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Shor’s factoring algorithm provides a superpolynomial speedup over all known classical factoring
algorithms. Here, we address the question of which quantum properties fuel this advantage. We investigate
a sequential variant of Shor’s algorithm with a fixed overall structure and identify the role of coherence for
this algorithm quantitatively. We analyze this protocol in the framework of dynamical resource theories,
which capture the resource character of operations that can create and detect coherence. This allows us to
derive a lower and an upper bound on the success probability of the protocol, which depend on rigorously
defined measures of coherence as a dynamical resource. We compare these bounds with the classical limit
of the protocol and conclude that within the fixed structure that we consider, coherence is the quantum
resource that determines its performance by bounding the success probability from below and above.
Therefore, we shine new light on the fundamental role of coherence in quantum computation.
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Introduction.—Factoring large integers is considered to
be a notoriously hard problem on a classical device. No
classical factoring algorithm with polynomial run-time is
known, and the assumption that none exists lies at the heart
of the widely used Rivest-Shamir-Adleman cryptosystem
[1]. Therefore, Shor’s discovery of a quantum algorithm
capable of factoring in polynomial time [2] not only
attracted interest in this algorithm itself but the field of
quantum computation in general: It is an example of a
quantum algorithm that provides a superpolynomial com-
putational speedup over its best known classical counter-
part (see also Refs. [3–6]). Since quantum devices are
governed by laws different to those of classical physics, in
principle, it might not seem too surprising that they can
outperform them in certain applications. But which proper-
ties of quantum mechanics not present in classical physics
fuel the speedup in Shor’s algorithm? And can they be
used to explain speedups for the solution of other problems,
too? It is known that the presence of an unbounded amount
of multipartite entanglement is necessary for exponential
speedups in circuit-based pure state quantum computation
because every protocol that does not exhibit this property
can be simulated efficiently on a classical device [7].
This result, therefore, describes a necessary condition for
exponential speedups in arbitrary protocols but not a
sufficient condition as the presence of unbounded entan-
glement does not guarantee efficient quantum computation.
This and the lack of a connection of entanglement and

classical simulability in the case of mixed states might give
a hint that deeper concepts underpin the computational
speedup.
Here,wego one step further and instead of askingwhether

a resource is necessary to obtain speedups or describing its
evolution during a protocol [7–11], we explore the speedup
that it actually grants. To start this exploration, we retreat
from the general computational setting and focus on a
specific algorithm with a fixed overall structure, namely a
variant of Shor’s algorithm introduced by Parker and Plenio
[12]. The focus allows us to present lower and upper bounds
on the performance of this algorithm that hold for mixed
states, too, and are expressed in terms of coherence
measures, which are derived in the framework of quantum
resource theories [13].
Quantum resource theories—see, for example,

Refs. [13–24]—are mathematical tools developed to
describe the resource character of quantum properties.
Their central idea is to impose additional restrictions on
the laws of quantum mechanics, which single out the
resources and allows one to quantify them rigorously.
While the mathematical frameworks have seen rapid
development in recent years, rigorous quantitative relations
between coherence and performance beyond variations of
discrimination, exclusion, and detection games [25–36] are
surprisingly rare [37–39]. This is problematic, since the
study of coherence as a resource is primarily motivated by
the desire to understand if and how it is responsible for
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quantum advantages. Besides the insights that our results
grant on Shor’s algorithm, they therefore also show that the
study of coherence theories is of practical relevance.
First, we carefully motivate and describe what algorithm

we are considering and how this allows us to investigate the
role of coherence. This is crucial because we need to fix
the overall structure of our algorithm: The most general
approach to an investigation of the speedup quantum
resources grant in factoring would be to compare an ideal
quantum algorithm (given fixed resources) to an ideal
classical algorithm. Since it is unknown what such algo-
rithms are, this is, however, out of reach. Instead, we focus
on the quantum part in Shor’s algorithm, namely the order-
finding protocol, and fix its core, the modular exponentia-
tion, while varying the remainder. This approach provides
enough freedom while giving enough structure to observe
interesting quantitative connections. We conclude with a
discussion and outlook and refer to the Supplemental
Material (SM) [40] for proofs and further details.
Quantum resource theories.—Generally, resource

