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Abstract—Hybrid error-detection techniques combine 

software techniques with an external hardware module that 
monitors the execution of a microprocessor. The external 
hardware module typically observes the control flow at the input 
or at the output of the microprocessor and compares it with the 
expected one. This paper proposes a new hybrid technique that 
monitors the control flow at both points and compares them to 
detect possible errors. The proposed approach does not require 
any software modification to detect control-flow errors. Fault 
injection campaigns have been performed on a LEON3 
microprocessor. The results show full control-flow error 
detection with no performance degradation and a small area 
overhead. A complete solution can be obtained by complementing 
the proposed approach with software fault-tolerance techniques 
for data errors. 

 

 
Index Terms—Microprocessors, SEEs, soft errors, fault 

tolerance, hybrid fault tolerance techniques 

I. INTRODUCTION 
S the semiconductor technology moves to smaller 
transistors and higher integration densities, more 

complex systems can be implemented in a cost-effective 
manner. At the same time, transistors become more 
susceptible to faults caused by highly energetic particles 
present in space or secondary particles such as alpha particles, 
generated by the interaction of neutron and materials at ground 
level. Non-destructive Single-Event Effects (SEEs), also 
known as soft errors, are an increasing concern for the 
reliability of complex digital systems. They occur when a 
particle strikes a node in a circuit and generates a transient 
voltage pulse that can propagate within the circuit [1]. When 
the transient pulse occurs in a memory element, such as a 
register, it is known as a Single-Event Upset (SEU). When the 
transient pulse occurs in a combinational element, the effect is 
known as a Single-Event Transient (SET).  

Microprocessor-based systems are increasingly used in 
many applications, including safety-critical and high 
availability ones in sectors such as automotive, biomedical and 
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aerospace. In these applications, the use of fault tolerance 
techniques is mandatory to detect or correct errors caused by 
SEEs. This requirement must be satisfied with minimum 
overheads in area, performance and power consumption. 
Moreover, due to the high effort involved in developing and 
qualifying a microprocessor and its associated tools, there is a 
growing interest in COTS (Commercial-Off-The-Shelf) 
microprocessors even though they may not have RadHard 
versions. In this case, conventional hardware-based fault 
tolerance techniques cannot be used and hardening must be 
implemented using software or hybrid techniques. 

Errors produced by SEEs in a microprocessor are usually 
divided into data errors and control-flow errors. If an error 
occurs in a register or memory position storing data, a wrong 
computation result may be obtained. If an error occurs in a 
control register, such as the program counter or the instruction 
register, the instruction flow may be corrupted and a wrong 
result may be produced or the processor may lose control and 
enter an infinite erroneous loop. Both types of errors can be 
detected using software techniques. Fault tolerance techniques 
based on software rely on adding extra instructions to the 
original program code to detect or correct faults [2]. Software-
based techniques provide high flexibility, low development 
time and low cost, since they can be implemented without 
modifying the hardware. However, software-based techniques 
cannot achieve full system protection against soft errors [3] 
and may produce large overheads in processing time and 
storage needs, particularly when designed to protect the 
microprocessor against control-flow errors [4],[5].  

Hybrid techniques [4]-[9] combine hardware and software 
fault-tolerance techniques in order to improve error detection 
and reduce the performance degradation that software 
techniques entail. Hybrid fault tolerance techniques typically 
consist in adding an external module, often known as a 
watchdog processor, to monitor the execution of instructions 
in the processor. To this purpose, the hardware monitor is 
connected to the bus between the memory and the 
microprocessor [4],[5],[8] or to the trace interface [7],[9],[10]. 
In the first case, the control flow is monitored at the first 
pipeline stage (instruction fetch), while in the second case the 
control flow is monitored at the last pipeline stage after the 
instruction has been executed. In order to check for the 
correctness of the control flow, additional information must be 
stored in the system, usually in the form of signatures or 
assertions which are embedded in the software and provided to 
the external monitor for checking [4]-[6]. Although these 
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techniques are effective, they usually introduce significant 
memory and performance overheads. For instance, [4] shows 
up to 61% performance overhead using signature-based 
techniques and [5] shows up to 34% performance overhead 
using assertions. The Program Counter (PC) Prediction 
technique [11] can perform some control-flow checks with no 
performance overhead, but it may result in low error detection 
for highly pipelined processors, such as LEON3. 

