

This is a postprint version of the following published document:

Parra, L., … et al. (2014). A New Hybrid Nonintrusive Error-
Detection Technique Using Dual Control-Flow Monitoring.
IEEE Transactions on Nuclear Science, 61(6), pp.: 3236- 3243.

DOI: https://doi.org/10.1109/TNS.2014.2361953

© 2014 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.
See https://www.ieee.org/publications/rights/index.html for more
information.

https://doi.org/10.1109/TNS.2014.2361953
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.ieee.org/publications/rights/index.html

Abstract—Hybrid error-detection techniques combine

software techniques with an external hardware module that
monitors the execution of a microprocessor. The external
hardware module typically observes the control flow at the input
or at the output of the microprocessor and compares it with the
expected one. This paper proposes a new hybrid technique that
monitors the control flow at both points and compares them to
detect possible errors. The proposed approach does not require
any software modification to detect control-flow errors. Fault
injection campaigns have been performed on a LEON3
microprocessor. The results show full control-flow error
detection with no performance degradation and a small area
overhead. A complete solution can be obtained by complementing
the proposed approach with software fault-tolerance techniques
for data errors.

Index Terms—Microprocessors, SEEs, soft errors, fault

tolerance, hybrid fault tolerance techniques

I. INTRODUCTION
S the semiconductor technology moves to smaller
transistors and higher integration densities, more

complex systems can be implemented in a cost-effective
manner. At the same time, transistors become more
susceptible to faults caused by highly energetic particles
present in space or secondary particles such as alpha particles,
generated by the interaction of neutron and materials at ground
level. Non-destructive Single-Event Effects (SEEs), also
known as soft errors, are an increasing concern for the
reliability of complex digital systems. They occur when a
particle strikes a node in a circuit and generates a transient
voltage pulse that can propagate within the circuit [1]. When
the transient pulse occurs in a memory element, such as a
register, it is known as a Single-Event Upset (SEU). When the
transient pulse occurs in a combinational element, the effect is
known as a Single-Event Transient (SET).

Microprocessor-based systems are increasingly used in
many applications, including safety-critical and high
availability ones in sectors such as automotive, biomedical and

This work was supported in part by the Spanish Government under

contract TEC2010-22095-C03-03.
L. Parra, A. Lindoso, M. Portela-Garcia and L. Entrena are with the

University Carlos III of Madrid, Electronic Technology Department, Avda.
Universidad, 30, Leganes (Madrid), Spain. (e-mails: lparra@pa.uc3m.es,
alindoso@ing.uc3m.es, mportela@ ing.uc3m.es and entrena@ing.uc3m.es)

B. Du, M. Sonza Reorda and L. Sterpone are with Politecnico di Torino,
10129 Torino, Italy (e-mail: boyang.du@polito.it,
matteo.sonzareorda@polito.it and luca.sterpone@polito.it)

.

aerospace. In these applications, the use of fault tolerance
techniques is mandatory to detect or correct errors caused by
SEEs. This requirement must be satisfied with minimum
overheads in area, performance and power consumption.
Moreover, due to the high effort involved in developing and
qualifying a microprocessor and its associated tools, there is a
growing interest in COTS (Commercial-Off-The-Shelf)
microprocessors even though they may not have RadHard
versions. In this case, conventional hardware-based fault
tolerance techniques cannot be used and hardening must be
implemented using software or hybrid techniques.

Errors produced by SEEs in a microprocessor are usually
divided into data errors and control-flow errors. If an error
occurs in a register or memory position storing data, a wrong
computation result may be obtained. If an error occurs in a
control register, such as the program counter or the instruction
register, the instruction flow may be corrupted and a wrong
result may be produced or the processor may lose control and
enter an infinite erroneous loop. Both types of errors can be
detected using software techniques. Fault tolerance techniques
based on software rely on adding extra instructions to the
original program code to detect or correct faults [2]. Software-
based techniques provide high flexibility, low development
time and low cost, since they can be implemented without
modifying the hardware. However, software-based techniques
cannot achieve full system protection against soft errors [3]
and may produce large overheads in processing time and
storage needs, particularly when designed to protect the
microprocessor against control-flow errors [4],[5].

Hybrid techniques [4]-[9] combine hardware and software
fault-tolerance techniques in order to improve error detection
and reduce the performance degradation that software
techniques entail. Hybrid fault tolerance techniques typically
consist in adding an external module, often known as a
watchdog processor, to monitor the execution of instructions
in the processor. To this purpose, the hardware monitor is
connected to the bus between the memory and the
microprocessor [4],[5],[8] or to the trace interface [7],[9],[10].
In the first case, the control flow is monitored at the first
pipeline stage (instruction fetch), while in the second case the
control flow is monitored at the last pipeline stage after the
instruction has been executed. In order to check for the
correctness of the control flow, additional information must be
stored in the system, usually in the form of signatures or
assertions which are embedded in the software and provided to
the external monitor for checking [4]-[6]. Although these

A New Hybrid Non-Intrusive Error-Detection
Technique using Dual Control-Flow Monitoring

L. Parra, A. Lindoso, M. Portela-Garcia, L. Entrena, B. Du, M. Sonza Reorda, L. Sterpone

A

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2014.2361953

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

mailto:lparra@pa.uc3m.es�
mailto:entrena@ing.uc3m.es�
mailto:matteo.sonzareorda@polito.it�

techniques are effective, they usually introduce significant
memory and performance overheads. For instance, [4] shows
up to 61% performance overhead using signature-based
techniques and [5] shows up to 34% performance overhead
using assertions. The Program Counter (PC) Prediction
technique [11] can perform some control-flow checks with no
performance overhead, but it may result in low error detection
for highly pipelined processors, such as LEON3.

