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Preface

The purpose of this document is to provide study material that can be used
for independent study by the students of the subject ’Data Structures and Al-
gorithms’. We have tried to write it in a student-friendly way that encourages
students to learn as well as enjoy.

The document reviews the main concepts of the subject providing clear
examples to help students. Each chapter also proposes a set of exercises to
reinforce students’ knowledge. Most of the information has been sourced from
the books [?, ?].

Chapter 1 introduces the concepts of data structure and algorithm and pro-
vides some advices to achieve a good design sw.

Chapter 2 introduces analysis of algorithms.
Chapter 3 does not cope with any data structure in particular, but rather

presents the concept of recursivity.
Chapter 4 reviews the main linear data structures: lists, stacks and queues.
Chapter 5 introduces the tree abstract data type, the tree traversal algo-

rithms, binary trees, binary search trees and AVL trees.
Chapter 6 introduces the tree abstract data type, the tree traversal algo-

rithms, binary trees, binary search trees and AVL trees.
Chapter 7 presents binary search trees.
Chapter 8 reviews AVL trees.
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Chapter 1

Introduction

This chapter presents concepts like data structures and algorithms.
How do you usually resolve a problem (for example, to check if a number is

primer or not, or to cook a cake)?. Firstly, you must define and understand
the problem. (=Analysis). Then, you must design a set of steps or operations
to solve it. (=Algorithms). Finaly, you must try that these steps achieve to
solve it (=Tests). If the solution is a sw program, you must translate these
instructions (algorithms) from natural language to a programming language in
order to the computer can run them (=implementation). Also, we must check
that the solution works well (=tests) and must correct the errors. Finally, the
end users must use the program.

Therefore, to resolve a problem, the first step is to define a set of instructions
for solving it. An algorithm is a finite set of instructions for solving a problem.

Rather than an algorithm, we need to design the more suitable way of orga-
nizing the data of the problem. A data structure is a particular way of storing
and organizing data in a computer so that it can be used efficiently. When you
design a program for a given problem, you must find the data structure more
efficient to resolve it. The algorithm for calculating the multiple numbers of 2
is very easy, but What data structure must you use to calculate and store them?
and for storing the names of the students in your course?. If you must develop
a program that resolves these problems, you just use an array to store them.
However, if you must develop a program that allows you to easily create and
manage your family tree (or any taxonomy), you should use a tree. The choice
of a data structure is often a fairly difficult one. It must always be taken based
on the operations that are to be performed on the data.

Do you dare to solver your first problem. Please, write an algorithm to
calculate the maximum of two numbers. You can use the java language or
pseudocode to write it. After, you can compare your solution with the proposed
one in Figure 1.1.

Now we are trying to solve a more difficult problem. Given an array of
integers with n elements which range from 0 to n without any repition, find the
number that does not occur in the array.

1
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Figure 1.1: Java implementation of an algorithm to show the maximum and
minimum elements in an array. To test the method, the main method randomly
create an array of 100 integer numbers

It is clear that if elements in the array can range from 0 to n, every element
can take n+1 different values, however the array can only also store n elements.
For example, if n=4, for the array is 0,1,3,4, then 2 is the number.

It is very easy. Add the numbers from 0 to n. Add the elements in the array
(a[0]+. . . +a[n-1]). The final solution is the difference between those numbers
(see Figure 1.2).

Now, given a number N, define an algorithm to look for the the prime number
from 0 to N. The basic idea is to create an array of N elements and set it with
the numbers from 1 to N. The algorithm traverse the array seting to 0 those
elements that are not prime numbers. When an element is divisible by some
of the previous elements in the array (!=0) is not a primer number and must
is set to 0 (see Figure 1.3). You can find a detail description of this algorithm
Sieve of Eratosthenes.

Of course, you have already known some data structures (such as String,
Integer, Long, Boolean, etc (they are primitive types) or arrays), so the goal is
this course is to present more complex data structures like lists, stacks, queues,
trees, and graphs, which are very useful to resolve different problems. You can
use and combine them to resolve complex problems.

2
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Figure 1.2: Given an array of integers with n elements which range from 0 to
n without any repition, find the number that does not occur in the array.

1.1 Exercises

You must research on the following concepts: Top-Down Design, Abstraction
and Encapsulation. Sum the up and write examples that help to understand
these concepts.

3



Figure 1.3: Java implementation of the Sieve of Eratosthenes algorithm that
shows the first prime numbers from 0 to N.
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Chapter 2

Algorithm Analysis

Most of the information has been sourced from the books [?, ?].

2.1 Introduction

In mathematics and computer science, an algorithm is an effective method for
solving a problem, expressed as a pre-written set of well-defined, ordered and
finite instructions and rules. We can use a more-or-less formal language, such as
natural language, pseudocode, or a programming language like Java, to express
these algorithms.

For example, if we want to calculate the summation of the first N integers,
we start with a result value of 0, then loop from 1 to N, and for each value i,
we add i to the result. In Java, we write this as:

static long func1(int n) {
long sum=0;
for (int i=1; i¡=n; ++i) sum += i;
return sum;

}

We are used to deal with algorithms in our life: if we want to look for a word
in a dictionary, we usually open the dictionary by the middle, then search again
in the first or the second half depending on the alphabetical order, and so on,
or we can look at every page in order until we find the page that contains our
word, which is obviously less efficient.

In Mathematics, we can use (at least) two methods for calculating the list
of prime numbers (any number that can only be divided by 1 and itself) that
are less than N : we can iterate over odd numbers (and, for each candidate,
test it against all prime numbers less tham or equal its square root), or we can
use the more complex but more efficient Sieve of Eratosthenes algorithm (see

5



the Wikipedia article1). The following list of steps describes the Eratosthenes’
algorithm:

1. Create an array of integers containing the values from 2 to n: (2, 3, 4, ...,
n).

2. Set a variable x to 2 (which is the first firme number)

3. Traverse the array from x to N, setting all multiples of x to 0.

4. The following number after x and greater than 0, is the next prime. Then,
set the variable x to this number.

5. Repeat the 3-4 steps until x2 is greater than n.

At the end, the non-cero elements in the array are the prime numbers from
0 to n.

We will use these examples in this chapter to illustrate the concepts shown.

2.2 Algorithm analysis

Most algorithms are designed to deal with problems that have variable sized
inputs: this input size can determine the amount of resources the algorithm
consumes until it completes. Typically, an algorithm can consume two types of
resources for its completion: time, and storage (memory or disk space). Algo-
rithm analysis tries to determine the amount of resources needed to execute it,
in the form of a function related to the input size of the algorithm.

Taking a look at the first example mentioned in the introduction, analyzing
the summation algorithm would result in counting the number of times each
simple instruction is executed:

static long func1(int n) {
long sum=0; → 1
for (int i=1; i�n; i++) → i=1:1 ; i�n:n+1 ; i++:n

sum += i; → n
return sum; → 1

}

Thus, given n, this algorithm will execute a total of

1 + 1 + (n+ 1) + n+ n+ 1 = 3n+ 4 (2.1)

single instructions; if c is the time it takes to execute the longest instruction,
then the running time of or algorithm will be, at most, c(3n+4). Let us suppose
c=1 millisecond; then the running time will be (3n+4) milliseconds.

1http://en.wikipedia.org/wiki/Sieve of Eratosthenes
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Similarly, we can easily see that searching time in a dictionary is always
limited, whichever the chosen algorithm, by a multiple of the dictionary size.
Being N the number of pages in the dictionary, if we iterate through all the
pages, it is obvious that we will need to look at the whole set of N pages if the
searched word is in the last one. But if we divide the dictionary in halfs, we will
only need to open the dictionary a few times; i n fact, doubling the dictionary
size will result in one page looked more. We can then infer that running time
will be limited by a multiple of log2N. This is not relevant if a dictionary had a
few pages, but becomes an important issue for huge dictionaries.

When we estimate running time, we have to be aware that we can be lucky
and find the searched word in the page we open the dictionary by at the first
try (best case), but we can also be unlucky and not find the word until the last
page (worst case), so maybe we want to study an average case.

When calculating prime numbers, there are no best and worst case scenarios;
running time will only depend on N. But, in this case, running time won’t be
limited by a multiple of N, as the bigger the number we are checking, the longer
it will take to check if it’s prime (checking if an odd number i is prime might
need

√
i/2 iterations, so running time for each i will be limited by a multiple

of
√
i). Therefore, the overall running time will be limited by a multiple of√

1+
√
2+

√
3+

√
5+

√
7+

√
11+ . . .

√
N , which is limited by a multiple of NN.

2.3 Performance versus Memory

Though memory space (or disk space, if we are talking about, for example, a
database) is an almost unlimited resource in modern computing, it can still be
an issue for some algorithms. For example, an algorithm for a computer that
plays chess might need to store all the possible moves it has studied.

Sometimes, the same problem can be solved by an algorithm that penalizes
performance and an algorithm that penalizes memory space. For example, the
Sieve of Eratosthenes algorithm achieves a better performance, but it needs to
keep an array of booleans, which has a size that is multiple of the problem size,
while the other algorithm will need no extra storage.