In this work we propose a new hybrid technique that uses a 
dual control-flow monitoring approach. The instruction flow 
of the microprocessor is captured both upstream at the bus 
between the memory and the microprocessor and downstream 
at the trace interface. If an error corrupts the instruction flow 
at any stage, it is detected by comparing the downstream 
instruction flow with the upstream instruction flow. On the 
other hand, errors in the generation of fetch addresses are 
detected using a PC Prediction technique. The proposed 
approach can detect all errors in the program counter and the 
instruction register at any of the pipeline stages. These include 
all control-flow errors, as described in [12]. It can also detect 
some data errors produced by corrupted instructions that 
generate wrong data or data addresses without affecting the 
control flow.  

Modern microprocessors have a pipeline of several stages. 
SEEs can occur at any stage provoking both data and control-
flow errors that cannot be easily detected with previously 
proposed techniques using a single monitoring point. Error 
detection is enhanced by using dual monitoring at the input 
and at the output of the instruction stream. A major advantage 
of the proposed approach is that it does not require any 
software modification and therefore it produces no 
performance degradation. By complementing it with software 
fault-tolerance techniques to cover data errors, a complete 
solution against SEEs with reduced performance degradation 
and low memory overhead is obtained. The proposed approach 
has been validated by fault injection using a LEON3 processor 
as a case study.  

The remaining of the paper is as follows. Section II 
summarizes related work. Section III describes the proposed 
dual control-flow monitoring approach. Section IV describes 
the software hardening approach used in this work to improve 
protection for data errors. Section V shows the fault injection 
experimental results obtained to validate the proposed 
approach. Finally, section VI presents the conclusions of this 
work. 

II. RELATED WORK 
Error detection in microprocessor-based systems has been 

studied thoroughly in the literature. Errors produced by SEEs 
in a microprocessor are usually divided into data errors and 
control-flow errors [13]. Techniques that deal with data errors 
check the data consistency in the system. The most common 
approaches are assertion-based techniques and duplication 
techniques.  

Assertion-based techniques insert additional statements in 
the code to check data correctness. These techniques are 
application-dependent and must be skillfully used, because the 

results are very sensitive to the contents and the location of the 
assertions in the program code.  

Duplication techniques use redundant computations with 
different levels of granularity: instruction, block of 
instructions, procedure or even the entire program [14],[15]. 
Instructions and data are commonly duplicated to create a 
redundant data flow. Error detection is accomplished by 
comparing the results of the two data flows as often as the 
selected level of granularity permits. These techniques can 
achieve high fault coverage. However, duplicated instructions 
increase the code size and decrease performance. Reducing the 
granularity of duplication typically contributes to reduce the 
overheads but it increases error detection latency. 

An example of duplication techniques can be found in [16]. 
This work proposes a set of transformation rules that can 
harden any high-level source code. Rules are split into data 
hardening and control-flow hardening rules. Data hardening 
rules duplicate all variables and check both copies after each 
write operation. Overheads can be reduced, as proposed in 
[17], [18], by applying duplication only to certain parts of the 
code.  

Techniques that detect control-flow errors check the 
consistency of the execution flow. In this field, a broad range 
of solutions can be found in the literature. An updated 
overview of these techniques can be found in [5]. The most 
common control-flow techniques utilize signatures [12],[19] 
or assertions [20],[21] which are embedded in the software.  

A common approach among control-flow checking 
techniques is based in dividing the program into Branch-free 
Blocks (BBs) and computing a signature for each executed 
BB. To detect errors, this signature is compared with the 
reference signature, which must be stored in the system for 
each possible BB. Alternatively, special instructions are 
inserted in the code to assert the beginning and end of each 
BB. The computation and checking of signatures or assertions 
usually introduce large overheads. On the other hand, control-
flow checking techniques have not yet achieved full fault 
tolerance [3], [5]. 

Hardware-based techniques use hardware modifications or 
hardware extensions for error detection. Non-intrusive 
approaches usually observe the microprocessor behavior from 
an available bus. Approaches in this field can vary 
substantially. Several works rely on a watchdog processor that 
executes a program concurrently with the main processor 
(active watchdog processor) [22], [23]. Other approaches use a 
passive watchdog processor that verifies the signatures or 
assertions stored internally or produced by the main processor. 
Active watchdog processors produce a higher overhead than 
passive ones. On the other hand, passive watchdog processors 
require complex software modifications and larger memory. 