In this work we propose a new hybrid technique that uses a
dual control-flow monitoring approach. The instruction flow
of the microprocessor is captured both upstream at the bus
between the memory and the microprocessor and downstream
at the trace interface. If an error corrupts the instruction flow
at any stage, it is detected by comparing the downstream
instruction flow with the upstream instruction flow. On the
other hand, errors in the generation of fetch addresses are
detected using a PC Prediction technique. The proposed
approach can detect all errors in the program counter and the
instruction register at any of the pipeline stages. These include
all control-flow errors, as described in [12]. It can also detect
some data errors produced by corrupted instructions that
generate wrong data or data addresses without affecting the
control flow.

Modern microprocessors have a pipeline of several stages.
SEEs can occur at any stage provoking both data and control-
flow errors that cannot be easily detected with previously
proposed techniques using a single monitoring point. Error
detection is enhanced by using dual monitoring at the input
and at the output of the instruction stream. A major advantage
of the proposed approach is that it does not require any
software modification and therefore it produces no
performance degradation. By complementing it with software
fault-tolerance techniques to cover data errors, a complete
solution against SEEs with reduced performance degradation
and low memory overhead is obtained. The proposed approach
has been validated by fault injection using a LEON3 processor
as a case study.

The remaining of the paper is as follows. Section II
summarizes related work. Section III describes the proposed
dual control-flow monitoring approach. Section IV describes
the software hardening approach used in this work to improve
protection for data errors. Section V shows the fault injection
experimental results obtained to validate the proposed
approach. Finally, section VI presents the conclusions of this
work.

II. RELATED WORK
Error detection in microprocessor-based systems has been

studied thoroughly in the literature. Errors produced by SEEs
in a microprocessor are usually divided into data errors and
control-flow errors [13]. Techniques that deal with data errors
check the data consistency in the system. The most common
approaches are assertion-based techniques and duplication
techniques.

Assertion-based techniques insert additional statements in
the code to check data correctness. These techniques are
application-dependent and must be skillfully used, because the

results are very sensitive to the contents and the location of the
assertions in the program code.

Duplication techniques use redundant computations with
different levels of granularity: instruction, block of
instructions, procedure or even the entire program [14],[15].
Instructions and data are commonly duplicated to create a
redundant data flow. Error detection is accomplished by
comparing the results of the two data flows as often as the
selected level of granularity permits. These techniques can
achieve high fault coverage. However, duplicated instructions
increase the code size and decrease performance. Reducing the
granularity of duplication typically contributes to reduce the
overheads but it increases error detection latency.

An example of duplication techniques can be found in [16].
This work proposes a set of transformation rules that can
harden any high-level source code. Rules are split into data
hardening and control-flow hardening rules. Data hardening
rules duplicate all variables and check both copies after each
write operation. Overheads can be reduced, as proposed in
[17], [18], by applying duplication only to certain parts of the
code.

Techniques that detect control-flow errors check the
consistency of the execution flow. In this field, a broad range
of solutions can be found in the literature. An updated
overview of these techniques can be found in [5]. The most
common control-flow techniques utilize signatures [12],[19]
or assertions [20],[21] which are embedded in the software.

A common approach among control-flow checking
techniques is based in dividing the program into Branch-free
Blocks (BBs) and computing a signature for each executed
BB. To detect errors, this signature is compared with the
reference signature, which must be stored in the system for
each possible BB. Alternatively, special instructions are
inserted in the code to assert the beginning and end of each
BB. The computation and checking of signatures or assertions
usually introduce large overheads. On the other hand, control-
flow checking techniques have not yet achieved full fault
tolerance [3], [5].

Hardware-based techniques use hardware modifications or
hardware extensions for error detection. Non-intrusive
approaches usually observe the microprocessor behavior from
an available bus. Approaches in this field can vary
substantially. Several works rely on a watchdog processor that
executes a program concurrently with the main processor
(active watchdog processor) [22], [23]. Other approaches use a
passive watchdog processor that verifies the signatures or
assertions stored internally or produced by the main processor.
Active watchdog processors produce a higher overhead than
passive ones. On the other hand, passive watchdog processors
require complex software modifications and larger memory.

Hybrid approaches combine the advantages of hardware and
software approaches. In such scenario, the goal is to achieve
good error coverage with the smallest additional hardware and
a reduced performance decrease. Many different approaches
can be found in the literature [4]-[9].

The use of the trace interface has recently been proposed as
an alternative way to observe microprocessor execution

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2014.2361953

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

[7],[8],[24]. Modern microprocessors usually provide this type
of interface for debugging purposes (Standard Nexus, class 2,
3 and 4, [31]). As they are useless during normal operation,
they can be easily reused for on-line monitoring in an
inexpensive way. On the other hand, they can provide internal
access to the microprocessor without disturbing it.

III. DUAL CONTROL-FLOW MONITORING
So far, hybrid approaches have been based on observing the

microprocessor execution from a single suitable observation
interface, which can be the memory bus or the trace interface.
To detect control-flow errors, the observed control-flow
information must be compared with the expected one. Storing
and checking control-flow information usually introduces
large overheads.

