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Abstract

The classical Kramer sampling theorem provides a method for obtaining or-
thogonal sampling formulas. Besides, it has been the cornerstone for a significant
mathematical literature on the topic of sampling theorems associated with differ-
ential and difference problems. In this work we provide, in an unified way, new
and old generalizations of this result corresponding to various different settings;
all these generalizations are illustrated with examples. All the different situations
along the paper share a basic approach: the functions to be sampled are obtaining
by duality in a separable Hilbert space H through an H-valued kernel K defined

on an appropriate domain.
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1 The classical Kramer sampling theorem

The classical Kramer sampling theorem provides a method for obtaining orthogonal
sampling theorems [8, 13, 29, 35, 48|. The statement of this general result is as follows.
Let K be a complex function defined on D x I, where I — R is an interval and D is an
open subset of R, such that for every t € D the sections K| -,t) are in L?(I). Assume
that there exists a sequence of distinct real numbers {t,} C D, indexed by a subset of
7., such that {K(x,t,)} is a complete orthogonal sequence of functions for L?(I). Then
for any f of the form

f(t) = ﬁ F@)K(z,t)dz, teD,
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where F € L?(I), we have
f(£) =D f(ta)Su(t), teD, (1)

with
J; K(z,t)K (2, t) dx
K@ tm)Pdz
The series in (1) converges absolutely and uniformly on subsets of D where the function
te ||K (- f}"[j([) is bounded.
Perhaps, the most important example of the Kramer sampling theorem is the well-
known Whittaker-Shannon-Kotel nikov sampling result:

Example 1.1. For I = [-m, 7], D = R, K(z,t) = €**/y/27 and the sequence {t, =
Ntncz, we get the WSK sampling formula

=Y i . teR,

m(t —n)

S, (t) == eD.

M=—>00

for functions f € LELIRJ whose Fourier transform f has support in the interval [—m, 7],
ie, f(t) = ?lg_w ff L flw) ™ dw, t € R. The series converges absolutely and uniformly
on R.

In other words, WSK sampling theorem works for functions f in the classical Paley-
Wiener space PW,; of band-limited signals to [—m,7]. See Refs. [9, 18, 27, 28 32|.
Reconstructing integral transforms other than the Fourier one from some sampled val-
ues occurs frequently in some physical applications. One such integral transform is the
Bessel-Hankel transform. Sampling associated with this transform was first introduced
by Kramer in his seminal paper [35]. The Fourier-Bessel set {/z.J,(zt,)} _, is known
to be an orthogonal basis for Lg[ 1), where t, is the nth positive zero of the Bessel
function J,(t), v > —1 (see also [29, p. 83]). The Bessel function of order v is given by

_1ym ¢ 2n
L) = +Zn71+£}~-}-{n+v} (5) ]

Using special function formulas, for a fixed ¢ > 0, we have

= 2\/tat Ju| R
tJ,(zt) = J, [zt L=(0,1).
‘V;:r_ F{:r} —~ J;{tn}{tz \l'llf_ F{I m { 1 }

Thus, if we take I = [0,1], D = R, K(z,t) = v/ztJ,(zt) and {t,}2°, the sequence of

the positive zeros of J,(t) we obtain:

Example 1.2. Any function f of the form f(t) = _,rDl F[m}v"’ﬁ.ﬂ,{zijdm, t e B, where
F € L*(0,1), can be recovered from its samples at the positive zeros {t,}22, of the
Bessel function J, of v-th order with v > —1, through the sampling formula

ENE2A0

— . telR.
Tt@—2) '

ft) =2 f(ta)
n=1



The Kramer sampling theorem (announced by Weiss in [47]) has been the cor-
nerstone for a significant mathematical literature on the topic of sampling theorems
associated with differential or difference problems which has flourished for the past few
years. As a small but significant sample of examples see, for instance, [6, 13, 20, 48]
and references therein. Here we do not consider this approach.

The main goal in this survey is to give a common framework gathering most of
the sampling formulas coming from the Kramer sampling result. The starting point
in this paper is an abstract version of the Kramer sampling theorem. To this end, we
work in the reproducing kernel Hilbert space (written shortly as RKHS) of functions
introduced by Saitoh in [40] as follows: Let (#, (-, -)3) be a separable Hilbert space with
orthonormal basis {e,}22 ;. Suppose K is a H-valued function defined on £} a subset of
R (or C). For each x € H, define f.(t) = (z, K(t))y and let Hx denote the collection
of all such functions f;. In this setting, an abstract version of the Kramer theorem is
obtained assuming the existence of two sequences, {t,}>2; in C, and {a,}:>; in C\ {0},
such that K (t,) = an e, for each n € M. This is a slight modification of a sampling result
derived by Higgins in [30]. The non-orthogonal case is also included by considering
a Riesz basis {z,}22 ; instead of the orthonormal basis {e,}32 ;. Depending on the
nature of the Hilbert space H, an L?-space, an #*-space, a Sobolev space, a Hilbert
space of distributions, etc., we exhibit different settings where the Kramer sampling
theorem applies (Sections 2 and 4). In Section 2 we include the analytic version of
Kramer sampling theorem giving a necessary and sufficient condition to ensure when
the sampling formula (1) can be expressed as a Lagrange-type interpolation series. We
also propose a generalization in Banach spaces by considering a semi-inner-product
(Section 3). Finally to say that this work can be seen as a complement to other surveys
in the subject [7, 8]; Chapters 4-8 of Zayed's book [48] are in fact a remarkable survey

on Kramer's sampling theorem.

2 The abstract Kramer sampling theorem

Since the functions f for which Kramer sampling theorem applies (1) are images of an
integral transform with kernel K, the reproducing kernel Hilbert spaces considered by
Saitoh in [40] are the suitable spaces where a generalization of the classical Kramer
sampling theorem also works (see also [41, 45] and [48, Section 10.1]):

2.1 The RKHS setting

Let H be a separable Hilbert space. and 1 a fixed subset of . Given an H-valued
function K : 2 — H, for any z € H the function f.(t) := (z,K(t))n. t € {1, is well-
defined as a function f, : 2 — C. We denote by H the set of functions obtained in
this way and by Tk the linear transform

Tic :Hzzw— fo e Hy. (2)

In other words, Hy = Tx(H). Hereafter we refer the function K as the kernel of the
linear transform Ty and henceforth we omit the subscript x for denoting the elements
in Hx. Note that the continuity of the kernel K implies that the functions in Hg are



continuous in £). If we define in ‘Hg the norm ||f||lx, = inf{||z||x : f = Tx(z)} we
obtain a Hilbert space. Moreover, for each t € (1, the evaluation functional E:(f) :=
f(t), f € Hk, is bounded, and the space Hx becomes an RKHS whose reproducing
kernel is given by, cf. [40, p. 21],

k(t,s) = (K(s), K(t))}n, t,sefl, (3)

i.e., for each s € {) the function k, defined as k,(t) := k(t, s) belongs to Hg, and the
reproducing property

f{s} = (f? ka}?{x = {f:k{':s:l)?{x y 8 € ﬂ: f = HK 1 {4}

holds.

In an RKHS space Hy, the convergence in the norm || - ||, implies pointwise
convergence which is uniform on those subsets of {1 where the function t — ||K(t)||y is
bounded; it follows form (4) by using Cauchy-Schwarz inequality, and having in mind
that k(t,t) = |K(£)]? t € Q.