Hybrid approaches combine the advantages of hardware and 
software approaches. In such scenario, the goal is to achieve 
good error coverage with the smallest additional hardware and 
a reduced performance decrease. Many different approaches 
can be found in the literature [4]-[9]. 

The use of the trace interface has recently been proposed as 
an alternative way to observe microprocessor execution 
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[7],[8],[24]. Modern microprocessors usually provide this type 
of interface for debugging purposes (Standard Nexus, class 2, 
3 and 4, [31]). As they are useless during normal operation, 
they can be easily reused for on-line monitoring in an 
inexpensive way. On the other hand, they can provide internal 
access to the microprocessor without disturbing it.  

III. DUAL CONTROL-FLOW MONITORING 
So far, hybrid approaches have been based on observing the 

microprocessor execution from a single suitable observation 
interface, which can be the memory bus or the trace interface. 
To detect control-flow errors, the observed control-flow 
information must be compared with the expected one. Storing 
and checking control-flow information usually introduces 
large overheads. 

The approach proposed in this work seeks to ensure 
efficient error mitigation with the smallest possible overhead. 
To achieve this goal, the observability of the system has been 
incremented by observing the system behavior in two different 
points of the instruction stream. One of the observation points 
is the memory or cache bus. This bus provides information of 
the program counter (PC) and the instruction code (opcode 
and operands) at the fetch stage, just when the instruction is 
loaded in the microprocessor. 

The second observation point is the instruction trace 
interface, which provides the most relevant information of 
each executed instruction, including the program counter (PC), 
instruction code (opcode and operands), time tag, and trap and 
error flags [25]. This information is provided just after the 
instruction is executed. In the case of LEON3, which has 7 
pipeline stages (fetch, decode, register access, execute, 
memory, exception and write back), the information in the 
trace interface corresponds to the exception stage. The trace 
interface can be accessed without affecting the normal 
operation of the processor or adding any performance 
penalties. Moreover, the use of the trace interface as an 
observation point does not interfere with the possible use of 
the trace interface for debugging purposes. 

Once an instruction is loaded from the memory, the 
instruction information travels along the microprocessor data 
path and is used in each stage to drive the operation of the 
microprocessor. An error which occurs in the PC or the 
instruction register (IR) at any stage will be finally observed at 
the trace interface and can be detected by comparing the trace 
interface output with the upstream information collected at the 
fetch stage. Notwithstanding, an error in the PC at the fetch 
stage may not be detected because it is issued by the 
microprocessor. When such an error occurs, both observation 
points (memory bus and trace interface) provide the very same 
information, but it is erroneous. To improve the detection 
capabilities including those errors, a PC prediction technique 
is used [11].  

PC prediction is a control-flow checking approach that 
consists on predicting the next PC value by checking the 
opcode and the present PC value. The predicted PC value is 
then compared with the PC value of the next executed 
instruction. If there is any difference between both PCs, an 

error in the program flow is detected. The opcode of every 
new instruction executed is checked. If the opcode 
corresponds with a branch instruction, the PC must be 
incremented either by the branch offset if the branch is taken, 
or by the instruction size if the branch is not taken. For a non-
branch instruction, the PC must be incremented by the 
instruction size. The trace interface provides the information 
required by the PC Prediction technique just after the 
instruction is executed.  

A dedicated Hardware Monitor (HM) module has been 
designed to implement the proposed approach. Fig. 1 shows 
the HM observation points and Fig. 2 shows the internal 
structure of the HM. There is an interface for each observation 
point and a block for each implemented technique. The control 
block is responsible for the correct behavior of the different 
blocks and interfaces.  

The information provided at the two observation points 
must be synchronized for a correct comparison. To this 
purpose, upstream data are stored in an input buffer with a size 
equal to the number of pipeline stages of the processor. When 
a new instruction appears in the memory bus at the fetch stage, 
the HM catches the opcode and the PC of the instruction and 
stores them in the input buffer. Then, every new instruction 
provided by the trace interface is compared with the 
instruction stored in the input buffer in order of appearance. It 
must be noted that the error detection latency is minimal, 
because an error can be detected as soon as the executed 
instruction appears at the trace interface. 