The approach proposed in this work seeks to ensure
efficient error mitigation with the smallest possible overhead.
To achieve this goal, the observability of the system has been
incremented by observing the system behavior in two different
points of the instruction stream. One of the observation points
is the memory or cache bus. This bus provides information of
the program counter (PC) and the instruction code (opcode
and operands) at the fetch stage, just when the instruction is
loaded in the microprocessor.

The second observation point is the instruction trace
interface, which provides the most relevant information of
each executed instruction, including the program counter (PC),
instruction code (opcode and operands), time tag, and trap and
error flags [25]. This information is provided just after the
instruction is executed. In the case of LEON3, which has 7
pipeline stages (fetch, decode, register access, execute,
memory, exception and write back), the information in the
trace interface corresponds to the exception stage. The trace
interface can be accessed without affecting the normal
operation of the processor or adding any performance
penalties. Moreover, the use of the trace interface as an
observation point does not interfere with the possible use of
the trace interface for debugging purposes.

Once an instruction is loaded from the memory, the
instruction information travels along the microprocessor data
path and is used in each stage to drive the operation of the
microprocessor. An error which occurs in the PC or the
instruction register (IR) at any stage will be finally observed at
the trace interface and can be detected by comparing the trace
interface output with the upstream information collected at the
fetch stage. Notwithstanding, an error in the PC at the fetch
stage may not be detected because it is issued by the
microprocessor. When such an error occurs, both observation
points (memory bus and trace interface) provide the very same
information, but it is erroneous. To improve the detection
capabilities including those errors, a PC prediction technique
is used [11].

PC prediction is a control-flow checking approach that
consists on predicting the next PC value by checking the
opcode and the present PC value. The predicted PC value is
then compared with the PC value of the next executed
instruction. If there is any difference between both PCs, an

error in the program flow is detected. The opcode of every
new instruction executed is checked. If the opcode
corresponds with a branch instruction, the PC must be
incremented either by the branch offset if the branch is taken,
or by the instruction size if the branch is not taken. For a non-
branch instruction, the PC must be incremented by the
instruction size. The trace interface provides the information
required by the PC Prediction technique just after the
instruction is executed.

A dedicated Hardware Monitor (HM) module has been
designed to implement the proposed approach. Fig. 1 shows
the HM observation points and Fig. 2 shows the internal
structure of the HM. There is an interface for each observation
point and a block for each implemented technique. The control
block is responsible for the correct behavior of the different
blocks and interfaces.

The information provided at the two observation points
must be synchronized for a correct comparison. To this
purpose, upstream data are stored in an input buffer with a size
equal to the number of pipeline stages of the processor. When
a new instruction appears in the memory bus at the fetch stage,
the HM catches the opcode and the PC of the instruction and
stores them in the input buffer. Then, every new instruction
provided by the trace interface is compared with the
instruction stored in the input buffer in order of appearance. It
must be noted that the error detection latency is minimal,
because an error can be detected as soon as the executed
instruction appears at the trace interface.

Figure 1. Hardware monitor observation points

Figure 2. Internal architecture of the Hardware Monitor.

Microprocessor
Trace

IF

Instruction
Memory/cache

A I

Hardware
monitor
Input Buffer

Trace
Interface

IF IF

Control

PC Compare

PC Prediction

PC

Opcode

PC

Opcode

Error

Memory
Bus

Timeout
trap

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2014.2361953

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

In addition to instruction comparison and PC prediction, the
control module of the hardware monitor also checks the time
tag and the trap and error flags provided in the trace interface.
The trace interface time tag is the output of an internal counter
inside the processor that is incremented each clock cycle as
long as the processor is running. A timeout condition is set to
cope with the case the processor hangs in a particular
instruction. The timeout condition activates the error signal if
the time tag advances without issuing new instructions for a
long period of time.

The trap and error flags provided by the trace interface are
used for exception handling. To implement exception handling
it is important to differentiate between fault-induced
exceptions, which may be caused by an SEE, and
implemented exceptions, which are expected to occur under
normal execution. The HM uses the trace interface flags to
detect fault-induced exceptions that cause an unexpected trap
or the processor entering error mode. Unexpected traps can be
caused in several ways, such as invalid instructions or invalid
memory addresses. They can be differentiated from
implemented traps by checking the next instruction provided
by the trace interface. The trap signal of Fig. 2 triggers when
an unexpected trap occurs or the processor enters error mode.

The HM can be implemented with small hardware overhead
since it does not require storing information obtained at
compilation time. The proposed module can work with the
observed information without disturbing the normal
microprocessor behavior. Moreover, the HM can detect
control-flow errors without any specific support from the
application software.

IV. DATA HARDENING
Section III proposes a Hardware Monitor (HM) that is able

to detect control-flow errors by comparing the information
provided by the memory bus and the trace interface. However,
data errors are not covered by the proposed approach. To
achieve full error coverage, it is necessary to protect data as
well as control-flow.

We have used software-based data hardening to lessen the
impact of data-flow hardening in the HM. Hardware-based
data-flow hardening requires additional connections to the
microprocessor architecture that are not easily available.
Another drawback of the hardware implementations is the area
increase. Data hardening techniques require instruction re-
execution with the corresponding additional storage.

Several software data hardening techniques have been
proposed in the literature [13]. For complementing the
proposed HM with software data hardening techniques we
have selected a combination of two techniques:

• Total data-flow duplication, based in [14] and [16].
• Inverted branches, based in [8].