Recall that the Moore-Aronszajn procedure [3] leads to the same RKHS via the
positive definite (or positive matriz) function k in (3). Under these circumstances it
is known that the linear operator Ty is one-to-one if and only if T is an isometry
between H and Hg, or, equivalently, if and only if the set {K (t)}:co is complete in ‘H
[40]. The RKHS H has been largely studied in the mathematical literature (see Ref.
[40] and references therein).

The first generalization consists of stating the Kramer condition in terms of Riesz
bases. Recall that a Riesz basis in a separable Hilbert space is the image of an or-
thonormal basis by means of a bounded invertible operator. Any Riesz basis {z,}3%;
has a unique biorthogonal (dual) Riesz basis {yn}22 ;. i.e., {Zn, Ym)# = On,m. such that
the expansions

oo oo
&= Z(‘Tﬂ yﬂ)?‘l’. Iy = Z{I? "En)?{ Un s
n=1 n=1

hold for every = € H (see [11, 46] for more details and proofs).

Definition 1 (Abstract Kramer kernel). A kernel K : (0 — H is said to be an abstract
Kramer kernel with respect to the data {t,},—, € {) and {a,};—; € C\ {0} if it satisfies
K(t,) =@, z,, n € N, for some Riesz basis {x,}>° ; for H.

For each fixed ¢ € (), K(t) can be written as K(t) = > .- Sn(t) zn, where the
functions
Sﬂ-{t} = (yn: Kl:t:l)?{ , tefl, neN, {5}

belong to Hj: here {y, }32 ; denotes the dual Riesz basis of {z,}32 ; in H{. The Kramer
condition, K(t,) = @n . for every n € M, is equivalent to the interpolatory condition
Sn(tm) = Gndnm, n,me M.

The Kramer condition also implies that the linear transform (2) is a bijective isom-
etry (unitary operator) between the Hilbert spaces H and Hy . As a consequence, we
obtain the following sampling theorem for functions in H g :



Theorem 1 (Abstract Kramer sampling theorem). Assume that K is an abstract
Kramer kernel for the data {t,};2; € (1, {an};—; € C\ {0} and the Riesz basis {xn};-
fﬂr H. Then, the sequence of functions {5, }o-, given in (5) forms a Riesz basis for the

. Erpanding any f € Hg in this Hiesz basis we obtain the nonorthogonal sampling
ezpnns:'an

0= 1) =, tea. ©)
n=1

The series converges in the Hy -norm sense and also, absolutely and uniformly on
subsets of () where the function t — ||K(t)||y is bounded.

Proof. By (5) we have that Tk (ym) = Sm for each m € M; since Tk is a bijective isom-
etry we obtain that the sequence {S;,}o_; is a Riesz basis for Hx whose biorthogonal
basis {T,,}25_; is given by T}, := Tx(z,,), m € M. Expanding any f € Hy in this Riesz
basis, we have f = 3> (f,Tn)3 Sn, in the Hg-norm sense and, consequently, point-
wise in {). Moreover, having in mind that Tk is an isometry, and that K(t,) = @, zn,
n € M, we obtain

{f&Tﬂ}H = {TKEEL TK Emnj}?{x = {.‘E, mﬂ)?‘l’. = {17 K(tn}fﬁﬂ-}ﬂ = fl:t'ﬂ-}fﬂ'ﬂ s ME N?

and hence the sampling expansion (6). Since a Riesz basis is an unconditional basis
(any orthonormal basis is an unconditional basis by using the Parseval equality), the
sampling series (6) is pointwise unconditionally convergent for each t € (2 and hence
pointwise absolutely convergent. The uniform convergence of the series in (6) is

standard result in RKHS's theory. |:|

In the particular case when {z,}22 ; is an orthonormal basis for H, it is self-dual
and we have the following result:

Corollary 2. Whenever the sequence {x,}22 , in Definition 1 is an orthonormal basis
for H, the sequence {S,}2° ; is an orthonormal basis for Hyx and the sampling expan-
sion (6) is an orthonormal erpansion in Hyx having the same pointwise convergence
properties.

Example 2.1. For H := L%[0,n] we consider the kernel K, : R — L?[0, ] defined,
for each t € R, by [K, E|:t:|J (z) = costz, = € [0,7]. Since the sequence {cosnz}2, is
an orthogonal basis for L°[0, 7|, the kernel K. satisfies the Kramer condition for n €
Mo := WU {0}. Thus, any function f(t) = (F,costz)i2j0], t € R, where F € L2[o, 7],
can be erpanded as

10 = FO) T + 2 Zf LIS 3

2 _n2

Analogously, consider the kernel K, : R —s L%[0, 7] defined, for each t € R, by
[K.(t)](z) = sintz, x € [0,7]. Then, for any function f(t) = (F,sintz)rap ), t € R,
where F € L?[0, 7], the sampling ezpansion

z_f{ W+T teR,
ﬂ-—l

holds. The series above converge absolutely and uniformly on K.



Kramer sampling theorem and indeterminate moment problems

Discrete Kramer kernels K can be obtained from indeterminate Hamburger moment
problem (see Refs. [1, 42] for the details on this theory); here H := £?(Mp). Let
5§ = {8, }nery © R be an indeterminate Hamburger moment sequence, i.e., there exists
a non-unique positive Borel measure p on B such that

sn:fmt“d,u{t}? ne M.

Let V, be the set of positive Borel measures g on R satisfying the moment problem.
The functional £ defined on the vector space C[z] of polynomials p(t) = 3_, prt* by

£w) =Y man= [ poduty
k=0 -

is independent of p € V,. Let {F,};2,; be the corresponding orthonormal polynomials
satisfying

] Po(t) P(t)dps(t) = bpm, for each p e V.

We assume that P, is of degree n with positive leading coefficient. Recall that the
sequence {F,(t)}22, satisfy a three-term recurrence relation

tP(t) = anPryi(t) + bnPa(t) + an—1Pn_i1(t), n=0

where P_i(t) = 0 and Fy(t) = 1. The two sequences {b,}>~; and {a.}2; of real
and positive numbers, respectively, form the semi-infinite Jacobi matrix associated
with the indeterminate Hamburger moment problem (see, for instance, [42]). Since
we are dealing with an indeterminate Hamburger moment problem it is known that
32 5 |Pa(t)]? < oo for each t € R; in fact, uniformly on compact subsets of C (see
[1, 42]). Thus, we can consider the kernel

= Ii} K{t} = {Pn{tj}:;u = EE{NU} B

and its associated Hx space. Moreover, there exist sequences {t,; };,_p in R such that
the sequence {{P[,l:im}, Pi(tyn), Po(tm)s ..oy Faltm), .. ‘}}:=D is an orthogonal basis for
£2(Mg) (see [19]). More can be said about these sequences {t.;}2_, by using the well-
known Hamburger moment problem theory. An N-extremal measure p is a solution of
the Hamburger moment problem for which the polynomials {P,} are dense in Lz{,u.}
[42]; the N-extremal measures p, can be parametrized with z € RU {oc} and we have
that (see [42, p. 126]):

A(2) +20() _ [ dpa(y)
B ap =] T FEC\R,

where A(z), B(z), C(z) and D)(z) are the components of the so-called Nevalinna matrix
of the Hamburger indeterminate moment problem (see [42, p.124]). The sequence of
zeros of the entire function, B(z) + zD(z) if z € R or the zeros of D(z) if z = oo, are
precisely the sampling points {t,,}2°_; (see [42, p. 127]).