 

 
 
Figure 1. Hardware monitor observation points 

 
 

 
 
Figure 2. Internal architecture of the Hardware Monitor. 
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In addition to instruction comparison and PC prediction, the 
control module of the hardware monitor also checks the time 
tag and the trap and error flags provided in the trace interface. 
The trace interface time tag is the output of an internal counter 
inside the processor that is incremented each clock cycle as 
long as the processor is running. A timeout condition is set to 
cope with the case the processor hangs in a particular 
instruction. The timeout condition activates the error signal if 
the time tag advances without issuing new instructions for a 
long period of time.  

The trap and error flags provided by the trace interface are 
used for exception handling. To implement exception handling 
it is important to differentiate between fault-induced 
exceptions, which may be caused by an SEE, and 
implemented exceptions, which are expected to occur under 
normal execution. The HM uses the trace interface flags to 
detect fault-induced exceptions that cause an unexpected trap 
or the processor entering error mode. Unexpected traps can be 
caused in several ways, such as invalid instructions or invalid 
memory addresses. They can be differentiated from 
implemented traps by checking the next instruction provided 
by the trace interface. The trap signal of Fig. 2 triggers when 
an unexpected trap occurs or the processor enters error mode. 

The HM can be implemented with small hardware overhead 
since it does not require storing information obtained at 
compilation time. The proposed module can work with the 
observed information without disturbing the normal 
microprocessor behavior. Moreover, the HM can detect 
control-flow errors without any specific support from the 
application software.  

IV. DATA HARDENING 
Section III proposes a Hardware Monitor (HM) that is able 

to detect control-flow errors by comparing the information 
provided by the memory bus and the trace interface. However, 
data errors are not covered by the proposed approach. To 
achieve full error coverage, it is necessary to protect data as 
well as control-flow. 

We have used software-based data hardening to lessen the 
impact of data-flow hardening in the HM. Hardware-based 
data-flow hardening requires additional connections to the 
microprocessor architecture that are not easily available. 
Another drawback of the hardware implementations is the area 
increase. Data hardening techniques require instruction re-
execution with the corresponding additional storage. 

Several software data hardening techniques have been 
proposed in the literature [13]. For complementing the 
proposed HM with software data hardening techniques we 
have selected a combination of two techniques: 

• Total data-flow duplication, based in [14] and [16]. 
• Inverted branches, based in [8]. 

Total data-flow duplication duplicates all the software data 
and compares both data flows whenever a write operation is 
performed. When a discrepancy between the two data flows 
appears, an error is detected. This method achieves good data 
error coverage but increments code size and decreases 
performance. In order to reduce the performance penalty as 

well as the code size, the checking points of the code were 
reduced as proposed by [18]. In [18] the whole data flow is 
duplicated but only certain variables (final variables) are 
checked. A similar approach can be found in [8] where the 
number of checks is varied depending on the system 
requirements. This approach maintains the data integrity as 
every operation is performed twice but checking instructions 
are considerably reduced, at the expense of some acceptable 
increase in the error detection latency, i.e., the time between 
an error occurs and it is detected. 

Another software hardening technique has been applied to 
our code in order to detect errors in conditional branches. In a 
conditional branch, errors may appear in the evaluation of the 
condition codes or in the condition codes themselves, resulting 
in the branch incorrectly taken or not taken. The technique 
called “inverted branches” [8] was used to detect errors in 
conditional branches. This technique reevaluates the branch 
condition in two locations. When the branch is taken, the 
branch instruction is repeated with an inverted condition. 
Additionally, when the branch is not taken the branch 
instruction is simply repeated. The objective of this technique 
is to repeat the evaluation of the condition codes. If the 
repeated evaluation does not produce the same result, an error 
is detected. 

In our work all the software hardening techniques have been 
applied directly in high-level source code. 

V. FAULT INJECTION EXPERIMENTAL RESULTS 
The proposed technique has been implemented and 

validated on a system based on the LEON3 processor. The 
LEON3 processor implements the full SPARC V8 standard 
and it is widely used in space applications. The LEON3 core 
has the following main features [25]: 7-stage pipeline with 
Harvard architecture, separate instruction and data caches, 
hardware multiplier and divider, on-chip debug support and 
multiprocessor extensions. The register file is divided in a 
configurable number of register windows, so that at any one 
instant a program sees 8 global integer registers plus a 24-
register window. The number of register windows is 
implementation-dependent and can be configured within the 
limit of the SPARC standard (2-32), with a default setting of 
8.  