Total data-flow duplication duplicates all the software data
and compares both data flows whenever a write operation is
performed. When a discrepancy between the two data flows
appears, an error is detected. This method achieves good data
error coverage but increments code size and decreases
performance. In order to reduce the performance penalty as

well as the code size, the checking points of the code were
reduced as proposed by [18]. In [18] the whole data flow is
duplicated but only certain variables (final variables) are
checked. A similar approach can be found in [8] where the
number of checks is varied depending on the system
requirements. This approach maintains the data integrity as
every operation is performed twice but checking instructions
are considerably reduced, at the expense of some acceptable
increase in the error detection latency, i.e., the time between
an error occurs and it is detected.

Another software hardening technique has been applied to
our code in order to detect errors in conditional branches. In a
conditional branch, errors may appear in the evaluation of the
condition codes or in the condition codes themselves, resulting
in the branch incorrectly taken or not taken. The technique
called “inverted branches” [8] was used to detect errors in
conditional branches. This technique reevaluates the branch
condition in two locations. When the branch is taken, the
branch instruction is repeated with an inverted condition.
Additionally, when the branch is not taken the branch
instruction is simply repeated. The objective of this technique
is to repeat the evaluation of the condition codes. If the
repeated evaluation does not produce the same result, an error
is detected.

In our work all the software hardening techniques have been
applied directly in high-level source code.

V. FAULT INJECTION EXPERIMENTAL RESULTS
The proposed technique has been implemented and

validated on a system based on the LEON3 processor. The
LEON3 processor implements the full SPARC V8 standard
and it is widely used in space applications. The LEON3 core
has the following main features [25]: 7-stage pipeline with
Harvard architecture, separate instruction and data caches,
hardware multiplier and divider, on-chip debug support and
multiprocessor extensions. The register file is divided in a
configurable number of register windows, so that at any one
instant a program sees 8 global integer registers plus a 24-
register window. The number of register windows is
implementation-dependent and can be configured within the
limit of the SPARC standard (2-32), with a default setting of
8.

A basic configuration has been built to perform a fault
injection campaign. The system configuration includes one
LEON3 integer unit with 8 register windows, instruction and
data caches (2 kB each), instruction trace interface, interrupt
controller, system bus (AMBA), memory controller and
general purpose input/output. The memory controller can
drive external RAM and ROM where code and data are stored.
It must be noted that this system includes several components,
besides the LEON3 processor core, that are typically needed
to interface the processor. Hardening these components is
beyond the scope of this work. However, they have been kept
in the system because in practice it is very difficult to clearly
distinguish them from the LEON3 processor hardware.

The HM logic area is about 22% the LEON3 logic area,
excluding the memories that implement the register file. Table

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2014.2361953

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

I shows the synthesis results for a 90 nm technology. It must
be noted that the utilized LEON3 configuration is minimal.
Upgrading LEON3 with additional modules does not modify
the HM architecture and does not increase HM area.

TABLE I. SYNTHESIS RESULTS

 #Gates #FFs Area(um2 Memory)
LEON3 7,185 1,851 116,881 16Kb
HM 1,230 399 27,613 512b

Three software applications have been used for testing. The

first one, (BBS), implements the Bubble Sort algorithm for a
vector of 15 values. The second one, (Mmult), implements a
5x5 matrix multiplication. The third one, (AES), implements
the AES encryption algorithm. In all cases, intermediate
computation results are frequently sent to a parallel output
port, where they can be checked during the fault injection
process. All algorithms were developed in C and compiled
with GCC using –O2 optimization option. To better
demonstrate the capabilities of our approach, the experiments
were first conducted with an unhardened version of the
application software, as given by the compiler with no further
manipulation to harden it. Then, the experiments were
repeated with a software version that is hardened for data
errors as described in section IV. The hardened software
version was also developed in C and compiled with the same
options.

In the experiments, we adopted the same approach as in
[24] and [26] to evaluate the error detection capabilities. We
estimate the global error rate using fault injection. The
dynamic cross-section can then be calculated as the product of
the static cross-section and the estimated global error rate.
Because the static cross-section is the same for the hardened
and unhardened versions of the circuit, relative comparisons
can be made in terms of the global error rate. Moreover, fault
injection allows us to perform a more detailed error analysis.

To obtain the global error rate, we used the AMUSE tool
[27], [28]. This tool is an emulation-based fault injection
system that can cover both SEU and SET, including logical,
latch-window and electrical masking effects. It also provides
very high performance, which enables very large fault
injection campaigns to be executed in a short time. With
respect to test coverage, as described in [29], AMUSE
typically provides 100% coverage of expected radiation test
results with respect to fault locations, input vectors and clock
cycles of operation for small or medium-size test cases.

Fault injection campaigns were conducted for SEUs and
SETs. For SEU experiments, we injected SEUs in every flip-
flop and clock cycle, covering the full SEU space of the
application. For SET experiments, we injected faults at several
random instants within every clock cycle for every gate and
with a pulse width of 10% of the clock period, using the
approach described in [28].

In the experiments, errors were classified in several
categories, following the terminology proposed in [30]. Errors
that are not detected by either the HM or hardened software
are classified as Silent Data Corruption (SDC) or Hang. An

error is classified as SDC as soon as an erroneous output is
observed at the output port. An error is classified as Hang if no
new values are observed at the output port for a long time,
which indicates the processor may be lost. To this purpose, we
have established a timeout condition with some extra clock
cycles that allows for the correct completion of the
computation. An error is classified as Hang if the timeout
condition is overtaken. Note that a Hang error can be produced
by a control-flow error (e.g., an incorrect jump) or by a data
error (e.g., an error in the index of a loop that prevents the
program from finishing in due time).

