads to a twofold
increase in RMSE at late times. Even more relevant in an early warning context, a fourfold
smaller dataset results in an approximately fourfold increase in the time needed to reach
the same precision as with the full data. This relationship seems to hold approximately
across all subsampled datasets: reducing the dataset k fold increases the time to reach a
certain precision by a factor of k.

We make three further observations by comparing the predictions to the true values
(Figure . First, for nearly all models the RMSE changes only marginally between
16 s and 25 s, but the RMSE of this plateau increases significantly with a decreasing
number of training events. Second, the lower the amount of training data, the lower is
the saturation threshold above which all events are strongly underestimated. In addition,
for 1/32 and 1/64 of the full dataset, an ‘inverse saturation’ effect is noticeable for the
smallest magnitudes. Third, while for the full dataset and the largest subsets all large
events are estimated at approximately the saturation threshold if at most one quarter of
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the training data is used, the largest events even fall significantly below the saturation
threshold. For the models trained on the smallest subsets (1/8 to 1/64), the higher the
true magnitude the lower the predicted magnitude becomes. We assume that the larger
the event is, the further away from the training distribution it is and therefore it is
estimated approximately at the densest region of the training label distribution. These
observations support the hypothesis that underestimations of large magnitudes for the
full dataset are caused primarily by insufficient training data.

While the RMSE for epicenter estimation shows a similar behaviour as the RMSE
for magnitude, there are subtle differences. If the amount of training data is halved,
the performance only degrades mildly and only at later times. However, the performance
degradation is much more severe than for magnitude if only a quarter or less of the training
data are available. This demonstrates that location estimation with high accuracy requires
catalogs with a high event density.

The strong degradation further suggests insights into the inner working of TEAM-LM.
Classically, localisation should be a task where interpolation leads to good results, i.e., the
travel times for an event in the middle of two others should be approximately the average
between the travel times for the other events. Following this argument, if the network
would be able to use interpolation, it should not suffer such significant degradation when
faced with fewer data. This provides further evidence that the network does not actually
learn some form of triangulation, but only an elaborate fingerprinting scheme, backing
the finding from the qualitative analysis of location errors.

5.3.4 Training TEAM-LM on large events only

Often, large events are of the greatest concern, and as discussed, generally showed poorer
performance because they are not well represented in the training data. It, therefore,
appears plausible that a model optimised for large events might perform better than a
model trained on both large and small events. To test this hypothesis, we employed an
extreme version of the upscaling strategy by training a set of models only on large events,
which might avoid tuning the model to seemingly irrelevant small events. In fact, these
models perform significantly worse than the models trained on the full dataset, even for the
large events [Munchmeyer et al.,|2021a, Supplementary Tables SM5 to SM11]. Therefore,
even if the events of interest are only the large ones, training on more complete catalogs
is still beneficial, presumably by giving the network more comprehensive information on
the regional propagation characteristics and possibly site effects.

5.3.5 Interpretation of the predicted uncertainties

So far, we only analysed the mean predictions of TEAM-LM. As for many application
scenarios, for example, early warning, quantified uncertainties are required, TEAM-LM
outputs not only these mean predictions but a probability density. Figure [5.9| shows the
development of magnitude uncertainties for events from different magnitude classes in the
Chile dataset. The left panel shows the absolute predictions, while the right panel shows
the difference between prediction and true magnitude and focuses on the first 2 s. As
we average over multiple events, each set of lines can be seen as a prototype event of a
certain magnitude.

For all magnitude classes, the estimation shows a sharp jump at ¢ = 0, followed by
a slow convergence to the final magnitude estimate. We suspect that the magnitude
estimation always converges from below, as due to the Gutenberg-Richter distribution,
lower magnitudes are more likely a priori. The uncertainties are largest directly after
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Figure 5.9: Magnitude predictions and uncertainties in the Chile dataset as a function
of time since the first P arrival. Solid lines indicate median predictions, while dashed
lines (left panel only) show the 20th and 80th quantiles of the prediction. The left panel
shows the predictions, while the right panel shows the differences between the predicted
and true magnitude. The right panel is focused on a shorter time frame to show the early
prediction development in more detail. In both plots, each colour represents a different
magnitude bucket. For each magnitude bucket, we sampled 1,000 events around this
magnitude and combined their predictions. If less than 1,000 events were available within
40.5 m.u. of the bucket centre, we use all events within this range. We only use events
from the test set. To ensure that the actual uncertainty distribution is visualised, rather
than the distribution of magnitudes around the bucket centre, each prediction is shifted
by the magnitude difference between bucket centre and catalog magnitude.

t = 0 and subsequently decrease, with the highest uncertainties for the largest events. As
we do not use transfer learning in this approach, there is a consistent underestimation of
the largest magnitude events, visible from the incorrect median predictions for magnitudes
5 and 6. We note that the predictions for magnitude 4 converge slightly faster than the
ones for magnitude 3, while in all other cases the magnitude convergence is faster the
smaller the events are. We suspect that this is caused by the accuracy of the magnitude
estimation being driven by both the number of available events and by the signal to noise
ratio. While magnitude 4 events have significantly less training data than magnitude 3
events, they have a better signal to noise ratio, which could explain their more accurate
early predictions.

While the Gaussian mixture model is designed to output uncertainties, it cannot be
assumed that the predicted uncertainties are indeed well-calibrated, i.e., that they match
the real error distribution. Having well-calibrated uncertainties is crucial for downstream
tasks that rely on the uncertainties. Neural networks trained with a log-likelihood loss
generally tend to be overconfident [Snoek et al., 2019} \Guo et al; 2017], i.e., underestimate
the uncertainties. This overconfidence is caused by the strong overparametrisation of
neural network models. To assess the quality of our uncertainty estimations for magnitude,
we assess the empirical quantiles of the true values relative to the predictions. For a
prediction with cumulative distribution function F;Ted, the empirical quantile can be
calculated as u; = F;T, oa(Yirue). For a perfectly calibrated model, u; should be distributed
uniformly in [0,1], as discussed in Chapter [2.4.3]

Figure [5.10] shows the P-P plots of u in comparison to a uniform distribution. For
all datasets and all times, the model is significantly miscalibrated, as estimated using
Kolmogorov-Smirnov test statistics (see also Appendix . Miscalibration is consid-

erably stronger for Italy and Japan than for Chile. More precisely, the model is always
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Figure 5.10: P-P plots of the CDFs of the empirical quantile of the magnitude
predictions compared to the expected uniform distribution. The P-P plot shows
(CDFy,(2), CDF yiform(2)) for z € [0,1]. The expected uniform distribution is shown
as the diagonal line, the misfit is indicated by the shaded area. The value in the upper
corner provides doo, the maximum distance between the diagonal and the observed CDF.
deo can be interpreted as the test statistic for a Kolmogorov-Smirnov test. Curves con-
sistently above the diagonal indicate a bias to underestimation, and below the diagonal
to overestimation. Sigmoidal curves indicate over-confidence, mirrored sigmoids indicate
under-confidence. See Appendix for a further discussion of the plotting methodology
and its connection to the Kolmogorov-Smirnov test.

overconfident, i.e., estimates narrower confidence bands than the observed errors. Further,
in particular at later times, the model is biased towards underestimating the magnitudes.
This is least visible for Chile. We speculate that this is a result of the large training
dataset for Chile, which ensures that for most events the density of training events in
their magnitude range is high.

To mitigate the miscalibration, we trained ensembles [Hansen and Salamon, (1990], a
classical method to improve calibration. Instead of training a single neural network, a set
of n neural networks, in our case n = 10, are trained, which all have the same structure,
but different initialisation and batching in training. The networks, therefore, represent
a sample of size n from the posterior distribution of the model parameters given the
training data. For Italy and Japan, this improves calibration considerably (Figure .
For Chile, the ensemble model, in contrast to the single model, exhibits underconfidence,
i.e., estimates too broad uncertainty bands. While the ensembles improve the calibration,
the distribution of u; still deviates highly significantly from a uniform distribution for all
datasets (Kolmogorov-Smirnov test with p < 107?).

To evaluate the location uncertainties qualitatively, we plot confidence ellipses for a
set of events in Chile (Figure . Again we compare the predictions from a single
model to the predictions of an ensemble. At early times, the uncertainty regions mirror
the seismicity around the station with the first arrival, showing that the model correctly
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Figure 5.11: The figure shows 90% confidence areas for example events around 5 locations.
For each location, the 5 closest events are shown. Confidence areas belonging to the same
location are visualised using the same colour. Confidence areas were chosen as curves of
constant likelihood, such that the probability mass above the likelihood equals 0.9. To
visualise the result in 2D we marginalise out the depth. Triangles denote station locations
for orientation. The top row plots show results from a single model, while the bottom
row plots show results from an ensemble of 10 models.
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learned the prior distribution. Uncertainty ellipses at late times approximately match the
expected uncertainty ellipses for classical methods, i.e., they are small and fairly round
for events inside the seismic network, where there is good azimuthal coverage, and larger
and elliptical for events outside the network. Location uncertainties are not symmetric
around the mean prediction but show a higher likelihood towards the network than further
outwards. Location errors for the ensemble model are more smooth than from the single
model but show the same features. The uncertainty ellipses are slightly larger, suggesting
that the single model is again overconfident.

In addition to improving calibration, ensembles also lead to slight improvements re-
garding the accuracy of the mean predictions [Minchmeyer et al., 2021a, Supplementary
tables SM 5 to SM 11]. Improvements in terms of magnitude RMSE range up to ~ 10%,
for epicentral location error up to ~ 20%. Due to the high computational demand of
training ensembles, all other results reported in this chapter are calculated without en-
sembling. We note that in addition to ensembles a variety of methods have been developed
to improve calibration or obtain calibrated uncertainties [Snoek et al.2019]. One of these
methods, Monte-Carlo Dropout, has already been employed in the context of fast assess-
ment by van den Ende and Ampuero, [2020].

5.4 Conclusion

In this chapter, we adapted TEAM to build TEAM-LM, a real-time earthquake source
characterisation model and used it to study the pitfalls and particularities of deep learning
for this task. We showed that TEAM-LM achieves state-of-the-art performance in mag-
nitude estimation, outperforming both a classical baseline and a deep learning baseline.
Given sufficiently large catalogs, magnitudes can be assessed with a standard deviation
of 0.2 m.u. within 2 s of the first P arrival and a standard deviation of 0.07 m.u. within
the first 25 s. For location estimation, TEAM-LM outperforms a state-of-the-art deep
learning baseline and compares favourably with a classical baseline.

Our analysis showed that the quality of model predictions depends crucially on the
training data. While performance with abundant data is excellent, in face of data sparsity,
prediction quality degrades significantly. For magnitude estimation, this effect results in
the underestimation of large magnitude events; for location estimation, events in regions
with few or no training events tend to be mislocated severely. This results in a heavy-
tailed error distribution for location estimation. Large deviations in both magnitude and
location estimation can have a significant impact in application scenarios, e.g., for early
warning where large magnitudes are of the biggest interest.

As in the previous chapter, relevant contributions to the topic have been published
since the original publication of this chapter as [Minchmeyer et al., |2021a]. Again, we
point out the study of Zhang et al.| [2021] for real-time magnitude and location estimation,
mentioned in the previous chapter. Zhang et al|[2021] address the issue of systematic
underestimation of large magnitude through a splitting approach. Instead of directly pre-
dicting magnitude, they decompose the magnitude prediction into the peak displacement,
which can be extracted directly from the waveforms, and an attenuation term that is out-
put by the network. This way, they observe no saturation, even for the largest events.
However, we tried a similar approach for Northern Chile, where magnitudes are up to
2 m.u. larger than in Italy, with mixed results [Hauffe, 2021]. This suggests that the
approach might not be applicable to very large events. In this chapter, we used a fairly
simple scheme for transfer learning. [Jozinovi¢ et al., 2022] conducted a more extensive
study, comparing different transfer learning schemes for ground motion estimation. Their
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applicability to magnitude and location estimation still needs to be evaluated.

A key conclusion of this chapter is that regional datasets, even if very complete, are
insufficient to assess rupture predictability, at least with the current methods (see Figure
and Chapter . There are several possibilities to address this limitation. First, the
employed models can be improved, in particular by incorporating physical knowledge into
the model [Raissi et al.,2019]. Within this thesis, we do not pursue this approach, but we
will discuss its potential and its challenges in our conclusion (Chapter . Second, the
training data selection can be modified to include more events. As we already included two
of the most seismically active regions worldwide in this chapter, Northern Chile and Japan,
this is only possible when studying data from diverse regions together. Third, the models
can be applied to a simpler task, thereby requiring less training data. For example, the
models can be provided with preprocessed information about the events obtained using
physical knowledge, such as source time functions, instead of raw waveforms. We will
explore the second and the third approach in detail in the next chapter.

Resource availability

The code for TEAM-LM is available at https://doi.org/10.5880/10.1093/gji/ggaa609
and https://github.com/yetinam/TEAM. We made the Italy dataset publicly available
at https://doi.org/10.5880/GFZ.2.4.2020.004. We made the Chile dataset publicly
available at https://doi.org/10.5880/GFZ.2.4.2021.002. Due to licensing restric-
tions, we are not able to redistribute the Japan dataset, but instructions and code to
convert it from the source files are available in the TEAM software repository.
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6 A probabilistic view on rupture predictability

In the previous chapters, we focused primarily on developing models for the fast and
accurate assessment of earthquakes. In this chapter, we put the spotlight on rupture
predictabilitym First, we study previous results regarding rupture predictability and
show that these results are inconclusive. The majority of these results uses a deterministic
view of rupture predictability. However, in this chapter we show that such a deterministic
view is insufficient to describe possible modes of rupture predictability. Therefore, in a
second step, we develop a principled, probabilistic formulation of rupture predictability
as a more expressive alternative. We then show how the conditional distributions in this
formulation can be estimated from data using neural networks and variational inference.

Subsequently, we apply the framework to two types of observables. First, we study
rupture predictability from teleseismic waveforms, building upon the TEAM-LM method
from Chapter[5} Second, we complement this analysis with a study of rupture predictabil-
ity based on moment rate functions, for which we develop a similar real-time magnitude
estimation model. For both types of observables, teleseismic waveforms and moment rate
functions, we find no indication of early rupture predictability. The final magnitude of
an earthquake can only be assessed after the peak of the moment rate function, usually
around half of the event duration. Even then, it is impossible to foresee further rupturing
asperities.

6.1 The deterministic view on rupture predictability

To contextualise and motivate our approach, we start with an overview of different models
for rupture predictability, both models implying predictability and models not implying
predictability. A common theory implying predictability is the preslip model
land Beroza, [1995], in which failure starts aseismically until the process reaches a critical
size and becomes unstable. Here, the final moment of the earthquake might be derivable
at the event onset time from properties of the nucleation zone, i.e., its size or the amount
of slip. Other models also suggest early predictability, but only after several seconds.
For example, [Melgar and Hayes| [2017] argue that ruptures of large events propagate as
self-healing pulses and that the pulse properties allow identification of very large events
after ~15 s. Support for such theories has been provided by the analysis of, e.g., waveform
onsets [Ellsworth and Beroza, |1995], moment rate functions [Danré et al.,|2019], and early
ground motion parameters [Colombelli et al., [2020].

The opposing hypothesis, often termed cascade model [Ellsworth and Beroza, [1995],
suggests a universal initiation behaviour: small and large earthquakes start identically
and are differentiated only after the peak moment release, which occurs approximately
at half of the rupture duration. Rupture evolution is controlled by heterogeneous local
conditions, such as pre-event stress distribution or the presence of mechanical barriers.
Studies supporting this theory also analysed properties like moment rate functions
2017], waveform onsets [Ide, [2019], or peak displacement [Trugman et al) 2019].

While reaching contradicting conclusions, predictability studies often follow the same
principle: analysing correspondences between earthquake size and real-time observables
[Ellsworth and Berozal, 1995, Meier et al. 2017, Danré et al., 2019, 2019| [Trugman|

[ 25This chapter is based on a manuscript currently under review. Compared to the manuscript, the|
|Introduction and Conclusion of this chapter have been modified to highlight the context of the chapter]
|within this thesis. Furthermore, we added a discussion on the estimation error and moved several figures|
|land the section on comparison to related work from the supplementary material into the main text. Minor]
[modifications were introduced to the remaining text and figures. |
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Figure 6.1: Synthetic samples of an arbitrary scalar observable O, and magnitude M,
assuming a linear connection with Gaussian error (a-c) or with exponentially modified
Gaussian error (d-f), i.e., the sum of a Gaussian and an exponential random variable.
Both observables have the same linear connection and standard deviation. a and d show
scatter plots of O; and M,,. b and e show histograms of O; for M,, bins with log-scaled y
axis. ¢ and f show histograms of M, for O; bins which are normed to represent densities.
For both cases, events with large magnitudes cause large observables. However, only in the
Gaussian case does a similar connection hold for small events causing small observables,
i.e., in the second case, small events can cause large observables as well. The observable
distributions for different magnitudes are mostly distinct in the first case, but overlap
strongly for the second case. The magnitude distributions for different observables are
mostly distinct for the first case while for the second case, small observables only give
an upper bound on the magnitude, i.e., small observables rule out large magnitudes, but
large observables do not imply large magnitudes. M,, samples were generated according
to a Gutenberg-Richter distribution with b = 1. O, samples were generated using the
linear connection and random samples from the error distribution.

et al.l 2019, |Colombelli et all 2020]. Earthquake size is commonly quantified by seismic
moment/moment magnitude, as large, high-quality catalogs thereof are openly available
[Ekstrom et al.| [2012]. A common practice is calculating parametric fits between magni-
tude and observables, and assessing at which time they become significant using standard
deviations [Olson and Allen, 2005, Zollo et al. 2006, Noda and Ellsworth, 2016} Meier
ket al 2017, [Melgar and Hayes, [2017, [Danré et al., 2019, [Colombelli et all 2020]. How-
ever, this point-estimator approach hides the residual distribution and thereby potentially
obscures distinct modes of rupture predictability, especially when distributions are non-
Gaussian.