A basic configuration has been built to perform a fault 
injection campaign. The system configuration includes one 
LEON3 integer unit with 8 register windows, instruction and 
data caches (2 kB each), instruction trace interface, interrupt 
controller, system bus (AMBA), memory controller and 
general purpose input/output. The memory controller can 
drive external RAM and ROM where code and data are stored. 
It must be noted that this system includes several components, 
besides the LEON3 processor core, that are typically needed 
to interface the processor. Hardening these components is 
beyond the scope of this work. However, they have been kept 
in the system because in practice it is very difficult to clearly 
distinguish them from the LEON3 processor hardware. 

The HM logic area is about 22% the LEON3 logic area, 
excluding the memories that implement the register file. Table 
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I shows the synthesis results for a 90 nm technology. It must 
be noted that the utilized LEON3 configuration is minimal. 
Upgrading LEON3 with additional modules does not modify 
the HM architecture and does not increase HM area. 

 
TABLE I. SYNTHESIS RESULTS 

 #Gates #FFs Area(um2 Memory ) 
LEON3 7,185 1,851 116,881 16Kb 
HM 1,230 399 27,613 512b 

 
Three software applications have been used for testing. The 

first one, (BBS), implements the Bubble Sort algorithm for a 
vector of 15 values. The second one, (Mmult), implements a 
5x5 matrix multiplication. The third one, (AES), implements 
the AES encryption algorithm. In all cases, intermediate 
computation results are frequently sent to a parallel output 
port, where they can be checked during the fault injection 
process. All algorithms were developed in C and compiled 
with GCC using –O2 optimization option. To better 
demonstrate the capabilities of our approach, the experiments 
were first conducted with an unhardened version of the 
application software, as given by the compiler with no further 
manipulation to harden it. Then, the experiments were 
repeated with a software version that is hardened for data 
errors as described in section IV. The hardened software 
version was also developed in C and compiled with the same 
options. 

In the experiments, we adopted the same approach as in 
[24] and [26] to evaluate the error detection capabilities. We 
estimate the global error rate using fault injection. The 
dynamic cross-section can then be calculated as the product of 
the static cross-section and the estimated global error rate. 
Because the static cross-section is the same for the hardened 
and unhardened versions of the circuit, relative comparisons 
can be made in terms of the global error rate. Moreover, fault 
injection allows us to perform a more detailed error analysis. 

To obtain the global error rate, we used the AMUSE tool 
[27], [28]. This tool is an emulation-based fault injection 
system that can cover both SEU and SET, including logical, 
latch-window and electrical masking effects. It also provides 
very high performance, which enables very large fault 
injection campaigns to be executed in a short time. With 
respect to test coverage, as described in [29], AMUSE 
typically provides 100% coverage of expected radiation test 
results with respect to fault locations, input vectors and clock 
cycles of operation for small or medium-size test cases.  

Fault injection campaigns were conducted for SEUs and 
SETs. For SEU experiments, we injected SEUs in every flip-
flop and clock cycle, covering the full SEU space of the 
application. For SET experiments, we injected faults at several 
random instants within every clock cycle for every gate and 
with a pulse width of 10% of the clock period, using the 
approach described in [28].  

In the experiments, errors were classified in several 
categories, following the terminology proposed in [30]. Errors 
that are not detected by either the HM or hardened software 
are classified as Silent Data Corruption (SDC) or Hang. An 

error is classified as SDC as soon as an erroneous output is 
observed at the output port. An error is classified as Hang if no 
new values are observed at the output port for a long time, 
which indicates the processor may be lost. To this purpose, we 
have established a timeout condition with some extra clock 
cycles that allows for the correct completion of the 
computation. An error is classified as Hang if the timeout 
condition is overtaken. Note that a Hang error can be produced 
by a control-flow error (e.g., an incorrect jump) or by a data 
error (e.g., an error in the index of a loop that prevents the 
program from finishing in due time).  

Tables II to VII summarize the results of the fault injection 
campaigns with the HM for the three selected software 
applications with unhardened and hardened software versions. 
The internal registers of the LEON3 have been divided in two 
sets: Set I includes the PC & IR for all stages (346 FFs) and 
Set II includes the remaining registers (1,505 FFs). The first 
three rows in the tables show the results of SEU fault injection 
for the sets I and II, and all the registers, respectively. The last 
row shows the results of SET fault injection. From left to 
right, each table shows the number of injected faults, the total 
amount of observed errors and the classification of errors as 
SDC, Hang or Detected by the HM. The percentage of errors 
in each category with respect to the total amount of observed 
errors is provided in brackets.  