Another way to increment performance by using more memory is to change
the way data are stored. For example, back to our dictionary, we redistribute
the words and use a function to calculate the page number in which a word must
be inserted or searched for, (this is called a hash function). This way, searching
time will be constant, whichever the dictionary size, but memory space (the
number of pages in the dictionary) will grow considerably.

As an example, we can use the following function: Let us assign a value to
each letter (A=0, B=1, ..., Z=25), and let us use the first three letters of each
word (L1, L2 and L3). Then, the page number will be:

PageNumber = 262 ∗ L1 + 26 ∗ L2 + L3 (2.2)
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So if we want to store (or look for) ’ABBEY’, we will find it in:

PageNumber = 262 ∗′A′+26 ∗′B′+′B′ = 262 ∗ 0+26 ∗ 1+1 = 0+26+1 = 27
(2.3)

This algorithm is much faster, but the storage penalty is really important:
such dictionary would have 263 = 17576 pages, most of which will be empty,
and perhaps other pages will not have enough space to hold all the words they
should.

2.4 Asymptotic analysis

When analyzing algorithms, we use asymptotic notations to show in a math-
ematical way how resource consumption scales with input size. The aim of
asymptotic analysis is to focus on the shape of the function curve, and to define
functions as simple as possible that limit either as an upper bound (big O), as
a lower bound (big Omega), and as both (big Theta). In this chapter, we will
focus on upper bound limits, and just mention lower bound limits.

2.4.1 Upper bound limit big O

We have seen in the previous examples how algorithm efficiency for big input
sizes can be measured in terms of a limiting simple function. Such function,
that describes the growing behaviour of an algorithm for input sizes tending to
infinity is known as asymptotic notation or ’big O’ notation.

The mathematical definition of big o is a s follows:

• Consider a function f(N) which is non-negative for all integers N¿=0 .
”f(N) is big o g(N)”, or ”f(N) O(g(N))”, of ”f(N) has order of g(N)
complexity”, if there exists an integer n0, and a constant c¿0, such that,
for all integers n¿=n0, then f(n)¡=cg(n). In a more comprehensive way,
this definition says that for values of n greater than a given value n0, g(N)
is proportional to f(N), or worse. In other words, it says that g(N) grows
at least as fast as f(N) for big values of N.
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Chapter 3

Recursion

Most of the information has been sourced from the books [?].
Some algorithms and mathematical functions can be defined in a recursive

way. This happens when the algorithm or function being defined is used in its
own definition. For example, the factorial function of an integer number N can
be defined in an iterative way as the product of all the positive integers that are
less than or equal to N:

N ! = 1 ∗ 2 ∗ 3 ∗ . . . ∗ (N − 1) ∗N (3.1)

Since (N − 1)! = 1 ∗ 2 ∗ 3 ∗ . . . ∗ (N − 1), it turns out that:

N ! = (N − 1)!N (3.2)

This definition, while correct, is still incomplete, as it doesn’t say how to
calculate the factorial of 0 (or 1). So we need to define a base case, at which the
recursion will stop. The complete recursive definition of the factorial function
is:

0! = 1 (3.3)

N ! = (N − 1)!N, for N > 0 (3.4)

Another simple recursive algorithm is the Euclidean algorithm1 to calculate
the greatest common divisor of two numbers a, b (being a¿=b), which can be
recursively defined as:

gcd(a, b) = a if b = 0 (3.5)

gcd(a, b) = gcd(b, amodb), otherwise (3.6)

In this example, it’s not so obvious that recursion reduces the problem towards
the base case, but we still can see that the numbers become smaller in each
iteration.

1http://en.wikipedia.org/wiki/Euclidean algorithm
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Finally, another typical example of a recursive function is the definition of
the Fibonacci numbers2, formed by a series of numbers, starting by 0, 1, in
which each number is obtained by summing the previous two numbers in the
series: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... . In this case, the recursive definition is
much clearer than an iterative one:

Fib(0) = 0 (3.7)

Fib(1) = 1 (3.8)

Fib(N) = Fib(N − 2) + Fib(N − 1), for N > 1 (3.9)

As a conclusion, the definition of a function of algorithm is recursive when
it is formed by:

1. A set of one or more simple base cases, to stop recursion.

2. A set of one or more rules that reduce complex cases towards the base
case(s).

It is important -and not always easy- to guarantee that the recursive algorithm
will not end up in an infinite loop.

3.1 Loop equivalence and examples

Almost all recursive algorithms can be solved in an iterative way, using ’for’
or ’while’ loops. In some cases, the recursive solution will be more elegant and
easier to understand and implement. In other cases, the iterative solution should
be chosen (mostly due to the limitations exposed in the next section). Some
code for the recursive algorithms mentioned in the introduction follows, along
with its equivalent iterative algorithm:

3.1.1 Factorial

Both implementations are equally simple and elegant.

static long factorialRec(int n) {
if (n ¡ 2) {
return 1;

}else {
return n * factorialRec(n 1);

}
}
static long factorialIt(int n) {

long fact = 1;
(for int i=2; i¡=n; i++) fact*=i;
return fact;

}
2http://en.wikipedia.org/wiki/Fibonacci number
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3.1.2 Euclidean algorithm

In this case, the recursive implementation looks more elegant than the iterative
solution, as the latter even needs an auxiliary variable to avoid problems, making
the code more obfuscated:

static long euclideanIt(long a,long b) {
while (b¿0){

long aux=a;
a=b;
b=aux%b;

}
}

static long euclideanRec(long a,long b) {
if (b==0) {
return a;

}else {
return euclideanRec(b,a%b);

}
}

3.2 Limitations

However, being in most cases more elegant than the equivalent iterative solution,
recursive algorithms must be used with care, as they have some limitations.

3.2.1 Stack usage and overflow

Computers use an execution stack (also known as call stack3) to store some nec-
essary information related to all the running functions (from main to the cur-
rently running function). For each running function, this information includes
the returning address (the address into the caller function to which execution
should return when the function finishes) as well as local variables and parame-
ters. Execution stack size is normally a quite limited resource (sometimes a few
kB). This is normally enough for most applications, but an uncontrolled (or not
too well estimated) recursive algorithm can easily cause a crash in the form of
a stack overflow exception. If we take a look back at the examples related to
the Euclidean algorithm, the iterative implementation will make a constant use
of the execution stack. No matter the number of iterations, the stack will only
hold one copy of the parameters ’a’ and ’b’ of the local variable ’aux’ (as well,
of course, as the returning address). But if we take the recursive algorithm, for
each recursive call, the system will create a copy in the stack of the parameters
parameters ’a’ and ’b’ and of the returning address. This is not a problem in
the case of the Euclidean algorithm, is it’s normally resolved in a few iterations,

3http://en.wikipedia.org/wiki/Call stack
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but can really be an issue in other recursive algorithms that need more recursive
calls and/or more memory space for each iteration. For example, calculating ’fi-
bonacciRec(5000)’ will cause a stack overflow with a stack size of 32kB (4 bytes
for ’n’ 4 bytes for the returning address, in a 32 bit architecture, multiplied by
4999 calls, this makes 39992 bytes) issues. One typical example is the calcula-
tion of the first N Fibonacci numbers. The iterative implementation has a linear
complexity (it’s O(n)), while the recursive implementation has an exponential
complexity (it’s O(2n)). This happens because fibonacciRec(i) will be called
from fibonacciRec(i+1) and from fibonacciRec(i+2). What’s more, fibonac-
ciRec(i+1) will be called from fibonacciRec(i+2) and from fibonacciRec(i+3),
and so on, which means fibonnaciRec(i) will be called a total number of 2n-i
times, causing the recursive implementation to be completely inefficient.

3.3 Cases of use

However, being aware of the mentioned limitations, there are cases in which the
recursive solution should be considered. A complete discussion can be found
here1. In this chapter, we will only mention some typical paradigms. There are
no systematic approaches to neither of these paradigms, it takes some time and
practice to understand and master them, however it’s important to know they
can be considered for some kinds of problems.

3.3.1 Divide and conquer strategy

A divide and conquer recursive algorithm4 will break the problem down in sev-
eral subproblems of the same type but with a reduced size, until the problem
is so simple that it can be directly solved. Some examples of efficient divide
and conquer algorithms are: Array sorting algorithms such as quicksort5 and
mergesort6. These algorithms split the array in several parts, and then call
themselves recursively to sort each of these parts. The base case for both algo-
rithms is an one-sized array. Gaming algorithms like the towers of Hanoi7. In
this well-known game, we assume that, if we know how to move a tower formed
by N disks from stack A to stack B using stack C as an auxiliary stack, then
moving a tower formed by N+1 disks is as simple as moving the top N disks
from stack A to the auxiliary stack C, then move disk N+1 from A to B, and
then move again the top N disks from the auxiliary stack C over the disk already
moved to stack B. The base case in this algorithm is when N=1, and we only
need to move the disk from stack A to stack B.