To illustrate the importance of this restriction, we created a synthetic toy example
(Figure 6.1). The example shows two sets of observables with an identical linear fit and
standard deviation. However, the examples differ in their residual distributions. The first
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Figure 6.2: Conditional magnitude distribution development for three different pre-
dictability models: Gutenberg-Richter (GR) (not predictable during the growth phase),
skewed GR (total magnitude not point-predictable, but information gain compared to the
prior already during the growth phase of the rupture) and Gaussian (predictable). The
panels in the top row show the predictive distributions by their 0.05, 0.2, 0.5, 0.8, 0.95
quantiles over time. The cumulative moment release is indicated by the dashed black line.
The bottom plots show the moment rate M over time. For each model, we use the same
hypothetical event with a prototypical triangular moment rate function. The prototypical
moment rate function is meant to represent the first-order moment release history; for
predictable models to be viable, other features are required, such as further observables
or second-order features of the moment rate function. a In the GR case, the prediction
follows a GR distribution above the moment released so far. Only after the peak moment
release, the prediction quickly transforms into a Gaussian, although with a decreasing GR
portion that relates to the possibility of future asperities. b The skewed GR case behaves
similarly to the GR case, but the distribution is skewed towards higher magnitudes, i.e.,
from early on, it is more likely for the event to become large. ¢ For the Gaussian case,
the magnitude can be determined early on with a small error that decreases further over
time. No quantitative x and y labels are provided to highlight the prototypical character
of the figure. A cross-section view of the three different options at a fixed time is shown

in Figure [E.Th.

example exhibits a Gaussian residual, i.e., the observables allow to predict the magnitude
up to an unbiased uncertainty term. In contrast, the second example shows an exponen-
tially modified Gaussian residual. While small observables uniquely identify small events,
larger observables can result from any size of event. Pinpointing the final magnitude is
impossible in this case. However, in a probabilistic sense, large observables still consider-
ably increase the likelihood of a large event compared to the marginal Gutenberg-Richter
(GR) distribution. Notably, exactly such residual distributions occur for real observables.
Olson and Allen| [2005] analyse the dominant period of the initial 4 s of the P wave and
find such residuals (their Figure 3). Noda and Ellsworth| [2016] derive an observable from
the early P displacement waveform and obtain a similar residual (their Figure 5).

6.2 A probabilistic framework for rupture predictability

We argue that a rigorous, probabilistic approach can overcome the limitations of the
deterministic approach discussed in the previous section. To formalise this probabilistic
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approach, we interpret the magnitude M of an event as a random variable and introduce
a stochastic process (Oy)cr, the observables at time tE] t = 0 identifies the event onset.
The observables (O;)icr can be any information, as long as O; only describes the event
until £, e.g., waveforms up to the P travel time plus t.

Two events with magnitudes M; # M differ at the time ¢ if the conditional distri-
butions P(O¢|M;) and P(O¢|M>) differ. However, while describing P(O;|M) for scalar
O, is feasible, it becomes intractable for higher-dimensional O;. Furthermore, for early
warning, the objective is estimating M from O; and not vice versa. Therefore, we analyse
P(M|0Oy), directly investigating to what degree the observables constrain the magnitude.
While this type of analysis has been conducted for peak ground displacement, where
Meier et al.| [2017] considered P(O;|M) and [Trugman et al.| [2019] analysed both P(O;| M)
and P(M|O;), an analysis for higher dimensional observables is still missing. This leaves
many observables unexplored that might potentially contain information on future rup-
ture development, e.g., seismic waveforms.

There are two distinct aspects of rupture predictability: (i) the future development of
the current asperity and (ii) the probability of further asperities to rupture. Figure
shows an example of P(M|O;) with no predictability in the growing rupture, as suggested,
e.g., by |[Meier et al. [2017]. Before the peak moment release, the distribution equals a GR
distribution with a lower bound at the currently released moment, accounting for both
aspects of rupture predictability. After the peak, the distribution becomes Gaussian (i),
with a decreasing GR component accounting for potential future asperities (ii). Figure
shows a skewed GR case: magnitude cannot be pinpointed, but from early on the
event is more likely to become large than the marginal GR distribution. Skewed GR
distributions might occur, e.g., in slip pulse models [Melgar and Hayes, 2017], where
pulse properties define the likelihood of the rupture to arrest soon. Figure [6.2c shows the
predictable case: magnitude can be pinpointed early and uncertainties decrease steadily,
implying correct assessment of both aspects.

The different evolution of P(M|O;) has consequences for early warning: a shifted tail
for P(M|O,) shifts the estimated distribution of ground shaking and possibly the warning
decision. However, several results from previous research do not allow a clear distinction
of the presented cases. For example, multiple studies [Abercrombie and Mori, 1994, [Mori
and Kanamori, 1996, Kilb and Gomberg, 1999, [Ide, 2019] reported that for most large
events, small events with similar onsets exist. While this rules out the predictable case,
events might still differ strongly in their likelihood of becoming large.

For practical analysis, P(M|O;) needs to be derived from observed samples

{(M",0)}iz1,...n ~iia P(M, Oy) . (6.1)

As a direct description is infeasible for high dimensional O, we propose to instead use a
variational approximation Py(M|O;) ~ P(M|Oy), i.e., approximate the true distribution
with a parametrised distribution. The parameters 6 are learned to fit P(M|O;) using the
samples {(M?, O%)}i—1, ., and a proper loss function/scoring rule [Gneiting and Raftery)
2007|. Specifically, we suggest parameterising Py(M|O;) using neural networks with Gaus-
sian mixture outputs [Bishop, [1994]. Both neural networks and Gaussian mixtures (Figure
[E.1b) have universal approximator properties, making them particularly well suited for
our case [Cybenkol 1989, Bengio et al., 2017]. This enables us to obtain probabilistic mag-
nitude estimates, while not being restricted to single dimensional observables. Notably,

2"Throughout this analysis, we will be using moment magnitude values M,. As both super- and
subscripts will be used as indexes into the stochastic process and for different samples, we drop the w
from the notation in most places.
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Figure 6.3: Distribution of events and histograms for magnitude distribution for the three
STF datasets. The events are colour coded by their dataset. Ye et al is plotted on top
of USGS, on top of SCARDEC. This might lead to a few events not being visible due to
overlaps.

this approach can be applied directly to any type of observables, simply by designing an
appropriate neural network.

6.3 Predictions from moment rate functions

We first apply this framework to source time functions (STFs), also known as moment
rate functions, a commonly used observable in predictability studies [Meier et al., 2017,
Danré et al, [2019]. For our analysis we use three STF databases: SCARDEC (3514
events, 5.4 < M,, < 9.1) [Vallée and Douet, [2016] and those from USGS
(190 events, 6.8 < M,, < 9.1) and from Ye et al[[2016] (119 events, 6.8 < M,, <9.1). The
spatial and magnitude distributions for all three datasets are shown in Figure The
three STF databases were generated using two different methodologies. SCARDEC uses
a point source approximation and conducts a constrained deconvolution of body waves.
In contrast to SCARDEC, USGS and calculate finite fault
solutions from both body and surface waves assuming constant rupture velocity within
each event. As the spatial extent of the source is modelled, the STFs from finite fault
solutions generally represent more high-frequency details than the SCARDEC ones. On
the other hand, the SCARDEC method applies to smaller events that can not be processed
with the finite-fault inversion schemes. Further details on the methodologies of the STF
datasets are provided in

As a neural network model for the prediction of total moment magnitude based on
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Figure 6.4: a Probability density functions (PDFs) calculated from the STF model just
before onset, and at 2, 4, 6 and 8 s after onset. Coloured ticks on the PDF's indicate 0.05,
0.2, 0.5, 0.8, 0.95 quantiles. b-f Example predictions from the STF model visualised
by the 0.05, 0.2, 0.5, 0.8, 0.95 quantiles over time. b shows the same event as a. The
lower right gives information on the event. The black dashed line shows the magnitude
equivalent to the moment released so far, i.e., the trivial lower bound. The bottom plots
show the STF's used for prediction. The annotations in the upper right of these subplots
indicate the STF database used.

(partial) source time functions, we use a simple multi-layer perceptron. The model has
five hidden layers with 200 neurons each and ReLU activation. As input, we use five
observables derived from the source time function at time ¢: (1) cumulative moment
My; (2) current moment rate M +; (3) average moment rate %Mt; (4) peak moment rate
maxr<¢ M 3 (5) current moment acceleration M. We use features instead of full STFs
to avoid the danger of overfitting due to the high dimensionality of time series in con-
trast to the low number of training examples. Still, these features describe the STFs
in sufficient detail to represent the observables considered in most previous STF-based
predictability studies [Meier et al., [2017, Melgar and Hayes| 2019]. For improved learn-
ing behaviour, we log-transformed features (1) to (4) and multiplied them by 0.1. As
feature (5) can take negative values as well, we transformed the feature with the func-
tion f(z) = 0.01sign(z) max(0, log(|z|/(10'° Nm/s?))), i.e., we apply a signed and scaled
log-transform. To mitigate slight differences in the onset times, we rebase the STF times
such that the last sample with a moment rate below 10> Nm is at ¢ = 0.

As the output, we use a Gaussian mixture density network . The network
outputs mixture weights a;, mean values yu;, and standard deviations ¢;. The probability
density function (PDF) of the mixture is f(z) =), aiaflgo(z;—i‘”), where ¢ denotes the
PDF of a standard normal random variable. For the mixture weights, we use softmax
activation, for the mean values no activation function and for the standard deviation
softplus activation. As we observed a mode collapse of the Gaussian mixture, i.e., all
mixture components except one or two having mixture weights very close to zero, we
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6.3 Predictions from moment rate functions

introduce a Dirichlet prior on the mixture weights |Ormoneit and Trespl (1995], forcing
mixture weights away from zero.

We train the model on SCARDEC, as it is the largest of the datasets, with further
results from models trained on the USGS datasets available in Figure For training,
we use a ten-fold cross-validation scheme. We use the continuous ranked probability
score as loss, as its optimisation behaviour is more favourable in face of highly skewed
underlying distributions than the behaviour of log-likelihood. Further details on the
training procedure are provided in Appendix

For qualitative insights into the predictions and as a basis for interpreting the average
results, we visualise a few representative examples (Figure . We show their PDFs at
different times (Figure [6.4h) and their quantiles (Figure [6.4p-f). In all cases, the sign
of the moment acceleration largely defines the anticipated potential for growth: positive
acceleration, i.e., the growth phase, indicates high growth potential, negative acceleration
low potential. Furthermore, the higher the current moment release is, the higher the
growth potential. This results from the STF’s smoothness: at high moment rates, it will
likely take longer to arrest than at low rates. Notably, the model does not predict future
asperities within a multiple asperities rupture (Figure , e); for times after the peak of
the moment rate function has been passed, the model expects a steady decay. Once the
moment rate approaches zero, the estimated further growth is low (e.g., Figure at
15 s, at 40 s). If moment release accelerates again, the model immediately expects
another asperity to break and higher growth potential is inferred yet again. These effects
lead to sudden changes of the PDF at local maxima and minima of the STF (e.g., Figure
at 20 s, [6.4k at 25 s).

For a systematic analysis, we average P(M|O;) by magnitude buckets (Figure[6.5p-c).
For the datasets using finite fault solutions (Figure , ¢), during the first 2 s of the
STF, the predicted distributions are mostly identical across buckets. Afterwards, the
buckets split up over time: M,, = 6.5 to 7.0 at ~2 s, M,, =7.0to 7.5 at ~8 s, M,, =7.5
to 8.0 at ~16 s, M,, = 8.0 to 8.5 at 25-40 s. These times match typical half-durations of
events in these magnitude ranges [Gomberg et al., [2016].

SCARDEC (Figure ) shows similar splitting over time, but exhibits an apparent
skew in the early predictions: higher magnitude buckets exhibit a higher likelihood for be-
coming large. Furthermore, lower bounds for the highest magnitude buckets (brown, pur-
ple), are higher than for the remaining buckets already after 1 s. Similarly, the SCARDEC
examples in Figure [6.4p-d show high predictions within the first 2 s and abruptly fall after-
wards. We attribute this apparent predictability to artefacts of the SCARDEC processing,
in particular uncertainties in onset timing and the point source approximation. We fur-
ther discuss this apparent predictability and its causes in Appendix This matches
previous studies [Meier et al., 2021] reporting a strong correlation between early samples
of SCARDEC STFs and the final magnitude. Additionally, we trained the model with
the much smaller USGS dataset and evaluated the model again on all three datasets. The
results lack the apparent early predictability, which is consistent with this explanation
(Figure [E.2)).

Predictions at a fixed time ¢ after onset describe both moment release until ¢ and
future development, with only the latter being relevant for the predictability. To isolate
this aspect, we define P(M|Oy;) = P(M|Oy,,), where ty; = sup,{M(t) < M} is the
time when the cumulative moment release equals M. When analysing P(M|Oy;), all
three datasets exhibit the same trends (Figure —f). All magnitude buckets with lower
bounds at least M + 0.5 show nearly identical predictions: a sharp increase in likelihood
from M to ~ M 4+ 0.2 and an exponential tail. M + 0.2 represents roughly twice the
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Figure 6.5: Average predicted PDFs based on STFs grouped by magnitude bin. The left
column shows results at time ¢ after onset (P(M|O;)), the right column after cumulative
moment equals magnitude M (P(M|Oj;)). The model has been trained on the SCARDEC
dataset and evaluated on each STF dataset. See Figure for STF results from a neural
network trained with the USGS dataset. PDF's were truncated in the visualisation to avoid
overlap between different times/base magnitudes. Black dotted lines in d-f indicate the
current base magnitude.

seismic moment of M and, due to the symmetry of STFs [Meier et al. 2017], half the
event duration. For buckets with lower bound equal to M, peak likelihood occurs around
M, again with exponential tails. The decay is steeper for these buckets, as most events are
already past the peak and substantial future growth can therefore only result from future
asperities, but not from further growth of the current one. The results are independent
of the faulting mechanism (Figures . The systematic analysis, therefore,
confirms the hypothesis that the final magnitude can only be assessed after the peak of
the STF has been passed and that the rupture of further asperities cannot be anticipated.

6.4 Predictions from teleseismic P arrivals

STF's have limited temporal resolution, giving only a low-pass filtered view of the source
process. Consequently, potential higher frequency details indicative of future rupture
development might be hidden. To resolve this issue, we apply our approach to teleseismic
P arrival waveforms, which in contrast to STFs contain full spectral information up to
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Figure 6.6: Distribution of stations and events, and histograms for magnitude and epi-
central distance distributions for the teleseismic P arrival dataset. In the map, triangles
denote stations and dots denote events. Events are colour-coded by magnitude.

~ 1 Hz, above which they will be hidden by attenuation. We collated a dataset of ~ 35,000
events with ~ 750,000 manually labelled first P arrivals. The picks were obtained from
the ISC [International Seismological Centre, 2021] and the USGS [U.S. Geological Surveyl,
2017, the magnitudes from the Global CMT project [Ekstrom et all 2012]. The station
and event distribution is visualised in Figure alongside the magnitude and epicentral
distance distributions. The dataset is primarily comprised of events with magnitudes
M, > 5. We include picks from high quality global seismic networks. We limit the
maximum epicentral distance to 97° to avoid core phases. Further details on the dataset
and the preprocessing are provided in Appendix

As a neural network, we adapted TEAM-LM, introduced in Chapter [5] Compared to
the earlier chapter, we introduced several modifications to TEAM-LM to fit our appli-
cation. First, as the traces are teleseismic, it is not possible to align the traces between
stations by wall time. Instead, we align the traces by their P picks, such that the P pick is
at the same sample for each station. Second, we now model real-time application through
a sliding window instead of zero padding [Zhang et al.,|[2021]. To model the data available
at time ¢, where ¢ is relative to the P pick, we provide the model with the waveforms from
t —30 s to t. This allows to (i) apply the model to times more than 30 s after the P
arrival; (ii) give the model more information on the noise at early times; (iii) make the
model less sensitive to pick inaccuracies. Third, we do not encode station positions. We
experimented with encoding the positions relative to the event, but it became apparent
that the station distribution in our dataset in many cases is indicative of the magnitude.
However, at teleseismic distances, the locations generally tend to have a lower impact on
the waveform than at regional distances, which is also visible in our results. In addition,
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Figure 6.7: Average predicted PDFs based on teleseismic waveforms grouped by mag-
nitude bin. a shows results at time ¢ after onset (P(M]O;)). b shows results after the
cumulative moment equals magnitude M (P(M|Oy;)). PDFs were truncated in visuali-
sation to avoid overlap between different times/base magnitudes. Black dotted lines in b
indicate the current base magnitude. For determining t¢j; in b we used the SCARDEC
dataset. See Figure[E.6|for plots with the other STF datasets. The apparent skew between
buckets in panel b for M = 6.0 likely results from SCARDEC processing artefacts (see
Appendix . Events differ between the panels: b only includes those events present
in both the teleseismic dataset and SCARDEC (~3,500 events) and a all of the former
(~38,000 events).

we modified the mixture density output to be consistent with the one for the STF model,
i.e., we added the Dirichlet regularisation and switched to softplus for the sigma values.

