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ABSTRACT  
Numerous studies have addressed the participation of the central nervous system in the physiological 
regulation of blood pressure and in the development and/or maintenance of hypertension. The central 
nervous system plays a key role in the short-term regulation of blood pressure although recent 
investigations also support its participation in the long-term modulation. Diverse brain regions and 
areas like the rostral ventrolateral medulla, the nucleus of the solitary tract, the locus coeruleus, 
amygdala and hypothalamus are intimately involved in the control of cardiovascular activity. 
Nevertheless, little is known about the role of the olfactory bulb. This mini review summarizes current 
knowledge regarding the participation of this telencephalic region in the regulation of cardiovascular 
activity in physiological and pathophysiological conditions.   
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RESUMEN  
Numerosos estudios han abordado la participación del sistema nervioso central en la regulación 
fisiológica de la presión arterial y en el desarrollo y / o mantenimiento de la hipertensión arterial. El 
sistema nervioso central juega un papel clave en la regulación a corto plazo de la presión arterial, 
aunque investigaciones recientes apoyan su participación en la modulación a largo plazo. Diversas 
regiones y áreas del cerebro como la médula ventrolateral rostral, el núcleo del tracto solitario, el 
locus coeruleus, la amígdala y el hipotálamo están íntimamente involucradas en el control de la 
actividad cardiovascular. Sin embargo, poco se conoce acerca del papel del bulbo olfatorio. Esta breve 
revisión resume el conocimiento actual en la participación de esta región telencefálica en la regulación 
de la actividad cardiovascular en condiciones fisiológicas y fisiopatológicas.  
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Introduction  
The olfactory bulb (OB) is a part of the forebrain located above the nasal cavity. It is the primary 
information processing center of the olfactory information. In rodents it constitutes 4% of the brain 
mass whereas in humans it is smaller since it does not rely on the sense of smell to perceive the 
environment [1]. The OBs (right and left) are brain structures mainly involved in the processing of 
the sensory inputs coming from the olfactory epithelium [2, 3, 4]. However, there are evidence to 
supports that this telencephalic region may be implicated in the regulation of the cardiovascular 
activity [5, 6]. The OBs are structures of complex organization that present several cell layers of 
concentric arrangement, located from outside to the inside as follows [3, 4, 7] (view Figure 1):  
- Glomerular layer  
- External glomerular layer  
- External plexiform layer  
- Mitral cell layer  
- Internal plexiform layer  
- Internal granular layer  
- Granule cell layer  

  
Figure 1. Schematic representation of the coronal section of the olfactory bulb showing the different concentric cell 
layers.  
The glomerular zone that has different types of neurons is where the integration of sensory 
information occurs [3]. To discriminate among the different stimuli, inputs from the olfactory 
epithelium reach the main OB via the olfactory nerves, wrapped around by supporting cells that 
exhibit two phenotypes: Shwann cell-like or astrocyte cell-like. These glial cells are of particular 
interest due to their regenerative capacity, a feature that makes them target for neuronal regeneration 
research even though they are not typical stem cells [8, 9, 10]. When the olfactory nerves enter the 
OB, the sensory information is delivered through glutamatergic terminals to the lumen of the olfactory 
glomeruli. There the signal is processed through GABAergic and dopaminergic periglomerular 
interneurons, among others. Granulocytic cell projections reach this area and project through the 
olfactory tract via mitral and tufted cells that relay impulses from the OB to other brain regions. The 
projections of these cells differ not only in the target site but also in the speed of nerve impulse 
conduction [11]. The OB connects with different telencephalic, midbrain, diencephalic and brainstem 
regions, some of which are closely involved in the regulation of cardiovascular activity [12, 13]. In 
this sense, a relevant projection is that to the nucleus tractus solitarius, at the level of the brainstem, 
which is considered the primary site for the integration of visceral afferents such as those arising from 
the baroreflex [14, 15]. In addition, limbic system areas like the amygdala, septum, piriformis, and 
orbitofrontal cortex also receive inputs from the OB [4, 16].   
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The OB receives afferences both from the olfactory cortex and other central areas like the locus 
coeruleus. Noradrenergic fibers from the locus coeruleus innervate the OB, from the central cell layers 
decreasing the density to the periphery [17, 18]. This centripetal afference represents around 40% of the 
total extrinsic innervation [18] and it is crucial for the modulation of olfaction and olfactory learning. 
The OB also receives serotoninergic afferences mainly from the nucleus of the raphe (dorsal and medial) 
that innervate particularly the glomerular layer. Experiments performed in deafferented animals 
revealed that serotoninergic stimulation is relevant for olfactory learning but also as a neurotrophic 
agent. Likewise, cholinergic fibers arising from the horizontal arm of the diagonal band nucleus, 
prosencephalic basal area also reach OB and innervate mainly the deeper cell layers. These fibers would 
be involved in the OB neuronal plasticity and the regulation of cell survival [19, 20, 21].   
Cortical areas related to olfaction also project to the OB. There is a feedback innervation since brain 
areas reached by the olfactory nerves send projections back, so the neuronal terminals that come from 
the olfactory cortex to the OB may arise from the anterior olfactory nucleus, tapeworm tecta, piriform 
cortex, cortical tonsillar nucleus, and the nucleus of the lateral olfactory tracts. When entering the 
OB, they selectively release neurotransmitters that act on specific groups of neurons [4, 16, 22]. The 
sensory input to the main OB triggered by odors arises from the olfactory epithelium and send 
projections to the piriformis, prefrontal cortex, nucleus tractus solitarius, amygdala and the 
hypothalamus [23, 24]. The major input to the accessory OB (absent in humans) comes from the 
vomeronasal organ (vestigial or absent in adult humans) that is involved in the detection of 
pheromones; the output is sent mainly to the amygdala, nucleus tractus solitary and the accessory 
olfactory nuclei [25, 26, 27]. The OB efferences originate in the tufted neurons and the mitral cells; 
the impulses originated in the tufted neurons propagate rapidly to the olfactory to the external and 
posteroventral part of the olfactory nucleus, the olfactory tubercle and the ventrorostral amygdala 
whereas those from the mitral cells propagate at a lower speed mainly to the olfactory tubercle 
(cortical portion), the dorsal anterior olfactory nucleus, the anterior and posterior dorsal piriformis 
cortex, the lateral entorhinal cortex and the anterior and posterolateral amygdala [3, 4, 7, 11, 22]. 
Figure 2 shows the complex neuronal circuits between OB and different areas and nuclei of the central 
nervous system closely related to the control of the cardiovascular function.  