theories emerge from restrictions that are frequently moti-
vated experimentally. Here, we restrict ourselves to finite-
dimensional quantum systems and focus on constraints
concerning the ability to create and detect coherence, but
the concepts can be analogously applied to other restric-
tions. We begin by fixing the incoherent basis fjiigi, i.e.,
the basis with respect to which we are going to describe
coherence. Since we are considering circuit-based quantum
computation, the computational basis in which we are
encoding and extracting our classical information is the
natural choice: If we never create coherence with respect to
the computational basis, we are essentially reduced to the
(classical) application of stochastic matrices onto proba-
bility vectors.
A quantum state σ is now considered incoherent and

equivalent to a probability vector if and only if it is diagonal
in the incoherent basis, i.e., if and only if ΔðσÞ ¼ σ, where

ΔðρÞ ¼
X
i

jiihijρjiihij ð1Þ

denotes total dephasing in the incoherent (computational)
basis fjiigi. We denote the set of incoherent states by I and
call the maximal set of channels Φ that cannot create
coherence, i.e., turn an incoherent state into a coherent one,
the maximally incoherent channels and denote it by MIO
[17,55–57]. This set comprises all channels Φ that satisfy
ΦΔ ¼ ΔΦΔ. To exploit coherence, we not only need to
create it but also use it. Using coherence is only possible if
we have access to measurements that can detect it in the
sense that its presence makes a difference in measurement
statistics [57–59].
As detailed in Ref. [57], it is possible to identify all

instruments that cannot detect coherence with the detection-
incoherent channels DI , i.e., all channels Φ satisfying
ΔΦ ¼ ΔΦΔ [55,57,60,61]. With the sets of channels that

cannot create or detect coherence andare thus considered free
for the respective task identified, they can be used to build
dynamical resource theories [28,57,62–75] introduced only
recently to quantify how well nonfree channels can create or
detect coherence. The missing pieces are the superchannels
that map quantum channels to quantum channels. A super-
channel S can be represented by two quantum channels Θ1,
Θ2 that are used as pre-and postprocessing, i.e., S½Λ� ¼
Θ2ð1 ⊗ ΛÞΘ1 [76]. Also the superchannels are divided into
free and nonfree. In this Letter, we consider a superchannel
free if and only if it can be represented by a free pre-and
postprocessing [77,78]. The set of free superchannels in the
resource theory concerning the creation or detection of
coherence is labeled byMIOS=DIS. This concept allows
us to compare the value of channels via (dynamical) resource
measures [57]: These are functionals M that map quantum
operations to the non-negative numbers and satisfy (i)monot-
onicity: MðΘÞ ≥ MðS½Θ�Þ for all free superchannels S, i.e.,
they respect the preorder that the free superchannels impose
on the channels and therefore their relativevalue; (ii) faithful-
ness:MðΘÞ ¼ 0 if and only if Θ is free; and (iii) convexity.
To quantify the connection between coherence and the

performance of Shor’s algorithm, we use two dynamical
measures. One is the resource generation capacity [79–84]

C ðΘÞ ¼ max
τ∈I

CðΘτÞ ð2Þ

based on the robustness of coherence [25]

CðρÞ ¼ min

�
s ≥ 0∶

ρþ sτ
1þ s

∈ I ; τ a state
�
; ð3Þ

i.e., a measure with respect to MIO that describes how
well a channel can create coherence. The other, with respect
toDI , is the NSIDmeasures (nonstochasticity in detection)
[57]

M̃⋄ðΛÞ ¼ min
Φ∈DI

max
σ

kΔðΛ −ΦÞσk1; ð4Þ

which describes how well a channel can detect coherence.
Although not the main purpose of this Letter, we show in
the SM [40] that an intuitive candidate for a measure,
namely DðΛÞ ¼ maxρkΔΛð1 − ΔÞρk1, fails to form a
measure in the DI setting, as it violates monotonicity.
Shor’s algorithm.—Let N denote an integer to factor.