4http://en.wikipedia.org/wiki/Fibonacci number
5http://en.wikipedia.org/wiki/Quicksort
6http://en.wikipedia.org/wiki/Mergesort
7http://en.wikipedia.org/wiki/Hanoi towers
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3.3.2 Backtracking

Backtracking algorithms8 are useful for solving certain computational problems
when, at a given point of the problem, there are several ways to follow up, some
of which may lead to a solution, and some of which may not. They are specially
useful when the problem has several solutions, and we are looking for all them.

8http://en.wikipedia.org/wiki/Backtracking
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Chapter 4

Lists, Stacks and Queues.

Most of the information has been sourced from the books [?, ?].

4.1 Lists

A list is a collection of n elements stored in a linear order. The most common
way for storing lists is using an array data structure. Each element in a list
can be refered by an index in the range [0, n− 1] indicating the number of ele-
ments that preced e in the list. This representation provides that all operations
performed on a given element take O(1) time. An array stores all elements
of the list contiguously in memory and requires to initially know the maxi-
mum size of the list. This may produce an unnecessary waste of memory and
other cases insufficient memory. A possible solution is to use a dynamic array
(java.util.ArrayList) that is able to be reallocated when the space reserved for
the dynamic array is exceeded. Unfortunately, this reallocating of the elements
of a dynamic array is a very expensive operation. 1

A linked list is a data structure that consists of a sequence of nodes such that
each node contains a reference to the next node in the list. This representation
does not require that elements of the list are stored contiguously in memory.
Also, it just uses the space actually needed to store the elements of the list.
On the other hand, linked lists do not mantain index numbers for the nodes
and allow only sequential access to elements, while arrays allow constant-time
random access. As it will be shown in following sections, the linked list data
structure allows us us to implement some important abstract data structures
such as stacks, queues, deques.

An implementation of a linked list may include the following methods:

• isEmpty(): test whether or not a list is empty.

• size(): return the number of elements of the list.

1Most of the information has been sourced from the books [?, ?].
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• first(): return the first element of the list. An error occurs if the list is
empty.

• last(): return the last element of the list. An error occurs if the list is
empty.

• next(v): return the next node of v in the list.

• prev(v): return the previous node of v in the list.

• remove(v): removes the node v the list.

• addFirst(v): add the node v at the beginning of the list.

• addLast(v): add the node v at the end of the list.

• addBefore(v,new): add the node new just before the v node.

• addAfter(v,new): add the node new just after the v node.

Exercise: Look for more information on the main differences between arrays
(static and dynamic) and linked lists. Write an outline that brings out the main
advantages and disadvantages for each data structure.

4.2 Singly Linked Lists

A linked list is a sequence of nodes. Each node is an object that stores a
reference to an element and a reference to the following node in the list. This
link to the next node is called next. The order of the list is represented by the
next links.

The first node of a linked list is the head of the list. The last node of a
linked list is the tail of the list. The next reference of the tail node points to
null. A linked list defined in this way is known as a singly linked list.

Figure 4.1: Example of a singly linked list containing my favorite series orderby
preference. Each node contains a reference to the name of a TV serie and a
reference to the next node (the following TV serie). The next reference of the
last node (tail) links to null.
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4.2.1 How can you implement a singly linked list

Firstly, we implement a Node class as shown in Figure 4.2. This implementation
uses the generic parameterized type ¡E¿, which allows to store elements of any
specified class (that is, you will use the Node class to create objects containing
String, Integer, Long, etc and any other class that you specified).

Figure 4.2: Implementation of a Node of a singly linked list.

Figure 4.3 shows the partial implementation for a singly linked lis that only
uses the reference to the head of the list (head), an instance variable to store
the number of elements of the list (size) and a constructor method that sets
the head node to null. For example, you may modify this class adding a new
constructor method that has a node as input parameter and links the head of
the list to this parameter.

4.2.2 How can you insert a new element in a singly linked
list

The easiest case is when the new element is inserted at the head of the list. For
example, I would like to add the TV serie ’Heidi’ at the head of the above list.
This TV series is my all time favorite serie, so it must be the first of the list
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Figure 4.3: We define the head of the list as a Node. The constructor sets this
node to null.

(see 4.4). The following steps describe the process of insertion at the head of
the list:

1. Create a new node. The name of the new serie and a reference to the same
object as head (that is, next links to node that contains the serie Losts)
must be passed to the constructor method.

2. Once you have created the node, you must set head (property of SinglyLinkedList)
to point to new node.

Figure 4.4: Insertion of an element at the head of a singly linked list.
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Now, it is your turn. Please, write a new method called insertHead in
the SinglyLinkedList class that inserts a new element at the head of the list.
Figure ?? shows the implementation of this method.

Figure 4.5: This method implements the insertion operation of an element at
the beginning of a singly linked list.

To insert an element at the end of the list is very easy if you add a reference
to the tail node, that is, an instance variable (with type Node¡E¿) to store
the reference the last node in the list. For example, imagine that I like ’The
Simpson’, but I like it than less ’House’, so I should insert it at the end of the
list. I must follow the following steps:

1. Create a new node with the element ’The Simpson’ and its next reference
sets to null because this node will be the last node.

2. Then, the tail reference itself to this new node.

Figure 4.6 shows the above example. Please, try yourself defining the Node
tail in the SinglyLinkedList class and adding the method addLast. You can find
the solution in this new implementation in Figure r̃effig:addLastSList.

Now, take few minutes and think about how you can insert an element at the
end of the list when you do not keep the tail reference in your implementation of
the singly linked list. You should examine the list until you find node with a next
reference to null. Do you dare to do it?. You can find a possible implementation
in Figure 4.8.

4.2.3 How can you remove an element in a singly linked
list

Now, let me show you how to remove at the head of the list. It is very easy!!!.
You only need to set the head reference to its next node. This operation is
illustrated in Figure 4.9 and its implementation is shown in Figure 4.10.

In order to remove the last node or an node at a give position of the list, we
must access its previous node. Thus, the only way to find this previous node is
to traverse the list from its beginning until to find it. Traversing the list may

19



Figure 4.6: Insertion of an element at the end of a singly linked list. The class
must have a property to store the tail of the list.

involve a big number of operations, taking a long time when the size of the list
is big. The following section presents an effective solution for this problem.
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Figure 4.7: Implementation of the insertion operation of an element at the end
of a singly linked list.
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Figure 4.8: Implementation of the insertion operation of an element at the end
of a singly linked list without keeping the tail reference.

Figure 4.9: Removal of the head of the list.
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Figure 4.10: This method removes the first element of the list.
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4.3 Doubly Linked Lists

The main drawback of singly linked lists is that insering or removing a node at
the middle or the end of a list, it is necessary to visit all nodes from its head
until the node just before the place where you want to insert it or the node
that you want to remove. This operation is time consuming because we do not
have a quick access to the node before the one that you want to remove or the
position where you want to insert.

Let me ask you the following question: How can you implement a linked list
to improve the access to nodes?. Figure 4.11 gives you the key. This represen-
tation allows to traverse the list in both directions.

Figure 4.11: A doubly linked list storing my all time favorite TV series.

How can you define a node for a doubly linked list?. We need a mechanism
that allow us to traverse the list from the beginning to the end and from the end
to the beginning. The Node class (see Figure4.2) used in the implementation of
a singly linked list only allowed us to go from left to right by the its instance
variable next, which references to the following node in the list. Therefore, it
would be very useful to define other instance variable to reference it previous
node in the list. This variable is called prev. This implementation (see Fig-
ure 4.12) of a node for a doubly linked list makes easier to insert or remove an
element at the end as well as in the middle of the list.

Now, we define the implementation of a doubly linked list. In order to
facilitate the programming tasks, we can use two special nodes (called sentinels):
header and tailer. The sentinel nodes do not store any reference to elements.

The header stores the node just before the head of the list (the header nodes
points to the head of the list by its next reference; the prev reference of the head
of the list must point to the header node). The tailer is the node after the tail
of the list (the last element of the list must point to tailer by its next reference,
while the tailer must poing to this last node by its prev reference) When the
list is empty, the header and tailer nodes must point to each other.

Figure 4.15 describes the partial implementation of a doubly linked list.
You can see how header and tailer sentinels are defined as objects of the above
DoublyNode class. Also, a size property has been defined to store the number
of elements at the list. We have defined a constructor that creates an empty
list, that is, header and tailer sentinels are instantiated as DoblyNode objects
(although, we do not give any value to their element property) and they point
to each other.

Figures 4.14 and 4.13 show examples of removing and adding an element,
respectively. As you can see in Figure ?? to insert a new element at the begin-
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Figure 4.12: Implementation of a node for a doubly linked list.

Figure 4.13: Inserting an element at the start of the list.

ning of the list or removing the last element of the list is very easy. Likewise,
it is very easy to implement the methods addLast() and removeFirst(). Do you
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Figure 4.14: Removing an element from the end of the list.

Figure 4.15: Partial Implementation of a doubly linked list including the defi-
nition of the sentinel nodes header and tailer, the constructor method and the
addFirst() and removeLast() methods.

dare to implement them?. You can find the implementation of these operation
in Figure 4.16
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Figure 4.16: Methods addLast() and removeFirst() of a doubly linked list.