As a consequence, associated with any indeterminate Hamburger moment problem
we obtain a discrete Kramer kernel K. Next we show a concrete example:

6



Example 2.2. We consider the particular case of the so-called g—'-Hermite polynomi-
als (0 < g < 1). These polynomials have the explicit representation (see [31])

T

haltl)) =Y “L%{_ukqm—n}(t AT
k

? (4 0)k(9: @In—k

where the g-shifted factorial notation is used

(1,02, 1 Cpi@)n = HH{I—c 1, forn=0,1,...,00

k=1j=1

The moment problem associated with {hy(t|q)}322, is indeterminate, and the norms of

the polynomials are given by ||hy|| = qfq—,ff% (see [31]). In this case the kernel K

is given by
K,: R— fﬂ(mu)
te— Ky(t) = {Pa(6)}220,

where {P = hyn/ ||hﬂ||}:'=u is the sequence ﬂf arthonormal polynomials. Consider, for
erample, the points £ty = :I:%[q—"‘—lﬂ — g™tY2) m € My, which are the zeros of the
corresponding D function, given by (see [31])

(ge®, ge%; %)
(g:q2)%,

D(t) = — , where t =sinhé.

We obtain that
{{PO(tm), Pitm), Paltm), -3} U{{Po(tm) Prl—tm), Pol—tm), - }}

is an orthogonal basis for £2(My). Following [20], for each m € My we have
Dit)
(0% tm) D' ()

Thus, Theorem 1 reads: Any function f given by f(t) = {{cn}, {Pr(t) ez, tER,
where {c,} € £2(Ng), can be ezpanded as

te .

S:I: — {{P (Xt ) bnemos ql:ﬂ}fgiﬂﬂj -

D(t) D(t)
f(t)= Zf Ol ey, o +Zf{,,,} — ey’ <R

The series converges absolutely and uniformly on compact subsets of B.

2.2 A sampling formula in a shift-invariant space

In order to avoid most of the drawbacks associated with classical Shannon’s sampling
theory, sampling and reconstruction problems have been investigated in spline spaces,
wavelet spaces, or in general shift-invariant spaces (see [16] and references therein for
more details and results on sampling in shift-invariant spaces).



Let Vg = spﬁ{:,a{- - n}} el be a shift-invariant space with stable generator ¢ €
L*(R) which means that the sequence {i(- —n) }nez is a Riesz basis for VE. Recall that
the sequence {(- — n)}nez is a Riesz sequence in L*(R), i.e., a Riesz basis for Vg (see,
for instance, [11, p. 143]) if and only if there exist two positive constants 0 < A < B
such that

A<) |Bw+k)P<B, aewelo1],
kL
where  stands for the Fourier transform of ¢ (defined as @(w) := [~._(t) e~ 2™wtdt
in L'(R) N L*(R)). Thus we have that

VE={Y auo(-—n) : {a} € 2@} c L*R).

ned

We assume that the functions in the shift-invariant space Vg are continuous on K.
This is equivalent to say that the generator i is continuous on B and the function
t ++ 3 .czlo(t — n)? is bounded on R. Thus, any f € V is defined on R as the

pointwise sum f(t) =3 -z anp(t —n) for each t € R.
On the other hand, the space Vg is the image of the Hilbert space L?[0, 1] by means
of the isomorphism
To: Lo, — V2
{E_QMM}HEZ — {e(t —n)}nez,
which maps the orthonormal basis {e=2™""} _5 for L?[0, 1] onto the Riesz basis {(t—
1) }nez for V2. For any F € L2[0, 1] we have

TF(8) =) (Fe ™™gt —n) = (F,)_ ot —n)e ™) = (F,Ki) 2, tER,

nelk nck
where, for each t € R, the function K; € L?[0,1] is given by
Ki(z) =) @t —n)e ™™ =" o(t + n)e=2mnr = Zp(t,z) . (7)
nek nck

Here, Zp(t,z) := 3 zp(t+ n)e 27T ig just the Zak transform of the function y (see
[11] for properties and uses of the Zak transform).

As a consequence, the shift-invariant space Vg is an RKHS in LE{IRJ_, and any
function f =T, F € V,g can be expressed as

f(t) ={F, Kt}LE[DJ], teR.
Thus, for a € [0,1) fixed and m € Z we have
fla+m) = (F, Kaym) 201 = (Fre ™™ Ko) 20y, F =T, f.

In order to apply Theorem 1, we look for sampling points of the form ¢, = a + m,
m € Z, such that the sequence {e 2"™MTK u(m}}mez is a Riesz basis for L[0,1].

Recalling that the multiplication operator my : L2[0,1] — L?[0,1] given as the
product mg(f) = Ff is well-defined if and only if F' € L*>[0, 1], and then, it is bounded
with norm ||mg|| = ||F||oc. the following result comes out:

8



Lemma 3. The sequence of functions {e=*™™*K,(z)} mez 15 a Riesz basis for L?[0,1]
if and only if the inequalities 0 < ||[Kgllo < ||Kalle < oo hold, where ||Kallo ==
essinf o 1) [Ka(z)| and ||Kal|wc 1= esssupycjoq) [Ka(z)|- Moreover, its dual Riesz ba-
sis is {E_Mmjﬁa{mj} mez- 10 particular, the sequence {E_E“imﬁa{m}} mez 1S QN
orthonormal basis in L2[0,1] if and only if |[K.(x)| =1 a.e. in [0,1].

Let a be a real number in [0,1) such that 0 < ||K,|jp < ||Kgllee < co. For each n € N
we have

Sn(t) := (7% [Ka(z), Ke(2)) 121 = To (77" [Ka(2))(f) = Sa(t —n), teR,

where 5, := T, (1 ,H'E} € Vg_. and we have used the shifting property TPI{:E_EM-'“IF:I (t) =
(T F)(t—mn).t € R and n € Z, which satisfies 7,. As a consequence, Theorem 1 reads:
Any function f Vg can be expanded as the sampling series

fiey= D fla+n)Ss(t—n), teR. (8)

The convergence of the series in (8) is absolute and uniform on R since the function
t— | K| =3,.cz lo(t — n)|? is bounded on R.

Important examples of shift-invariant spaces Vg are those generated by B-splines:

Example 2.3. Consider ¢ := N,, where N,, is the B-spline of order m — 1, i.e
Nm = Ny * Ny *---* Ny (m times) where Ny = X[o.1] denotes the chamacteristic
function of the interval [0,1]. It is known that the sequence {Nm(t —n)} _, is a Riesz
basis for Vﬁm (see, for instance, [11]). For erample, the following sampling formulas
hold:

(1) For any f € VN , it is obvious that f(t) Z f(n)N2(t+1—n), tekR.
(2) For the quadratic spline N3 we have ZNs(t,z) = 1— +[E-@t-H=+ I—Q—Lz

where z = e >™*_ Thus, for t = 0 we have ZN3(0, m} = 3(1+ z} whtch vanishes at
z = 1/2. However, for t = 1/2 we have ZN3(1/2,z) = L(1+ 62 + 2?); according to (7)
we deduce 0 < [[Ky g0 < [|Ky2llec < o0. Hence, for any f € V3., we have

f(t) = Z £l n+ )Sipp(t—m), teR,
where S5y 9(t) = V22 (24/2 - 3)"HU Ny(t — n). This function has been obtained
from the Laurent erpansion of the functmn. 8(14+ 624 22)"! in the annulus 3 — 24/2 <
2| < 3+2v2.
(3) Since ZNy(0,x) = E{l + 4z +22) = Z(z — A)(z — 1/A) where z = e 2% and
A = /3 -2, according to (7) we deduce ﬂmt 0 < ||Kollo < ||Ko||ee < 00. Thus, for any
f € Vi, we have

f&)= Y f(n)So(t—n), teR,

i=—00



where Sp(t) = V332 ___(—1)"(2 — +/3)"l Ny(t —n + 2). To obtain the function Sy
we have used the Laurent erpansion of the function 6(z + 422 + zg}_l in the annulus

23 <|z| <24+ V3.