Tables II to VII summarize the results of the fault injection
campaigns with the HM for the three selected software
applications with unhardened and hardened software versions.
The internal registers of the LEON3 have been divided in two
sets: Set I includes the PC & IR for all stages (346 FFs) and
Set II includes the remaining registers (1,505 FFs). The first
three rows in the tables show the results of SEU fault injection
for the sets I and II, and all the registers, respectively. The last
row shows the results of SET fault injection. From left to
right, each table shows the number of injected faults, the total
amount of observed errors and the classification of errors as
SDC, Hang or Detected by the HM. The percentage of errors
in each category with respect to the total amount of observed
errors is provided in brackets.

Errors reported in the tables are true errors, i.e., errors that
produce a wrong observable behavior. False errors, such as
those that can happen in the hardware monitor, have not been
included. The effect of a false error is to trigger an
unnecessary error recovery action. For low error rates, the
impact of some sporadic error recovery action is negligible.
Otherwise, the hardware module can be hardened to reduce
the chance of false errors.

As shown in Table II, the unhardened Bubble Sort
algorithm takes 3,404 clock cycles. Therefore, we have
injected 3,404 SEUs per flip-flop, up to 6,3 million SEUs in
total. We have also injected 10,234 SETs per combinational
node, up to 80,6 million SETs in total. Taking into account the
large amount of injected faults, the error margin is smaller
than 0.1% with 95% confidence [31].

TABLE II. FAULT INJECTION RESULTS (BBS, UNHARDENED SW)

Elements
Faults

injected
Errors

observed SDC Hang
Errors

detected

PC & IR (I) 1.177 M 343,278 0 0 343,278
(100%)

Other Regs
(II)

5.123 M 361,307 167,192
(46.3%)

36,764
(10.2%)

157,351
(43.6%)

All Regs 6.301 M 704,585 167,192
(23.7%)

36,764
(5.2%)

500,629
(71.1%)

Comb. logic
(SETs)

80.649 M 777,634 258,768
(33.3%)

24,579
(3.2%)

494,287
(63.6%)

The proposed approach is able to detect 100% of the errors

in Set I and many of the errors in Set II. Although Set I is

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2014.2361953

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

much smaller than Set II, it accounts for about half of the total
observed errors. This is because the PC and IR registers are
very critical. In particular, Set I accounts for all control-flow
errors [12]. Errors in other registers (Set II) may produce a
wide variety of effects, but they can also be detected by the
HM if they eventually produce a control-flow error, invalid
addresses, infinite loops, etc. The HM is also able to detect a
similar percentage of errors caused by SETs.

Table III summarizes the results of the fault injection
campaigns using the hardened BBS application software. In
this case, the application takes 8663 clock cycles, and the
amount of injected faults goes up to 16 million SEUs and 205
million SETs. Again, all errors in Set I are detected. Some of
these errors may be detected by software, if the software error
detection triggers earlier than the HM. By combining the HM
with software hardening for data errors, 92.0% of SEUs and
95.2 % of SETs are detected. The majority of the remaining
undetected errors correspond to faults injected outside of the
processor core, which are not covered by the proposed
approach. For instance, an error in the memory controller or
the bus controller may affect in a common way to duplicated
variables and therefore may not be detected by the hardened
software. Protection against these errors should be provided by
other means, which are outside the scope of this work.

TABLE III. FAULT INJECTION RESULTS (BBS WITH SW HARDENING)

Elements
Faults

injected
Errors

observed SDC Hang
Errors

detected

PC & IR (I) 2.997 M 767,712 0 0 767,712
(100%)

Other Regs
(II)

13.038 M 813,107 81,996
(10.1%)

45,195
(5.6%)

685,916
(84.4%)

All Regs 16.035 M 1,580,819 81,996
(5.2%)

45,195
(2.9%)

1,453,628
(92.0%)

Comb. logic
(SETs)

205.233 M 1,881,373 78,992
(4.2%)

10,448
(0.6%)

1,791,933
(95.2%)

The fault injection results for the Mmult application using

unhardened and hardened software are shown in Tables IV
and V, respectively. The Mmult application is more complex
and requires 6,143 clock cycles to complete for the
unhardened software case, and 14,788 clock cycles for the
hardened software case. Therefore, the amount of injected
faults increases to provide the same test coverage. The error
detection capabilities are very similar to the BBS application.
Again, the HM detects all errors in Set I and many of the
errors in Set II. For this software application, 93.4% of SEUs
and 96.9% of SETs were detected with a combination of the
HM and software hardening for data errors.

For the third application (AES), the fault injection results
are shown in Tables VI and VII using unhardened and
hardened software, respectively. The AES application has a
larger code, although it executes in less clock cycles, namely
4,377 clock cycles using unhardened software and 6,564 clock
cycles for the hardened software version. The error detection

capabilities are again similar to the other applications.