4.3.1 How can you insert an element in the middle of a
doubly linked list?

Doubly linked lists allow an efficient manner to access and modify their elements
since they provide an easier way to insert and remove in the middle of the list
than single linked lists. Figure 4.17 shows an example of a insertion in the
middle of a doubly linked list. I have just watched the TV serie ’Bones’. I like
more than ’Losts’, but less than ’Allo, Allo”, so I should add it just after the
’Allo, Allo’ node. Firstly, I must define a new node with the element ’Bones’, its
next node must point to the node ’Losts’ and its prev node to the node ’Allo,
Allo’. Then, the nodes ’Allo, Allo’ and ’Losts’ must point to the node ’Bones’ by
their next and prev nodes respectively (see Figure 4.17). Now, imagine that I no
longer like the ’Losts’ serie. To remove it, their before node (that is, ’Allo, Allo’)
and after node (’Rome’) must point to each other by their next and prev nodes
respectively. Figure 4.18 includes the java code of the methods for inserting and
removing elements in the middle of a doubly linked list. A full implementation
of a doubly linked list can be found in the following link.

All methods in the implementation of a list using a doubly linked list take
O(1). For a list of n elements, the space used is O(n).

4.4 Stacks

A stack is a collection of objects that are added and removed according to the
the Last-In First-out (LIFO) principle. To understand better this principle,
think about a stack of plates (Figure 4.19), how do you add and take off plates
from the stack?. Normally, you add plates to the top of the stack and you take
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Figure 4.17: To add a new node after the .

Figure 4.18: Methods addBefore, addAfter, remove for a doubly linked list.

off them from the top of the stack. This is just the LIFO principle.
Formally, a stack is an abstract data structure that is characterized by the

following operations:

• push(e): add the element e to the top of the stack.

• pop(): remove the top element from the stack and return it.

Other additionally operations are:

• size(): return the size of the stack.

• isEmtpy(): return true if the stack is empty; false eoc.

• top(): return the top element in the stack, without removing it.
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Figure 4.19: Stack of plates.

Figure 4.20: Push and pop operations.

Operation Stack Output
push(’h’) (h) -
push(’e’) (h,e) -
top() (h,e) e

push(’l’) (h,e,l) -
push(’l’) (h,e,l,l) -
push(’o’) (h,e,l,l,o) -
top() (h,e,l,l,o) o

push(’ !’) (h,e,l,l,o,!) -
top() (h,e,l,l,o,!) !
size() (h,e,l,l,o,!) 6

isEmpty() (h,e,l,l,o,!) false
pop() (h,e,l,l,o) !

Table 4.1: This table shows a secuence of operations on a stack of characters

This data structure is very useful for many applications which require to
store the secuence of operations in order to reverse or undo them. For example,
web browsers store the urls recently visited on a stack in order to allow users
to visit the previously urls by pushing the back button. Likewise, stacks can be
used to provide an undo mechanism to the text editors.
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The java.util package already includes an implementation of the stack data
structure due to its importance. It is recommended to use the java.util.Stack
class, however in this section we design and implement ourselves a stack. First
of all, we define an interface to declare the methods of the data structure
(see Figure 4.21). You can note that this interface has been defined using the
generic parameterized type E, which allows to store elements of any specified
class. Also, we have defined the EmptyStackException class that will throw an
exception when the methods pop() and top() are called on an empty stack.

Figure 4.21: Interface Stack. This interface uses the generic parameterized type
E to contain elements of any specified class in the stack.

There are several ways to implement the Stack class. A simple way to
represent a stack is to store its elements into an array. Thus, the stack consists
of an array and an integer variable to indicate the index of the top element.
Figure 4.23 shows a java class implementing an array-based stack. This class
implements the interface Stack<E>. This implementation is based on the use
of an array (for storing the elements of a stack. The instance variable top stores
the index in which the top of the stack is stored in the array. Also, the maximum
size of the array is defined in a constant MAXCAPACITY. Another instance
variable (capacity) stores the actual capacity of the stack. The main drawback
of this implementation is that it is necessary to initially know the maximum size
of the stack. Thus, we have defined the FullStackException class that will throw
an exception when the push method is called on a full stack (see Figure 4.22)

Now, you must write the code to build a stack containing the operations
shown in Table 4.1. Table 4.2 summarizes the computational complexity for
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Figure 4.22: An exception is thrown when the methods pop and top are per-
formed on an empty stack.

each method of the array-based implementation of a stack. The methods size()
and isEmpty take O(1) time because they only access the instance variable
top. The methods top() and pop() take constant time because they call the
method isEmpty() and access the top element in the array (the method pop()
also decreases the instance variable top). All of the previous operations take
O(1). Likewise the method push() also takes O(1).

Methods Time

isEmtpy(), size() O(1)
top(), pop() O(1)
push() O(1)

Table 4.2: Performance of an array-based implementation of a stack

Therefore, the array-based implementation is simple and efficient. However,
the main drawback of this implementation is that it is necessary to know the
maximum size of the stack. In some cases, this may cause an unnecessary waste
of memory or an exception when the stack reaches this maximum size and it is
not possible to add store elements.

Another implementation that does not have the size limitation is to use a
linked list to represent a stack. That is, the elements of a stack are stored
into the nodes of a linked list. Of course, we may use the java.util.ArrayList
class or any API java class implementing lists to represent the stack, however,
we provide ourselves implementation of a linked list in order to improve your
knowledge and practice about linked lists. First of all, we define a java class to
implement a generic node for a singly linked list (see Figure 4.25). Figure 4.26
shows the code of the linked list-based implementation. This class defines the
instace variable top that stores the top element of the stack. We have decided
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Figure 4.23: An array-based implementation of a stack

that the top of the stack is stored at the head of the linked list. This fact allows
to the operations pop(), top() and push() take constant time (see Table 4.3)
because they only need to access the first element (head) of the list. If the top
element of the stack was stored at the end of the list, then it would be necessary
to trasverse all elements of the list, every time you would need to access the
top element. Thus, the previous methods would take O(n) time. We also note
that the method push() does not throw an exception related to the size overflow
problem since in this implementation the size of the stack is not limited.
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Figure 4.24: An exception is thrown when the method push is performed on a
full stack.

Figure 4.25: A java class for implementing a node of a generic singly linked list.

Stacks have many interesting applications. You can find some applications
such as reversing arrays or matching parentheses and HTML tags in in Chapter
5 (Stacks and Queues) (pages 199-203) in the book [?].
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Figure 4.26: A Linked-list based implementation of a stack.

4.5 Queues

Another important linear data structure is the queue. A queue is a collection
of objects that are managed according to the the First-In First-out (FIFO)
principle (see Figure 4.27), that is, only element at the front of the queue can
be accessed or deleted and new elements must added at the end (rear) of the
queue. In order to understand better this principle, think about a line of people
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Methods Time

isEmtpy(), size() O(1)
top(), pop() O(1)
push() O(1)

Table 4.3: Running times of the array-based implementation of a stack

waiting a bus. Normally, the first person in the line will be the first one on
getting onto the bus. If one arrives last, this should put oneself at the rear
of the line. Queues are a nature option of many applications that requiere to
process their requests according to FIFO principle, such as reservation systems
for airlines, cinemas or many other public services.

Figure 4.27: Representation of a FIFO Queue.

Formally, a queue is an abstract data structure that is characterized by the
following operations:

• enqueue(): add a element at the rear (end) of the queue.

• dequeue(): return and remove the first element of the queue, that is, the
element at the front of the queue. If this one is empty, then this method
should throw an exception.

• front(): return the element at the front of the queue. If this one is empty,
then this method should throw an exception.

In addition, similar to the Stack ADT, the queue ADT can also include the
size() and isEmpty() methods.

Figure 4.28 shows a java interface for this ADT. It uses the generic param-
eterized type E, which allows to store elements of any specified class. Also, the
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Operation Queue Output
enqueue(’h’) (h) -
enqueue(’e’) (h,e) -

front() (h,e) h
dequeue() (e) h
dequeue() () e

enqueue(’h’) (h) -
enqueue(’o’) (h,o) -
enqueue(’l’) (h,o,l) -

front() (h,o,l) h
enqueue(’l’) (h,o,l,l) -

front() (h,o,l,l) h
enqueue(’a’) (h,o,l,l,a) -

size (h,o,l,l,a) 6
enqueue(’ !’) (h,o,l,l,a,!) -

size (h,o,l,l,a,!) 7
front() (h,o,l,l,a,!) h

dequeue() (o,l,l,a,!) h

Table 4.4: A secuence of operations on a queue of characters

EmptyQueueException class has been defined to throw an exception when the
methods dequeue() and front() are called on an empty queue.

4.5.1 A circular array-based implementation of a queue

Likewise with the Stack ADT, we can use an array to represent a queue. Thus,
elements of a queue are stored in an array. What is the more efficient option
for storing the front of the queue:

1. at the first position of the array (that is, Array[0]) and adding the following
elements from there.

2. as the last element of the array, that is, a new element is always inserted
at the first position of the array and the

The former one is not an efficient solution because each time the method
dequeue() is called, all elements must moved to its previous cell, taking O(n)
time. The second one is also an inefficient solution since each time a new
element will be inserted (enqueue()), elements in the array must be moved to
their following position, taking O(n) time.