 
 
Figure 2. Diagram of a sagittal section of a rat brain showing the olfactory bulb interworking with areas and nuclei with 
implications in the central regulation of cardiovascular system. References: axonic projection from ( ) or to ( ) distinct 
area/nuclei are represented in different colours; main olfactory bulb (MOB); accessory olfactory bulb (AOB); dorsal olfactory 
tract (DOT); medial preoptic area (MpOA); forebrain medial bundle (FMB); locus coeruleus (LC); rostral ventrolateral medulla 
(RVLM); nucleus of the solitary tract (NST); nucleus accumbens (NAcc)  
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OB and cardiovascular function  
Diverse studies in experimental animals reveal an association among the sense of smell, the 
autonomic balance, and cardiovascular physiology [6, 28, 29, 30]. Conscious rats exposed to smoke 
show changes in blood pressure, breathing and sympathetic activity [31, 32]. It was reported that the 
changes in vascular and heart physiology correlate with changes in the neurochemistry of various 
neurotransmitters including norepinephrine in the OB [12, 33].   
Nakamura and Hayashida showed that the changes in the cardiovascular response of conscious rats 
exposed to smoke resulted from both sympathetic and parasympathetic activation [31]. Furthermore, 
the baroreflex function is likely modulated by parasympathetic firing. Nevertheless, the authors leave 
open the possibility that an emotional response may be involved [31]. Aromatherapy-based studies in 
anesthetized rats showed that olfactory stimulation for 10 min with scent of grapefruit oil increases 
renal sympathetic nerve activity and blood pressure whereas it reduces gastric vagal nerve activity 
[34]. Furthermore, olfactory stimulation with limonene, a major component of grapefruit oil, also 
shows similar results in the same experimental model [34]. However, stimulation with lavender oil 
and its active component linalol, has opposite effects, it reduces renal sympathetic activity and blood 
pressure while increasing gastric vagal nerve activity [35]. These findings reveal that different 
essential oils with distinct active component show a differential response on blood pressure and 
autonomic activity.  
Double-blind and randomized aromatherapy-based studies were also performed in humans, that have 
a weak sense of smell as compared to rodents. Angelucci and coworkers compiled reports in the 
literature regarding the effect of various fragrances like lavender, lemon, and patchouli among others 
on the autonomic balance and blood pressure [36]. Conclusion were rather controversial, since various 
reports failed to find a correlation. In this sense, Kiecolt-Glaser and coworkers compared the 
stimulation with lemon aroma and lavender relaxant with odorless water in 57 individuals exposed to 
stressful stimuli like low temperatures, the peeling of an adhesive tape on the skin, etc. and the results 
were not conclusive. These authors showed that inhaling lemon oil improves positive mood and also 
increases norepinephrine release, however, it does not present any other physiological or health-
related benefits. Furthermore, both lemon and lavender appeared to depress delayed hypersensitivity 
responses to Candida relative to water (control group), suggesting that the immunomodulatory effects 
of these odors were negative, at least for this aspect of the immune response [37]. Other reports 
provided data on the relevance of subjectivity and prediction of the expected response to inhaled 
essential oils. In this sense, these authors conclude that the perceived physiological changes in blood 
pressure, heart rate and heart rate variability only reflect changes in alertness, but do not correlate 
with real changes in the respective vegetative states [38]. Therefore, the role of olfaction in 
cardiovascular activity is still a matter of debate, although diverse avenues have elucidated how these 
functions would be linked.  
Olfactory disturbances generally lead to poor food intake choices, reduced appetite, and eventually 
weight loss, malnutrition, impaired immune response, and worsening of illnesses. Patients with an 
altered sense of smell use higher amounts of sugar and salt to enhance the flavors thus leading to 
health deterioration and enhanced risk of diabetes and hypertension. These patients usually increase 
the use of table salt and exhibit a deep craving for salty foods following olfaction loss but do not have 
any consistent taste abnormality [39].   
Several works in patients reveal a strong link between depression and cardiovascular diseases as well 
as between depression and the OB [40, 41, 42]. Depression may affect the pathogenesis of 
cardiovascular diseases. In fact, patients with major depression have altered hemodynamic 
parameters. The prevalence of depression in patients with cardiovascular diseases ranges from 15 to 
20%. In those with acute myocardial infarction is 19.8% (31.1% had previous clinically significant 
depression) whereas in hypertensive patients is approximately 40.1%. The incidence of depression is 
very high in hypertensive patients, 63.4% and 36.6% in women and men, respectively [42].   
Bilateral bulbectomy is a well-established and accepted model of depression that exhibits 
modifications in sympathetic activity and cardiovascular function and has been used to screen 
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different antidepressant agents [5, 12, 43]. Rats with bilateral bulbectomy show increased exploratory 
behavior, hyperactivity, and decreased sexual behavior as well as changes in temperature, endocrine 
and immune responses, and cardiovascular physiology [5, 12, 43]. Some authors consider that the 
cardiovascular responses are related to variations in the autonomic nervous system regulation [44, 