Compared to the STF model, predictions P(M|O;) and P(M|Oy;) show higher un-
certainties and systematic underestimation of the largest magnitudes at all times (Figure
6.7). Higher uncertainties result from the fact that assessing magnitude from waveforms
is harder than from STFs, whereas underestimation can be attributed to data sparsity as
discussed in Chapter 6] Due to the higher model uncertainties, all tails look rather like
exponentially modified Gaussians than exponential distributions, as observed in the STF
case. We note that the apparent lower uncertainty for the highest magnitude buckets com-
pared to the lower magnitude buckets results from the number of samples in each bucket:
with fewer samples available, the result gets less smooth but also less wide. Nonetheless,
the general trends are highly similar to the results from the STF analysis before. Early
predictions (t < 2 s) are indistinguishable, except for the bin M,, = 6.0 to 6.5, where
event durations are often < 4 s. Bins split over time, similar to the STF model, although
with a higher overlap in predictions between bins for the teleseismic results than for the
STF case. Splits occur around 4 s for M,, = 6.5 to M,, = 7.0, 8 s for M,, = 7.0 to
M, = 7.5, and 16 to 25 s for both M,, = 7.5 to M,, = 8.0 and M,, = 8.0 to M,, = 8.5,
again representing typical event half-durations.

As for P(M|O;), predictions for P(M|Oj;) exhibit similar behaviour to the ones from
the STF model (Figure ) While M is considerably lower than the final magnitude,
the predictions are indistinguishable between the buckets. Splitting of buckets occurs
slightly later than for the STF model, i.e., clear differences only become apparent once M
exceeds the upper bound of the bucket. This likely results from the higher uncertainties.
We would therefore argue that assessment up to potential further asperities is likely still
possible after the moment rate peak.
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6.5 Comparison with previous results

6.5 Comparison with previous results

Our results find no predictability from both STFs and teleseismic waveforms. These
observations seem contradictory to several previously published results. We discuss po-
tential reasons for the differences to some studies below. Melgar and Hayes| [2019] found
differences in moment acceleration for earthquakes of different sizes. As our STF model
has access to the acceleration parameter investigated in this study, we would expect to
be able to reproduce this effect. However, [Meier et al|[2021] demonstrated that these
results were caused by a sampling bias, i.e., an artificial selection of events based on a
combination of magnitude and moment acceleration. Consequently, our results support
the findings by |[Meier et al.| [2021] regarding this sampling bias.

Danré et al. [2019] analysed STFs as well, decomposing them into subevents, and
also found predictability. Large events exhibited higher moment in early subevents and
in addition, showed higher complexity, i.e., featured more subevents. We suspect that
their different conclusion might also result from the SCARDEC processing, which hides
small subevents within large earthquakes and thereby artificially inflates the first identi-
fiable subevent within a large event comparably to within a smaller event. For a further
description of artefacts in the SCARDEC dataset, we refer to Appendix

Melgar and Hayes|[2017] analysed slip pulse behaviour and found a correlation between
rise time and moment magnitude, making magnitude assessment possible after ~ 15 s.
While this conclusion would contradict our results, the significance of the findings for
events with M, > 7.5 is unclear, given the low number of very large events and several
intermediate events with high rise time. On the other hand, ~ 15 s does not imply
any further predictability than found in our study for events with M, < 7.5, due to
their comparatively short duration. Furthermore, the study by |[Melgar and Hayes [2017]
uses geodetic observations in contrast to the STFs and teleseismic waveforms used in our
analysis. While teleseismic P arrivals should allow for good rupture tracking, similar to
geodetic recordings, specific patterns of slip pulses might not be identifiable.

Colombelli et al. [2020] found differences in the slope of early peak ground motion
parameters at local distances between earthquakes of magnitude 4 to 9. In our analysis
of teleseismic waves, this effect could be hidden by the attenuation of high-frequency
waveforms. Therefore, our results do neither confirm nor contradict |Colombelli et al.
[2020]. Similarly, while our study practically rules out predictability given STFs and
teleseismic waveforms, it still leaves the option of approaches, where the tell-tale signals
might only be observable in local waveforms or require geodetic observations.

6.6 Implications of the estimation error

For our analysis, we used a variational approximation Py(M|O;) to P(M|O;). However,
we so far we did not take into account the estimation error, i.e., the difference between
the true distribution and the variational approximation. While the use of a proper loss
function guarantees us that this error is negligible in the limiting scenario of infinite data,
in our finite-data scenario we observed estimation errors, e.g., higher uncertainties for the
waveform-based model compared to the STF model. Therefore, in this section, we discuss
the potential effects of the estimation error. In particular, we argue why we still interpret
the predictions in terms of rupture predictability, even given the estimation error.

First, we analysed the model for teleseismic waveforms extensively on regional wave-
forms in Chapter [5| While we identified shortcomings for very large events, model errors
are small as long as sufficient samples are available: the saturation threshold, from which
underestimation occurs, varies between datasets and is determined by the number of large
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events. Consequently, this indicates a similar shift in saturation threshold for the teleseis-
mic dataset, consistent with the observed saturation behaviour at late times ¢. Second,
our results are not only consistent between two different observables, but they are also
consistent with a well established physical model, i.e., symmetric moment rate functions
with predictability only on the downward slope [e.g., Meier et al., 2017, Trugman et al.,
2019]. Therefore, it would be an unlikely coincidence to fit exactly this model for both
observables. Nonetheless, this observation allows for another, valid conclusion: estimating
the final magnitude on the upward slope might not be impossible, but considerably more
difficult than on the downward slope. Consequently, while the model is able to assess the
magnitude on the downward slope, the model architecture or the amount of training data
might be insufficient to correctly derive the distribution on the upward branch.

The missing constraints on the estimation error are closely related to an inherent
issue in the discussion of rupture predictability: the question is asymmetric, i.e., while
certain observations could conclusively prove rupture predictability, disproving rupture
predictability is by far harder. Proving a certain level of predictability is straightforward,
i.e., one can use statistical tests to show that a derived parameter differs between events
with different final magnitudes at time ¢. However, the contrary is virtually impossible
as one needs to show that mo significant difference exists for any derived parameterP;g]
Our approach puts the burden of analysing all derived parameters onto the deep learning
model, i.e., instead of validating all derived parameters, we look for the best one, as
defined by the proper loss function and the scoring rule. The missing constraints on
the estimation error can therefore be interpreted as the deep learning analogue to the
impossibility of enumerating all possible derived parameters for statistical analysis.

While we think it will not be possible to fully disprove rupture predictability due to
the theoretical concerns discussed above, this chapter provides evidence against rupture
predictability. Further evidence could be obtained through general bounds on the estima-
tion error or by gaining further insights into the models to improve interpretability. We
will discuss this aspect in Chapter

6.7 Conclusion

In this chapter, we built a probabilistic framework for a principled discussion of rupture
predictability, the primary goal of this thesis. Using variational approximation, we devel-
oped a method to estimate the relevant conditional probabilities from collected samples.
We conclude that there are no signs of early rupture predictability in either STFs or
broadband teleseismic P waveforms. Instead, our analysis indicates that the total mo-
ment of an event based on such data can only be estimated after the peak moment release.
However, even then it is not possible to anticipate future asperities.

While our analysis finds no early predictability, it again highlights the feasibility of
real-time rupture tracking, at least using STFs and teleseismic waveforms. In particular,
we showed that magnitudes for larger events (M,, > 7) can be correctly estimated from
real-time waveforms using TEAM-LM if sufficient training data is available. This expands
upon the results from Chapter [5], where systematic underestimation already set in at
smaller magnitudes. Nonetheless, systematic underestimation still occurs for the largest
events.

28 One might argue that it is only necessary to show that no difference exists for any physically reasonable
parameter. However, enumerating all possible physically reasonable parameters is still virtually impossible.
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Resource availability

The source time function datasets are available from the US Geological Survey (https://
earthquake.usgs.gov/data/finitefault/), Linling Ye (https://sites.google.com/
site/linglingye001/earthquakes/slip-models), and the SCARDEC project (http:
//scardec.projects.sismo.ipgp.fr/). We downloaded manual phase picks from the
ISC [International Seismological Centre, 2021] and USGS |U.S. Geological Surveyl, [2017].
Seismic waveforms were downloaded from the IRIS and GEOFON data centers. We
use waveforms from the GE [GEOFON Data Centre, 1993, G [Institut De Physique Du
Globe De Paris (IPGP) and Ecole Et Observatoire Des Sciences De La Terre De Stras-
bourg (EOST), [1982], GT [Albuquerque Seismological Laboratory (ASL)/USGS) 1993,
IC [Albuquerque Seismological Laboratory (ASL)/USGS| 1992], IT [Scripps Institution Of]
|Oceanographyl, [1986], and IU [Albuquerque Seismological Laboratory (ASL)/USGS,[198§]
seismic networks. We have not published a precompiled teleseismic waveform dataset or
code for the experiments yet.
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7 Conclusion and Outlook

In this thesis, we studied earthquake rupture predictability through the real-time assess-
ment of earthquake source parameters. We developed machine learning based methods for
source parameter estimation in both post hoc and real-time scenarios. Furthermore, we
developed a method for end-to-end assessment of ground motion parameters and showed
how this method improves on traditional earthquake early warning methods. In this con-
clusion, we will first summarise the main findings and contributions of each chapter, and
then discuss open questions and potential further directions.

In Chapter [2] we introduced relevant terms and concepts for the thesis. To account
for the interdisciplinary nature of this thesis, we discuss both basics of seismology and
of machine learning. The chapter closes with an overview of recent machine learning
approaches in seismology.

Each of the four main chapters discusses an estimation task of the form P(X|0;), with
X either magnitude, location, or ground motion. In Chapter [3] we investigated the task
P(M|Oy) for t — oo, i.e., magnitude scale calibration in a post hoc scenario. This anal-
ysis provides both a lower bound for the quality of real-time estimation methods and a
gold-standard catalog for the later studies. For the magnitude scale calibration, we intro-
duced a hybrid method based on mathematical optimisation and gradient boosted trees.
Compared to standard, single-dimensional attenuation terms used for local magnitude
calculation, we reduced residuals and thereby uncertainties by up to 23 % through the
addition of correction terms for depth and spatial attenuation patterns. Furthermore, our
method for combining several waveform features through gradient boosted trees led to a
further reduction in uncertainties by nearly a factor of two. We applied our method to a
catalog from Northern Chile with ~ 100, 000 events, obtaining high-confidence magnitude
values for the catalog.

After analysing the post hoc scenario in Chapter [3| we turned towards the real-time
assessment of earthquakes. As a first step, in Chapter [, we introduced TEAM, a deep
learning based earthquake early warning method. TEAM conducts end-to-end ground
motion estimation, i.e., estimates P(GM|O;). TEAM outperforms traditional early warn-
ing schemes on two datasets from Italy and Japan in terms of both alert performance
and warning times. We explained the performance gains with the end-to-end modelling
approach. In contrast to source based approaches, this reduces the modelling errors, as it
does not use two steps (source estimation and ground motion prediction) but only a single
step. At the same time, TEAM still maintains a global view of the event, which stands in
contrast to previous end-to-end approaches, so-called propagation based methods. This
allows TEAM to achieve considerably longer warning times than these approaches. How-
ever, while outperforming traditional approaches, we also showed that TEAM is more
susceptible to data sparsity issues than traditional methods. While this can partially be
mitigated through transfer learning, correctly estimating strong ground shaking remains
challenging.

For a comprehensive understandings of the advantages and limitations of deep learning
for real-time earthquake assessment, we conducted an in-depth study on three datasets
from Italy, from Japan and from Northern Chile. To this end, in Chapter [5], we adapted
TEAM to magnitude and location estimation, P(M, Loc|O;), yielding TEAM-LM. We use
magnitude and location for this study, as, in contrast to ground shaking, these parameters
are not affected by local site conditions. TEAM-LM strongly outperforms classical ap-
proaches, in particular for magnitude estimation, and also improves upon the performance
of previous deep learning approaches. Nonetheless, we identified severe shortcomings in
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low data scenarios that are rooted in the black-box modelling approach. For location es-
timation, events in regions with low training event density are systematically mislocated
towards regions with higher densities. For magnitude estimation, these shortcomings
manifest in a systematic underestimation of large magnitude events. We showed that the
systematic underestimation of large magnitudes can be reduced, and in some cases even
completely resolved, with transfer learning, as long as an appropriate source dataset for
transfer learning is available. Nonetheless, we showed that our method does not allow
to draw conclusions on rupture predictability from regional datasets, as the performance
limitations due to data sparsity mask potential effects of rupture predictability.

Following the inconclusive results from regional data, in Chapter 6], we moved to dif-
ferent observables: moment rate functions and teleseismic waveforms. In both cases, we
used observations from earthquakes worldwide, thereby obtaining a significantly higher
number of large events compared to the regional case. We discussed prior studies on
rupture predictability and identified drawbacks in the commonly used deterministic view-
point. To alleviate these deficiencies, we introduced a probabilistic formulation of rupture
predictability in terms of the conditional distribution P(M|0O;) and an estimation scheme
through variational approximation. Applying this scheme to both types of observables,
we identify no signs of rupture predictability. Estimating the final size of an earthquake is
only possible after the moment rate peak, and even then only up to the rupture of further
asperities. Notably, this holds even in a probabilistic sense: no events are more or less
likely to become large early on than the marginal.

Several key results of this thesis are, at least to some extent, unfortunate. First,
the lack of rupture predictability poses an inherent limitation to early warning, as it is
merely limited to tracking the moment release in real-time rather than anticipating the
future growth of an event. Second, while we showed the excellent performance of deep
learning methods for the real-time assessment of earthquakes, our detailed analysis also
repeatedly revealed limitations in data-sparse scenarios. Therefore, in the next sections,
we discuss potential future research directions to address these issues. We will look
at both methodological contributions and potential opportunities in seismology to still
identify signs of rupture predictability.

7.1 Standardisation for machine learning in seismology

In this thesis, we presented several novel machine learning methods for seismology. In
total, we used seven datasets for their evaluation: waveforms and catalogs from Northern
Chile, from Japan, from Italy, and from teleseismic arrivals, and three moment rate
function datasets. We obtained or compiled all these datasets from publicly available
sources and converted them to a format suitable for machine learning. This approach,
model development being inherently coupled with dataset collection, is detrimental to the
progress of machine learning research in seismology for several reasons. First, compiling
datasets requires time, resources and expertise. Thereby it increases the entry hurdle for
new researchers and reduces the resources spent on model development and evaluation.
Second, the performance of different machine learning models can not be compared unless
they are evaluated on the same dataset. Therefore, if datasets are specifically created in
the same process as the model development, a comparison among published models is
impossible. Third, as the datasets are created for a specific task, the employed data
format is often tailored towards the task and does not follow any standard. Even if the
compiled dataset is made publicly available, this limits the reusability or at least increases
the effort for reuse. Consequently, subsequent developments can usually not be evaluated
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Figure 7.1: Map views of six datasets included in the SeisBench library. Each dataset is
provided in a common format using the same API. The ETHZ, GEOFON, and SCEDC
datasets were compiled for SeisBench; the INSTANCE, LenDB and STEAD datasets
were published independently and converted to the SeisBench data format. The remaining
datasets are not visualised as the location metadata for events and stations is not available.
Figure from Woollam et al.|[2022].

on a range of different datasets without significant effort in dataset conversion, making
their evaluation less robust.

Similarly to dataset standardisation, model standardisation needs to be discussed.
Several times within this thesis, we compared our approaches to previous approaches.
However, in each case, we reimplemented the competing approaches ourselves, either be-
cause no implementation was publicly available, or because the existing implementation
was incompatible with our processing pipelines. While we made our best efforts to en-
sure a truthful comparison with these methods, our reimplemented versions will, without
question, deviate from the original approaches. This makes the conclusions achieved from
the performance comparison less reliable.

There is another perspective on model standardisation, coming from observatory prac-
tice. Even though several authors published implementations of their methods [e.g.
Mousavi et al., 2020, [van den Ende and Ampuero, 2020}, or our implementations of TEAM
and TEAM-LM], we identify two major limitations in these approaches. First, these im-
plementations evolved from research code and were often not primarily designed with the
need of practitioners seeking to apply these methods in mind. Consequently, applying
these methods requires a certain knowledge of deep learning, and even more of seismic
waveform processing in Python. This is problematic, as many monitoring services use dif-
ferent tools, such as SeisComp |Helmholtz-Centre Potsdam-GFZ German Research Centre
For Geosciences and GEMPA GmbH, 2008| or EarthWorm [Johnson et al., [1995], leading
to a gap between model developers and seismological practitioners. Second, each of these
implementations provides a different interface. It is therefore laborious to apply different
models, both for application purposes and for benchmarking.