Errors reported in the tables are true errors, i.e., errors that 
produce a wrong observable behavior. False errors, such as 
those that can happen in the hardware monitor, have not been 
included. The effect of a false error is to trigger an 
unnecessary error recovery action. For low error rates, the 
impact of some sporadic error recovery action is negligible. 
Otherwise, the hardware module can be hardened to reduce 
the chance of false errors. 

As shown in Table II, the unhardened Bubble Sort 
algorithm takes 3,404 clock cycles. Therefore, we have 
injected 3,404 SEUs per flip-flop, up to 6,3 million SEUs in 
total. We have also injected 10,234 SETs per combinational 
node, up to 80,6 million SETs in total. Taking into account the 
large amount of injected faults, the error margin is smaller 
than 0.1% with 95% confidence [31]. 

 
TABLE II. FAULT INJECTION RESULTS (BBS, UNHARDENED SW) 

 

Elements 
Faults 

injected 
Errors 

observed SDC Hang 
Errors 

detected 

PC & IR (I) 1.177 M 343,278 0 0 343,278 
(100%) 

Other Regs 
(II) 

5.123 M 361,307 167,192 
(46.3%) 

36,764 
(10.2%) 

157,351 
(43.6%) 

All Regs 6.301 M 704,585 167,192 
(23.7%) 

36,764 
(5.2%) 

500,629 
(71.1%) 

Comb. logic 
(SETs) 

80.649 M 777,634 258,768 
(33.3%) 

24,579 
(3.2%) 

494,287 
(63.6%) 

 
 
The proposed approach is able to detect 100% of the errors 

in Set I and many of the errors in Set II. Although Set I is 
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much smaller than Set II, it accounts for about half of the total 
observed errors. This is because the PC and IR registers are 
very critical. In particular, Set I accounts for all control-flow 
errors [12]. Errors in other registers (Set II) may produce a 
wide variety of effects, but they can also be detected by the 
HM if they eventually produce a control-flow error, invalid 
addresses, infinite loops, etc. The HM is also able to detect a 
similar percentage of errors caused by SETs. 

Table III summarizes the results of the fault injection 
campaigns using the hardened BBS application software. In 
this case, the application takes 8663 clock cycles, and the 
amount of injected faults goes up to 16 million SEUs and 205 
million SETs. Again, all errors in Set I are detected. Some of 
these errors may be detected by software, if the software error 
detection triggers earlier than the HM. By combining the HM 
with software hardening for data errors, 92.0% of SEUs and 
95.2 % of SETs are detected. The majority of the remaining 
undetected errors correspond to faults injected outside of the 
processor core, which are not covered by the proposed 
approach. For instance, an error in the memory controller or 
the bus controller may affect in a common way to duplicated 
variables and therefore may not be detected by the hardened 
software. Protection against these errors should be provided by 
other means, which are outside the scope of this work. 

 
TABLE III. FAULT INJECTION RESULTS (BBS WITH SW HARDENING) 

 

Elements 
Faults 

injected 
Errors 

observed SDC Hang 
Errors 

detected 

PC & IR (I) 2.997 M 767,712 0 0 767,712 
(100%) 

Other Regs 
(II) 

13.038 M 813,107 81,996 
(10.1%) 

45,195 
(5.6%) 

685,916 
(84.4%) 

All Regs 16.035 M 1,580,819 81,996 
(5.2%) 

45,195 
(2.9%) 

1,453,628 
(92.0%) 

Comb. logic 
(SETs) 

205.233 M 1,881,373 78,992 
(4.2%) 

10,448 
(0.6%) 

1,791,933 
(95.2%) 

 
 
The fault injection results for the Mmult application using 

unhardened and hardened software are shown in Tables IV 
and V, respectively. The Mmult application is more complex 
and requires 6,143 clock cycles to complete for the 
unhardened software case, and 14,788 clock cycles for the 
hardened software case. Therefore, the amount of injected 
faults increases to provide the same test coverage. The error 
detection capabilities are very similar to the BBS application. 
Again, the HM detects all errors in Set I and many of the 
errors in Set II. For this software application, 93.4% of SEUs 
and 96.9% of SETs were detected with a combination of the 
HM and software hardening for data errors. 

