
DISCONTINUITY IN MULTIPOLAR EXPANSIONS

<?o/ia A. Cora anti Juan C. Mazzio

FCAG - yjVLP and PROFOFG - COJV/CET

ABSTRACT. We show that softening does not avoid discontinuities in some multipolar 
expansions, but they do not afTect the results of numerical integrations of the N-body 
problem.

White (1983) proposed a multipolar expansion that was extensively used thereafter 
by L.A. Aguilar (e.g., Aguilar and White, 1985; Aguilar and Merritt, 1990) who kindly 
let us use a copy of his code. Although White softened the potential, a discontinuity 
is present in the resulting force and it is important to check whether it could affect the 
results obtained with the code.

In the present work we limited the expansion to the monopolar terms and considered 
a spherical system; in this way, all the relevant effects are present, but the work is 
considerably simplified, particularly in the experiments that demand rather ellaborate 
modifications of the original code.

In the monopolar approximation the potential produced by a distribution of parti
cles of mass my, with positions ordered with increasing distance to the center of the 
expansion, at the position of the i particle is:

(1)

where G is Newton's gravitational constant and % = (r? + e^)^^ , i.e., the radius 
"softened"by the softening parameter e. The corresponding force is, thus:

(2)

Here we see clearly the intrinsic discontinuity that affects the computation of forces 
in this approach: if we continuously increase r¿, there will be a continuous change due to 
the change of and p¿, but also discontinuous jumps every time r, exceeds a particular 
Tj and the corresponding has to be included in the summation. Instead of taking 
infinitesimally thin shells (represented by White, 1983, with Dirac delta functions), we
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took shells extending in radius from Tj — to +<5 and with a volume density decreasing 
with r"2 within that region. The potential adopts now the formidable form:

= -G <
a; + (a? +
s,-+(s? + ^)i/2

^20 p. \r¿ + (r?+^)^^
(3)

+

where and sj = The force due to this potential is then:

1

= -6 E + E my r¿ — s;
r. (4)

which has no discontinuities. Alternatively, the exquisite simplicity of the White - 
Aguilar method, which makes it extremely fast, is lost and the code using equations 3 and 
4 runs 10 to 100 times slower (depending on the number of bodies and the parameters 
chosen) than the original one that uses equations 1 and 2. Therefore, although our 
version offers an useful check of the effect of the discontinuities it is certainly not adequate 
for frequent use!

Following Hernquist and Barnes (1990) we centered our analysis on the binding 
energies (per unit mass) of the individual particles. We compared the differences, AEj, 
between the energies of particle j at two different times (the initial one characterized by 
the energy 2?)) and computed, as Hernquist and Barnes did, the mean change, AE, the 
standard deviation, <r, and the mean absolute deviation, A.

We investigated the evolution of a system of 4998 bodies initially distributed fol
lowing an isotropic King model (King, 1966) with central potential %(0) = 3o*̂.  The 
gravitational constant and the total mass were taken as unity and the total energy as 
-0.5; the crossing time is, thus, also equal to 1. We followed the evolution of the systems 
over 4 time units to insure that equilibrium had been reached and, then, for another 4 
time units to derive the changes in the binding energies of the particles; in other words, 
we compared the binding energies at times 4 and 8. The timestep was usually taken 
as 0.125 and the total energy was conserved to better than 0.5% in all cases; runs with 
shorter time steps showed little or no improvement.

Table 1 presents our results: the first column identifies the run; the second column 
gives the value of the parameter c of equations (1) through (4); run 1 employed the 
code based in the usual equations (1) and (2), and it is denoted by the zero value of 
the parameter ó in the third column, while the non-zero <5 value of run 2 is the one 
used with equations (3) and (4) for that run; the last three columns provide the results 
obtained for the parameters that measure the energy changes. The results of run 1 are 
essentially equal to those obtained by Hernquist and Barnes (1990) in their own run 3- 
The fact that our run 2 (using a code that had eliminated the force discontinuity) did 
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not improve the results, shows that the discontinuities have no ill effect on the results; 
on the contrary, the marginally poorer energy conservation of the "improved" code might 
be due to the longer computations it demands and the corresponding accumulation of 
round-off errors.

Table 1. Fractional changes in particle binding energies.

Run <5 cr

1 0.05 0.00
2 0.05 0.05

0.00275 0.0501 0.0396
0.00108 0.0539 0.0428
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