TABLE IV. FAULT INJECTION RESULTS (MMULT, UNHARDENED SW)

Elements
Faults

injected
Errors

observed SDC Hang
Errors

detected

PC & IR (I) 2,125 M 466,416 0 0 466,416
(100%)

Other Regs
(II)

9,245 M

599,949

264,051
(44.0%)

50,084
(8.3%)

285,814
(47.6%)

All Regs 11,371 M 1,066,365 264,051
(24.8%)

50,084
(4.7%)

752,230
(70.5%)

Comb. logic
(SETs)

145,533 M 1,495,468 436,119
(29.2%)

25,499
(1.7%)

1,033,850
(69.1%)

TABLE V. FAULT INJECTION RESULTS (MMULT WITH SW HARDENING)

Elements
Faults

injected
Errors

observed SDC Hang
Errors

detected

PC & IR (I) 5.11 M 1,173,644 0 0 1,173,328
(100%)

Other Regs
(II)

22.3 M 1,586,301 65,174
(4.1%)

117,046
(7.4%)

1,404,397
(88.5%)

All Regs 27.4 M 2,759,945 65,174
(2.4%)

117,046
(4.2%)

2,577,725
(93.4%)

Comb. logic
(SETs)

350.3 M 3,921,304 69,807
(1.8%)

50,633
(1.3%)

3,800,864
(96.9%)

TABLE VI. FAULT INJECTION RESULTS (AES, UNHARDENED SW)

Elements
Faults

injected
Errors

observed SDC Hang
Errors

detected

PC & IR (I) 1.514 M 833,840 0 0 833,840
(100%)

Other Regs
(II)

6,587M 610,326 321,583
(52.7%)

11,968
(2.0%)

276,775
(45.31%)

All Regs 8,102 M 1,444,166 321,583
(22.3%)

11,968
(0.8%)

1,110,615
(76.9%)

Comb. logic
(SETs)

103.701 M 1,017,164 324,243
(31.9%)

1,439
(0.1%)

691,482
(68.0%)

TABLE VII. FAULT INJECTION RESULTS (AES WITH SW HARDENING)

Elements
Faults

injected
Errors

observed SDC Hang
Errors

detected

PC & IR (I) 2,271 M 1,150,973 0 0 1,150,973
(100%)

Other Regs
(II)

9,879 M 762,482 107,390
(14.1%)

30,487
(4.0%)

624,605
(81.9%)

All Regs 12,150 M 1,913,455 107,390
(5.6%)

30,487
(1.6%)

1,775,578
(92.8%)

Comb. logic
(SETs)

155,511 M 1,336,025 78,167
(5.9%)

2,999
(0.2%)

1,254,859
(93.9%)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2014.2361953

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Finally, we performed several fault injection campaigns on
the register file. The purpose of these campaigns is to evaluate
the capability of the HM for error detection, even though
errors in the register file are data errors. The register file of
LEON3 consists of two RAM modules that implement the 8
register windows and the 8 global registers. The RAM
modules are commonly protected by using radiation-hardened
memory or using EDAC (Error Detection And Correction
codes). Otherwise, software fault tolerance techniques can be
used. For these campaigns we assumed that the RAM modules
are not protected except by the error detection mechanisms of
the HM and the implemented hardened software.

The results of the fault injection campaigns on the register
files for several software applications are summarized in Table
VIII. Again, we covered the full SEU space and injected SEUs
in every RAM bit and clock cycle. The first three rows show
the results for the BBS, Mmult and AES applications,
respectively, using the HM with unhardened software.
Although the injected faults produce data errors, the HM is
able to detect 30.8%, 42.8% and 38.0% of them, respectively.
These errors are mainly detected by the timeout and exception
handling features of the HM. The next three rows in Table
VIII show the results using hardened software versions. In
these cases, the error detection rate rises to 93.3%, 92.4% and
97.3, respectively. The reason why no full error detection is
achieved is that the compiler optimizes away some of the
redundant code used for error detection. Error detection can be
improved by reducing the compiler optimization level at the
expense of increasing the execution time. For instance, the
error detection rate in the Mmult application rises to 99.3% by
reducing the compiler optimization level to –O0, as shown in
the last row of Table VIII.

TABLE VIII. FAULT INJECTION RESULTS (REGISTER FILE)

Case
Faults

injected
Errors

observed SDC Hang
Errors

detected

BBS
HM

29.628 M 509,955 310,197
(60.8%)

42,467
(8.3%)

157,291
(30.8%)

Mmult
HM

53.469 M 1,413,124 580,597
(41.1%)

227,806
(16.1%)

604,721
(42.8%)

AES
HM

71.708 M 1,414,901 844,203
(59.7%)

32,470
(2.3%)

538,228
(38.0%)

BBS
HM+SW

75.403 M 2,626,626 175,623
(6.7%)

0
(0%)

2,451,003
(93.3%)

Mmult
HM+SW

128.715 M 1,510,704 49,016
(3.2%)

65,885
(4.4%)

1,395,803
(92.4%)

AES
HM+SW

107.538 M 3,479,705 22,668
(0.7%)

72,626
(2.1%)

3,384,411
(97.3%)

Mmult
HM+SW –O0

284.621 M 1,976,912

7,864
(0.4%)

6,040
(0.3%)

1,963,008
(99.3%)

When comparing the proposed approach with other related

works, several aspects must be taken into account. First of all,
many works usually only inject faults in some selected
locations and evaluate error detection in a limited part of the

microprocessor registers (typically some special registers such
as PC and IR, register file, and program and data memories)
[2], [6], [14]. However, this is not generally enough for
complex microprocessors, which usually have many additional
internal registers. On the other hand, most works provide very
small test coverage or use higher-level models of the
microprocessor in order to reduce the test effort.

An updated comparative between different hybrid
hardening techniques is shown in [26]. Only one approach in
this table can be fairly compared with this work in terms of
microprocessor complexity [10], because it shows results for
LEON3 and ARM microprocessors. Our work presents more
complete experimental results including SETs. In [10],
detection is accomplished by using two different
microprocessors running the very same software or only one
microprocessor using entire program duplication. Both
possibilities considerably increase detection latency and either
performance or area overheads. Although that approach
presents a good error detection rate, the large latency and
overheads that are obtained may not be acceptable in many
cases.