2.3 The analytic version

Suppose that {2 = C and let K be an analytic H-valued function defined on C where
‘H denotes a separable complex Hilbert space. Set f.(z) = (K(z),z)y. z € C, and
denote by Hg the collection of all such functions f,, © € H. We place K in the first
argument of the inner product in order to transfer the analyticity of K to the functions
of Hg. In fact, K is an analytic H-valued function defined on C if and only if every
fr € Hi is an entire function ([43, p.266]). As in the previous case, the space M is
a reproducing kernel Hilbert space with reproducing kernel k(z,w) = (K(z), K(w))y,
z,w € C. Notice that the mapping Ty given by

Uz fe Hy (9)

is an anti-linear mapping from H onto M. Thus, the space H - is an RKHS of entire
functions. Another characterization of the analyticity of the functions in ‘Hx is given
in terms of Riesz bases by using Montel’s theorem. Indeed, suppose that a Riesz basis
{zn}22, for H is given and let {y,}>2, be its dual Riesz basis; expanding K (z), for
each fixed z € C, with respect to the basis {x,}52 ; we obtain

K(z) =Y (K(2),Yn)# Tn

n=1

where the coefficients (K(z), yn)3, as functions in z, are in Hx. The following result
holds (see [21] for the proof):

Lemma 4. The space Hy is an RKHS of entire functions if and only if for eachn € M
the function
Sp(z) ={(K(z),yn)yq, z€C, (10)

is entire, and the function z — ||K(z)||y is bounded on compact subsets of C.

Now, according to Definition 1 the analytic kernel K : C — H is said to be an
analytic Kramer kernel with respect to the data {2,}>° , € C and {a,}:° ; € C\ {0} if
it satisfies K(z,) = a, x,, n € M, for some Riesz basis {z,}22 ; for H.

An analytic kernel K is an analytic Kramer one if and only if the sequence of
functions {S,,}52 ; in H given by (10), where {y,, }52 ; is the dual Riesz basis of {z,}32 ;
satisfies the interpolation property S,(zy,) = a, 0, m, m.n € M. As a consequence,
limp_y00 |2n| = +00: otherwise the sequence {z,}32 | contains a bounded subsequence
and hence, the entire function S,, = 0 for all n € M which contradicts that S, (z,) = a.
for each n € M.

Concerning the existence of analytic Kramer kernels, it has been proved in [22]
that, associated with any arbitrary sequence of complex numbers {z,}32 ; such that
limp_;00 |2n| = 400, there exists an analytic Kramer kernel K.

Under the notation introduced so far a slight modification of Theorem 1 holds:

10



Theorem 5 (Analytic Kramer sampling theorem). Let K : C — H be an analytic
Kramer kernel with respect to the data {zn,};—, € C and {an},—; € C\ {0}. Let Hi be
the corresponding RKHS of entire functions. Then any f € Hi can be recovered from
its samples {f(zn)}ar, by means of the sampling series

@)= 122, sec, (11)
n=1

i

where the reconstruction functions S, are given in (10). The series converges absolutely
and uniformly on compact subsets of C.

Proof. The anti-linear mapping Tk given by (9) is a bijective isometry between H and
Hi. As a consequence, the functions {5, = Tk (yn)}ne, form a Riesz basis for H;
let {T}22; be its dual Riesz basis. Expanding any f € Hk in this basis we obtain
f=%" (. To)#n, Snin Hg. Moreover,

(f. Ty = (. Tn)y = (K(2n)/0n, )y = f(2n)/0n, neN.

Since a Riesz basis is an unconditional basis, the sampling series will be pointwise
unconditionally convergent and hence, absolutely convergent. The uniform convergence
is a standard result in the setting of the RKHS theory since the function z — ||K(z)||»
is bounded on compact subsets of C. O

Let {F.(z)}:2 be a sequence of orthonormal polynomials associated with an in-
determinate Hamburger moment problem. It is known (see [1, 42]) that the series

0 |P",,|:z:||2 < oo, uniformly on compact subsets of C. Thus, we can define a discrete
analytic kernel K as

C32 5 K(2) = {Pa(2)}, € £2(No) -
Let Hy be its corresponding RKHS of entire functions; any f € Hx has the form
f{z} = ({Pﬂl:z}}: {cﬂ}>f2|:ﬁ'n}ﬁ S 'E?

where {¢,} € £2(Mg). For the sequences {t,,}2°_; introduced in Section 2.1, the kernel
K also becomes an analytic Kramer kernel. Next we exhibit an example taken from
polynomials associated with birth and death processes (see the classical Ref. [33]):

Example 2.4. Consider birth and death polynomials { Py }nem, with quartic rates [5].
These polynomials satisfy the three—term recurrence relation

P, (z) = a, Ppyi(z) + b, Pp(z) + ay_ 1Py _4(z), n>=0
P_I(EJ:D; Pﬂl:m}zla

where, for n = 0, the coefficients are given by

n = v/ Anfint1 bn = An + pin

An=(4n+1)(4n+2)%(4n+3)  pn = (4n—1)(4n)}(4n+1)

11



By Favard’s theorem these polynomials are orthonormal polynomials with respect to
a normalized Hamburger moment sequence s which is indeterminate [5]. The entire
function D) in Nevanlinnae parametrization is given by

D(z) = %ﬁsin (%EH[,) sinh (%’EKH) , z€C,

2
whose zeros are 2z, = (2rm/Ko)!, m € No, and Ko denotes the constant F;j!':_f} [5].

For each m € Mp we have [5, 20]:

D(2)
2 — 2 ) D' (2)

Hence, any entire function of the form f(z) = (K(z),{en})ezmy) = 2om—0n Pa(2),
z € C, where {c,} € £*(Ng) can be erpanded as

£(z) = £(0) e (%i'g;mh (gﬁ) +
160 & [(Qm)d (—1)mm VZsin (A"QEHD) sinh (J‘g’if{u)

el ’g I\ &, ) | sinb(mm) (z B (%_?)4) ;

=1
The series converges absolutely and uniformly on compact subsets of C.
We have used that

D’{D}=K—3 and D' [(gﬂ;m)d] _ Ko (—1)™ sinh(mm).

™ Ky ~ dmm?2

zeC.

Sm(2) = (K (), {Pa(em) o)) = 7

zeC

Example 2.5. Let H!(—m, ) be the Sobolev Hilbert space with its usual inner product
(hoy= [ @@ dz+ [ @ 7@, f.9eH ().