Several contributions towards standardisation have been put forward recently. In
particular, multiple benchmark datasets have been published. Mousavi et al.| [2019a] pre-
sented the STanford EArthquake Dataset (STEAD), a collection of 1.2 million waveforms
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with a rich collection of metadata. Among other applications, STEAD has been success-
fully used for training and evaluation models for phase picking [Mousavi et al., [2020],
for magnitude estimation [Mousavi and Berozaj, 2020a], and for earthquake localisation
[Mousavi and Beroza, 2020b]. Similar to STEAD, [Michelini et al.| [2021] published IN-
STANCE, a collection of 1.3 million waveforms containing earthquakes in Italy and noise
examples recorded on the same stations, again accompanied by rich metadata. Another
published dataset is LenDB [Magrini et al. 2020], which in contrast to providing manually
labelled phase picks as in STEAD and INSTANCE, contains estimated picks from travel
time calculations. While all three of these datasets use similar data formats, the subtle
differences do not allow for direct interchangeability.

With regards to models, we are not aware of frameworks by other authors unifying
model APIs for different models solving the same task. However, several implementations
of deep learning models aimed at practitioners have recently been published. QuakeFlow
[Zhu et all) 2021] is a Kubernetes based system to build data processing pipelines, in-
cluding machine learning based picking, denoising, and phase association models. Phase-
Worm [Retailleau et al., |2022] integrates the deep learning based PhaseNet model [Zhu
and Beroza, 2019] with the EarthWorm [Johnson et al., [1995] seismic processing software.

We developed a further solution to the standardisation issue: SeisBench - A toolbox
for machine learning in seismology |Woollam et al., 2022]12_9-] SeisBench is an open-source
python framework for machine learning in seismology. It jointly addresses the standardisa-
tion of datasets and models and works towards bridging the gap between model developers
and practitioners. SeisBench consists of three main modules: data, models and generate.
The data module provides a data format specification and a unified interface for accessing
datasets in this format. Furthermore, it contains a collection of currently ten benchmark
datasets, encompassing both previously published datasets like STEAD or INSTANCE,
and newly assembled datasets (Figure [7.1). Each benchmark dataset can be easily ac-
cessed, downloaded, and, if necessary, converted through SeisBench. The models module
contains implementations of currently six deep learning based detection and phase picking
models, and one model for waveform denoising. Each model is implemented in pytorch
[Paszke et al., 2019] and offers two interfaces. First, a regular pytorch interface to train
the model using standard deep learning techniques. Second, an interface to apply models
directly to obspy streams [Beyreuther et al., 2010] and thereby easily incorporating them
into seismological analysis workflows. Furthermore, SeisBench offers a rich collection of
pretrained weights for the models that can easily be accessed. The generate module
offers functionality for building data generation pipelines, containing standard building
blocks required in preprocessing, such as window selection strategies, frequency filters, or
data augmentations. This allows developers to easily build training pipelines based on
SeisBench datasets.

Using SeisBench, we conducted a large scale benchmark of detection and phase picking
approaches, comparing six deep learning models and one traditional picking algorithm on
eight datasets covering local to teleseismic distances [Miinchmeyer et al., 2022]@ Overall
we observed the best performance for EQTransformer [Mousavi et al. 2020], GPD [Ross
et al. |2018b|, and PhaseNet [Zhu and Beroza, 2019], with advantages for EQTransformer

29GeisBench was developed within the Helmholtz AI project REPORT-DL. SeisBench was implemented
by Jack Woollam and Jannes Miinchmeyer. Andreas Rietbrock, Frederik Tilmann, Dietrich Lange,
Thomas Bornstein, Tobias Diehl, Carlo Giunchi, Florian Haslinger, Dario Jozinovi¢, Alberto Michelini,
Joachim Saul, and Hugo Soto contributed to the design and concept of SeisBench.

39The benchmark was implemented by Jannes Miinchmeyer within the REPORT-DL project. Jannes
Miinchmeyer wrote the manuscript about the benchmark. All contributors of SeisBench listed above
contributed to the benchmark study and the manuscript preparation as well.
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on teleseismic data. We analysed model performance both in-domain, evaluating models
on the datasets they were trained on, and cross-domain, evaluating on other datasets than
the training datasets. Our results showed good model transferability between different
world regions, as long as the distance ranges of the datasets matched. A transfer between
regional and teleseismic examples however yielded significantly worse results than in-
domain application.

We think that further standardisation and development of tools for machine learning
in seismology is necessary to build a robust foundation. This can happen through the
extension of existing tools, such as SeisBench, or through the introduction of novel tools
and standards.

7.2 The limitations of black-box machine learning

In large parts of this thesis, with TEAM, TEAM-LM, and the application of TEAM-LM
to rupture predictability, we employed a machine learning approach called black-box ma-
chine learning. Such algorithms, once trained, can be applied to test data and thereby
evaluated, at the same time, it is not possible to explain how the algorithms obtain their
predictions. The algorithms are not interpretable, their inner workings remain a black
box. To understand the implications of this black box on our work, we reiterate the
two central goals of this thesis. First, investigating rupture predictability, i.e., gaining
scientific understanding of physical processes. Second, improving earthquake early warn-
ing, i.e., a practical application of real-time assessment. The consequences of the lacking
interpretability manifest differently for each of these goals.

For highlighting the implications regarding scientific insights, let us assume that our
model found the contrary result for rupture predictability, i.e., it can predict the final
magnitude early on. What does this tell us about rupture predictability? First of all,
and importantly, this provides evidence for the existence of rupture predictability. How-
ever, because of the black-box approach, it does not tell us, how events of different sizes
differ early on. Consequently, we can not draw conclusions on the underlying physi-
cal mechanisms. This also reduces trust in the findings. Data processing pipelines and
modern neural networks are highly complex, often creating so-called knowledge leaks,
i.e., high-quality telltale signs introduced only through the processing [Lapuschkin et al.,
2019]. Without a physical understanding of the underlying mechanism, it is practically
impossible to rule out such artefacts.

For early warning, the aspect of physical explainability itself is less relevant than for
knowledge discovery. However, the resulting question of trust in the model is nonetheless
pressing. For traditional early warning systems, guarantees can be given. For example,
magnitude estimations from peak displacement [Kuyuk and Allen, 2013] will fulfil mono-
tonicity constraints: if the peak displacement increases, the magnitude estimate increases.
No similar guarantees can be given for black-box models, and our analysis of TEAM-LM
(Chapter [5) showed that monotonicity is strongly violated in practice once event magni-
tudes fall sufficiently far outside the training data range. More generally, deep learning
networks are known to exhibit strong performance degradation and wildly incorrect un-
certainty estimates for these out-of-distribution examples [Snoek et al., 2019]. In practical
applications, every very large earthquake will be an out-of-distribution example, due to
their recurrence cycles of tens to hundreds of years.

To solve or mitigate these shortcomings of black-box machine learning, two main
strategies can be pursued: either analysing the black-box model post hoc or employing
models that are interpretable by design. Several post hoc interpretation techniques for
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neural networks have been proposed, for example, synthesising preferred inputs to identify
learned features [Nguyen et al., 2016] or methods for generating saliency maps of feature
importance [Bach et al., 2015, Montavon et al., 2017]. These methods have been applied
to analyse models for seismological tasks. For example, Rouet-Leduc et al. [2020] trained
a model to classify waveforms into noise and tremor waveforms and used interpretation
techniques to show that the decision is indeed dependent on the parts of the waveforms
containing the tremors. However, post hoc interpretation methods only give partial in-
sights and, in addition, different methods frequently contradict each other in their results
[Linardatos et al., [2021].

The alternative to post hoc interpretation is building interpretable models. Simple
examples would be linear or logistic regression, where the coefficients can directly be
interpreted. Some more complex models allow for direct interpretation as well, such as
gradient boosted trees where the information gain from each split can be interpreted
as feature importance |Chen and Guestrin, 2016]. Using this approach, Rouet-Leduc
et al. [2017] identified acoustic signals indicative of the timing until the next rupture in
laboratory shear experiments. We applied the same approach to identify the most relevant
waveform features in Chapter [3l While such models offer direct interpretations, in most
cases their performance is considerably inferior to deep learning models, in particular for
complex, high dimensional input data [Linardatos et al., [2021].

For the application of black-box models in early warning, there is a further option:
assessing the credibility of each prediction through an external algorithm. For example, a
black box algorithm could be coupled with a traditional algorithm. When the traditional
algorithm detects a magnitude above a certain threshold, the prediction of the black box
algorithm is discarded, following the observation that predictions for very large earth-
quakes are unreliable. While this would limit the usefulness of the black-box approach for
very large events, it could still improve warnings for intermediate-sized events. The black
box model would then be one among an ensemble of models. Such model ensembles, even
though without pure machine learning algorithms, are already deployed in early warning
systems, such as ShakeAlert [Bose et al., |2015]. Nonetheless, future work is required
regarding the interpretability and trustworthiness of black-box models in seismology for
both the discovery of scientific knowledge and the application in high-stakes scenarios.

7.3 Mitigating data sparsity

Throughout this thesis, we repeatedly identified data sparsity as a key issue limiting the
performance and applicability of machine learning models. In general, there is an abun-
dance of samples, but for relevant corner cases, such as large events, only a few samples
are available. Unfortunately, this issue is going to persist. While novel developments
will continue increasing the completeness of catalogs [Tan et al.l [2021] Jiang et al., [2022],
thereby making more samples of small events available, all large events are already cata-
loged. Their number will only increase linearly with time as new events occur, which is
not going to solve the data sparsity problem for machine learning models. It is therefore
worthwhile discussing potential directions to circumvent this problem.

One solution studied extensively within this thesis is transfer learning, a form of
domain adaptation. In Chapter 4 we showed how transfer learning from Japan to Italy can
improve ground motion estimates. In Chapter [5| we showed similar results for magnitude
estimation, but also pointed out that transfer learning does not yield benefits for location
estimation. In general, two points are limiting the performance of transfer learning:
the similarity between source and target domain, and the source dataset itself [Pan and
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Yang, 2009]. The first point explains why transfer learning worked for ground motion and
magnitude estimation, but not for location estimation: the location task simply is more
region-specific than the other tasks. The second point becomes particularly apparent
looking back at the magnitude estimation in Japan where transfer learning did not yield
any improvements for large events. This is natural, as the source datasets from Chile and
Italy only added a negligible number of large events on top of the ones already available in
the Japan dataset. The requirement of a suitable source dataset is an inherent limitation
for transfer learning. For the largest events globally, transfer learning will stay insufficient
for training machine learning models, because there will simply never be a suitable source
dataset available.

Therefore, other means are required for training models towards these cases. One op-
tion is to incorporate physical knowledge about earthquakes into the models, i.e., replacing
the missing records with the knowledge of the underlying physical principles. The most
straightforward way for this is through the data, i.e., training on synthetic waveforms.
The practical applicability of this approach has been validated, for example through the
application to prompto elasto-gravity signals [Licciardi et al., 2021]. However, there are
several drawbacks to this approach. First, training deep learning models on synthetic
waveforms requires high-quality synthetics, even though the exact requirements on the
synthetics are yet to be determined. This is problematic, as creating high-quality syn-
thetics is difficult and computationally expensive [Breuer et al., [2014]. Second, while
it might improve the performance of methods such as early warning systems, this ap-
proach is unlikely to generate new scientific knowledge. Taking the example of rupture
predictability, one would need to incorporate assumptions about rupture physics into the
generating process of the synthetic waveforms. Therefore, the model is likely to recover
these assumptions, leading to circular reasoning and consequently no new insights.

Another option for incorporating physical knowledge into the models is to incorporate
it directly into the neural networks, leading to so-called physics informed neural networks
[PINNs, [Raissi et al) 2019]. PINNs incorporate physical laws, expressed as partial dif-
ferential equations, into the structure or training of a neural network. This is usually
achieved by incorporating the PDE into the loss function [Raissi et al., 2019], but also
by other means, such as learning Hamiltonians [Greydanus et al., 2019] or Lagrangians
[Cranmer et al., [2020]. In seismology, PINNs have been proposed for travel time estima-
tion [Smith et al., 2020] and solutions of the seismic wave equation [Song et al.l [2022].
Successive work employed these methods for both event localisation [Smith et al. 2022]
and travel time tomography [Gao et al., 2021] based on arrival times. However, the appli-
cation of PINNs to location or magnitude estimation directly from waveforms is difficult,
as no suitable PDE connecting these properties is known.

As a more promising route, we suggest task composition and task decomposition in
a way suiting the machine learning models. Task composition means combining several
consecutive tasks into one end-to-end task that is more favourable to learn the the sep-
arate tasks. An example of task composition is TEAM, presented in Chapter dl TEAM
estimates ground motion directly from waveforms, instead of first estimating magnitude
and location and then applying a ground motion model. When comparing TEAM to the
results for TEAM-LM, TEAM still shows good performance for events where TEAM-LM
significantly underestimates the magnitude. Furthermore, systematic underestimation of
the largest PGA values is less severe than the magnitude underestimation. The better
performance of TEAM-LM can be explained with the training data. While for TEAM-LM
each large event provides one label, for TEAM each event has one label per station, even
though these examples are highly correlated. Furthermore, high PGA values occur more
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frequently than large magnitude events, as they can also be caused by smaller events at
short distances. This way, the composition of two tasks, one of which is at high magni-
tudes unsuitable for machine learning, creates a task that is more suitable for machine
learning.

The opposite approach to task composition is task decomposition, i.e., splitting a task
into a part that can be solved with a classical approach and a part that is favourable for
machine learning. The classical part is a way of incorporating physical knowledge into the
task. The machine learning part models a quantity not affected by the data sparsity, i.e.,
a quantity invariant to magnitude or location. An example for this approach would be to
predict magnitude based on scaling laws. Instead of directly predicting the magnitude,
one can predict a rough estimate from peak displacement and use machine learning only to
estimate the residual between this traditional estimate and the true value. This approach
has been employed for magnitude estimation in Central Italy, using a decomposition into
the logarithm of peak ground velocity and a residual term [Zhang et al.,2021]. However we
evaluated a similar approach, decomposing into the logarithm of peak displacement and a
residual term, and found mixed results [Hauffe| 2021]@ We propose that this particular
type of decomposition becomes unreliable at high magnitudes due to saturation effects.
A further advantage of such decomposed models is their improved interpretability, as at
least parts of the prediction can be explained explicitly. However, these models also tend
to suffer from similar drawbacks as other interpretable models, i.e., they often show worse
average performance than the non-decomposed models [Hauffe, 2021].

Data sparsity is a major challenge for the application of machine learning to earth-
quake early warning and the study of very large events. The approaches presented in this
section, synthetic training data, PINNs, and task (de)composition, are potential candi-
dates to address this issue. We expect that a breakthrough regarding data sparsity will
greatly improve the usefulness of machine learning for large seismic events.

7.4 Rupture nucleation and preparatory phases

After discussing technical aspects in the previous parts of this conclusion, as the last point,
we now turn towards a seismological question: how could other observables influence the
outcomes of our study? Our conclusion of Chapter [ showed that there is no predictability
from teleseismic P arrival waveforms or source time functions. However, this conclusion
can not be generalised to other observables without further studies. We are going to focus
on two aspects. First, we will discuss near field observations. These observations are
promising as they contain high-frequency features that are attenuated at larger distances.
Second, we will discuss observables from the time leading up to the event, the so-called
preparatory phase. Such a preparatory phase might indicate certain properties of a large
earthquake even before the event onset. We visualise potential observables and precursors
in Figure

Near field observations have been used to study rupture nucleation for several decades
[e.g., [Ellsworth and Beroza, (1995, Nakatani et al., 2000]. In principle, near field obser-
vations contain more information about the earthquake source, as they are less impacted
by path effects, such as scattering or attenuation, than recordings at higher distances.
The further away from the source a recording is obtained, the fewer detail on the source
can usually be resolved. Signs of predictability in near-field observables have been iden-
tified, for example, by observing nucleation phases [Ellsworth and Beroza, 1995], early

31This work was conducted by Viola Hauffe within her master’s thesis. Jannes Miinchmeyer proposed
the study design and supervised the thesis.
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Figure 7.2: Schematic timeline indicating potential precursors with their time scales and
the time scales analysed in each Chapter of this thesis. As potential precursors, we list
preslip, slow slip events (SSEs), tremors, changes in the seismicity pattern, and the seismic
cycle. As all of these are highly debated, the indicated time scales are only intended as
a rough orientation. In addition, the green box lists potential observables. These might
help identify precursors and also signs of rupture predictability. GNSS denotes geodetic
observations, InSAR remote sensing data.

amplitude differences |[Nakatani et al.l 2000, dominant periods [Olson and Allen| 2005],
or ground motion parameters |Colombelli et al., 2020]. Notably, not all studies of near
field observables find predictability. Examples include studies of early peak displacement
[Meier et all 2016, Trugman et al., 2019] or onset waveforms [Abercrombie and Mori,
1994, [Kilb and Gomberg, 1999, |Mori and Kanamori, |1996, |Okuda and Ide, 2018§].