The factorization problem can be reduced to the order-
finding problem: given integersN and xwhere x < N and x
coprime to N, find the order r defined as the smallest
integer such that xr ¼ 1ð mod NÞ (see Ref. [2] and the SM
[40] for more information). Solving order finding for a
randomly chosen x with the above properties allows
to solve factoring with high probability, and it is exactly
what the quantum parts of the various versions of Shor’s
algorithm accomplish efficiently.
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For the standard quantum order-finding protocol one
uses two quantum systems A and B of dimension q and N,
respectively, where system A consists of L qubits with
N2 < q ¼ 2L < 2N2. Furthermore, one defines a unitary
by UBjni ¼ jxnð mod NÞi that acts on system B and the
modular exponentiation via Uc ¼

Pq−1
n¼0 jnihnjA ⊗ Un

B.
Important from a resource theoretical perspective, Uc is
both in DI and in MIO, i.e., it can neither produce nor
detect coherence and is thus considered free in both
resource theories. The standard order-finding protocol
works then as follows: Initialize system AB in the state
j0i⊗L

A j1iB, first apply Hadamard gates to each qubit, apply
Uc, followed by an inverse Fourier transform F † on A and
then a measurement in the computational basis. A particu-
lar implementation of the Fourier transform is given by
sequentially applied controlled phase gates and Hadamard
gates [85], which allows one to derive an equally efficient
sequential variant of the order-finding protocol that requires
only a single control qubit that is being recycled [12]; see
Fig. 1(a). Inserting the measurement outcome into the
classical postprocessing via the continued fraction algo-
rithm, both variants estimate r with sufficiently high
probability to factor in polynomial run-time [2,12,86,87].
Results.—We now describe the setup to which our

results apply, namely the order-finding protocol depicted
in Fig. 1(a), and connect its performance to coherence. The
quantum advantage in this protocol is obviously not
emerging from the classical control and postprocessing,
so we keep this part fixed. Now looking at a single block,
we remind that the controlled unitary U l ¼ U2L−l

B as well as
the phase gate R0

l (see the SM [40] for details) can neither
create nor detect coherence and are thus free in both
resource theories. Therefore, we keep them fixed as well
and treat them as a black box that we can probe. The
remaining ingredients of each block become the main focus
of study: If we would replace the initial stateHj0i ¼ jþi of
the control qubit, which is a maximally coherent state [22],
with an incoherent one, the block would be seriously
flawed, in the sense that it does not encode information
about r, since the black box only affects the coherences of
the control qubit (see the SM [40] for more information).
Incoherent and maximally coherent states are extreme

cases, and to connect the performance of the algorithm
quantitatively to coherence, we investigate the impact on
efficiency if we replace the initial control state with a
partially coherent state. Since every quantum state can be
identified with its replacements channel, we replace it with
a fixed qubit channel Θl that is used to create an initial
(partially coherent) control qubit state from an incoherent
state σl. We further allow Θl to be transformed by arbitrary

superchannels SðlÞ1 ∈ MIOS since this is free from a
resource perspective and ensures that we use the resource

at hand appropriately. In this spirit, SðlÞ1 allows for a fair
comparison of different resourceful operations. Note that
another approach would be to optimize over different Ul
(see Refs. [36,38] for related approaches in different
settings).
Furthermore, after the application of U l, we must extract

the desired information, which is encoded exclusively in
the coherences of the control qubit; hence, we must detect
coherence exactly in the sense that it makes a difference in
the measurement statistics. The application of a Hadamard
gate, which maximizes the NSID measure among all qubit
channels, is thus an extremal case, too [57]. In contrast, a
channel that cannot detect coherence would not be able
to recover any of the available information on the prime
factors. The ability to detect coherence, therefore,
plays a vital role after the application of U l, and to
investigate its precise contribution, we replace H with a
fixed channel Λl that interpolates between the optimal H
and a completely incoherent measurement. We now allow