The system {€™ }nez U {sinhx} forms an orthogonal basis for H 1|:—:rr, m): It is easy
to prove that the orthogonal complement of {€™*},cz in H!(—m, ) is one-dimensional
and sinhx belongs to it. Given a € C\ Z we define a kernel K, : C — H'(—m, ) by

setting
[Ka(2)](z) = (2 — @) € +sinwz sinhz, =z € (—m,m).
Ezxpanding K,(z) e H 1{—?T, ) with respect to the above orthogonal basis we obtain

oo

Ka(z) = [1—i(z—a)] sin7z sinhz+(z—a) Z

M=—00

14+ zn
14+ n?

sinc(z—n)e™  in H'(—m,7),

where sinc z = sin wz /rz denotes the cardinal sine function. As a consequence, Theorem
& reads: Any entire function [ given by

10)= [ F@ K@@ d+ [ F@) K@ @) = Kale) Py, 2e€C

12



where F € H(—m, ), can be recovered from its samples { f(n)}nez U {f(a)} by means
of the sampling formula

flzy=[1—-1( z—a]]smrz fla) + z f{} Zii:; sinc(z —n), z2e€C.

=—00

The series converges absolutely and uniformly on compact subsets of C.

Analytic Kramer kernels and Lagrange-type interpolation series

A more difficult question concerns whether the sampling expansion (11) can be written,
in general, as a Lagrange-type interpolation series. Note that, for any f € PW,, the
corresponding sampling formula can be written as:

i=—00

where P(z) = sinwz is an entire function having simple zeros at £. A complete answer
to this question involves the following algebraic property:

Definition 2. A space H of entire functions has the zero-removing property (ZR prop-
erty hereafter) if for any g € H and any zero w of g the function g(z)/(z — w) belongs
to H.

The classical Paley-Wiener space PW, := { f € L?(R) n C(R), supp fc [—m, 7]},
where fstands for the Fourier transform of f, satisfies the ZR property. It follows,

for instance, from its characterization by using the classical Paley-Wiener theorem [46,
p.101], ie.,

PW, = {fentire function : |f(z)] < Ae™, flge L?(R)} .

Other examples where the ZR property holds can be found in [15]. There exists a
necessary and sufficient condition to ensure when the sampling formula (11) associated
with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series
(see Refs. [14, 15] for the proof):

Theorem 6. Let Hy be an REKHS of entire functions obtained from an analytic Kramer
kernel K with respect to the sequence {z,}i-; C C. Then, the sampling formula (11)
for Hy can be written as a Lagrange-type interpolation series

5 P(2) .

where P denotes an entire function having simple zeros at {z,} if and only if the space
Hy satisfies the ZR property.

13



Example 2.6. {The Paley-Wiener-Levinson theorem revisited)

Let {zn}nez be a sequence in C satisfying sup,, |[Rez, —n| < 1/4 and sup,, [Imz,| < oc.
It is known that the system {e®n"/\/2},cz is a Riesz basis for L:[—m, m] (see [46,
p. 196]). The Fourier kernel C 3 z — K(z) = e /27 € L*[-7,7] is an analytic
Kramer kernel for the data {z,},cz and a, = 1. Thus, for any function f € PW_ we
have the sampling expansion

flz)= Z f(zn) Sn(z) = Z fzn} i(;l,{z E zeC,

i=—00

where, for each n € Z, the sampling function Sn(2) = (K(z), hn)12[_xx), 2 € C, being
{hp(w)}nez the dual Riesz basis of {n" [\/21},cz in L?[—m, 7], and P is an entire
function having only simple zeros at {zp}ncz. Since a result from Titchmarsh [{4]
assures that the functions in PW, are completely determined by their zeros, we derive
that, up to a constant factor, the entire function P(z) coincides with the (convergent)

infinite product -
oo (- 2)0- ). wec
n=1 -

Example 2.7. The space Hy_ in erample 2.5 does not satisfy the ZR property. Indeed,
the function (z — a)sincz belongs to Hg, since (z —a)sincz = (Ka(z),1/2w)1 for all
z € C. However, by using the sampling formula for Hy, it is straightforward to check
that the function sinc z does not belong to Hy,. As a consequence, the sampling formula
in example 2.5 cannot be erpressed as a Lagrange-type interpolation series.

Example 2.8. Let K : C — H be an analytic kernel such that K(zp) = 0 for some
zg € C. Then all the functions in the associated space My have a zero at zp and the ZR
property does not hold in Hy . Indeed, let f be a nonzero entire function in Hy and
let r denote the order of its zero zo. The function f(z)/(z — z0)" is not in Hy since it
does not vanish af zg.

The kernel K, : C —s L*[0, 7] defined, for each z € C, by [Kq(2)](z) = sin 2z,
z € [0, 7] is an analytic Kramer kernel. Any function f(z) = {sin zx, F } L2ox]r % € C,
where F € L?[0, 7|, satisfies the sampling ezpansion

f(z) = Zf }{ 1} nsmﬂz, seC.

n_l

Since K,(0) = 0, the ZR property does not hold and the above sampling formula cannot
be written as a Lagrange-type interpolation series.

3 The semi-inner-product version in Banach spaces

A semi-inner-product in a Banach space possesses some but not all properties of an
inner product. Thus, some Hilbert space arguments and results become available in
the presence of a semi-inner-product in a Banach space. The needed preliminaries for
this section are taken from [23] and references therein.

14



Reproducing kernel Banach spaces

Following Ref. [49], a reproducing kernel Banach space on } C R (or C) is a reflexive
Banach space B of functions on {2} for which its dual space B* is isometric to a Banach
space B of functions on (1 and the point evaluation is continuous on both B and B for
each t € €. It has been proved in [49] that there exists a reproducing kernel for an

REKBS as defined above. To this end, we introduce the bilinear form on B x B* hy

setting
(w,v*) g :=2v"(u), uweB, v*eB".

As B is a reflexive Banach space, then for any bounded linear functional T' on B* there
exists a unique u € B such that T'(v*) = {-u..., v*]l g for each v* € B*. The following result
holds [49, Th. 2]

Theorem 7. Suppose that B is an RKBS on {1. Then there erists a unique function
E:Q = — C such that the following statements hold:

(a) For everyt €, k(- t) € B* and f(t) = (f,k(-1))g for all f € B.
(b) For everyt € Q, k(t,) € B and f*(t) = (k(t,-), f*) g for all f* € B".
(c) The linear span of {k(t,-) : t € Q} is dense in B.

(d) The linear span of {k(-t) : t € Q} is dense in B*.

(e) For allt,s € Q, k(t, s) = (k(t,-), k(- 5)) 5-

The function & in Theorem T is the reproducing kernel for the RKBS B. This
reproducing kernel is unique. However, as showed in [49], different RKBSs may have
the same reproducing kernel: For 1 < p < oo, the Paley-Wiener classes

={rec® | suppfc[-1/2,1/2] and fe L7[-1/2,1/2]}

with norm ||f||s, := ||_ﬂ| L#[—1/2,1/2] are RKBSs (not isomorphic), and they all have the

function k(t, s) = sinc(t—s) as the reproducing kernel (here f(t) = f_lﬁz f{wj eﬂﬁ‘”tdw].
In other words, although we have at hand a reproducing kernel k, we cannot determine
the norm on B. Also, the reproducing kernel for a general RKBS may be an arbitrary
function on £ x £ which, in particular, might be non-symmetric or non-positive defi-
nite [49, Prop. 5|. In order for the reproducing kernel of an RKBS to have the desired
properties of that of an RKHS, we impose certain structures on RKBSs, which in some
sense are substitutes of the inner product for RKHSs. For this purpose, we adopt the
semi-inner-product introduced by Lumer [36] (see also [24, 49]):

Semi-inner-product reproducing kernel Banach space

Let B be a Banach space. A semi-inner-product on B is a function
[,]: BxB — C,

such that, for all xy, 29,23 € B and a € C:
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=

- [z1 + m2, 23] = [21, 73] + [72, 74]

]

. [azy, 7o) = alzq, 29] and [z, azo] =T [z1, 2],

L3

. [z1,z1] = 0 for all z; # 0,

1N

Nz, z2]|* < [21, 1] w2, 73] .