While near field observations provide a high resolution of the earthquake source pro-
cess, they are unfortunately rare, as they require dense instrumentation around potential
faults. For purely geometric reasons, the number of available records gets smaller the
closer to the source one goes. A specific case of near field observations with even better
source resolution are borehole instruments, due to their favourable noise conditions and
(potential) closer proximity to the fault [Ellsworth et al., 2005, Kili¢ et al., 2020]. How-
ever, these instruments are more costly and therefore rarer, in addition to the mentioned
geometric reasons. Consequently, near field studies to this day remain rather anecdotal.
In particular, the data can likely not be analysed with deep learning methods as intro-
duced in this thesis, as long as not either considerably more data become available, or
more data-efficient models are developed.

As a second type of alternative observables, we look at a potential precursory phase.
Figure provides a timeline centered around an earthquake at ¢ = 0, indicating the
time ranges covered in the chapters of this thesis. So far, when discussing the conditional
probability P(M|O;) we only looked at observables O; with ¢ > 0 and slightly before,
i.e., only observables describing the rupture itself. However, this leaves out a potential
preparatory phase, which might be lasting from seconds to months or even years. Studying
preparatory phases poses a slightly different question than rupture predictability: can the
size of an earthquake be constrained already before its onset? Note that pinpointing
events before they occur falls into earthquake forecasting, which, as discussed before, is
widely regarded as impossible. Therefore, studies of preparatory phases rather aim to
identify typical and required preconditions of large events, as well as their relation to the
event size.

Several changes have been observed before large earthquakes around their future fault
zones. One line of research focuses on seismicity patterns, finding, for example, alterations
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in b-value [Nanjo and Yoshidal [2021}, Derode et al., 2021], localisation of seismicity along
a fault plane |[Kato and Ben-Zion, 2020], or changes in frequency content of seismic events
[Socquet et al., [2017]. Along another line of research, numerous studies found aseismic
deformation in the days and months leading to major events, either in geodetic records
or using strainmeters |[Kaneko et al., 2017, Ruiz et al., 2017, Socquet et al., [2017, Bedford
et al., [2020]. We visualise the approximate time scales of potential precursors in Figure
At the moment, most of these observations are anecdotal and not systematic, i.e.,
it is yet unknown for which fraction of large events such alterations occur in the lead
up to the event, and whether similar alterations can also happen without a subsequent
major failure. However, various real-world observations of precursory phases, such as
a preceding aseismic slip or an increase in seismicity rate, have also been observed in
laboratory experiments [Johnson et all, 2013, [McLaskey, [2019].

When the effects of precursors are formulated probabilistic, they can be readily incor-
porated into the real-time assessment of ruptures. For this, we decompose the conditional
probability

P(M|O;) = P(M) * P(M|Og) * P(M|Oys>0) (7.1)

where P(M|0;) = P(M|O;)P(M)~1, i.e., the likelihood ratio compared to the marginal
distribution. The decomposition consists of three terms: the long-term marginal P(M),
the preparatory phase ]fD(M |O<p), and the rupture itself ]f”(M \Otzo) This decomposi-
tion is only an approximation as it assumes independence between preparatory phase and
rupture evolution, which in practice will not be given. However, in contrast to a model
incorporating the interactions between the preparatory phase and the rupture directly,
which will most likely be infeasible to estimate, the decomposition can be estimated as
each components can be estimated. The long term marginal is generally known [Shearer,
2009, Chapter 9.7.1]. This thesis showed, that estimation of the rupture related term
in real-time is feasible up to rupture predictability, even though improvements for large
magnitudes are still required. Some approximations for the term related to the prepara-
tory phase exist, in particular from statistical seismology, such as observed changes in
b-value |Nanjo and Yoshida, [2021} |Derode et al. [2021]. Still, we are not aware of any
models, in particular probabilistic models, based on more complex precursory processes,
such as precursory slow slip events. Nonetheless, we think that with the growing number
of observations of these phenomena, a probabilistic formulation will become possible in
the near future. This could improve real-time earthquake assessment, for example, in the
context of early warning.

With this outlook on combining real-time estimates of rupture development with infor-
mation from a precursory phase, we conclude this thesis. Within the thesis, we developed
a probabilistic formulation of rupture predictability and methods for the real-time analy-
sis of earthquakes, finding no signs of early rupture predictability. In addition, we showed
the applicability of these methods to improve earthquake early warning. We hope that
future work, for example, along the directions outlined in the sections above, will help
improving real-time assessment methods further and potentially even identify rupture
predictability or preparatory phases in novel, high-quality observables.

32This decomposition should be seen as rather prototypical. In particular, it is debatable which in-
formation should be incorporated in the long-term marginal and which in the preparatory phase. For
example, the seismic cycle itself is a long-term preparatory phase, even though it would be uncommon to
refer to it this way. As we present this as a general concept, we refrain from defining an exact separation
between the terms.
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Appendix

A Software acknowledgements

This work relies heavily on open source software. While citations are provided in the
main text where appropriate, we want to use this place for a condensed account of open
source software central to this thesis. Among others, we used the following open source
software (in alphabetic order):

e cartopy [Met Office, |2010 - 2015]

e matplotlib [Hunter, 2007]

e numpy [Harris et al., [2020]

e obspy |[Beyreuther et al.| [2010]

e pandas [The pandas development team) 2020]
e pyrocko [The Pyrocko Developers, [2018]

e pytorch [Paszke et al., 2019]

e scipy [Virtanen et al., 2020]

e seaborn [Waskom, [2021]

e tensorflow [Abadi et al., [2016]

We use scientific colour scales from (Crameri [2018]. We thank all authors for making
these tools openly available.

B Supplement to Chapter 3

B.1 High-pass frequency selection

Table shows the candidate intervals for high-pass filtering. The last line indicates the
fall-back filter, which is used for all events for which the minimum SNR of 4 is not attained
with any of the other filters. For velocity (acceleration) the SNR is larger than 2 in 96%
(98%) of the waveforms, whereas for displacement this is only true for 70%. Therefore in
some cases, particularly for features based on displacement, some of our data might be
strongly affected by ambient noise. We nonetheless do not remove these measurements,
as the information that the feature is close to noise is still valuable.

The distribution of chosen high-pass frequencies by event magnitude is shown in Fig-
ure As expected, for larger events lower frequencies are chosen. Especially for the
largest events, only the lowest frequencies are chosen.

Table B.1: Intervals for high-pass filtering

flow [HZ] fhigh [HZ]

0.001 0.3
0.1 0.5
0.3 1.0
0.5 1.5
0.75 -
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Figure B.1: Distribution of applied high-pass frequencies by event magnitude. Strong
motion records were not high-pass filtered and are therefore denoted with a high-pass
frequency of 0 Hz.

B.2 Choice of hyperparameters and envelope times

In this section, we give some advice on the selection of hyperparameters and envelope
delays. As the experiments, both feature extraction and calibration of the correction
functions, are computationally expensive, a grid search for hyperparameter selection is
intractable. Hyperparameters, therefore, need to be tuned by hand. Therefore, we explain
the significance of and interaction between the different hyperparameters. For practical
applications, we suggest starting with the hyperparameters used in this study.

Ar and \; determine the smoothness of the distance-depth correction function. We
settled for a higher value of A\, as we expect a generally lower lateral than vertical vari-
ability in ground structure. Both values might need to be increased in the presence of
fewer data points and the other way around. Ay should be increased, if fewer M, values
are available for the calibration of attenuation with depth. The choice of suitable values
can be assisted by plots, as in Figure

Ar, controls the level of deviation from the distance-depth correction that is caused
by the source-path correction. It interacts with the number of neighbours k& chosen for
averaging and the subsampling rate |Es|/|Es|. In general, a low number of neighbours k
or a high subsampling requires a higher A\;, as the number of free parameters is increased
and the parameters are less constrained by the data.

k determines the smoothing of the source-path correction. A higher value will generally
cause a smoother function, while a lower value will cause a rougher function. In contrast, a
higher subsampling rate (at constant k) will cause a rougher function, a lower subsampling
rate a smoother function. The choice of subsampling rate will most likely be governed
by the available computational capacities. We experienced a superquadratic increase
in runtime and memory consumption with the subsampling rate. If the computational
capacities are limiting factors, we recommend slowly increasing the subsampling rate and
observing the effect on RMSE.

A, determines the trade-off between the deviation from the prescribed M,, values
and the smoothness of the correction functions. A higher value A\, will lead to a smaller
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B.3 Determination of moment magnitudes for moderate-size events

Table B.2: Hyperparameters used for the correction functions

Hyperparameter Value
{20 km 4+ 9.8 km =i | i € {0,49}}
G X
{10 km + 10 km ¢ | i € {0,19}}
A 10% km*
Ad 102 km*
AL 10
>\Mw 1071
k 10
|Es/|Es| 107

deviation from M, but increases the roughness of the correction functions. As the calibra-
tion with M, is mostly required for the calibration of the depth-dependent attenuation,
we generally recommend small values for Az, .

A good measure for the suitability of hyperparameters is the difference between the
RMSE on the training and development sets. In general, we recommend a slightly higher
RMSE on the training set, indicating some level of overfitting. No overfitting at all
suggests that the model is regularised too strongly, while strong deviations between the
training and development performance suggest that overfitting negatively impacts perfor-
mance on the development and test set.

For the envelope delays, we chose 5 s and 20 s. The 5 s value is intended to capture the
early high energy portion of the event and provides a more stable measurement than the
peak. We tried putting the second value as late as possible to approach the diffusive regime
and thereby minimise the effects of the radiation pattern and distance uncertainties. As
most of our events are small, we can not resort to the classical rule of assuming a diffusive
regime after twice the S wave travel time, as this value is below noise level for most
measurements. Therefore, we needed to find a sensible trade-off between diffusiveness
and SNR. Whereas we did not carry out systematic testing, we confirmed 20 s as a good
choice by comparing the value of the envelope at this time to the noise level 5 s before the
P pick, as measured by the envelope value. We found that the noise exceeds the signal
in only ~ 3% of cases. In addition, we expect the boosting tree to appropriately handle
low-SNR 20 s envelope values.

The proper choice of envelope delays will usually depend on the dataset. In our
case, we had a favourable dataset for long envelope delays, as most IPOC stations are
low noise hard rock stations. To choose appropriate values we recommend first visually
inspecting the signal envelopes for a subsample of the measurements and second looking
at the SNRs for multiple candidate delay times. It is possible to include more than two
envelope times. We did not conduct experiments with more than two envelope times, due
to computational constraints.

B.3 Determination of moment magnitudes for moderate-size events

The global CMT catalog only covers earthquakes above moment magnitude 5-5.5 reli-
ably. To extend our database of events with My, additional moment magnitudes were
determined with regional moment tensor inversion with the approach of Néabélek [1984]
and Nabelek and Xia [1995]. We constrained moment tensors to be deviatoric (i.e. no
isotropic component), used the period band between 10 s and 35 s and assumed quality
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Table B.3: Hyperparameters used in the boosting experiments. We use the naming
conventions from XGBoost. We only denote parameters that were changed from the
defaults for XGBoost version 0.80.

Hyperparameter Value

Depth 11
Epochs 250
Eta 0.1

factors (inverse attenuation) of 225 for P and 100 for S waves for the calculation of Green’s
functions. Scalar moments were converted to moment magnitudes using the relation of
Hanks and Kanamori| [1979]. At the utilised long periods, physical attenuation effects
only play a minor role.

B.4 Effect of SNR thresholding

No explicit SNR, threshold is imposed but an implicit threshold exists because the dataset
is assembled based on pre-existing picks, which require reasonable visibility of at least the
P wave. We analysed the impact of imposing an additional SNR threshold on the RMSE
and the resulting uncertainties (Figure , initially using the vertical displacement mag-
nitude as an example. We obtain the noise level for this analysis as the peak value in the
30 s before the P pick, with an additional safety margin of 1 s. For each SNR threshold,
we calculate the RMSE using only measurements with a higher SNR and estimate the un-
certainty on the mean. We estimate the uncertainty as the RMSE divided by the square
root of the number of stations for each event minus one. As a higher SNR threshold
causes a lower number of measurements, the average uncertainty can increase, even if the
RMSE falls.

As we see in the RMSE falls for SNRs of up to ~ 2 and grows afterwards. The
growth can be explained by the fact that measurements with a higher SNR are more
often from events with higher magnitudes, which exhibit an increased RMSE in general
(Figure . In contrast to the RMSE, the uncertainty does not show any decreasing
behaviour, but a steady growth due to the decreasing number of measurements. We
observe similar behaviour for velocity and acceleration. This means that the general
quality of our estimates is highest if we do not impose a further SNR threshold. In
addition, we expect the boosting tree regression to act as denoising, as it combines multiple
features representing different frequency spectra.

B.5 Determination of magnitude uncertainties

To obtain magnitude values and uncertainties for each event, we combine the measure-
ments from multiple stations. As the results from multiple stations might not be in-
dependent, the stated uncertainty of the magnitude estimate could be erroneous if it is
calculated by ignoring possible correlations. Figures and show the correlations
between the residuals at pairs of stations and their dependency on inter-station distance.
Interestingly, correlation shows a strong dependence on distance and especially turns neg-
ative for distances above ~ 100km. The negative values are partially caused by analysing
the residuals with respect to the mean rather than the (unknown) true value. This effect
alone causes some apparent negative correlation, but for truly independent errors this
would be much smaller than observed.
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Figure B.2: RMSE and resulting uncertainties for the single feature magnitude scale from
displacement on the vertical component at different signal to noise thresholds.

Determining the optimal estimator and the effective sample size has been discussed
by . Unfortunately, the suggested method uses the inverse of the correlation
matrix, which is unstable regarding minor variations of the covariance matrix. This is
especially problematic, as we do not have access to the actual correlation matrix, but
only to an empirical covariance matrix. In addition, we are missing some elements of the
matrix, for stations with too few events in common. Therefore, the proposed method is
not applicable.

Nonetheless, we want to present two main results from [1992]. First, a growing
correlation does not always reduce effective sample size but can increase it as well. Second,
negative correlations in general increase the effective sample size.

Following these observations, we adapt a simple ad hoc procedure. The mean observed
correlation between pairs of stations is close to zero (—0.1). Therefore, we use the mean of
all stations as the event magnitude and the standard deviation between the single station
estimates divided by the square root of the number of contributing stations minus one as
the event magnitude standard deviation. Even though this is not the theoretically opti-
mal way, following the discussion above, we believe this achieves reasonable uncertainty
estimates.
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Figure B.3: Empirical correlation of the residuals for peak horizontal displacement as a
function of inter-station distance. Each dot represents a pair of stations. Station pairs
with less than 500 events in common are discarded.

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

Figure B.4: Empirical correlation of the residuals for peak horizontal displacement for
station pairs. Station pairs with less than 500 events in common are discarded.
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Table B.4: Seismic networks and stations used. Stations including strong motion records
are printed in bold. The stations are identical to those used by Sippl et al. [2018] except
that station PB17 from the CX network was removed because it showed non-documented
gain changes over time and for the different components.

Network Stations
MINAS (5E) S110
CSN (C) AP01 GOO01 TA01

IPOC (CX) | CAR3 HMBCX MNMCX PATCX PB01 PB02
PB03 PB04 PB05 PB06 PB07 PB08 PBO09
PB10 PB11 PB12 PB13 PB14 PB15 PB16 PS-

GCX TAIQ
GEOFON  (GE) LVC
Iquique (1IQ) PINT
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Figure B.5: Schematic overview of the preprocessing and feature extraction workflow.
The split into different components is not visualised to keep the figure simple. Featurize
refers to the process of extracting the peak and envelope values from the traces.
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Figure B.6: Residual distribution by stations for displacement on the horizontal com-
ponent. The middle bar denotes the median, the boxes show the quartile ranges, the
whiskers show the 5" and 95! percentiles. Most stations have residuals of similar mag-
nitudes, while a few show significantly higher residuals, e.g. AP01, TAIQ, PB10 and
PBI15.
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Figure B.7: Development of residuals for displacement on the horizontal component for
station PB0O1 over time. The lines show running mean and standard deviation over 500
consecutive events. While we observed slight changes in the station bias over time, we
were not able to ensure that these changes are not caused by measurement artifacts.
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Figure B.8: Station bias for peak displacement on the horizontal component. The bias
is shown for ten suboptimisations, each containing 10% of the events. Boxes indicate
quartiles. The blue bars show the total number of measurements per station.
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Figure B.9: Standard deviation of the distance and depth correction function for peak
displacement on the horizontal component. Standard deviation is calculated across the
subsets of a 10-fold split of the full dataset.
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C Swupplement to Chapter 4

C.1 Data and Preprocessing

For our study, we use two datasets, one from Japan, one from Italy. The Japan dataset
consists of 13,512 events between 1997 and 2018 from the NIED KiK-net catalog
ttional Research Institute For Earth Science And Disaster Resilience, 2019]. The data was
obtained from NIED and consists of triggered strong motion records. Each trace contains
15 s of data before the trigger and has a total length of 120 s. Each station consists of two
three-component strong motion sensors, one at the surface and one borehole sensor. We
split the dataset chronologically with ratios of 60:10:30 between training, development
and test set. The training set ends in March 2012, the test set begins in August 2013.
Events in between are used as development set. We decided to use a chronological split
to ensure a scenario most similar to the actual application in early warning.