45]. The changes following bulbectomy are associated with alterations in one or more 
neurotransmitters like norepinephrine, acetylcholine, serotonin, GABA and glutamate [12, 43]. In 
addition, it was reported that the integrity of the OB is necessary for the brain to generate a normal 
sympathetic excitatory response to a series of physiological stimuli, including the baroreflex [5]. The 
ablation of OB produces the modification in the neurochemistry of different neurotransmitters in 
various regions and areas of the central nervous system [46, 47].  Pioneering investigations by Allen 
showed that olfactory stimulation in mammals is accompanied by changes in respiration and blood 
pressure [48].  
Works from our laboratory showed for the first time that noradrenergic activity is enhanced in the 
OB of DOCA-salt hypertensive rats. Norepinephrine content as well tyrosine hydroxylase (the 
enzyme that catalyzes the rate limiting step in catecholamine biosynthesis) activity are significantly 
elevated [33]. Increased catecholamine biosynthesis correlates with enhanced norepinephrine 
neuronal release in the OB of DOCA-salt rats [33]. Although the OB does not have noradrenergic 
neuron bodies, it receives fibers from the locus coeruleus that release norepinephrine [18, 49]. 
Previous studies showed that cholinergic and/or noradrenergic stimulation of noradrenergic neurons 
in the locus coeruleus of normotensive animals increases norepinephrine content in the OB [50]. 
Norepinephrine release in the OB induces changes in the reproductive and exploratory behavior, the 
detection and sensitivity to odors and blood pressure [5, 51, 52, 53]. Another relevant finding is that 
the activity and the plasma membrane expression of the neuronal norepinephrine transporter are 
decreased in the OB of DOCA-salt hypertensive animals [33]. Taken together these findings imply 
that norepinephrine turnover is enhanced and further support the hypothesis that the OB is a 
sympathoexitatory region given that the release of norepinephrine elevates blood pressure [5, 51]. 
Other authors suggest that the imbalance of the neuronal norepinephrine transporter contributes to the 
development of hypertension and other cardiovascular diseases [54, 55, 56, 57].   
An unexpected finding showed by Abramoff et al in the OB of DOCA-salt rats is the existence of an 
asymmetry in noradrenergic activity, given that the right OB and not the left OB exhibits the changes 
in noradrenergic transmission [33]. The pathophysiological significance of this asymmetry in this 
animal model is presently unknown. Nevertheless, some authors propose that the right hemiportion 
of other regions of the central nervous system like the hypothalamus has greater impact the regulation 
of cardiovascular function [58, 59].  
Vasoactive peptides like angiotensin II, natriuretic peptides, bradykinin, and endothelin (ET) are 
expressed in the OB and changes in their function have been related to cardiovascular impairment. In 
the OB of spontaneously hypertensive rats, altered properties and function of the natriuretic peptide 
receptor A (NPR-A) was reported suggesting that it may be implicated in the pathogenesis of 
hypertension [60]. Studies from our laboratory show changes in the endothelinergic system in this 
telencephalic region in DOCA-salt hypertensive rats. We showed increased ET type A receptor (ETA) 
and diminished ET type B receptor (ETB) expression in the OB of hypertensive animals. Furthermore, 
confocal microscopy studies showed that ETA receptors colocalize with tyrosine hydroxylase positive 
neurons, and both ET receptors are increased in these catecholaminergic neurons. These findings 
show a clear association in the OB between changes in the endothelinergic and catecholaminergic 
systems and salt dependent hypertension [61].   
In previous works we reported the role of the central endothelinergic system in the maintenance of 
blood pressure in DOCA-salt hypertension through the ETA receptor activation. The acute 
intracerebroventricular infusion of an ETA antagonist or a specific ETB agonist significantly attenuates 
blood pressure and other hemodynamic parameters [61, 62]. Normotensive animals also exhibit 
decreased hemodynamic parameters, but such reduction results considerably lower. These findings 
show that DOCA-salt hypertensive animals have a higher brain endothelinergic tone mediated by ETA 
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receptor activation. These observations correlate with changes in noradrenergic transmission at the 
level of the OB. The hemodynamic modifications are compatible with observations in other brain 
sympathoexcitatory areas. In this sense, it was reported that BQ610 (ETA antagonist) or IRL1620 
(ETB selective agonist) acutely applied to the brain (1 h) significantly reduces the activity of tyrosine 
hydroxylase activity and the expression of its phosphorylated forms (protein and mRNA) [61, 62]. 
Moreover, chronic infusion of either BQ610 or IRL1620 (7 days) to DOCA-salt animals reduces 
systolic blood pressure without changes in the heart rate. These results show that the brain ETA 
receptor is coupled to a pressor response whereas the ETB receptor would counteract this response 
[63].   
The catecholaminergic response in the OB shows that the chronic treatment of hypertensive rats with 
an ETA antagonist (BQ610) reduces tyrosine hydroxylase activity in the right hemoportion of the OB 
without changes in the left OB [63]. However, ETB activation, modifies neither the activity nor the 
expression of tyrosine hydroxylase (unpublished data). Recent findings from our laboratory show that 
the acute administration of BQ610 into the OB ventricle, decreases systolic blood pressure in 
hypertensive rats but elicits no changes in normotensive animals (Figure 3).   
  