to apply an arbitrary superchannel SðlÞ2 ∈ DIS that is
unitality-preserving (we comment on this requirement in

the SM [40]), for the same reasoning as for SðlÞ1 . The
resulting block is depicted in Fig. 1(b). To simplify our
analysis for the main text, we further assume here that in
each block, we use the same channel Θ=Λ for the creation
or detection of coherence (see the SM [40] for the more
general version). For fixed Θ and Λ, we then define
PsuccðΘ;ΛÞ to be the probability (maximized over the

SðlÞ1 , SðlÞ2 , and σl) that a single run of this order-finding
protocol leads to the correct order and bound it by the
following theorem.

(a) (b)

FIG. 1. (a) A sequential variant of the order-finding algorithm, where the R0
n denote phase gates that depend on the outcomes of the

previous measurements and U l ¼ U2L−l
B . See the main text and the SM for further details. (b) A single modified block of the sequential

order-finding algorithm with superchannels to make optimal use of the resources in the protocol.
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Theorem 1.—The success probability of the order-finding
protocol as described above with qubit operations Θ and
unital Λ for creation and detection, respectively, is lower
bounded by

PsuccðΘ;ΛÞ ≥ 4

π2
φðrÞ
r

�
1þ C ðΘÞM̃⋄ðΛÞ

2

�L
; ð5Þ

where φðrÞ denotes Euler’s totient function.
The presence of C ðΘÞ is intuitive as it quantifies the

ability ofΘ to create coherence in the control qubit [82–84],
which is exactly what we use the channelΘ for. We note that
for any qubit channelΘ, we haveC ðΘÞ ≤ 1, with equality if
and only if Θ can create a maximally coherent qubit state
[84]. Moreover, for qubit operationsΛ, M̃⋄ðΛÞ ≤ 1, and the
bound is saturated for a Hadamard gate [57]. The measures
enter the bound on equal footing, which indicates that the
ability to create and detect coherence are equally important,
as one would intuitively expect. In case both Θ and Λ are
Hadamard gates, we recover the bound presented in
Refs. [2,12], which is used to prove the polynomial run-
time of the algorithm. If the abilities to create and detect
coherence decrease, this influences our bound exponentially
in L. This suggests that the polynomial run-time of the fully
coherent protocol becomes degraded exponentially in L by
the lack of coherence and the ability to detect it. However,
one needs to askwhether the performance actually decreases
exponentially with less coherence, or if only our bound does
so. To address this question, we continue to present a
sufficiently general upper bound.
Theorem 2.—The success probability of the order-finding

protocol as described above with qubit operations Θ and
unital Λ for creation and detection, respectively, is upper
bounded by

PsuccðΘ;ΛÞ

≤min
�
φðrÞ

�
1þ2

�
2L

r2

�	�
1þC ðΘÞM̃⋄ðΛÞ

2

�
L
;1
�
: ð6Þ

We notice that this bound depends on both the problem
and the employed coherence. The bound becomes trivial if
the first term exceeds unit probability, which is sensitively
dependent on the ratio of 2L and r. Nevertheless, this is a
rather gentle restriction on our upper bound, which can be
justified by comparing the bounds on the resourceful
success probability with the classical limit of the algorithm.
We define the classical limit as the corresponding protocol
if we are only allowed to use operations that cannot detect
or create coherence, i.e., if both Θ and Λ are free in their
respective resource theories. In this case, we are in a
classical regime and all states and operations can be
reduced to probability vectors and stochastic matrices.
The success probability is then determined by the uniform
measurement statistic and the probability that the post-
processing works, which results in