The Italy dataset consists of 7,055 events between 2008 and 2019 from the INGV
catalog. We use data from the 3A [Istituto Nazionale di Geofisica e Vulcanologia (INGV)
et all [2018], BA [Universita della Basilicatal, [2005], FR [RESIF - Réseau Sismologique et
géodésique Francais| [1995a), GU [University of Genoval, [1967], IT [Presidency of Counsil
of Ministers - Civil Protection Department], [1972], IV [Istituto Nazionale di Geofisica
e Vulcanologia (INGV), Ttaly, [2006], IX [Dipartimento di Fisica, Universita degli studi
di Napoli Federico II, 2005], MN [MedNet Project Partner Institutions, [1990], NI [OGS
(Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) and University of Trieste,
2002, OX [OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), [2016],
RA [RESIF - Réseau Sismologique et géodésique Francais, [1995b], ST [Geological Survey-
Provincia Autonoma di Trento| [1981], TV [Istituto Nazionale di Geofisica e Vulcanologia
(INGV), [2008] and XO [EMERSITO Working Group|, [2018] networks. We use all events
from 2016 as test set and the remaining events as training and development sets. The test
set consists of 31% of the events, a similar fraction as in the Japan dataset. We shuffle
events between training and development set. While a chronological split would have
been the default choice, we decided to use 2016 for testing, as it contains a long seismic
sequence in central Italy containing several very large events in August and October.
Further details on the statistics of both datasets can be found in Table

Before training, we extract, align and preprocess the waveforms and store them in hdfb
format. As alignment requires the first P pick, we need approximate picks for the datasets.
For Japan, we use the trigger times provided by NIED. Our preprocessing accounts for
misassociated triggers. For Italy, we use an STA/LTA trigger around the predicted P
arrival. While triggering needs to be handled differently in an application scenario, we
use this simplified approach as our evaluation metrics depend only very weakly on the
precision of the picks.

C.2 TEAM - The transformer earthquake alerting model
C.2.1 Feature extraction network

The feature extraction of TEAM is conducted separately for each station. Nonetheless,
the same convolutional neural network (CNN) for feature extraction is applied at all
stations, i.e., the same model with the same model weights.

As amplitudes of seismic waveforms can span several orders of magnitude, the first
layer of the network normalizes the traces by dividing through their peak value observed
so far. All components of one station are normalised jointly, such that the amplitude ratio
between the components stays unaltered. Notably, we only use the peak value observed so
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far, i.e., the waveforms after ¢, which have been blinded with zeros, are not considered,
as this would introduce a knowledge leak. As the peak amplitude of the trace is likely
a key predictor, we logarithmise the value and concatenate it to the feature vector after
passing through all the convolutional layers, prior to the fully connected layers.

We apply a set of convolutional and max-pooling layers to the waveforms. We use
convolutional layers as this allows the model to extract translation-invariant features
and as convolutional kernels can be interpreted as modelling frequency features. We
concatenate the output of the convolutions and the logarithm of the peak amplitude.
This vector is fed into a multi-layer perceptron to generate the final feature vector for
the station. All layers use ReLu activations. A detailed overview of the number and
specifications of the layers in the feature extraction model can be found in Table

C.2.2 Feature combination network

The feature extraction provides one feature vector per input station representing the
waveforms. As an additional input, the model is provided with the location of the stations,
represented by latitude, longitude and elevation. The targets for the PGA estimation are
specified by the latitude, longitude, and elevation.

We use a transformer network [Vaswani et al.l 2017] for the feature combination. Given
a set of n input vectors, a transformer produces n output vectors capturing combined
information from all the vectors in a learnable way. We use transformers for two main
reasons. First, they are permutation equivariant, i.e., changing the order of input or
output stations does not have any impact on the output. This is essential, as there exists
no natural ordering on the input stations or target locations. Second, they can handle
variable input sizes, as the number of parameters of a transformer is independent of the
number of input vectors. This property allows applying the model to different sets of
stations and a flexible number of target locations.

To incorporate the locations of the stations we use predefined position embeddings.
As proposed by [Vaswani et al. [2017], we use pairs of sinusoidal functions, sin(%x) and

cos(i—’fa:), with different wavelengths A\;. We use 200 dimensions for latitude and longi-
tude,zrespectively, and the remaining 100 dimensions for elevation. We anticipate two
advantages of sinusoidal embeddings for representing the station position. First, keeping
the position embeddings fixed instead of learnable reduces the parameters and therefore
likely provides better representations for stations with only a few input measurements
or sites not contained in the training set. Second, sinusoidal embeddings guarantee that
shifts can be represented by linear transformations, independent of the location it applies
to. As the attention mechanism in transformers is built on linear projections and dot
products, this should allow for more efficient attention scores at least in the first trans-
former layers. As proposed in the original transformer paper [Vaswani et al., [2017], the
position embeddings are added element-wise to the feature vectors to form the input of
the transformer. We calculate position embeddings of the target locations in the same
way.

As in our model input and output size of the transformer are identical, we only use
the transformer encoder stack [Vaswani et al., 2017] with six encoder layers. Inputs are
the feature vectors with position embeddings from all input stations and the position
embeddings of the output locations. We apply masking to the attention to ensure that no
attention weight is put on the vectors corresponding to the output locations. This guar-
antees that each target only affects its own PGA value and not any other PGA values. As
the self-attention mechanism of the transformer has quadratic computational complexity
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in the number of inputs, we restrict the maximum number of input stations to 25 (see
training details for the selection procedure). Further details on the hyperparameters can
be found in Table The transformer returns one output vector for each input vector.
We discard the vectors corresponding to the input stations and only keep the vectors
corresponding to the targets.

C.2.3 Mixture density output

Similar to the feature extraction, the output calculation is conducted separately for each
target, while sharing the same model and weights between all targets. We use a mixture
density network to predict probability densities for the PGA [Bishopl 1994]. We model
the probability as a mixture of m = 5 Gaussian random variables. Using a mixture of
Gaussians instead of a single Gaussian allows the model to predict more complex distri-
butions, like non-Gaussian distributions, e.g., asymmetric distributions. The functional
form of the Gaussian mixture is > ;" @;pp; 0, (x). We write ¢, o, for the density of a
standard normal with mean u; and standard deviation ;. The values «; are non-negative
weights for the different Gaussians with the property > ;" a; = 1. The mixture density
network uses a multi-layer perceptron to predict the parameters «;, u; and ¢;. The hidden
dimensions are 150, 100, 50, 30, 10. The activation function is ReLu for the hidden layers,
linear for the p outputs, ReLu for the o outputs, and softmax for the a output.

C.2.4 Training details

We train the model end-to-end using negative log-likelihood as the loss function. All
components are trained jointly end-to-end. The model has about 13.3 million parameters
in total. To increase the amount of training data and to train the model on shorter
segments of data we apply various forms of data augmentation. Each data augmentation
is calculated separately each time a particular waveform sample is shown, such that the
effective training samples vary.

First, if our dataset contains more stations for an event than the maximum number of
25 allowed by the model, we subsample. We introduce a bias to the subsampling to favour
stations closer to the event. We use up to twenty targets for PGA prediction. Similarly
to the input station, we subsample if more targets are available and bias the subsampling
to stations close to the event. This bias ensures that targets with higher PGA values are
shown more often during training.

Second, we apply station blinding, meaning we zero out a set of stations in terms of
both waveforms and coordinates. The number of stations to blind is uniformly distributed
between zero and the total number of stations available minus one. In combination with
the first point, this guarantees that the model also learns to predict PGA values at sites
where no waveform inputs are available.

Third, we apply temporal blinding. We uniformly select a time ¢ that is between 1 s
before the first P pick and 25 s after. All waveforms are set to zero after time ¢. The model
therefore only uses data available at time t. Even though we never apply TEAM to times
before the first P pick, we include these in the training process to ensure TEAM learns
a sensible prior distribution. We observed that this leads to better early predictions. As
information about the triggering station distribution would introduce a knowledge leak,
if available from the beginning, we zero out all waveforms and coordinates from stations
that did not trigger until time .

Fourth, we oversample large magnitude events. As large magnitude events are rare, we
artificially increase their number in the training set. An event with magnitude M > M
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is used AM~Mo times in each training epoch with A = 1.5 and My = 5 for Japan and
My = 4 for Italy. This event-based oversampling implicitly increases the number of high
PGA values in the training set too.

We apply all data augmentation on the training and the development set, to ensure
that the development set properly represents the task we are interested in. As this
introduces stochasticity into the development set metrics, we evaluate the development
set three times after each epoch and average the result. In contrast, at test time we
do not apply any data augmentation, except temporal blinding for modelling real-time
application. If more than 25 stations are available for a test set event, we select the 25
stations with the earliest arrivals for evaluation.

We train our model using the Adam optimiser [Kingma and Ba, 2014]. We emphasise
that the model is only trained on predicting the PGA probability density and does not
use any information on the PGA thresholds used for evaluation. We start with a learning
rate of 107 and decrease the learning rate by a factor of 3 after 5 epochs without a
decrease in validation loss. For the final evaluation, we use the model from the epoch
with the lowest loss on the development set. We apply gradient clipping with a value of
1.0. We use a batch size of 64. We train the model for 100 epochs.

To improve the calibration of the predicted probability densities we use ensembles
[Snoek et al., 2019]. We use an ensemble size of 10 models and average the predicted
probability densities. We weigh each ensemble member identically. To increase the en-
tropy between the ensembles, we also modify the position encodings between the ensemble
members by rotating the latitude and longitude values of stations and targets. The rota-
tions for the 10 ensemble members are 0°,5°,...,40°,45°.

For the Italy model, we use domain adaptation by modifying the training procedure.
We first train a model jointly on the Italy and Japan datasets, according to the con-
figuration described above. We use the resulting model weights as initialisation for the
Italy model. For this training we reduce the number of PGA targets to 4, leading to a
higher fraction of high PGA values in the training data, and the learning rate to 1075.
In addition, we train jointly on an auxiliary dataset, comprised of 77 events from Japan.
The events were chosen to be shallow, crustal and onshore, having a magnitude between
5.0 and 7.2. We shift the coordinates of the stations to lie in Italy. We use 85% of the
auxiliary events in the training set and 15% in the development set.

We implemented the model using Tensorflow. We trained each model on one GeForce
RTX 2080 Ti or Tesla V100. Training of a single model takes approximately 5 h for the
Japan dataset, 10 h for the joint model and 1 h for the Italy dataset. We benchmarked the
inference performance of TEAM on a common workstation with GPU acceleration (Intel
i7-7700, Nvidia Quadro P2000). Running TEAM with ensembling at a single timestep
took 0.15 s for all 246 PGA targets of the Norcia event. As our implementation is not
optimised for run time, we expect an optimised implementation to yield multifold lower
run times, enabling a real-time application of TEAM with a high update rate and low
compute latency.

Figure shows the training and validation loss curves for the Japan TEAM model
and the fine-tuning step of the Italy TEAM model. While there is some variation between
the ensemble members, all show similar characteristics. We note, that the early appear-
ance of the optima for the Italy fine-tuning is expected because of the transfer learning
applied. We validated through a comparison of the fine-tuned and the non-fine-tuned
models, that the fine-tuning step still leads to considerable improvement in the model
performance.

As visible from the by far lower training than validation loss, all models exhibit over-
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fitting. This is expected, as the number of model parameters (13.3M) is very high in
comparison to the number of training examples (< 10,000). However, multiple publica-
tions [e.g., Belkin et al. [2019, [Muthukumar et al.l [2020] have provided theoretical and
empirical evidence, that overfitting for deep learning is not necessarily problematic and
can even lead to considerably better performance than a not overfitted model if proper
model selection on a validation set is employed. We conduct this model selection by using
the model with the lowest validation score.

C.3 Baseline methods

We compare TEAM to two baseline methods, EPS and a PLUM-based approach. We do
not compare to any deep learning baseline, because we are not aware of any published
deep learning method for early warning that can be applied in real-time. For the EPS
method, we use a GMPE based on the functional form by Cua and Heaton [2009] and add
a quadratic magnitude term as proposed by Meier| [2017]. We make further minor adjust-

ments to accommodate the wider range of magnitudes in our datasets. The functional
form of the GMPE is:

log(pga) = a1 M + ag max(M — My, 0)? + b(Ry + C(M)) + dlog(Rq + C(M)) 4+ e + d5 + (0, 0?)
(C.1)
C(M) := ¢y exp(co max(0, M — 5))(arctan(M — 5) + 7/2) (C.2)

Ry := \/R? + H? (C.3)

We write M for magnitude, R for epicentral distance, dg for the station bias, and e for
a station-independent bias term. We use m/s? as unit for PGA and km as unit for all
length measurements. We use a pseudo-depth Hy, depending on the event depth and the
dataset. This allows modelling the stronger attenuation with distance for shallow events.
For Italy, we set Hy = 5 km for events shallower than 20 km and Hy = 50 km for all other
events. For Japan, we set Hy = 5 km for events shallower than 20 km, Hy; = 40 km for
events between 20 km and 200 km and set Hy to the actual depth for all deeper events,
to account for a few very deep events. We set My = 4 for Italy and My = 6 for Japan.
We fix ¢; = 1.48 and ¢p = 1.11, as proposed by |Cua and Heaton| [2009], and optimise
the other parameters using linear regression. We perform the optimisation iteratively to
obtain station bias terms, using the union of training and development set. To avoid noise
samples in calibration we only use stations for which Ry < (M — 3.5) * 200 km for Japan
and Ry < (M —3) %50 km for Italy. The calibrated GMPEs have residual values o of 0.29
for Italy and 0.33 for Japan, matching the value of ~0.3 proposed as the approximate
current optimum for GMPEs [Minson et al. [2019]. Residual plots can be found in Figure
We note that our GMPE model is using a point source assumption, which is incorrect
for larger events. We chose this simplification, as it is common in source based early warn-
ing and makes the GMPE performance an upper bound for any method relying on mag-
nitude and location estimate. While there are early warning methods based on extended
fault models [Bose et al., 2018|, they perform equally well as point source approaches
for all but the largest events |[Meier et al., [2020]. As lower thresholds are dominated by
smaller events, for which the point source approximation is valid, the inferior performance
of the GMPE compared to TEAM is not an artefact of the point source assumption, but
probably related to its inability to account for systematic propagation effects caused by
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regional structure, and variability of the earthquake source (focal mechanism, stress drop)
not captured by the magnitude and location.

For magnitude estimation, we use the peak displacement based method proposed by
Kuyuk and Allen| [2013]. We bandpass filter the signal between 0.5 Hz and 3 Hz and
discard traces with insufficient signal to noise ratio. We extract peak displacement from
the horizontal components in the first 6 s of the P wave. We stop the time window at the
latest at the S onset. We use the relationship

M = ¢ log(PD) + colog(R) + c3 + A4 (0,0?) (C.4)

to estimate magnitudes from peak displacement. We use ¢; = 1.23, co = 1.38, ¢3 = 5.69
(Italy) / e¢3 = 5.89 (Japan) and o = 0.31. These are the values from Kuyuk and Allen
[2013], except for ¢z which we needed to adjust as we do not use moment magnitude.
We combine the predictions in probability space assuming independence between the
predictions from different stations. We weight stations based on the length of the P
wave window recorded so far. We use the mean value of the single-station magnitude
estimates for PGA estimation. For both the application of the GMPE and the magnitude
estimation we use the catalog hypocenters. As the quality of real-time location estimates
will be worse, this leads to inflated performance measures for EPS.

As a second baseline, we adapted the PLUM algorithm [Kodera et al., [2018]. While
the original paper applies PLUM to seismic intensities, we apply it to PGA values. This
adaptation is possible, as approximate linear and especially monotonic relations exist
between intensity and PGA |[Karim and Yamazaki, [2002]. However, as seismic intensity
incorporates a narrower frequency band and also considers the duration of strong shaking
[Shabestari and Yamazaki, 2001, the PLUM adaptation to PGA might exhibit a slightly
different performance. The PGA prediction pga; at a station s at time ¢ is the maximum
of all observed PGA values pgaf’ at stations s’ within a radius 7 of s. Therefore a warning
for a certain threshold for a station is issued once the threshold has been exceeded at any
station within the radius r. Due to different station densities in Italy and Japan, we used
different values for r. For Italy, we used r = 15 km; for Japan, we used r = 30 km.
Following the findings of |(Cochran et al.[ [2019], we do not use site correction terms in our
implementation of PLUM as they only have a minor impact on the performance.

C.4 Evaluation metrics

We analyse the performance of the early warning algorithms using PGA thresholds of
1%g, 2%g, 5%g, 10%g and 20%g, approximately matching Modified Mercalli Intensity
(MMI) IIT (light) to VII (very strong) [Wald et al., [1999]. We calculate PGA from the
absolute value of the two horizontal components. To determine the PGA values for the
Japanese data, we use the surface stations and not the borehole stations.