In order to achieve constant time for the methods of the Queue interface, we
can use a circular array to store the elements and two instance variables front
and rear to keep the index storing the first element of the queue and the index
to store a new element. Each time we remove the first element of the queue, we
should increase the variable front. Likewise, each time we add a new element,
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Figure 4.28: A java interface for the Queue ADT.

Figure 4.29: An exception is thrown when the methods dequeue() and front()
are performed on an empty queue.

we store it into the position rear at the array and increase the value of this
variable.

Figure 4.30 shows three different configuration of a queue implemented using
a circular array. The first case (front ≤ rear ≤ length(array)) is the normal
configuration. The second and thirds examples illustrate the configuration in
which the rear reaches the lenght of the array and it is necessary to store a new
element at the first position of the array. When rear reaches front, it implies
that the queue is empty. Each time we need to increase the rear or front, we
must estimate their the module value
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Figure 4.30: Three different configurations of a queue.

Each method in this implementation takes O(1) since they only involve a
constant number of arithmetic opreations, comparisons and assignments. The
only drawback of this implementation is that the size of the queueu is limited
to the size of the array. However, if we are able to provide a good estimation of
the size of the queue, this implementation is very efficient. Figure 4.31 shows a
circular array-based implementation of a queue.

4.5.2 A linked list-based implementation of a queue

A linked list also provides an efficient implementation of a queue (see Fig-
ure 4.32). For efficiency reasons, the front of the queue is stored at the first
node of the list and we also define a variable to store the tail of the list. These
two variables allow all methods take O(1) time because they only need a con-
stant number of simple statements. The main advantage of this implementation
compared to the array-based implementation is that it is no necessary to specify
a maximum size for the queue.

Please, write a java program to assign the turn to every journalist in the TV
program ’59 seconds’. You can find an interesting problem based on the use of
a queue in in Chapter 5 (Stacks and Queues) (pages 212) in the book [?].

4.6 Double-Ended Queues (Dqueues)

Figure 4.33 compares the three ADT: stack (LIFO: last in, first out), queue
(FIFO: first in, first out) and dqueue. A double-ended queue ADT (dqueue is
pronunced like deck) is power than stack and queue because it supports insertion
and deletion at both its front and its rear. The main methods of the dqueue
ADT are:

• addFirst(e): insert a new element at the head of the queue.
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Figure 4.31: A circular array-based implementation of a queue.

• addLast(e): insert a new element at the end of the queue.

• removeFirst(): remove the element at the front of the queue. If the queue
is empty, then an exception is thrown.

• removeLast(): remove the element at the end of the queue. If the queue
is empty, then an exception is thrown.

• getFirst(): return the element at the head of the queue. If the queue is
empty, then an exception is thrown.

• getLast(): return the element at the end of the queue. If the queue is
empty, then an exception is thrown.

• size(): return the size of the queue.

• isEmpth(): return a boolean indicating if the queue is empty.

The java.util.LinkedList¡E¿ class already defines all the methods of a de-
queue. Of course, you can use this class when you need to use a dequeue in
your future applications. But first, you must learn how the dequeue ADT can be
defined and implemented. Figure 4.34 contains a java interface for the dqueue
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Figure 4.32: A Linked List-based implementation of a queue.

Figure 4.33: The dequeu ADT a queue that allows invertion and deletion at
both its front and its rear (source: http://t3.gstatic.com/.
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Operation Queue Output
addFirst(’k’) (k) -
addLast(’l’) (k,l) -
removeFirst() (l) -
addLast(’o’) (l,o) -
addFirst(’a’) (a,l,o) -
removeFirst() (l,o) -
removeLast() (o) -
removeLast() empty -
removeFirst() empty exception
isEmpty() empty true
addLast(’s’) (s) -
isEmpty() (s) false

Table 4.5: Secuence of operations on a dqueue of characters

ADT. A dequeu is a list of elements, hence we may use a linked list to implement
a dqueue. A singly linked list is not an efficient solution because the dqueue
allows insertion and removal at both the head and the tail of the list. While
the insertion or removal of the first element at the dqueue just take O(1), the
insertion or removal of the last element take O(n) because we should trasverse
all nodes until to reach the last node. However, if we implement the dqueue
ADT using a doubly linked list, all insertion and removal operations take O(1)
times.

Figure 4.36 shows a fragment of the implementation of a deque using a
doubly linked list. This class defines two sentinal nodes to reference the head
and tail of the deque. Figure 4.35 shows the implementation for a node of a
doubly linked list.
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Figure 4.34: An interface for a double-ended queue ADT.
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Figure 4.35: This class implements a node of a doubly linked list.
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Figure 4.36: A doubly linked list class for implementing a deque.
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Chapter 5

Trees.

Most of the information has been sourced from the books [?, ?].

5.1 General Trees

Trees are a natural organization for data and support algorithms much faster
than the linear data structures. They are widely used in computing to represent
file systems, web sites, databases, graphical user interfaces, etc.

A tree is an abstract data type to store elements that have hierarchical
relationships between them. Figure 5.1 shows the tudor family tree whose root
is the node ’Eduardo III’. This node has three children ’Eduardo’,’Juan’ and
’Edmundo’ (they are siblings because they are children of the same parent).
The parent (direct ancestor) of the node ’Enrique VI’ is the node ’Enrique
V’. The organigram of a company, an arithmetic expression or the rules of a
grammar can be also represented by trees (see Figure 5.2, 5.3 and 5.4).

5.1.1 Properties

A tree is a set of nodes (elements) that maintain a hierarchical (parent-child) re-
lationship between them. The top element of a tree is called root. The following
properties must be satisfied:

• Every node has zero or more children. Nodes without children are called
leaves or externals, while nodes with children are internals.

• Every node, except the root, has an unique parent node.

An empty tree is a tree that does not contain any nodes. We can formally
define ancestor and descendent terms:

• u is ancestor of v (v is descendent of u) ↔ u=v or u is ancestor(parent(v)).

• u is descendent of v if v is ancestor of u.
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Figure 5.1: Tudor family tree.

Figure 5.2: UC3M Computer Science Department’s organigram.

Figure 5.1 shows that ’Eduardo IV’ and ’Ricardo III’ are descedent of ’Ed-
mundo’. You can also see that ’Enrique VII’ is ancestor of ’Isabel I’.

A tree is ordered if there is a linear order among siblings. For example,
Figure 5.5 shows an ordered tree of integers.

The depth of a node is the number of its ancestors. The depth of the root
is 0. For example, in the tree of Figure 5.5, the node storing the value 12 has
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Figure 5.3: An arithmetic expression.

Figure 5.4: A sintax grammar.

Figure 5.5: An ordered tree of integers.
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depth 3, the node storing 6 has depth 2 and the node storing 4 has depth 1.

5.1.2 Tree Abstract Data Type

A tree should support the following methods:

• isEmpty() returns true if the tree is empty.

• isRoot(v) returns true if the node v is the root of the tree.

• isLeave(v) returns true if v is a leave.

• isInternal(v) returns true if v is an internal node.

• root() returns the root of the tree. If the tree is empty, an error occurs.

• parent(v) returns the parent of the node v. If v is the root, an error occurs.

• children(v) returns the children of the node v. If the tree is ordered, this
methods stores the children in order.

• size(): returns the number of nodes in the tree.

• iterator(): returns an interator of all the elements stored at nodes of the
tree.

• positions(): returns an iterable collection of all the nodes of the tree.

• replace(v,e): replaces the node v with the node e.

5.1.3 Implementing a Tree

First of all, we must define a java interface to represent the tree ADT (see
Figurer̃effig:interfaceTree). You can see that its methods may throw the excep-
tion InvalidTreePositionException if the node is invalid (null). Also, if the tree
is empty, the method root throws the exception EmptyTreeException, and the
method parent throws the exception BoundaryViolationException if the node
is the root of the tree.

A common way to implement a tree is to use a linked structure in which
each node n has the following properties (see Figure 5.7):

• The element stored at the node.

• A link to its parent. If n is the root, then this field is null.

• A collection (for example, an array or a list) containing the links to its
children.
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Figure 5.6: An interface for a tree.

5.2 Tree Traversal Algorithms

This section presents algorithms for traversing a tree. Before we should define
two concepts like depth and height:

• The depth of a node v is the number of ancestors of v. For example, the
depth of the node ’1’ in the tree shown in figure 5.5 is 0 because this node
is the root of the tree. However, for node ’10’ its depth is 3, because this
node has three ancestors. Its implementation is shown in Figure 5.9

Its running time is O(dv) where dv is the depth of the node v, because the
algorithm only performs a constant-time recursive step for each ancestor of v.

The height of a node v in a tree can be defined recursively as follows:

• if v is a leave node then its height is 0.

• if v is an internal node then its height is 1 plus the maximum height of a
child of v.