The difference between a semi-inner-product and an inner product is the conjugate
symmetry and, as a consequence, a semi-inner-product may not be additive in the
second variable. Every normed vector space B has a semi-inner-product that induces
its norm [24, 36], i.e., ||z||s = [z, z]'/? for each = € B. In general, a semi-inner-product
for a normed vector space may not be unique; however, if the space B is uniformly
Fréchet differentiable we obtain the uniqueness of the semi-inner-product (see [49] for
the details). Recall that the space B is uniformly Fréchet differentiable if for all z, y € B
with z # 0, the limit

o L+ tyls — s

teR it
t—0

exists and it is uniform on S(B) x §(B) where §(B) := {z € B : ||z|s = 1}.

Assuming also that the Banach space is uniformly convex we obtain a Riesz repre-
sentation theorem [24]: For each f € B* there exists a unique = € B such that f = z*.
In other words,

fly)= [H:E]B forallye B.

Moreover, ||f|ls+ = ||z||s. Recall that B is uniformly convex if for all £ > 0 there exists
& > 0 such that ||z 4+ y||g < 2 — 6 for all z,y € §(B) with ||z — y||s = =. Notice that if
B is uniformly convex then it is reflexive (see [39, p.410]) and strictly convex, i.e., for
every x,y € B with x # y and ||z|| = ||y|| = 1, we have that ||z + y|| < 2.

For 1 < p < oo, the classical LP(I), where I denotes any interval on R, and £F(})
spaces are uniformly convex and uniformly Fréchet differentiable Banach spaces. Their
semi-inner-product are given, respectively, by

[f gl == llgllz™® ﬁ g 1g®)P2dt and [z, ylp = ylp "D TnTm Il .
n=1

We define a semi-inner-product reproducing kernel Banach space (hereafter s.ip.
RKBS) on 1 as a uniformly convex and uniformly Fréchet differentiable reproducing
kernel Banach space on £1.

An RKHS is an si.p. RKBS. Also, the dual of an s.i.p. RKBS remains an s.i.p.
REKBS. An s.i.p. RKBS B has a unique semi-inner-product which represents the interac-
tion between B and B*. This leads to a more specific representation of the reproducing
kernel. Precisely, we have the following result [49, Th. 9]:

Theorem 8. Let B be an s.i.p. RKBS on {1 and k its reproducing kernel. Then there
erists o unique function G : {1 x £} — C such that {G(t,-) : t €1} C B and

f(ty=1f,G(t,)]lg forall feB, tefl.
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Moreover, there holds the relationship
k(1) = (G(,-)*, tell

and

*(t) = [k(t,-).fls forallfeB, te.

We call the unique function & in theorem above the s.i.p. kernel of the s.i.p. RKBS
B. It coincides with the reproducing kernel k& when B is an RKHS. In general, when
7 = k in Theorem 8, we call & an s.i.p. reproducing kernel. Thus, an s.i.p. reproducing
kernel G satisfies that G(t, s) = [G(t,-), G(s,-)|s, t,5€ L

The analogous Kramer sampling result

Consider a separable complex uniform (i.e., both uniformly Fréchet differentiable and
uniformly convex) Banach space B and denote by [-,-]g the unique compatible semi-
inner product on B; let B* be its dual space. The counterpart to Riesz bases expansions
in an s.i.p. RKBS is given by X ;-Riesz and X 3j-Riesz bases.

Let X; be a BK-space on M, i.e., a Banach space of sequences ¢ = {cn }peny € C¥
such that the linear functionals ¢ — ¢, are continuous on Xy for n € M. It is known
[34] that its dual space X is also a BK-space such that the series } "~ ; ¢, d,, converges
for every ¢ € X4 and d € X]. We suppose that if the series above converges for every
ce Xy, thend € X3 and if it converges for every d € X3, then ¢ € X;. We also assume
that X; is reflexive, and that the sequence of the canonical unit vectors {6,}22; is a
Schauder basis for both X and Xj. An example of such BK-spaces is Xg = /(M) for
1 < p < oo; in this case, X] = £(N) with 1/p+ 1/g =1.

Let {z},}7=1 C B* be an X j-Riesz basis for B*. This means that
1. span{z} : n € N} = B*.
2. ¥ o7 caxy converges in B* for all ¢ € XJ.

3. There exist 0 < A < B < oo such that

Alellx; < || 3 enz o <Blldlx; forallce X;. (12)
n=1

By [50, Thm. 2.15], there exists a unique (dual) X ;-Riesz basis {y,}22, for B such
that [ym, Tn]g = dmn for m,n € M, and satisfying the expansions:

= Z[m, .y, forallze B and z*= Z[ym z|gz: for all z* € B*. (13)

n=1 n=1

If the spaces X; and X3 possess the additional property that for all ¢ € X; and
d € X} the series 3~ | cndy converges absolutely, then the expansions in (13) are
unconditionally convergent, i.e., independent of the summation order (see [50, p.7]).
In particular, it is true for fP-Riesz bases due to Hélder inequality.
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Next, we obtain an si.p. RKBS with explicit si.p. reproducing kernel where a
sampling theory holds: It is the Banach counterpart of the Kramer sampling theorem
given in Section 2. Consider a B-valued function K : £ C C — B and define, for each
x € B, the function

fr: @ — C
t — [z, K(t)]s.

Then, we have a linear transform Ty on B with values in C% such that Tgr = fe.
Indeed, for z,y € B and o, § € C, we have

fazr1py(t) = [ox + By, K (2)]s = ale, K ()]s + Bly, K (t)]s = afz(t) + Bfy(t) ,

for all t € ).

Having in mind (13), for each ¢ € £, we can write [K ()] = 2% [yn, K (t)]5 =%
We denote S,,(t) := [y, K(t)]g = fy.(t), t € Q2. Suppose that there exists a sequence
{ta}22; in @ and {a,}32; in C\ {0} such that the interpolatory condition

Sﬂ(tmj =gy “En,m 3 (14}

holds. Then, we have that [K {tm}]* = a,, ) and that Ty is one-to-one. Indeed, if
fz(t) =0 for all ¢ € 02,

0= fa(t) = [, K (®)]5 = | D [, 2al5 v, K (0)]
n=1

= Z[m, TnB [Yn, K(t)]5 = Z[‘F».--Tn]ﬂgﬂ(t}:
n=1

n=1

where we have used that = — [z,y]g is a continuous functional for any fixed y € B.
Evaluating at £,,,, we have that [z, z,,]g = 0 for each m € M. This implies that x =0
and then Ty is one-to-one.

Denote By := Ti (B), the range of the operator Tx. If we define ||fz||B, = ||z|lB
we obtain that By is a Banach space of functions defined on €1 and valued on C.