The extension of the injection campaigns is comparable to
[26]. However, the microprocessor used in that work
(PicoBlaze) is much simpler. As a matter of fact, the approach
used in [26] would produce poor results in the case of a
strongly pipelined processor such as LEON3. The differences
between the detection rate presented in this work and other
works are due to the implementation of the software hardening
techniques and the microprocessor architecture itself.

VI. CONCLUSIONS
This paper presents a novel hybrid approach for error

detection in microprocessors which is based on monitoring
and comparing the instruction flow at the input and at the
output of the microprocessor. The proposed technique is
intended for complex microprocessors with several pipeline
stages in which instructions can be corrupted as they move
into the pipeline of the processor. This technique has several
advantages with respect to previous approaches that use a
single observation point. Firstly, it does not require software
modifications or additional information to compare with.
Secondly, as the control-flow is observed at two different
points, just before and after instruction execution, it can detect
any error that happens in between.

Experimental results with LEON3 microprocessor
demonstrate that the proposed approach can achieve 100%
control-flow error detection. On the other hand, control-flow
errors account for the majority of errors. By complementing it
with software-based fault tolerance techniques, which are only
required for protection against data errors, a complete solution
against SEEs with reduced performance degradation and low
memory overhead can be obtained.

REFERENCES
[1] P. E. Dodd and L. W. Massengill, “Basic mechanism and modeling of

single-event upset in digital microelectronics,” IEEE Trans. Nucl. Sci.,
vol. 50, no. 3, pp. 583–602, Jun. 2003.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2014.2361953

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

[2] B. Nicolescu, Y. Savaria, and R. Velazco, “Software detection
mechanisms providing full coverage against single bit-flip faults,” IEEE
Transactions on Nuclear Science, vol. 51, no. 6, pp. 3510–3518, Dec.
2004.

[3] J. R. Azambuja, S. Pagliarini, L. Rosa, and F. L. Kastensmidt,
“Exploring the limitations of software-only techniques in SEE detection
coverage,” J. Electron. Test., no. 27, pp. 541–550, 2011.

[4] J. R. Azambuja, A. Lapolli, L. Rosa, F. L. Kastensmidt, “Detecting
SEEs in microprocessors through a non-intrusive hybrid technique”
IEEE Transactions on Nuclear Science, Vol. 58, no. 3, pp. 993-1000,
June 2011.

[5] J. R. Azambuja, M. Altieri, J. Becker, F. L. Kastensmidt. “HETA:
Hybrid Error-Detection Technique Using Assertions”. IEEE
Transactions on Nuclear Science, vol. 60, no. 4, pp. 2805-2812, Aug.
2013.

[6] Bernardi, P.; Sterpone, L.; Violante, M.; Portela-Garcia, M., "Hybrid
Fault Detection Technique: A Case Study on Virtex-II Pro's PowerPC
405," Nuclear Science, IEEE Transactions on , vol.53, no.6,
pp.3550,3557, Dec. 2006

[7] M. Grosso, M. Sonza Reorda, M. Portela-Garcia, M. Garcia-Valderas,
C. Lopez-Ongil, L. Entrena “An on-line fault detection technique based
on embedded debug features”, Proc. 16th IEEE On-Line Testing
Symposium, 2010, pp. 167-172.

[8] J. R. Azambuja, S. Pagliarini, M. Altieri, F.L. Kastensmidt, M. Hubner,
J. Becker, G. Foucard, R. Velazco. “A Fault Tolerant Approach to
Detect Transient Faults in Microprocessors Based on a Non-Intrusive
Reconfigurable Hardware”. IEEE Transactions on Nuclear Science, vol.
59, no. 4, pp. 1117-1124, Aug. 2012.

[9] Parra L., Lindoso A., Portela M., Entrena L., Restrepo-Calle F., Cuenca-
Asensi S., Martínez-Álvarez A.,”Efficient Mitigation of Data and
Control Flow Errors in Microprocessors”, 14th European Conference on
Radiation and Its Effects on Components and Systems (RADECS), 2013

[10] M. Portela-Garcia, M. Grosso, M. Gallardo-Campos, M. Sonza Reorda,
L. Entrena M. Garcia-Valderas, C. Lopez-Ongil. “On the use of
embedded debug features for permanent and transient fault resilience in
microprocessors”, Microprocessors and Microsystems, vol. 36, no. 5, pp.
334-343. July, 2012.

[11] L. Parra, A. Lindoso, M. Portela, L. Entrena, M. Grosso, M. Sonza
Reorda, “Control Flow Checking through Embedded Debug Interface”,
Proc. 26th

[12] R. Vemu, S. Gurumurthy and J. A. Abraham. “ACCE: Automatic
Correction of Control-flow Errors”. Proc. Int. Test Conf. (ITC), pp.
27.1-10, 2007.

 Conference on Design of Circuits and Integrated Systems, pp.
339-343, 2011.

[13] M. Nicolaidis, “Soft errors in modern electronic systems” Springer
2011.

[14] P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. Sonza
Reorda, M. Violante, “Experimentally evaluating an automatic approach
for generating safety-critical software with respect to transient errors”,
IEEE Transactions on Nuclear Science, Vol. 47, No. 6, 2000, pp. 2231-
2236.