Therefore, the height of a Tree is the height of its root. For example, the
height of the tree shown in Figure 5.5 is 4 because its root has depth equals to
4. The height of the node ’6’ is 1 since all its nodes (’9’ and ’10’) are already
leave nodes. Its implementation is shown in Figures 5.10 and ??.
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Figure 5.7: Each node of a tree is represented as a node with the fields: its
value, link to its parent and a collection of its children.

Figure 5.8: This figure shows the representation using a linked structure of the
general tree shown in Figure 5.1. It only shows the third first levels of the tree.
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Methods Time

isEmtpy(), size() O(1)
parent(), root O(1)
isLeave(), isInternal(), isRoot() O(1)
positions(), iterator() O(n)
replace() O(1)
children(n) O(num of children of v)

Table 5.1: Performance of an linked structure-based implementation of a binary
tree

Figure 5.9: Implementation of the depth method.

Figure 5.10: Implementation of the height of a node.

5.3 Preorder Traversal

In a preorder traversal, first we must visit the root, then we must visit the
subtrees of its children. If the tree is ordered then this output is also ordered.
Figure 5.13 shows the implementation of this preorder traversal.
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Figure 5.11: Implementation of the height of a tree.

Figure 5.12: Preorder Traversal.

Figure 5.13: Implementation of the preorder Traversal.
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5.4 Postorder Traversal

In a postorder traversal, first we must visit the children of the root (in a pos-
torder way), and finally we must visit the root. Figure 5.14 shows the imple-
mentation of this postorder traversal.

Figure 5.14: Implementation of the postorder Traversal.
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Chapter 6

Binary Trees

Most of the information has been sourced from the books [?, ?]

6.1 Definition.

The order of a binary tree is always 2, that is, every node has at most two
children (usually called left child and right child). Given an internal node v,
the subtree rooted by its left child is called left subtree and the one rooted by
its right child is called right subtree. For example, Figure 6.1 shows a simple
binary tree rooted with a node whose value is 2. The left child of the root node
is the subtree rooted by the node whose value is 7, while the right child is the
subtree rootd by the node with value 5.

Besides, a binary tree can be defined in a recursive fashion. A binary tree is
either empty, or is made of a single node, whose the left and right children are
binary trees too.

Figure 6.1: Example of a simply binary tree.

A binary tree is ordered if for every node v, the values in its left subtree
are less than the value in v, and all values in its right subtree. The binary tree
shown in Figure 6.1 is not ordered, but Figure 6.2 shows an ordered binary tree
because all their nodes fulfill alphabetical order.
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Figure 6.2: Example of an ordered binary tree.

A full binary tree (also called proper) is a tree in which every internal node
has two children (see Figure 6.3). The trees shown in Figures 6.1 and 6.2 are
not full binary trees, because both have internal nodes with only one child.

Figure 6.3: Example of a full (proper) binary tree.

The full binary trees are often used to represent decision trees. These are
models to assist the decision maker in finding the

Full binary trees are often used to represent decision trees. A decision tree is
a model of decision to assist the decision maker in finding the option depending
on whether the answer is ’Yes’ or ’No’. Figure 6.4 illustrates a decision tree
that allows to order three elements A, B and C. The internal nodes represent
comparison operations and the leaves represent the possible outcomes.

Besides, binary trees can be useful to represent arithmetic expressions. The
internal nodes are operators, while the external nodes represent variables or
constants. The value of an internal node can be calculated by applying its
operation to the values of its children. Figures 6.5 and 6.6 show two binary trees
representing arithmetic expresion. The former three has variables and constants
in its leaves, but the second one only has constants. The value associated with
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Figure 6.4: Example of a decision tree to order three elements A, B and C.

each internal node is shown next to each node. For example, the root has the
value 4 (the final outcome of the arithmetic expression).

Figure 6.5: Example of a binary tree to represent the arithmetic expression: 2
x (a-1) + 3 x b.

6.2 The binary tree ADT

A binary tree is a specialization of a tree. Also, the definition of a binary tree
requires at least the following methods:

• hasLeft(v): returns true if the node v has left child.

• hasRight(v): returns true if the node v has right child.

• left(v): returns the left child of the node v. If v does not have left child,
an error occurs.

• right(v): returns the right child of the node v. If v does not have left
child, an error occurs.
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Figure 6.6: Example of a binary tree to represent the arithmetic expression:
(1+2) x 2 - 4 / ( 5-3).

You may want to have an additional field to store its parent
Figure 6.7 shows an interface for the binary tree ADT. This interface extends

the interface Tree(see code fragment in Figure 5.6). If the tree is ordered, then
the method children(v) returns first the left child followed by the right one.

Figure 6.7: An interface for the binary tree ADT.

6.3 Properties of a binary tree

Firstly, we must define two concepts: level (or depth) of a node and height a
tree.

Given a node v, we can define its level in a recursive fashion, as follows:

• If v is the root of the tree, its level is 0.

• otherwise, its level (or level) is 1 + the level of its parent node.
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Figure 6.8 represents an ordered binary tree and shows the level for each
node.

Figure 6.8: Level (or depth) of a node.

The height of a tree can be defined as 0 if the tree is empty, and otherwise,
as 1 + plus the maximum value between the height of the left subtree of its root
and the height of the right subtree of its root. Figure 6.9 shows the methods to
calculate these properties of a tree.

Figure 6.9: Implementation of the methods to obtain the height of a tree and
the level of a node.

The level 0 of a nonempty binary tree only has one node (root) (=20), the
first level has at most two nodes (=21), the second level has at most four nodes
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(=22), the third level hast at most eight nodes (=23), and so on. You can see
that the maximum number of nodes on levels grows exponentially. In general,
a binary tree in its leven n has at most 2n nodes.

Now, you must try to demostrate the following properties:

1. A full binary tree of height h has (2(h+ 1)− 1) nodes.

Let #T denotes the number of nodes of T and #Leveli the number of nodes in
the level i. Then,

#T = #Level0 +#Level1 +#Level2 + . . .+#Levelh = 20 +21 +22 + . . .+2h

(6.1)
You can find a tip in the Appendix A: Useful Mathematical Facts [?] to solve

this equation. In particular, you should use the proposition A.14:

n∑

i=0

ai =
an+1 − 1

a− 1
(6.2)

#T = 20 + 21 + 22 + . . .+ 2h =
2h+1 − 1

2− 1
= 2h+1 − 1 (6.3)

2. In an full binary tree, the numer of external nodes (leaves) is 1
more than the number of internal nodes.

Let e, i denotes the number of leaves and the number of internal nodes in
the tree T, respectively. So, we must demostrate that:

e = i+ 1 (6.4)

To justify this property, we are applying the induction principle (please, you
must study and look up Section 4.3.3 Induction and Loop Inva riants in the
book [?]). Concisely, given a statement P(n), the induction principle proves its
correctness for n=1 (2,3). Then, this principle assumes that the statement is
held for an arbitrary n, and tries to prove for n+1.

You can easily check (by drawing trees) the following statements.

• If the tree has 1 nodes, the property 2 is satisfied.

• If the tree has 3 nodes, the property 2 is satisfied.

• If the tree has 5 nodes, the property 2 is satisfied.

Note tha the tree neve has a pair number of nodes because it is a full binary
tree. Now, we assume true for a tree with n nodes ((a) en = in + 1). What
does it happen if we add new external nodes?. We cannot add only one leave
becuase this violate the property of full binary tree. So, we must add two nodes.
It is clear that a leave turns into an internal node in the new tree, that is, (b)
en+2=en-1 and (c) in+2=in+1:

en+2 =(b) (en − 1) + 2 = en + 1 =(a) in + 1 + 1 =(c) in+2 + 1 (6.5)
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3. The number of leaves satisfies the following equation:

h ≤ e ≤ 2h (6.6)

You can use the induction principle to prove h ≤ e.

• if h = 1, it is obvious that 1 ≤ e, becuase n = e = 1.

• Now, we assume that h ≤ e, and we must prove for h+ 1 ≤ enew, that, it
is the number of leaves in the new tree. If we increase the height of the
tree, we must add at leat two nodes and a leave turns into internal node,
therefore, (a) enew = (e− 1) + 2

h+ 1 ≤h≤e e+ 1 = (e− 1) + 2 =(a) enew (6.7)

Now, we will demostrate the second part of the equation (e ≤ 2h).

n = e+ i =2ndproperty e+ (e− 1) = 2e− 1 =1stproperty 2h+1 − 1 (6.8)

2e = 2h+1 ⇐ e = 2h (6.9)

For every nonfull tree, it is obvious that e ≤ 2h

The following properties can be proved based on the three previous proper-
ties. Please, try yourself!!!:

4. The number of internal nodes satisfies the following equation:

h ≤ i ≤ 2h − 1 (6.10)

5. The total number of nodes satisfies the following equation:

2h+ 1 ≤ n ≤ 2h+1 − 1 (6.11)

6. The height (h) of a tree satisfies the following equation:

log2(n+ 1)− 1 ≤ h ≤ n− 1

2
(6.12)

7. The height (h) of a tree satisfies the following equation:

log2(e) ≤ h ≤ e− 1 (6.13)
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6.4 Linked Structure-based implementation of
binary tree

To implement a binary tree, we can use a linked structured of nodes to represent
each node of the tree. Each node (see Figure 6.10) the linked structured has
the following fields:

• the element stored in the node.