Moreover, [fz, fylBx := [z,y]s defines a compatible semi-inner-product on Bx. The
space By becomes an si.p. RKBS whose s.i.p. reproducing kernel is given by

k(t,5) = [K(©), K (s)]s, t,s€Q.
Indeed, for each ¢ € {1, the evaluation functional F; : By — C is continuous:

Et(f2)] = |f=(0)] = |[= K (®)]s] < [=lslK(t)]ls = 1K (@)|5]lfzll5 -

Observe that, by definition, k¢ := k(t,-) = fx) € Bk for all t € (). Hence we deduce
that

f=(t) = [z, K(t)]g = [fz: kil e = [fs k(E: )]Bic »

being k the s.i.p. reproducing kernel for Bg. See [49, Th. 10] for more details.
NMNote also that convergence in the norm of By implies pointwise convergence and
uniform convergence in subsets of {1 where the function t — ||K(t)||s is bounded.
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Lemma 9. For every t € {1, the sequence {S,,,[tj}:ll is an element of X 3.

Proof. Consider ¢ € X4 and t € £2. We must prove that 3~ ¢,5,(t) is convergent.
Indeed, by using that for each z € B the mapping = — [z, z]g is a continuous linear
functional on B, and {y,}52; is an X -Riesz basis for B, we get

Sl S| S om e,
n=1 n=1 n=1
<K@l cati| , < BIK ®)lIsliclx, -
n=1

a

Theorem 10 (A Kramer-type sampling theorem for By ). Suppose that, for eacht € {1,
we have the erpansion [K(t)]” = 3.°°, Su(t)xk, where {5}, C B* is an X3-Riesz
basis for B* and S,(t) = [y, K (t)|5, being {y,}2°, the dual X;-Riesz basis for B of
{z}}22 ;. Assume also the eristence of sequences {t;,}2°_; C C and {an}22_; C C\ {0}
such that the interpolatory condition (14) holds. Then, the sequence {5,}52 , is an Xg-
Riesz basis for By and, for each f € Bx, we have the sampling expansion

Sn(t)

2l teq.
gy

f(£) =2 f(ta)
n=1

The convergence of the above series is in the norm of By, and uniform on subsets of
() where the function t — ||[K(t)||s is bounded.

Proof. First, we prove that the sequence {5,,}32 | is an X ;-Riesz basis for By.

1. Consider t € 2 and x € B. Then

fz(tj = [-'I:: Kl:ﬂ]ﬂ = [2[57 1"1"-1]5 Hny K{t}] B = 2[57 -'1::1]3 Sn{tj 1

n=1 n=1
hence, span{5,}>° ; = By.

2. Let ¢ be in X4. As Tk is an isometry and {y.},—; is an X4-Riesz basis for B,

oo oo
|22 cosil, = | X ente]
n=1 n=1

and thus the series 3" , ¢, S, converges in By for each ¢ € Xj.

3. As Ty is an isometry, for every ¢ € X3,

o o
Alldlx, < || Z,;cnyﬂﬂﬂ - | Z:cnsﬂﬂﬂx < Bllellx,
= n=
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Now consider m € M; we have that

le:tm:l = ["I::Kl:tm}lﬂ = Z[m: Iﬂ]ﬁ Sﬂ{tm} = l1'1'1'1'[:171'"I:!'I"-l]B‘

n=1
Thus,
1e0) = Y ezl Su(t) = 3 205, ),
n=1 n=1 n

in the norm of By. The pointwise and uniform convergence comes from the fact that
By is an s.i.p. RKBS. H

Example 3.1. Consider p € (1,2| and its conjugate inder g e R, i.e., 1/p+1/g=1.
We consider the compatible semi-inner-product for B := LP[—1/2,1/2| given by

1/2
[, 9l = llgll; ™ o f(z) g(z) g(z) P2 dz .
Remember that B* = L[—1/2,1/2]. We take Xy := £7(Z), then, Xj = {F(Z).
Define eq(w) := ™™ forn € Z. Easy computations show that ||en||, = 1. On the
other hand, by [49], we have that e} (w) = e~ 2™ and that ||ef||, = |lenll, = 1. We
know that (see [{6, p. 20]):

span{e 2™ : neZ} = LI[-1/2,1/2].
We define the linear operator

U: LP[-1/2,1/2] — C%
F — {[Fienlo} ez

The Hausdorff-Young theorem (see [51, p. 101]) ensures that U is a bounded operator
with values on F9(Z) (and thus a closed operator). We have that U(LP[—1/2,1/2]) is
a closed subspace of £9(Z) and thus, a Banach space with the metric induced by £9(Z).
Remember that {0, }nez where 6,(m) =0 if n # m and d,(n) = 1, is a Schauder basis
for 83(Z). Thus, as 6, = Ulen), we obtain that U is a surjective mapping. By using
[50, Prop. 2.12], the sequence {E:.:}HEZ is an (P(L)-Riesz basis for B* = L9[-1/2,1/2].

Now, we define K (z) := e*™=" € LP[-1/2,1/2] for every z € C. Thus, we obtain
the following s.i.p. RKBS

By — {f{z} = [F,e*=%] | 2 €C, uhere F € [P[-1/2, 1;2]},

endowed with the norm || f|lg, = ||IF|| LP[—1/2,1/9]-
Nert, we compute Sp(z) := [en, K(2)]|p. First, observe that, if we write z = z + iy,

K= ([, eefa)” = ([ eraw)"” = sinceur).
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Thus, we have that

yz .
8n(2) = [en, K(2)]p = sinc® VP (iyp) f lrinw g~ mizw o —Imw(p—2) g, ,
—12
/2 . .
— sinc(2-P/? (iyp) f o—2mil(z—n)—iy(p—Dw gy,
—1/2

= sinc®>PVP(iyp) sinc [(z —n) —iy(p—2)], zeC,

for n € &. Moreover, S,(m) = dmn for every myn € Z.
Finally, Theorem 10 gives the following sampling formula for any f € By :

flz) = sincﬂ_i’”""[iyp} Z f(n)sinc [{z —n)—iy(p— 2}] , z=x+iyeC. (15)

M=—00

The convergence of the series in (15) is uniform on horizontal strips of C. Observe
that, if p=2 or z € R, formula (15) coincides with the cardinal series.

For further information on the recent topic of sampling in Banach spaces, see, for
instance, Refs. [2, 10, 25, 26, 38, 50].

4 The distributional version

Following Ref. [17], a Hilbert space { whose elements are distributions supported on
the interval I = [0, 1] and for which the natural injection from H into £'(R) (the space of
compact supported distributions) is continuous is called a Hilbert space of distributions
on I. In general, it is clear that a Hilbert space of distributions on I having the system
{Ehi“’xr (z)}nez as a complete orthogonal system is completely determined by the
sequence of positive numbers ¢, = |[e>™™*y;(z)|y, n € Z. In [17], it is proved that
if the sequence {c, 1 zez“mx;[m}}nez is a complete orthonormal system for a Hilbert
space H of distributions on I, then we have

Z;{m (16)

2
nel cﬂ'{l +n }
and the inner product in H is given by

(T.S)u =Y e(n)S(n), T,SeH,

nek

where T and § are, respectively, the distributional Fourier transforms of T and 5.
Furthermore, since

(T, cx' ™™ x1(x))y = > T(n) forall TeH, (17)
any T' € H can be expanded as
T=Y T(n)e™x;(z), (18)
nek
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where the series converges both in the Hilbert space of distributions H, and in £'(R)
(see [17] for the details).