For the third application (AES), the fault injection results 
are shown in Tables VI and VII using unhardened and 
hardened software, respectively. The AES application has a 
larger code, although it executes in less clock cycles, namely 
4,377 clock cycles using unhardened software and 6,564 clock 
cycles for the hardened software version. The error detection 

capabilities are again similar to the other applications.  
 

TABLE IV. FAULT INJECTION RESULTS (MMULT, UNHARDENED SW) 
 

Elements 
Faults 

injected 
Errors 

observed SDC Hang 
Errors 

detected 

PC & IR (I) 2,125 M 466,416 0 0 466,416 
(100%) 

Other Regs 
(II) 

9,245 M 
 

599,949 
 

264,051 
(44.0%) 

50,084 
(8.3%) 

285,814 
(47.6%) 

All Regs 11,371 M 1,066,365 264,051 
(24.8%) 

50,084 
(4.7%) 

752,230 
(70.5%) 

Comb. logic 
(SETs) 

145,533 M 1,495,468 436,119 
(29.2%) 

25,499 
(1.7%) 

1,033,850 
(69.1%) 

 
 
TABLE V. FAULT INJECTION RESULTS (MMULT WITH SW HARDENING) 

 

Elements 
Faults 

injected 
Errors 

observed SDC Hang 
Errors 

detected 

PC & IR (I) 5.11 M 1,173,644 0 0 1,173,328 
(100%) 

Other Regs 
(II) 

22.3 M 1,586,301 65,174 
(4.1%) 

117,046 
(7.4%) 

1,404,397 
(88.5%) 

All Regs 27.4 M 2,759,945 65,174 
(2.4%) 

117,046 
(4.2%) 

2,577,725 
(93.4%) 

Comb. logic 
(SETs) 

350.3 M 3,921,304 69,807 
(1.8%) 

50,633 
(1.3%) 

3,800,864 
(96.9%) 

 
 

TABLE VI. FAULT INJECTION RESULTS (AES, UNHARDENED SW) 
 

Elements 
Faults 

injected 
Errors 

observed SDC Hang 
Errors 

detected 

PC & IR (I) 1.514 M 833,840 0 0 833,840 
(100%) 

Other Regs 
(II) 

6,587M 610,326 321,583 
(52.7%) 

11,968 
(2.0%) 

276,775 
(45.31%) 

All Regs 8,102 M 1,444,166 321,583 
(22.3%) 

11,968 
(0.8%) 

1,110,615 
(76.9%) 

Comb. logic 
(SETs) 

103.701 M 1,017,164 324,243 
(31.9%) 

1,439 
(0.1%) 

691,482 
(68.0%) 

 
TABLE VII. FAULT INJECTION RESULTS (AES WITH SW HARDENING) 

 

Elements 
Faults 

injected 
Errors 

observed SDC Hang 
Errors 

detected 

PC & IR (I) 2,271 M 1,150,973 0 0 1,150,973 
(100%) 

Other Regs 
(II) 

9,879 M 762,482 107,390 
(14.1%) 

30,487 
(4.0%) 

624,605 
(81.9%) 

All Regs 12,150 M 1,913,455 107,390 
(5.6%) 

30,487 
(1.6%) 

1,775,578 
(92.8%) 

Comb. logic 
(SETs) 

155,511 M 1,336,025 78,167 
(5.9%) 

2,999 
(0.2%) 

1,254,859 
(93.9%) 
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Finally, we performed several fault injection campaigns on 
the register file. The purpose of these campaigns is to evaluate 
the capability of the HM for error detection, even though 
errors in the register file are data errors. The register file of 
LEON3 consists of two RAM modules that implement the 8 
register windows and the 8 global registers. The RAM 
modules are commonly protected by using radiation-hardened 
memory or using EDAC (Error Detection And Correction 
codes). Otherwise, software fault tolerance techniques can be 
used. For these campaigns we assumed that the RAM modules 
are not protected except by the error detection mechanisms of 
the HM and the implemented hardened software. 