• a reference to its parent. If the node is the root, then this filed is null.

• a reference to its left child. If the node does not have left child, this field
is null.

• a reference to its right child. If the node does not have right child, this
field is null.

Figure 6.10: A node of a linked structure to represent a node of a binary tree.

Figure6.11 shows the representation of a binary tree (whose root is A) by a
linked list of nodes. Figure 6.12 shows an interface for representing binary tree
nodes. It has methods to set and return the parent, the left child, the right child
and the element stored at a node. Figure 6.13 shows the clas BTNode which
contains four fields: an element, its parent, its left child and its right child. Also,
this class implements the methods defined in the interface BTPosition.

Now, we are defining the class LinkedBinaryTree that stores a reference to
the root of the tree and also the total number of nodes (size). This class imple-
ments the interface BinaryTree (see Figure 6.7). Also, the class has a constructor
without arguments that returns an emtpy tree. Besides, the additional methods
are defined:

• addRoot(e): creates a new node for storing the element e. This new node
is the root of the tree. The method only works when the tree is empty,
otherwise an error will occur.1

1If we define a constructor with a node as input argument that sets the root as this node,
then we do not need the method addRoot.
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Figure 6.11: A linked structure for representing a binary tree.

• addLeft(n,e): creates a new node for storing the element e and adds this
new node as the left child of the node n. If the n already has a left child,
an error will occur.

• addRight(n,e): creates a new node for storing the element e and adds this
new node as the right child of the node n. If the n already has a right
child, an error will occur.

• attach(n,T1,T2): attaches the binary trees T1,T2 as left and right subtrees
of the leave n, respectively. If n is not an external node, then an error will
occur.

• height(): returns the height of the tree.

These additional methods allow us to build a binary tree by creating the
root using the method addRoot and adding the left and right children using the
methods addLeft and addRight, repeatedly. You can find the implementation
of the class LinkedBinaryTree.pdfLinkedBinaryTree. Please, add code to the
main method to create a binary tree and test the class. For example, you can
try to build the previous examples presented for this section.

Table ?? summarizes the computational complexity for each method in a
linked structure implementation of a binary tree.

The method size() takes O(1) time because it only uses the instance variable
size. The methods isEmpty(),isRoot(),getRoot() take O(1) time since they only
access the instance variable root. The methods hasLeft(), left(), hasRight(),
right() take O(1) because they only access the instance variables left,right,parent
(of the BTNode class), respectively. Likewise, the methods sibling(), isLeave(),
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Figure 6.12: An interface to represent a node of a binary tree.

isInternal() takes O(1) time becuase they only access instances variables. Since
the method children() just need to access two instance variables (left and right
children of a give node), it only takes O(1) time. The method positions uses an
recursive method preorderPositions that traverses the tree and stores its nodes
in a list. Thus, positions takes O(n) time. Likewise, iterator also takes O(n)
since it uses the method positions. The methods replace and addRoot takes O(1)
time because they access and use one node. The methods insertLeft, insertRight
and remove takes O(1) time because they access and modify a constant number
of nodes.

6.5 Array-based implementation of a binary tree

Another alternative to implement a binary tree is to store the nodes of the tree
in an array. The root of the tree is stored in the first position in the array, its
left child in the second position, its right child in the third position, and so on
(see Figure 6.14).

Since we cannot know the maximum size that the tree may reach, the best
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Figure 6.13: A class for implementing binary tree nodes.

option is to use an ArrayList to store its nodes (we do not recommend to use
the zero-positon of the arraylist).

It is possible to know the position of a given node from the position of its
parent. For every node, Figure 6.14 clearly demostrates the following claims:

• The position of its left child in the arraylist is: pos(left)=2*pos(node).

• The position of its right child in the arraylist is: pos(right)=2*pos(node)+1

Now, you should give the arraylist-based implementation of a binary tree.
Then, you will have to estimate the running times of its main methods.
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Methods Time

isEmtpy(), isRoot(), size() O(1)
hasLeft(), getLeft(), hasRight(), getRight, parent(), sibling O(1)
isLeave(), isInternal() O(1)
positions(), iterator() O(n)
replace(), addRoot() O(1)
insertLeft(), insertRight(), remove() O(1)

Table 6.1: Performance of an linked structure-based implementation of a binary
tree

Figure 6.14: Running times for a binary tree implemented with an linked struc-
ture

Methods Time

isEmtpy(), isRoot(), size() O(1)
hasLeft(), getLeft(), hasRight(), getRight, parent() O(1)
isLeave(), isInternal() O(1)
positions(), iterator() O(n)
replace(), addRoot() O(1)
insertLeft(), insertRight(), remove() O(1)

Table 6.2: Running times for a binary tree implemented with an arraylist
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Chapter 7

Binary Search Trees (BST).

7.1 Definition.

Most of the information has been sourced from the books [?, ?].
A binary search tree is a binary tree T such that each internal node v of T

stores an entry (k,x) such that:

• Keys stored at nodes in the left subtree of v are less than or equal to k.

• Keys stored at nodes in the right subtree of v are greater than or equal to
k.

Keys provide a way of performing a search by making a comparison at each
internal node v, which can stop at v or continue at v’s left or right child. Binary
trees are an excellent data structure for storing the entries of a dictionary,
assuming we have an order relation defined on the keys. The main property is
the possibility of storing the keys in an ordered way. An inorder traversal of
the nodes of a binary search tree should visit the keys in nondecreasing order.
Each node may store a key and a value. Key and value may be objects from
different classes. For example, If a binary search tree is used to store a telephone
directory, its nodes may consist of a String key (name) and a Long value (the
phone number). Keys cannot be null. Binary search trees may store duplicate
keys depending on our decision. Figure7.1 shows two examples of binary search
trees with numeric keys and without values.

7.2 Implementation of a binary search tree.

Figure7.3 shows the implementation of a node for a binary search tree. You can
observe that the node has an object Key of the class E (any class), an object
value of the class F (any class), a reference to its parent node, and references to
its left and right children, respectively. Figure 7.2 shows two examples of trees
that are not binary search trees because their keys are not ordered.

Some of the possible operations of the Binary Search Tree ADT are:
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Figure 7.1: Example of binary search trees.

Figure 7.2: These trees are not binary search trees.

• isEmpty(): tests if the tree is empty.

• clear(): sets the tree to null (that is, its root is null and size sets to 0).

• firstKey(): returns the first key in the tree (that is, the lowest key). Fig-
ure 7.4 shows the implementation of this method.

• lastKey(): returns the last key in the tree (that is, the highest key).

• getValue(E k): returns the value stored in the node whose key is k; e.o.c
it returns null.

• find(E k): this method returns a node with key k, if it exists. Returns
null if k is not found. Due to the ordered keys of the tree, it is needed to
test if the search key is less than, equal to, or greater than the key stored
at node v (see Figure 7.5). If k is smaller then the search continues in
the left subtree; if k is equal then the search terminates successfully; if k
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Figure 7.3: Implementation of a node of a binary search tree.

is greater then the search continues in the right subtree. If we reach an
empty (null) node, then the search terminates unsuccessfully. Figure 7.6
shows the implementation of its operations.

• findAll(k): this method returns a list of all nodes with keys equal to k.

Figure 7.7 shows the recursive implementation of the method find (called
searchNode). Worst-case running time of searching in a BST is simple. The
algorithm searchNode is recursive and executes a constant number of primitive
operations for each recursive call. Each recursive call of searchNode is made
on a child of the previous node. That is, searchNode is called on the nodes of
a path of T that starts at the root and goes down one level at a time. Thus,
the number of such nodes is bounded by h + 1, where h is the height of T. For
example, we would spend O(1) time per node encountered in the search, method
find on tree T runs in O(h) time, where h is the height of the binary search tree
T. Admittedly, the height h of T can be as large as n, but we expect that it is
usually much smaller. findAll(k) has O(h+s) where s is the number of returned
nodes. Indeed, we will show how to maintain an upper bound of O(logn) on the
height of a search tree T using AVL. There are additional methods for searching
through predecessors and successors of a key or entry, but their performance is
similar to that of find.

Binary search trees allow implementations of the insert and remove opera-
tions using algorithms that are fairly straightforward, but not trivial. We now
explain some operations more difficult than the previous ones.

• insert(k,x): inserts a node with key k and value x (see Figure 7.8). If there
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Figure 7.4: This implementation returns the lowest key in a tree.

Figure 7.5: Searching a node whose key is 25.

is some node with this key, then its value is replaced by x. To insert a
new node in the tree, we have to find the proper place to set the node.
For this purpose, we will traverse the tree by means of a recursive method
shown in Figure 7.9.
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Figure 7.6: The implementation of the iterative find.

Figure 7.7: The recursive implementation of the method find.

• remove(k): Removes a node with key equals to e, and return it.

• removeAll(k); removes all nodes whose keys are equals to e.