Assume that {Tn = Cn 172 ehi“’xf{:rj}n oz s a complete orthonormal system for
a Hilbert space H of distributions on I. Since the embedding of H into &'(R) is
continuous, for each test function ¢ € D(R) (the vector space of all complex-valued
functions that are infinitely smooth and zero outside some finite interval endowed with
its usual topology) there exists a constant Cy = 0 such that [T'(¢)| < Cy||T||. for any
T in H. In particular, if we choose ¢,(x) = e~2™** on a neighborhood of I then, for
every t € R, there exists a constant C, such that |[T(t)] < Cy||T|| for any T in H,
where T denotes the distributional Fourier transform of T. This implies that, for every
t € R, the linear functional T —— T[tj is continuous in H. As a consequence, there
exists an element K (¢) in H such that

T(t)=(T,K(t))n. teR.

Having in mind (17), for every n € Z we have that K(n) = c,?l"l?Tﬂ. Besides, an easy
calculation shows that

Sa(t) == (Tn, K(O)n = Ta(t) = iz '/ "““‘“’%, teR.

Besides, the function t — ||[K(t)|| = supjr=1 |T{t}| is bounded on compact subsets of
R. Indeed, by applying both sides of (18) on the test function e~ it follows that

—ﬂmt —2mit

l—e
_ —1/2F
T{t} E T 2m Ezcn T(n) _l’mi'm[ }.,. teR.
ne

The boundedness on compact subsets of R is deduced by using Cauchy-Schwarz in-
equality and taking into account that |T||> = 2 nez Cn |T{-n}|2 and (16).

According to Theorem 1, the corresponding sampling theorem for the RKHS Hye 1=
F(H), where F denotes the distributional Fourier transform, reads as follows:

Example 4.1. Let H{ be a Hilbert space of distributions on I = [0,1] such that the

SeqUEnce {c:; 1/ Eezﬁim’x;[mj} nez 150 complete orthonormal system. Then, any function
g € Hk, i.e, g(t) = (T,K(t))n, t € R, for someT € H, can be recovered from its
samples at & by means of the sampling formula

g(t) =3 2 g(n) S,u(t) = 3 g(me eI |y g
poper4 = m(t —n)

The series converges in the Hy -norm sense and also absolutely and uniformly on com-

pact subsets of R.

Hilbert spaces of distributions having a reproducing distribution

A distributional version of Kramer sampling theorem can be stated in terms of Hilbert
spaces of distributions having a reproducing distribution. Let D := T{R) be the vector
space of test functions, let H be a separable Hilbert space and let K : D — H be a
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continuous conjugate linear function. In particular, whenever H = L?(R) the conjugate
map K is just a generalized stochastic process in the sense of [12, 37]. For any z € H
the function h;(¢) := (z, K(¢))y is well-defined as a function h, : D — C. Moreover,
h. is a continuous linear form because K is continuous and conjugate linear. Denote by
Hye < D' the set of distributions obtained in this way and by Ty the linear transform

Tic :H>x— hy € Hi (19)

Note that Ty : H — T is the transpose of the function K. If we endow Hy with the
norm ||h|lg, = inf{||z|ly : h = Tk (z)}, we obtain a reproducing distribution Hilbert
space whose reproducing distribution is given by, cf. [12, p. 40],

k(o,9) = (K(¥), K(¢))u, ¢.,¢€D, (20)

i.e., for each 1 € D the function ky, defined as ky(¢) := k(¢, ') belongs to Hgk, and
the reproducing property

h(¥) = (b, ky)p,e = (R k()3 s, V€D, hetHg (21)

holds. Note that the space Hg is nothing but the completion of the range space
T K (D) which is a pre-Hilbert space with the norm defined by ||h|| = |K(¢)|# where
¢ € D is such that h = TgK (@) (see [37]). As for a functional RKHS, the linear
operator Ty is one-to-one if and only if the set {K(¢)}scp is complete in H.

Note that, in particular, a continuous H-valued function K : B — H can be considered
as a continuous conjugate linear function K : D — A through the formula

K@) = [ T0K(@a.

The (Bochner) integral in this formula has always a meaning because for every fixed ¢ €
D the integral is defined on a set of finite measure, the H-valued function ¢ K is weakly
Lebesgue measurable and then strongly Lebesgue measurable since H is separable, and
= l6(t)K (t)||3 dt < oo. Thus, the distributional version is indeed a generalization
of the RKHS setting of Section 2.

The corresponding Kramer sampling theorem for distributions in Hx reads as fol-
lows:

Theorem 11. Assume that there erist {¢pn}oe, € D, {an}s>, € C\ {0} such that
K(¢n) = @n xn for some Riesz basis {x,},—; for H. Then, the sequence of distributions
{Sa}2.; given by

Sﬂ{gb} = {%,K{Q&J}H, ‘Jt'E D: ne N?

where {yn}22; is the dual base of {xz,}72, forms a Riesz basis for the space Hg.
Erpanding any h € Hy in this Riesz basis we obtain

ho) =Y he) 22, sep. (2)

n=1

The series in (22) converges in the Hy -norm sense and also, absolutely and uniformly
on subsets of D where ¢ — ||K(¢)||y is bounded.
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Proof. It is similar to the proof of Theorem 1: From K(¢,) = @, r, we deduce that
Tk is a bijective isometry and since Tk (ym) = Sm, m € N, we obtain that {5, }5_, is
a Riesz basis for Hx whose biorthonormal basis {T;,}20_; is given by Trn = Tk (zm),
m € M. Expanding any h € H in this Riesz basis, we have h =3 7 ; (h, T3, Sn, in
the H j--norm sense and, consequently, pointwise in D since for any ¢ € D the mapping
h + h(g) is continuous on Hy [12, p. 41]. Moreover, having in mind that Tx is an
isometry, and that K (¢,) = @, r, we obtain

(h,Ta)n = (Tic(2), Tic (2n)) e = (T, Tn)3t = (2, K (¢n) /@n)pt = h(n)/an, mneN,

and hence the sampling expansion (22). As in Theorem 1, the absolute convergence of
the series on each ¢ £ D follows from its unconditionally convergence and the uniform
convergence on subsets of D where ¢ — ||K(¢)||% is bounded follows by using Cauchy-
Schwarz’s inequality in the reproducing property (21). O

Example 4.2. Let {en}ncz be an orthonormal basis of a separable Hilbert space H and

let o non zero function dg € D such that suppgg C I where I C R is an arbitrary
interval of length [(I) < 1. For everyn € &, set ¢,(t) == ¢g(t —n), t € R, and
consider the function K : D — H defined by

K(¢) =) (¢n,¥)r26n, ¥€D.

nek

Note that for every fired i € D there are only a finite set of non-zero addends in the
above summation, so that K(v) € H and it is easily tested that K is an H-valued
continuous conjugate linear function. Moreover,

K(¢m) =Y _(n, bm)r2 €n = |dml|72 €m = || 0][72 €m -

nek

In order to apply Theorem 11 we compute S, (1):

Sn() = (em, K ()3 = (em, 3 (s Y12 €n)yy = (. Sz
nck

Therefore, for every h € Hy the sampling erpansion (22) reads as

1

h(¥) = ool > h(¢n) (¢, n)r2, wED,
2 nek

where the series converges in the Hy -norm sense and also, absolutely and uniformly
on subsets of D where ¢ — 3 5 i{gﬁmﬂ')} LEF is bounded.
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