 
  
Figure 3. Effects of BQ-610 administration into the olfactory bulb of Control (normotensive) and DOCA-Salt 
K\SHUWHQVLYH�DQLPDOV������S������DQG������YV�&RQWURO���������S������DQG������YV�'2&$6DOW��1XPEHU�RI�DQLPDOV����SHU�
experimental group.  
 
In another study normotensive and DOCA-salt hypertensive rats were subjected to bilateral 
bulbectomy at week 5. We show that systolic blood pressure is significantly reduced in hypertensive 
rats as compared with sham-operated animals. However, no changes are observed in normotensive 
rats with bilateral bulbectomy (Figure 4). These findings support the role of the OB in the maintenance 
of blood pressure elevation in salt dependent hypertension.   
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Figure 4. (IIHFWV�RI�ELODWHUDO�EXOEHFWRP\��%[��RQ�V\VWROLF�EORRG�SUHVVXUH������S�������DQG������YV�&RQWURO�����������
p<0.001 and 0.01 vs DOCA-6DOW��Á��S������YV�&RQWURO-Bx.  
  
Summary  
The association between the OB and mood disorders is well documented, as well as a bidirectional 
relationship between depression and cardiovascular diseases. Likewise, there is a close connection 
between the OB and the limbic system, and the areas related to the control of cardiovascular function. 
In this brief review, we summarized the current knowledge that support the existence of a relationship 
between the OB and the regulation of cardiovascular function, with focus on hypertension. The OB 
would be part of a complex puzzle that is the brain regulation of the cardiovascular function, which 
is not presently completely understood. Several questions remain regarding the OB and 
cardiovascular regulation: - Is the OB a main or a supporting actor? - What are the pathways and 
neurotransmitters involved? - What is the precise role of other vasoactive peptide systems expressed 
in the BO in the regulation of cardiovascular function?  
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