The implementation of the remove(k) operation is a bit more complex, since
we do not wish to create any ”holes” in the tree. We begin our implementation
of operation removeNode(k) using a recursive method that traverses the tree T
searching a node w that has the key k. If there is no node with key k in the
tree T, we return null (and we are done). If there is a node w, then we wish to
remove it and we distinguish three cases (of increasing difficulty):

• If the node w is a leaf, then we should find its parent and free the node w
(see Figure 7.10). Its implementation is shown in Figure 7.11.
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Figure 7.8: Inserting a node whose key is 26.

• If one of the children of node w is null, we simply remove w and restruc-
ture T by replacing w with its non-null child. (See Figure 7.12). Its
implementation is shown in Figure 7.13.

• If both children of node w are internal nodes (non-null), we cannot simply
remove the node w from T, since this would create a ”hole” in T. Instead,
we proceed as follows (see Figure 7.14; its implementation is shown in
Figure 7.15.):

– We find the first node y that follows w in an inorder traversal of T.
Node y is the left-most internal node in the right subtree of w, and
is found by going first to the right child of w and then down T from
there, following left children.

– We save the entry stored at w in a temporary variable t, and move
the entry of y into w. This action has the effect of removing the
former entry stored at w.

– We remove node y from T. This action replaces y with its right child.

– We return the entry previously stored at w, which we had saved in
the temporary variable t.

As with searching and insertion, this removal algorithm traverses a path from
the root to an external node, possibly moving an entry between two nodes of
this path.
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Figure 7.9: Implementation of the method insert.

Figure 7.10: Removing a leaf.

73



Figure 7.11: Part of the implementation of the method remove (case: removing
a leaf node).

Figure 7.12: Removing a node with an only node.

7.3 Performance of a Binary Search Tree

The analysis of the search, insertion, and removal algorithms are similar. We
spend O(1) time at each node visited, and, in the worst case, the number of
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Figure 7.13: Part of the implementation of the method remove (case: removing
a node with an only child).

Figure 7.14: Removing a node with two children.

nodes visited is proportional to the height h of T. Thus, a binary search tree T
is an efficient implementation of a dictionary with n entries only if the height
of T is small. In the best case, T has height h = log(n + 1), which yields
logarithmic-time performance for all the update operations. In the worst case,
however, T has height n, in which case it would look and feel like an ordered
list implementation. Such a worst-case configuration arises, for example, if we
insert a series of entries with keys in increasing or decreasing order. This case
is shown in Figure 7.16.
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Figure 7.15: Part of the implementation of the method remove (case: removing
a node with two children).

Figure 7.16: Part of the implementation of the method remove (case: removing
a node with two children).

The performance of a binary search tree is summarized in Table 7.1. Should
be taken into account that search and update operations varies dramatically
depending on the tree’s height. We can assume that, on average, a binary
search tree with n keys has expected height O( log(n) ).
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Methods Time

isEmtpy(), size() O(1)
find, insert, remove O(h)
findAll() O(h+s)

Table 7.1: Performance of a binary search tree
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Chapter 8

AVL Trees.

8.1 Definition.

An AVL tree is a self-balancing binary search tree, where the heights of the two
child subtrees of any node differ by at most one. Insertion, and deletion all take
O(log n) time in both the average and worst cases, where n is the number of
nodes in the tree prior to the operation. Any binary search tree T that satisfies
the height-balance property is said to be an AVL tree, named after the initials
of its inventors: Adel’son-Vel’skii and Landis.

Figure 8.1: The second tree is not AVL because the Left-height and the Right-
height of the node 5 differ by 2 nodes.

The balance factor of a node is the height of its left subtree minus the height
of its right subtree (sometimes opposite) and a node with balance factor 1, 0,
or 1 is considered balanced. A node with any other balance factor is considered
unbalanced and requires rebalancing the tree. The balance factor is either stored
directly at each node or computed from the heights of the subtrees. Formally,
the balance factor of a node can be defined as follows:

Bf = Hr −Hl (8.1)

where HR is the height of its right subtree and HL is the height of its left
subtree.
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Based on the possible values of Bf, we can define the following cases:

• If Bf = 0 the the left and the right subtrees of a node are the same height.

• If Bf =1 then the tree is balanced in height, but the right subtree is a
higher level.

• If Bf = −1 then the tree is balanced in height, but the left subtree is a
higher level.

• If Bf � 2 or Bf � 2 then the tree must be balanced.

Figure 8.2: Balance factor of a node.

The insertion and removal operations for AVL trees are similar to those for
binary search trees, but with AVL trees we must perform additional computa-
tions called rotations.

8.2 Operations

8.2.1 Insertion

An insertion in an AVL tree T begins as in an insert operation for a (simple)
binary search tree. After inserting a node, it is necessary to check each of the
node’s ancestors for consistency with the rules of AVL. For each node checked,
if the balance factor remains 1, 0, or +1 then no rotations are necessary. How-
ever, if the balance factor becomes 2 then the subtree rooted at this node is
unbalanced.

For example, Figure 8.3 shows a sequence of integer nodes (40, 33, 46, 6, 8,
24, 18, 22, 25, 60) inserted in an empty AVL tree. The balance factor of the
node 33 is Bf = −2, this means that the tree must be balanced.

There are four cases which need to be considered for balancing an AVL tree,
of which two are symmetric to the other two. These cases are shown as follows:

Right-Right Simple Rotation (RR) In Figure 8.4, the node a has Bf =
−2. In order to balance the tree, b becomes the new root, a becomes the left
child of b, c becomes the right child of b.
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Figure 8.3: Insertion in an AVL tree.

Figure 8.4: Right-Right Simple Rotation.

Left-Left Simple Rotation (LL) In Figure 8.5, the node a has Bf = 2. In
order to balance the tree, b becomes the new root, a becomes the right child of
b, c becomes the left child of b.

Figure 8.5: Left-Left Simple Rotation.

Right-Left Simple Rotation (Double RL) In Figure 8.6, it is necessary
two rotations in order to balance the node a:

81



• First rotation: c becomes the right child of a, b becomes the right child
of c.

• Second rotation: c becomes the new root, a becomes the left child of c.

Figure 8.6: Right-Left Simple Rotation.

Left-Right Simple Rotation (Double LR) In Figure 8.7, it is necessary
two rotations in order to balance the node a:

• First rotation: c becomes the left child of a, b becomes the left child of c.

• Second rotation: c becomes the new root, a becomes the right child of c.

Figure 8.7: Left-Right Simple Rotation.

8.2.2 Deletion

If the node is a leaf or has only one child, remove it. Otherwise, replace it with
either the largest in its left subtree (inorder predecessor) or the smallest in its
right subtree (inorder successor), and remove that node. The node that was
found as a replacement has at most one subtree. After deletion, retrace the
path back up the tree (parent of the replacement) to the root, adjusting the
balance factors as needed. Fox example, if the node whose value is 5 is deleted
from the tree shown in Figure 8.8, the root has Bf = 2 and we should balance
it by a Right-Right rotation.
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Figure 8.8: Deletion of a leaf node in an AVL tree requiring a RR rotation.

Figure 8.9: Deletion of a leaf node in an AVL tree requiring a RL rotation .

8.2.3 An example

Check if the binary tree show in Figure 8.11 is AVL:

Figure 8.10: is this binary search AVL?.

We must calculate the balance factors of each node, as follows:
Since tree is not an AVL tree (Bf of the node 7 is -3(, this means that the

tree must be balanced as follows:

1. RR Rotation is applied on the node 7, (a=7, b=5, c=3) the result of the
new tree is shown in Figure ??:

We must check checked the tree shown in Figure 8.12 to see if it is an AVL
tree or not. The tree is not an AVL tree because the balance factor of the node
8 is Bf = −3, this means that the tree must be balanced. A RR Rotation is
applied on the node 8, (a=8, b=5, c=3) the result of the new tree is shown in
Figure 8.14. Once checked the new tree, it is an AVL
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Figure 8.11: The tree is not an AVL tree because the balance factor of the node
7 is Bf = −3.

Figure 8.12: A RR rotation is applied on the tree in order to balance the node
7.

Figure 8.13: The tree is not an AVL tree because the balance factor of the node
8 is Bf = -3.

Figure 8.14: The tree is not an AVL tree because the balance factor of the node
8 is Bf = -3.

The tree shown in Figure 8.15 is not an AVL tree because the balance factor
of the node 6 is Bf = 2 and, therefore, it must be balanced. A LL Rotation is
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applied on the node 6, (a=6, b=7, c=8) and the result of the new tree is shown
in Figure 8.16. The previous tree is not an AVL tree because the balance factor
of the node 10 is Bf = -2 (see Figure 8.17), this means that the tree must be
balanced. We can apply a RR Rotation on the node 10, (a=10, b=5, c=3) the
result of the new tree is an AVL tree (see Figure 8.18).

Figure 8.15: The previous tree is not an AVL tree because the balance factor of
the node 6 is Bf = 2.

Figure 8.16: LL Rotation is applied on the node 6.

Figure 8.17: The previous tree is not an AVL tree because the balance factor of
the node 10 is Bf = - 2.
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Figure 8.18: AVL Tree achieved by applying a RR rotation on the node 10.
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