A warning at a site should be issued if anytime during the event the PGA threshold
is exceeded at the site. We consider a warning correct (true positive, TP) if a warning for
a certain threshold was issued and the threshold was actually exceeded later during the
event. Missed warnings (false negative, FN) are all cases, where the PGA threshold was
exceeded, but no warning was issued or the warning was issued after the PGA threshold
was first exceeded. We consider a warning false (false positive, FP) if a warning was
issued, but the threshold was not exceeded. All remaining cases are true negatives (TN).

As the number of true negatives depends strongly on the inclusion criteria of the
catalog, we use metrics independent of the true negatives. As summary statistics we
use precision, TP /(TP+FP), measuring the fraction of correct warnings among all warn-
ings, and recall, TP /(TP+FN), measuring the fraction of possible correct warnings that

183



C SUPPLEMENT TO CHAPTER 4

were issued. We use the FI score = 2 x precision * recall/(precision + recall) as a com-
bined statistic. Any analysis using a fixed « uses the value maximising the F1 score,
which is specific to each method and PGA threshold. For an analysis independent of
the threshold a we use the area under the precision-recall curve (AUC). We use val-
ues a = 0.05,0.1,0.2,...,0.8,0.9,0.95 and add additional points at (0,1) and (1,0) to
the precision-recall curve to approximate the AUC. For comparison of the PLUM-based
model using AUC in Figure 3, we introduce an artificial precision-recall line for PLUM
with a slope of —1 going through the observed precision and recall values.

We define the warning time as the time between the issuance of a warning and the
first exceedance of the threshold. We consider a zero-latency system and do not impose
a minimum warning time. For comparing warning times between methods or different
parameter combinations, we only use the subset of station event pairs, where both meth-
ods/parameter combinations issued correct warnings.

We evaluate our PLUM-based implementation continuously, i.e., warnings are issued
immediately at the exceedance of a threshold. TEAM and EPS are evaluated every 0.1 s,
starting 1 s after the first P arrival for EPS and 0.5 s after the first P arrival for TEAM.
We use a longer time before the first prediction for EPS as the early results of EPS are
unstable. Warnings are not retracted, i.e., even if the model later estimates a shake level
below the warning threshold, the warning stays active.
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Figure C.1: Precision, recall and F1 score at different PGA thresholds for Italy including
TEAM without domain adaptation. Threshold values o were chosen independently for
each method and PGA threshold to yield the highest F1 score. The methods are the
transformer earthquake alerting model without domain adaptation (TEAM Base), the
transformer earthquake alerting model (TEAM), the estimated point source (EPS) model
and the PLUM-based model. In addition the graph shows the performance of C-GMPE,
a GMPE with full catalog information for reference.
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Figure C.2: Warning time and hypocentral distance between station and event for each
true alert at Fl-optimal . The white area corresponds roughly to the range of possible
warning times and is bounded by the 90" percentile of the times between first detection
of an event (i.e., arrival of P wave at the closest station) and first exceedance of the PGA
threshold in recordings at that approximate distance.

185



C SUPPLEMENT TO CHAPTER 4

R R R o
~ 0 OO © dH N ™M ~ 0 O © A N M ~ 0 OO0 ©O dA ™N ™M
m oM omoS T T m MmN S St m M M S S
N - A H A A N A A o~ H - - N 4 A A A~ -
t s t s t=20s

100 %g

20 %g

10 %g

5 %qg

2 %g

1 %g

ol = =l g 0 %g
0 50 100 L & <
Warning time [s] ,Q’ov & Q\,Q Oég

Figure C.3: Scenario analysis of the 11th March 2011 M,, = 9.1 Tohoku earthquake, the
largest event in the Japan dataset. See Figure [4.8] for further explanations. The bottom
row diagrams for this scenario analysis use a 2%g PGA threshold.
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Train Validation
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Figure C.4: Training and validation loss curves for the Japan TEAM and the fine-tuning
step of the Italy TEAM. Each line shows the loss curve for one ensemble member with
colors matching between training and validation curves. The models used are determined
by the minimum validation loss and are denoted by black crosses. The models were
evaluated after the training epoch indicated on the x-axis, i.e., the leftmost point of each
curve already includes one epoch of training.
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Figure C.5: Predictions and residuals of the GMPEs derived in this study. All PGA
values are given as log units using m/s?. Every point refers to one recording. Solid
lines indicate running means, dashed lines denote the running standard deviation around
the running mean. Orange crosses denote mean and standard deviations for magnitude
ranges with insufficient data to infer a continuous line. Window sizes are 0.24 m.u./10 km
(Italy) and 0.44 m.u./53 km (Japan). Overall o is 0.29 for Italy and 0.33 for Japan. The
plotted magnitude values have been offset by random values between -0.05 and 0.05 m.u.
for increased visibility.
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Figure C.6: Calibration diagrams for Japan at different times after the first P detection
and different PGA thresholds. The confidence is defined as the probability of exceeding
the PGA threshold as predicted by the model. Each bar represents the traces with a
confidence value inside the x axis limits of the bar. Its height is given by the accuracy,
the fraction of traces actually exceeding the threshold among all traces in the bar. For a
perfectly calibrated model, the confidence equals the accuracy. This is indicated by the
dashed line. We note that accuracy estimations for the high PGA thresholds are strongly
impacted by stochasticity due to the small number of samples.
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Figure C.7: Calibration diagrams for Italy at different times after the first P detection
and different PGA thresholds. For a further description see the caption of Figure
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Table C.1: Performance statistics for Japan. Probability thresholds « were chosen to
maximise F1 scores and are shown in the last column. The AUC value does not depend
on the threshold . PGA indicates the used PGA threshold.

PGA [g] Precision Recall F1 AUC «

1% 0.70 0.7 073 082 0.60
2% 0.69 0.69 0.69 076 0.60
TEAM 5% 0.59 0.67 0.63 0.68 0.50
10% 0.50 0.60 054 0.56 040
20% 0.33 0.48 039 035 0.30
1% 0.50 0.63 056 0.57 040
2% 0.48 048 048 048 040
EPS 5% 0.40 0.40 040 0.34 0.30
10% 0.27 036 031 0.25 0.20
20% 0.20 0.26 0.22 0.15 0.20
1% 0.39 0.56 0.46 - -
2% 0.30 0.50 0.38 - -
PLUM 5% 0.22 0.42 0.29 - -
10% 0.18 0.39 0.25 - -
20% 0.11 0.28  0.16 - -
1% 0.58 0.74 0.65 0.69 0.30
2% 0.47 0.71 056 0.60 0.20
C-GMPE 5% 0.44 0.54 048 0.48 0.20
10% 0.44 0.46 045 0.43 0.20
20% 0.56 0.38 045 042 0.30
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Table C.2: Performance statistics for Italy. Probability thresholds « were chosen to
maximise F1 scores and are shown in the last column. The AUC value does not depend
on the threshold o. PGA indicates the used PGA threshold.

PGA [g] Precision Recall F1 AUC «

1% 0.64 0.64 0.64 0.68 0.60
2% 0.55 0.65 0.60 0.63 0.50
TEAM 5% 0.58 0.52 055 0.54 0.50
10% 0.50 0.46 048 043 040
20% 0.51 035 042 036 0.30
1% 0.44 0.37 040 037 0.30
2% 0.44 0.36 040 0.36 0.40
EPS 5% 0.41 0.40 040 0.33 040
10% 0.39 0.38 038 0.30 0.40
20% 0.39 039 039 025 040
1% 0.25 0.66 0.37 - -
2% 0.21 0.61 0.31 - -
PLUM 5% 0.18 0.60 0.28 - -
10% 0.22 0.64 0.32 - -
20% 0.19 0.65 0.30 - -
1% 0.62 0.69 065 071 0.30
2% 0.61 0.65 0.63 0.68 0.30
C-GMPE 5% 0.60 0.59 0.60 0.63 0.30
10% 0.64 0.57 0.60 0.59 0.30
20% 0.59 0.54 056 054 0.30

Table C.3: Relative warning times of the algorithms in seconds. Positive values indicate
longer average warning times for the second method, negative values shorter warning
times. The difference in average warning times is calculated from all event station pairs,
where both methods issued correct warnings. No value is reported if this set is empty.
We set « for TEAM and EPS to the optimal value in terms of F1 score.

Japan Italy
PGA g 1% 2% 5% 10% 20% | 1% 2% 5% 10% 20%
EPS TEAM | 0.39 043 0.70 0.31 0.61 | 0.18 0.26 -0.49 -0.65 -1.19
PLUM TEAM | 898 824 6.35 5.01 055|149 160 1.03 -0.03 0.03
PLUM EPS |853 7.74 529 3.08 -0.04|295 311 235 0.81 1.08
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Table C.4: Dataset statistics for the full datasets and the test sets. The lower boundary
of the magnitude category is the 5th percentile of the magnitude; this limit is chosen as
each dataset contains a small number of unrepresentative very small events. The upper
boundary is the maximum magnitude. The lower part of the table shows how often each
PGA threshold was exceeded. An event is counted as exceeding a threshold if at least one
station exceeded this threshold during the event. The number of exceedances in the test
set for Italy is disproportionally high compared to the number of events in the test set.
This is caused by the high seismic activity and the higher station density in 2016. Traces
for Japan always refer to 6 component traces, while for Italy it refers to 3 component
traces.

Japan Italy
Full Test Full Test
Years 1997 - 2018 08/2013 - 12/2018 2008 - 2019 01/2016 - 12/2016
Magnitudes 2.7-9.0 2.7-8.1 2.7-6.5 2.7-6.5
Events 13,512 4,054 7,055 2,123
Unique stations 697 632 1,080 621
Traces 372,661 104,573 494,183 253,454
Avg. traces per event 27.6 25.9 70.3 1194
PGA [g] Events Traces FEvents  Traces | Events Traces Events  Traces
1% 8,761 55,618 2,710 15,215 1,841 6,379 923 3,826
2% 5,324 24,396 1,601 6,489 1,013 2,921 503 1,771
5% 2,026 6,802 583 1,712 348 888 171 563
10% 782 2,223 216 506 120 330 58 223
20% 238 631 62 100 40 107 20 82

Table C.5: Architecture of the feature extraction network. The input dimensions of the
waveform data are (time, channels). FC denotes fully connected layers. As FC layers can
be regarded as 0D convolutions, we write the output dimensionality in the filters column.
The “Concatenate scale” layer concatenates the log of the peak amplitude to the output
of the convolutions. Depending on the existence of borehole data the number of input
filters for the first Conv1D layer is 64 instead of 32 in the non-borehole case.

Layer Filters Kernel size Stride
Conv2D 8 5,1 5,1
Conv2D 32 16, 3 1,3

Flatten to 1D
ConvlD 64 16 1
MaxPool1D 2 2
Conv1D 128 16 1
MaxPooll1D 2 2
ConvlD 32 8 1
MaxPool1D 2 2
Conv1D 32 8 1
ConvlD 16 4 1
Flatten to 0D
Concatenate scale
FC 500
FC 500
FC 500
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Table C.6: Architecture of the transformer network. Please note that even though the
transformer in TEAM does not apply dropout, we explicitly state this in the table, as
transformers commonly use dropout.

Feature Value
# Layers 6
Dimension 500
Feed forward dimension 1000
# Heads 10
Maximum number of stations 25
Dropout 0
Activation GeLu
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D.1 Classical magnitude estimation baseline

For magnitude estimation, we compare TEAM-LM to a classical baseline. To this end, we
use the peak displacement based approach proposed by Kuyuk and Allen| [2013]. At each
station, we bandpass filter the signal between 0.5 Hz and 3 Hz and discard traces with
insufficient signal to noise ratio. We extract peak displacement PD from the horizontal
components in the first 6 s of the P wave, while only including samples before the S onset.
We use the relationship

M = ¢;log(PD) + calog(R) + c3 + A4 (0,0?) (D.1)

from Kuyuk and Allen| [2013] to estimate magnitudes from peak displacement. We use
c1 = 1.23, ¢ = 1.38 and ¢ = 0.31 from Kuyuk and Allen| [2013]. These parameters
were calibrated using data from California and Japan, but the authors state that the
relationship can be applied to earthquake source zones around the world. To account for
a constant offset between different magnitude scales, we optimized c3 separately for each
dataset such that the predictions do not have a systematic bias compared to the ground
truth.

We average the predictions from multiple stations, effectively assuming independence
between the predictions. To obtain earlier predictions, we already calculate magnitude
estimates at a station once at least 1 s of P wave data has been recorded. We assign higher
weights to stations with longer P wave records, with weights linearly increasing from 0.11
for 1 s of waveforms, to 1.0 for 6 s of data. Thereby, while getting early estimates from
the first stations, new data from later stations does not perturb the prediction strongly
until enough data has been recorded.

As the estimation relies on the hypocentral distance R between station and event, the
method requires an estimate of the hypocentral location. We provide the method with the
catalogued hypocentral location. While this is an unrealistically optimistic assumption
for an actual real-time determination, it allows us to put our focus on the magnitude
estimation capabilities. We note that this gives the baseline an advantage compared to
TEAM-LM, which has no information on the earthquake location.

For some events in the Chile catalog, the SNR criterion is not fulfilled at any station
due to the inclusion of smaller magnitude events and the higher distances between sta-
tions and events. For these events, the baseline does not issue a magnitude estimation.
We exclude these events from the evaluation of the baseline, leading to an optimistic
assessment of the performance of the baseline.

D.2 Calibration estimation

Calibration of a model describes whether the predicted uncertainties match the observed
values, i.e., if the observation 4. was drawn from a distribution with cumulative dis-
tribution function (CDF) Fj,.q. Unfortunately, for each event i, only one prediction
observation of the magnitude #.,. and one prediction FZT «q 1s available. To this end, we
define the random variable u; = F;Ted(ygme). If 4., is distributed according to F;red
than u; must be uniformly distributed on [0,1]. This follows from the definition of the
CDF. If F' is a CDF and U a uniform random variable on [0, 1], then F~(U) is distributed
according to F'.

We take the u; of all events as samples of a random variable U and compare U to a

uniform random variable on [0, 1]. The maximum difference between the empirical CDF
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of U and a uniform variable is the test statistic of a Kolmogorov-Smirnov test, doo. As
the number of events n is large, critical values d, to a confidence threshold a can be

estimated as:
1 @
dy =Y 2 "2 (D.2)

vn

For o = 1079, this gives values d,, of 0.015 (Chile), 0.054 (Japan) and 0.039 (Italy). This
is considerably below the observed values d,, even using ensembles, indicating that U
differs highly significantly from a uniform distribution.
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Table D.1: Seismic networks

Region Network  Reference
Chile GE GEOFON Data Centre ﬂ1993ﬂ
C, C1 Universidad de Chile [2013]
8F Wigger et al.| [2016]
IQ Cesca et al.| [2009)
5E Asch et al. [2011]
Italy 3A [stituto Nazionale di Geofisica e Vulcanologia (INGV) et al.|
[2018]
BA Universita della Basilicatal [2005]
FR RESIF - Réseau Sismologique et géodésique Fran(;aisl ﬂ1995al]
GU University of Genova [1967]
1T Presidency of Counsil of Ministers - Civil Protection Depart-
ment][1972
v [stituto Nazionale di Geofisica e Vulcanologia (INGV), Ttaly|
[2006]
X Dipartimento di Fisica, Universita degli studi di Napoli Fed-|
erico 1] [2005]
MN MedNet Project Partner Institutionsl [|1990|]
NI OGS (Istituto Nazionale di Oceanografia e di Geofisica Sper-|
imentale) and University of Trieste [2002]
OX OGS (Istituto Nazionale di Oceanografia e di Geofisica Sper-|
imentale)| [2016]
RA RESIF - Réseau Sismologique et géodésique Fran(;aisl [|1995b|]
ST Geological Survey-Provincia Autonoma di Trento [1981]
TV Istituto Nazionale di Geofisica e Vulcanologia (INGV)|[2008]
XO EMERSITO Working Group| [2018]
Japan KiK-Net esearch Institute For 1
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Table D.2: Architecture of the feature extraction network. The input shape of the wave-
form data is (time, channels). FC denotes fully connected layers. As FC layers can be
regarded as 0D convolutions, we write the output dimensionality in the filters column.
The “Concatenate scale” layer concatenates the log of the peak amplitude to the output
of the convolutions. Depending on the existence of borehole data the number of input
filters for the first ConvlD varies.

Layer Filters Kernel size Stride
Conv2D 8 5,1 5,1
Conv2D 32 16, 3 1,3
Flatten to 1D

ConvlD 64 16 1
MaxPool1D 2 2
ConvlD 128 16 1
MaxPool1D 2 2
ConvlD 32 8 1
MaxPool1D 2 2
ConvlD 32 8 1
ConvlD 16 4 1

Flatten to 0D
Concatenate scale

FC 500
FC 500
FC 500

Table D.3: Architecture of the transformer network.

Feature Value
# Layers 6
Dimension 500
Feed forward dimension 1000
# Heads 10
Maximum number of stations 25
Dropout 0
Activation GeLu

Table D.4: Architecture of the mixture density networks.