2
φðrÞ
2L

�
2L − 1

2r2

�
≤ PsuccðΘfree;ΛfreeÞ

≤
φðrÞ
2L

�
1þ 2

�
2L

r2

�	
; ð7Þ

as we show in the SM [40]. If we compare the bounds on
the classical limit of the success probability with the one in
Theorem 2, we see that the same prefactor occurs. In this
sense, the slightly limited upper bound in Theorem 2 can be
regarded as an artifact of the problem dependence (see the
SM [40] for a visualization). If the fixed protocol does not
perform well in the classical limit (which is the case of
interest), we conclude that coherence is the quantum
resource that determines the success probability by bound-
ing it from below and above.
Discussion and outlook.—In our Letter, we have used

resource theories to derive quantitative upper and lower
bounds on the success probability of the quantum part of a
sequential version of Shor’s algorithm in terms of mea-
sures of (dynamical) coherence. Since the full algorithm
repeats the quantum part until it succeeds, this also
quantifies the total run-time and speedup in terms of the
available resources. It is a novelty of our approach that
we not only observe how a resource evolves or depletes
during an algorithm [8–11] but determine quantitatively
the performance advantage that it grants. Moreover, our
approach differs from Ref. [7], where a necessary con-
dition for the presence of a resource (here entanglement) to
admit a speedup in pure state quantum computing was
derived. The argumentation of Ref. [7] is based on the
observation that a quantum protocol with limited multi-
partite entanglement operating on pure states can be
simulated efficiently on a classical device. As already
pointed out in Ref. [7], this approach is incapable of
establishing a (quantitative) sufficient condition for the
contribution of entanglement as a resource as the presence
of certain forms of large scale multipartite entanglement
can permit efficient classical simulation when employing a
suitable mathematical data structure such as the stabilizer
formalism [88].
In contrast, we derive bounds that hold even for mixed

states and show quantitatively that coherence is necessary
and sufficient to achieve an advantage over the classical
limit of the investigated algorithm with a fixed overall
structure. This, however, comes at the price that at present
these quantitative connections are tied to a specific family
of factoring algorithms. Furthermore, we remark that while
the way we fixed the overall structure of the protocol and
our choice of the free operations is natural, well-motivated,
and models the operations that are available to a classical
computer, other choices may be considered, too. Indeed,
introducing restrictions that model the capabilities of a
classical computer more accurately is an open problem that
would lead to different (and potentially more involved)
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resource theories. As an example, one can additionally
restrict the ability to preserve coherence [70], or more
generally states [89]. It is an interesting open question
whether other restrictions and the corresponding resources
would lead to relations comparable to those we found; see
for instance the discussion in the SM [40] of why we did
not choose operations that can neither create nor detect
coherence as free.
A closely related question is to what extent the overall

structure of the protocol can be generalized while still
obtaining meaningful bounds. As we discuss in the SM
[40], our findings hold for the standard order-finding
protocol, too, if the first register is in a product state
and if the inverse Fourier transform is implemented in a
way that leads to the sequential version. Indeed, general-
izing the structure and choosing other free operations
may reveal additional resources to underpin the efficiency
of the quantum processor. One may, for example, argue
that the implementation of the modular exponentiation,
which is assumed to be free in our framework, does
carry a cost. Relaxing this assumption may establish
entanglement as a resource that bounds the efficiency of
the protocol. However, as incoherent operations such as
the modular exponentiation can convert coherence to
entanglement [90–92], it may also be possible to reduce
the resource entanglement to coherence when it comes to
computation.
In summary, our results depend on the choice of free

operations and overall structure and we do not claim
that coherence is the quantum resource for factoring
alone, but we show that it is a quantum resource that
lower and upper bounds the performance. In fact, it might
well be that other resources not captured in our frame-
work contribute (in other factoring algorithms), too.
Exploring this is an interesting starting point for future
work. Furthermore, using our technique to fix the struc-
ture of a protocol and to define a free limit, one can
investigate the role of quantum resources in other quan-
tum algorithms, too. Since general statements about the
role of quantum resources in computation are often out of
reach, such an algorithm and implementation specific
approach might lead to further insights into the value of
quantum resources in computation, which might help us
understand the separation between classical and quantum
computing.
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