The results of the fault injection campaigns on the register 
files for several software applications are summarized in Table 
VIII. Again, we covered the full SEU space and injected SEUs 
in every RAM bit and clock cycle. The first three rows show 
the results for the BBS, Mmult and AES applications, 
respectively, using the HM with unhardened software. 
Although the injected faults produce data errors, the HM is 
able to detect 30.8%, 42.8% and 38.0% of them, respectively. 
These errors are mainly detected by the timeout and exception 
handling features of the HM. The next three rows in Table 
VIII show the results using hardened software versions. In 
these cases, the error detection rate rises to 93.3%, 92.4% and 
97.3, respectively. The reason why no full error detection is 
achieved is that the compiler optimizes away some of the 
redundant code used for error detection. Error detection can be 
improved by reducing the compiler optimization level at the 
expense of increasing the execution time. For instance, the 
error detection rate in the Mmult application rises to 99.3% by 
reducing the compiler optimization level to –O0, as shown in 
the last row of Table VIII. 

 
TABLE VIII. FAULT INJECTION RESULTS (REGISTER FILE) 

 

Case 
Faults 

injected 
Errors 

observed SDC Hang 
Errors 

detected 

BBS 
HM 

29.628 M 509,955 310,197 
(60.8%) 

42,467 
(8.3%) 

157,291 
(30.8%) 

Mmult  
HM 

53.469 M 1,413,124 580,597 
(41.1%) 

227,806 
(16.1%) 

604,721 
(42.8%) 

AES 
HM 

71.708 M 1,414,901 844,203 
(59.7%) 

32,470 
(2.3%) 

538,228 
(38.0%) 

BBS  
HM+SW 

75.403 M 2,626,626 175,623 
(6.7%) 

0 
(0%) 

2,451,003 
(93.3%) 

Mmult 
HM+SW 

128.715 M 1,510,704 49,016 
(3.2%) 

65,885 
(4.4%) 

1,395,803 
(92.4%) 

AES 
HM+SW 

107.538 M 3,479,705 22,668 
(0.7%) 

72,626 
(2.1%) 

3,384,411 
(97.3%) 

Mmult 
HM+SW –O0 

284.621 M 1,976,912 
 

7,864 
(0.4%) 

6,040 
(0.3%) 

1,963,008 
(99.3%) 

 
 
When comparing the proposed approach with other related 

works, several aspects must be taken into account. First of all, 
many works usually only inject faults in some selected 
locations and evaluate error detection in a limited part of the 

microprocessor registers (typically some special registers such 
as PC and IR, register file, and program and data memories) 
[2], [6], [14]. However, this is not generally enough for 
complex microprocessors, which usually have many additional 
internal registers. On the other hand, most works provide very 
small test coverage or use higher-level models of the 
microprocessor in order to reduce the test effort. 

An updated comparative between different hybrid 
hardening techniques is shown in [26]. Only one approach in 
this table can be fairly compared with this work in terms of 
microprocessor complexity [10], because it shows results for 
LEON3 and ARM microprocessors. Our work presents more 
complete experimental results including SETs. In [10], 
detection is accomplished by using two different 
microprocessors running the very same software or only one 
microprocessor using entire program duplication. Both 
possibilities considerably increase detection latency and either 
performance or area overheads. Although that approach 
presents a good error detection rate, the large latency and 
overheads that are obtained may not be acceptable in many 
cases.  

The extension of the injection campaigns is comparable to 
[26]. However, the microprocessor used in that work 
(PicoBlaze) is much simpler. As a matter of fact, the approach 
used in [26] would produce poor results in the case of a 
strongly pipelined processor such as LEON3. The differences 
between the detection rate presented in this work and other 
works are due to the implementation of the software hardening 
techniques and the microprocessor architecture itself. 

VI. CONCLUSIONS 
This paper presents a novel hybrid approach for error 

detection in microprocessors which is based on monitoring 
and comparing the instruction flow at the input and at the 
output of the microprocessor. The proposed technique is 
intended for complex microprocessors with several pipeline 
stages in which instructions can be corrupted as they move 
into the pipeline of the processor. This technique has several 
advantages with respect to previous approaches that use a 
single observation point. Firstly, it does not require software 
modifications or additional information to compare with. 
Secondly, as the control-flow is observed at two different 
points, just before and after instruction execution, it can detect 
any error that happens in between.  

Experimental results with LEON3 microprocessor 
demonstrate that the proposed approach can achieve 100% 
control-flow error detection. On the other hand, control-flow 
errors account for the majority of errors. By complementing it 
with software-based fault tolerance techniques, which are only 
required for protection against data errors, a complete solution 
against SEEs with reduced performance degradation and low 
memory overhead can be obtained. 
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