Feature Value
Dimensions fully connected layers (magnitude) 150, 100, 50, 30, 10
Dimensions fully connected layers (location) 150, 100, 50, 50, 50

Mixture size (magnitude) 5
Mixture size (location) 15
Base distribution Gaussian

198



D.2 Calibration estimation

71°W 70°W 69°W 68°W
A A
A
19°S 19°S
20°s 20°s
10t
21°S 21°S
€
=
c
a
22°S 22°S ]
(@]
23°S 23°S I
L 102
24°S 24°S
A
71°W 70°W 69°W 68°W

Figure D.1: Event and station distribution for Chile. In the map, events are indicated by
dots, stations by triangles. The event depth is encoded using colour.
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Figure D.2: Event and station distribution for Italy. In the map, events are indicated by
dots, stations by triangles. The event depth is encoded using colour.
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Figure D.3: Event and station distribution for Japan. In the map, events are indicated
by dots, stations by triangles. The event depth is encoded using colour. There are ~20
additional events far offshore in the catalog, which are outside the displayed map region.
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Figure D.4: Distribution of the hypocentral errors for TEAM-LM, the pooling baseline
with position embeddings (POOL-E), the pooling baseline with concatenated position
(POOL-C), TEAM-LM with transfer learning (TEAM-TRA) and a classical baseline.
Vertical lines mark the 50, 90", 95t" and 99" error percentiles. The time indicates the
time since the first P arrival at any station. We use the mean predictions.
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Figure D.5: The 100 events with the highest location error in the Italy dataset overlayed
on top of the spatial event density in the training dataset. The estimations use 16 s of
data. Each event is denoted by a dot for the estimated location, a cross for the true
location and a line connecting both. Stations are not shown as station coverage is dense.
The event density is calculated using a Gaussian kernel density estimation and does not
take into account the event depth. The inset shows the event density at the true event
location in comparison to the event density at the predicted event location.
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Figure D.6: The 200 events with the highest location error in the Japan dataset overlayed
on top of the spatial event density in the training dataset. The estimations use 16 s of
data. Each event is denoted by a dot for the estimated location, a cross for the true
location and a line connecting both. Stations are not shown as station coverage is dense.
The event density is calculated using a Gaussian kernel density estimation and does not
take into account the event depth. The inset shows the event density at the true event
location in comparison to the event density at the predicted event location.
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Figure D.7: True and predicted magnitudes after 8 seconds using only parts of the datasets
for training. All plots show the Chile dataset. The fraction in the corner indicates the
amount of training and validation data used for model training. All models were evaluated
on the full test dataset.
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E Supplement to Chapter 6

E.1 Apparent early predictability in SCARDEC

To investigate the apparent early predictability in the SCARDEC result, we first review
the methodologies applied for creating the datasets. The three STF databases were gen-
erated using two different methodologies. Notably, none of the methods has originally
been developed for real-time assessment. SCARDEC uses a point source approximation
and conducts a constrained deconvolution of body waves with five constraints on the STF:
positivity, causality, boundedness in time, fixed cumulative moment and low inter-station
variation [Vallée et al., [2011]. To extend the SCARDEC methodology to events with
M < 7, SCARDEC uses empirical relationships to determine event duration and filter
frequencies. This methodology returns one apparent STF for each station. From these,
SCARDEC publishes the average STF and the so-called optimal STF, i.e., a single-station
STF with a high agreement with the average STF. Due to possible timing offsets between
stations and stacking out of uncorrelated fluctuations, average STFs have lower high-
frequency content than single-station STFs. For our study, we used the average STFs.
To check the influence of average and optimal STFs, we trained models on the optimal
STF's and obtained similar results as for the average ones (Figures and . The only
visible difference is a slightly higher uncertainty, which is to be expected as the optimal
STF's are less smooth than the average STFs.

In contrast to SCARDEC, USGS [Hayes, [2017] and |Ye et al. [2016] calculate finite
fault solutions from both body and surface waves assuming constant rupture velocity
within each event. This method returns only one STF per event instead of one per
station. As the spatial extent of the source is modelled, the STFs generally represent
more high-frequency details than the SCARDEC ones. On the downside, these methods
do not apply to intermediate size events (M, < 7).

To identify the source of the different behaviour of the model between the STF
datasets, we analyse the cumulative and current moment release at fixed early times
and after a fixed moment release (Figure [E.9). For SCARDEC, cumulative and cur-
rent moment release at early times differs between different magnitude bins, with higher
magnitude events already exhibiting higher moment release. The same, although with
a higher overlap between bins, is true for the current moment release at the time when
magnitude 6 is reached. No differences between bins are visible at the times when mag-
nitudes 6.5 and 7 are reached. These observations match the predictive results, where
predicted magnitudes differed for early times and the time of reaching magnitude M = 6,
but not for higher base magnitudes M.

In contrast to SCARDEC, for the other two STF datasets, we observe no systematic
difference in any of the observables between the magnitude bins. This matches the pre-
dictive results, where predictions did not show systematic differences between buckets.
Given these observations and the processing of SCARDEC, in particular the point source
approximation, we attribute the difference in the early observables to a processing artefact
rather than interpreting them to be physically based. In particular, the difference can
be explained with uncertainties in the onset times for the SCARDEC STFs. SCARDEC
onset times are defined by the first time the STF exceeds a few percent of the peak mo-
ment rate. This is necessary, as for an event with peak moment rate > 10?° Nm/s it will
be impossible to identify the first exceedance of a low threshold such as 10! Nm/s due
to model approximations, in particular, due to the point source approximation. On the
other hand, for an event with peak moment rate ~ 10'® Nm/s, this first exceedance is easy
to determine. This introduces a systematic bias in the first seconds of the event [Vallée
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and Douet), [2016]. This bias has also been analysed quantitatively in prior publications
[Meier et al., 2021].

As a further validation, we trained our neural network model on the USGS dataset,
which is the larger of the two datasets using finite fault solutions. The results confirm
that no signs of rupture determinism are visible (Figure . We observe no systematic
difference between different magnitude buckets until at least half of the time has passed
or half of the moment has been released on either, the USGS dataset we trained the
model on, or on the other two datasets. Note that, due to the different marginal distri-
bution of magnitudes in the USGS dataset compared to SCARDEC, early estimates are
considerably higher than for the SCARDEC model. In addition, the smallest SCARDEC
events are systematically overestimated. This behaviour is expected, as neural networks
are usually unable to extrapolate.

E.2 Training details for the STF model

In this section, we provide details on the training of the STF model. We train the model
using a continuous ranked probability score (CRPS). The CRPS is defined as

o)

CRPS(F,z) = — / (F(y) — Lyysay)’dy (E.1)

— o0

with F' the cumulative distribution function of the predicted probability, = the observed
value and 1y,>,y the indicator function, being 1 for y > x and 0 otherwise. The CRPS
measures the distance in probability mass between true and predicted cumulative distri-
bution functions [Matheson and Winkler, [1976], and thereby not only takes into account
the prediction at the observed value as the more common log-likelihood. This is particu-
larly useful for gradient-based optimisation in face of the highly skewed Gutenberg-Richter
(GR) prior distribution. The CRPS of a Gaussian mixture has a closed-form representa-
tion and is differentiable with respect to the mixture parameters, making it amenable to
gradient-based optimisation (Appendix .

We train the model using ten-fold cross-validation with random splits. In each split,
we use eight folds for training, one fold for validation and the last fold as test set. For
each split, we train five models and average the predictions in probability space. We use
the Adam optimiser with a learning rate of 107* and a batch size of 128. We reduce
the learning rate by a factor of 0.3 after 15 epochs without a reduction in validation
loss. We train for 100 epochs and use from each ensemble member the model with the
lowest validation loss for evaluation. To avoid degenerated mixture weights, we introduce
a Dirichlet prior as regulariser. This regulariser takes the form —y ) loga;. For positive
~ this enforces that no mixture weight is close to zero. We use v = 1074

In Chapter [5| we showed that neural network models suffer from data sparsity for
large events, causing systematic underestimation of magnitudes. As a simple mitigation,
we suggested upsampling these events in training, i.e., artificially increasing their occur-
rence. We follow this approach by upsampling events above magnitude 6 with the factor
p(M) = AM=6_ where we use A = 2. As we analyse probabilistic predictions, we need to
take the introduced skew on the distribution into account. For this, we analyse Bayes’
rule P(M|0Oy) ~ P(O;|M)P(M). The upsampling replaces P(M) by P(M) = ¢1p(M)P(M).
The model therefore estimates P(M|O;) = cop(M)P(M|O;), where ¢; and ¢y are normal-
isation constants. Note that usually ¢; # c2, as the normalisation constant P(O;) will
change with the upsampling as well. To get true estimates of P(M|O;), one would need
to rescale the predictions with 1/p(M). Notably, this scale factor is independent of Oy.
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For the results presented in Chapter [6] we refrained from rescaling the predictions
for several reasons. First, our upsampling rate of 2 per magnitude step is considerably
weaker than the GR law with a tenfold decrease in event occurrence with each magnitude
step. Therefore upsampling will not obscure GR tails. In fact, the lower decay rate with
magnitude obtained by upsampling allows for better visual representation. Second, our
key results compare predictions in different buckets. As each bucket is equally affected
by the upsampling, their relative behaviour stays unchanged. However, we note that any
quantitative evaluation should take the effect of upsampling into account.

E.3 Teleseismic arrival dataset and model

We downloaded all available manual phase picks for events with magnitudes above 5
from the ISC [International Seismological Centre, 2021] and USGS. We matched the
event references to the Global CMT catalog [Ekstrom et al., 2012] and discarded all
events that could not be matched. For all analyses, we used the moment magnitude from
Global CMT as the target value. We only use picks with phase label P and discarded
all but the first pick for each station and event. We only use picks within an epicentral
distance below 97° to avoid core phases. For consistency, we calculated expected first P
arrival times using the GCMT event onset times and the ak135 velocity model [Kennett
et al., [1995]. If a pick was not within 4 s of the first predicted arrival, we discarded the
pick. We use broadband waveforms from the following seismic networks: GE [GEOFON
Data Centre, 1993], G [Institut De Physique Du Globe De Paris (IPGP) and Ecole Et
Observatoire Des Sciences De La Terre De Strasbourg (EOST), 1982], GT [Albuquerque
Seismological Laboratory (ASL)/USGS,|1993], IC [Albuquerque Seismological Laboratory
(ASL)/USGS| [1992], IT [Scripps Institution Of Oceanography, |1986] and IU [Albuquerque
Seismological Laboratory (ASL)/USGS| [1988]. We downloaded the waveforms from the
GEOFON and IRIS FDSN webservices. We excluded all stations within 10 km of the
coastline as they showed high levels of short-period noise. We do not enforce any further
constraint on the signal to noise ratio but note that the usage of manual picks provides an
implicit constraint. All waveforms are resampled to 20 Hz sampling rate, filtered between
0.025 Hz and 8 Hz and cut from 35 s before the phase pick to 90 s after the phase pick. We
removed the instrument sensitivity but did not restitute the instrument response as we
observed acausal artefacts from restitution. We manually inspected the resulting dataset
and removed stations with timing errors. As a sanity check, we applied our model to
t = —0.5 s, i.e., 0.5 s before the annotated P arrivals. The results showed no significant
difference from the marginal distribution of magnitudes, indicating no or at least very few
cases with severe timing errors or other knowledge leaks. The resulting catalog consists of
37,646 events with 747,824 manually labelled P arrivals from 307 unique seismic stations.

We train the model using ten-fold cross-validation with random splits. In each split,
we use 8 folds for training, 1 fold for validation and the last fold as test set. Due to the
massively higher computing requirements for the TEAM-LM model compared to the STF
model, we did not train an ensemble but only a single model for each split. We use the
Adam optimiser with learning rate 10~* and a batch size of 1024. We reduce the learning
rate by a factor of 0.3 after 5 epochs without a reduction in validation loss. We train
for 100 epochs and use the model with the lowest validation loss for evaluation. We clip
gradients to a maximum norm of 1. We use at most 50 input stations. As for the STF
model we use upsampling of large magnitude events and did not rescale the outputs. As for
TEAM-LM in Chapter[5] we pretrain the feature extraction and the mixture density layers
on single station magnitude estimation. As the extensive data augmentation incorporates
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stochasticity in the validation score, the validation set is evaluated five times with different
augmentations after each epoch.

E.4 CRPS of a Gaussian mixture

As we train our network with a CRPS, here, we derive the closed-form solution of the
CRPS for a Gaussian mixture. The probability density function (PDF) of a Gaussian
mixture is defined as f(z) = Y, ;07 'p(££), where ¢ denotes the PDF of a standard
normal random variable. Similarly, we use @ for the cumulative distribution function
(CDF) of a standard normal random variable. For deriving the closed-form solution, we
use three identities. First, Gneiting and Raftery| [2007] note that the CPRS can be written
as

1
CRPS(F,x) = 3Er|X — X'| ~Ep|X —a| (E.2)

with X and X’ independent copies of random variables with CDF F and Eg|- | the expec-
tation of the absolute value. Note that this identity requires a finite first moment of X,
which for a finite Gaussian mixture is always true. Second, for two independent Gaussian
random variables Z ~ A (1, 0%) and Z' ~ A (i',0'?), the sum Z + Z' is a Gaussian ran-
dom variable with Z + Z' ~ A (u + p/, 02 + ¢'%). Third, for a Gaussian random variable
Z ~ N (,0?) the expected absolute value has the following closed-form solution:

E|Z| = 202 (ﬁ) + (1 — 20 (—ﬁ)) (E.3)
o o
Let X and X’ be the Gaussian mixtures and Z;, Z! ~ A (u;,02) be the mixture
components. We can now calculate the terms of (E.2)). For the first term we get:

n n
EIX - X'| =) ao,E|Z — Zj| (E.4)
i=1 j=1
n n
i=1 j=1

Here, N;j ~ A (i — pj, 01-2 + sz), using the summation of independent Gaussian random
variables. The expected value can be computed using (E.3)).
Similarly, for the second term of (E.2) we get

n
E|X -z =) oFE|Z; — x| (E.6)
=1
n
= aE[Y] (E.7)
=1

with Y; ~ A (p;—x,0;). This again allows us to calculate the term using . Therefore,
the CRPS of the Gaussian mixture can be computed in closed form. Furthermore, the
solution is differentiable in «;, p; and o;, which is required for neural network training.
For «; differentiability is clear, as the CRPS only depends linearly on the mixture weights.
For p; and o;, differentiability results from the differentiability of ¢ and @. While this does
not hold for ¢; = 0, our network architectures ensure o; > 0. Calculating the closed-form
has compute complexity in O(n?). As the number of mixture components is low (n < 25)
and the calculation can trivially be vectorised, this does not pose a computational issue
and computation times are negligible compared to the neural network computations.
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Figure E.1: a Possible shapes of P(M|O;) for an ongoing event. The Gutenberg-Richter
prior is rescaled to fit the tail behaviour of the other distributions. b Exemplary Gaussian
mixture with mixture size 4, showing both the individual components and the resulting
mixture PDF.
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Figure E.2: Results similar to Figure but using the USGS STFs instead of the
SCARDEC ones for model training. For details see the description of Figure Note
that the marginal distribution of magnitudes in the USGS dataset is considerably different
from the SCARDEC dataset, i.e., it is missing smaller events. This is clearly reflected in
the results, in particular, in the overestimation of small SCARDEC events.
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Figure E.3: Average P(M|O;) (a-d) and P(M|Oj;) (e-h) by magnitude bin for the
SCARDEC dataset. This figure displays the same results as shown in Figure [6.5h, d
but with the analysis split by focal mechanism type. Focal mechanism types were derived
from the Global CMT solution using the principal axes of the moment tensors. If the n
axis was within 30° of the horizontal, the event was classified as “normal” (¢ axis more
vertical than p axis) or “reverse” (p axis more vertical than t axis). If the n axis was
within 30° or the vertical axis, the event was classified as “strike-slip”. All remaining
events were classified as “other”. PDF's were truncated to avoid overlap between different
times/base magnitudes. Black dotted lines in e-h indicate the current base magnitude.
For events shorter than the given time (a-d) or with final magnitudes below the base
magnitude (e-h), the estimation from the final sample of the STF was used.
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Figure E.4: Average P(M|O;) (a-d) and P(M|Oj;) (e-h) by magnltude bin for the USGS
dataset. This figure displays the same results as shown in Figure [6.5b, e but with the
analysis split by focal mechanism type. Otherwise, see caption of Figure for further
explanations.
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Figure E.5: Average P(M|0;) (a-d) and P(M|Oy;) (e-h) by magnitude bin for the Ye
et al dataset. This figure displays the same results as shown in Figure [6.5¢, f but with
the analysis split by focal mechanism type. The dataset contains no examples of reverse
faulting, therefore the corresponding panels are left empty. Otherwise, see caption of
Figure for further explanations.
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Figure E.9: Comparative analysis of the early moment release for the three STF datasets
binned by magnitude. Each row represents one STF dataset. The left column shows
cumulative moment release at time ¢, the middle column current moment release at time
t, the right column moment release at the time when a magnitude M is reached. Notably,
while all three measures differ between the magnitude buckets for SCARDEC, no such
behavior is visible for the USGS or Ye et al datasets. This points at a processing artefact
in SCARDEC rather than a physical explanation.
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