[15] H. Engel, “Data Flow transformations to Detect Results which are
corrupted by hardware faults”, Proc. IEEE High-Assurance System
Engineering Workshop, 1997, pp. 279-285.

[16] M. Rebaudengo, M. S. Reorda, M. Torchiano, and M. Violante, “Soft
error detection through software fault-tolerance techniques,” in Proc.
IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems, 1999, pp.
210–218.

[17] A. Benso, S. Chiusano, P. Prinetto, L. Tagliaferri, “A C/C++ source-
tosource compiler for dependable applications”, Proceedings of the
IEEE International Conference on Dependable Systems and Networks,
2000, pp. 71-78.

[18] B. Nicolescu and R. Velazco, “Detecting soft errors by a purely software
approach: Method, tools and experimental results,” Proc. Design,
Automation and Test in Europe (DATE), pp. 57-63, 2003.

[19] E. Chielle, J. R. Azambuja, R. S. Barth, F. Almeida, F. L. Kastensmidt.
“Evaluating Selective Redundancy in Data-flow Software-based
Technique”. IEEE Transactions on Nuclear Science, vol. 60, no. 4, pp.
2768-2775, Aug. 2013.

[20] Z. Alkhalifa, V. S.S. Nair, N. Krishnamurthy, J.A. Abraham, “Design
and evaluation of System-Level Checks for On-line Control Flow Error
Detection”, IEEE Transactions on Parallel and Distributed Systems, vol
10, No. 6, 1999, pp.627–641.

[21] R. Vemu, J.A. Abraham, “CEDA: Control-Flow Error Detection through
Assertions”, Proc. 12th

[22] T. Michel, R. Leveugle, G. Saucier, “A New Approach to Control Flow
Checking Without Program Modification”, 21th International
Symposium on Fault-Tolerant Computing (FTCS-21), pp. 334-341,
1991

 IEEE International On-Line Testing Symposium
(IOLTS), pp. 151-158, 2006.

[23] S. Bergaoui and R. Leveugle, “IDSM: An improved control flow
checking approach with disjoint signature monitoring,” in Proc. Conf. on
Design of Circuits and Integrated Systems (DCIS) , 2009, pp. 249–
254W.

[24] Mansour, R. Velazco. “An Automated SEU Fault-Injection Method and
Tool for HDL-Based Designs”. IEEE Transactions on Nuclear Science,
vol. 60, no. 4, pp. 2728-2733, Aug. 2013.

[25] “GRLIB IP Core User´s Manual”. Version 1.0.22. Aeroflex Gaisler.
January 2010

[26] L. Parra, A. Lindoso, M. Portela, L. Entrena, F. Restrepo-Calle, S.
Cuenca-Asensi, A. Martinez-Alvarez. “Efficient Mitigation of Data and
Control Flow Errors in Microprocessors”. IEEE Transactions on Nuclear
Science, vol. 61, no.4, pp. 1590-1596, Aug. 2014.

[27] L. Entrena, M. Garcia-Valderas, R. Fernandez-Cardenal, A. Lindoso, M.
Portela Garcia, C. Lopez-Ongil, "Soft Error Sensitivity Evaluation of
Microprocessors by Multilevel Emulation-Based Fault Injection," IEEE
Transactions on Computers, pp. 313-322, March, 2012.

[28] L. Entrena, M. García-Valderas, R. Fernández-Cardenal, M. Portela, C.
López-Ongil. “SET Emulation Considering Electrical Masking Effects”.
IEEE Transactions on Nuclear Science, vol. 56, no. 4, pp. 2021-2025,
Aug. 2009.

[29] H. M. Quinn; D.A. Black, W.H. Robinson, S.P. Buchner. “Fault
Simulation and Emulation Tools to Augment Radiation-Hardness
Assurance Testing”. IEEE Transactions on Nuclear Science, vol. 60, no.
3, pp. 2119-2142, June 2013.

[30] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor”, 36th Proc. International
Symposium on Microarchitecture, pp. 29–40, Dec. 2003.

[31] IEEE-ISTO 5001–2003, ‘‘The Nexus 5001 Forum™ Standard for a
Global Embedded Processor Debug Interface’’, Version 2.0, 2003.

[32] R. Leveugle, A. Calvez, P. Maistri, P. Vanhauwaert, “Statistical fault
injection: quantified error and confidence”. Proc. Design, Automation &
Test in Europe (DATE'09), pp. 502-506, Apr. 2009.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2014.2361953

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Azambuja,%20J.R..QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Altieri,%20M..QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Becker,%20J..QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kastensmidt,%20F.L..QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Azambuja,%20J.R..QT.&searchWithin=p_Author_Ids:38229497800&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pagliarini,%20S..QT.&searchWithin=p_Author_Ids:38229172100&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Altieri,%20M..QT.&searchWithin=p_Author_Ids:37946011600&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kastensmidt,%20F.L..QT.&searchWithin=p_Author_Ids:37294370400&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hubner,%20M..QT.&searchWithin=p_Author_Ids:37300247900&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hubner,%20M..QT.&searchWithin=p_Author_Ids:37300247900&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Becker,%20J..QT.&searchWithin=p_Author_Ids:37270020100&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Foucard,%20G..QT.&searchWithin=p_Author_Ids:37540604200&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Velazco,%20R..QT.&searchWithin=p_Author_Ids:37274137600&newsearch=true�
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Gallardo=Campos:M=.html�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Buchner,%20S.P..QT.&newsearch=true�

