Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

Some Issues to Consider in the Management of
Energy Consumption in HPC Systems with
Fault Tolerance

1[0000—0002—6334—1190] 1[0000—0002—9769—"7830]

)
:3[0000—0001—6736—7358
, and Enzo Rucci®!]

Marina Moran
Dolores Rexachs?!

, Javier Balladini
0000—0001—5500—850X]

! Universidad Nacional del Comahue, Neuquén, Argentina
{marina, javier.balladini}@fi.uncoma.edu.ar
2 Universitat Autonoma de Barcelona, Bellaterra, Espafia
dolores.rexachs@uab.es
3 Universidad Nacional de la Plata - CIC, La Plata, Argentina
erucci@lidi.info.unlp.edu.ar

Abstract. Inquiring about different ways to reduce energy consumption
during the execution of large-scale applications is essential to maintain
and increase the enormous computing power achieved in HPC systems.
Fault tolerance methods can have an impact on power consumption. In
particular, rollback-recovery methods using uncoordinated checkpoints
prevent all processes from re-executing in the event of a failure. In this
context, it is possible to take actions on the nodes of the processes that do
not re-execute to reduce energy consumption. In this work, we describe
some issues to consider when we extend the application of energy-saving
strategies beyond the nodes that communicate directly with the failed
one.

Keywords: Energy consumption - Fault tolerance - Uncoordinated check-
points - HPC.

1 Introduction

The energy consumption of supercomputers and HPC systems continues to be
a central topic of research. Inquiring about different ways to reduce energy con-
sumption during the execution of large-scale applications is central to maintain-
ing and increasing the enormous computing power achieved.

In parallel HPC message-passing applications, it is mandatory to use some
fault tolerance method, which ensures the progress and completion of the applica-
tion. The most widely used method today is rollback recovery, using coordinated
checkpoints. With this method, the application stops every certain period, all
the processes perform the checkpoint in a coordinated way and then continue
executing. When there is a node failure, all nodes must roll back and resume
execution from the last checkpoint. Although this method is widely used due to
its low complexity, it is also true that it can imply great pressure on the storage

17 -

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

system due to the simultaneous access of all the processes. A method that re-
laxes this limitation is the method known as uncoordinated or semi-coordinated
checkpoints. In this method, the processes checkpoint independently, and consis-
tency when recovering from a failure is achieved through some support, such as
the message log. This method can reduce concurrent accesses to the file system.
In addition, only the processes of the node that has failed must be restarted,
which prevents all resources perform duplicate tasks. In previous work [6], we
evaluate a series of strategies that can be applied to improve energy efficiency
when a failure occurs, considering uncoordinated checkpoints. The strategies use
the Advanced Configuration and Power Interface (ACPI), in particular we con-
sider the processor P-State that uses the dynamic voltage and frequency scaling
(DVFS) techniques and system sleeping states (system states S1 to S4), that is,
system hibernation at the node level. By having a characterization of the energy
consumption required to execute the application, as in [5], and its communica-
tion pattern, we estimate the execution and waiting times of the processes that
do not fail. Then, by using a simulator that we have designed and developed, we
can evaluate the use of the strategies.

By analyzing the wave of failure propagation, the number of nodes that re-
ceive the application of the strategies can be increased. We call this cascade
analysis and it seeks to extend the application of strategies beyond the process-
es/nodes that communicate directly with the node where the failure occurred.
The greater the number of nodes that receives some strategy, the greater the en-
ergy savings. In this work, we consider some aspects to take into account when
analyzing cascade blocks.

The rest of the article is organized as follows: Section 2 presents some related
works; Section 3 describes the strategies proposed to achieve energy savings, and
Section 4 discusses some aspects to take into account in the cascade analysis.
Finally, Section 5 presents the conclusions and future work.

2 Related Work

Some works have studied how to take advantage of the waits of processes that
do not roll back when a failure occurs. In [1], the authors seek to improve the
efficiency of the computer system by replacing the application when the waits are
long enough. In [3], the authors simulate a load of an HPC system to evaluate
the energy savings when activating and deactivating nodes according to the
computational and power requirements of the cluster. Other works slow down
the non-critical path to consume less power without substantially increasing
execution time [4,7]. [2] can be considered the most similar proposal to this work,
since they propose a localized rollback based on the data flow, and reduce the
clock frequency of the waiting processes to the minimum possible. We evaluate
other strategies, in addition to changing to the minimum frequency, and we do
so both for the computation and waits of the processes that continue to execute.

-18 -

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

3 Energy-saving Strategies

A series of strategies are defined to be applied to the surviving nodes after
the failure, in a parallel message-passing application, running in a homogeneous
cluster, which uses the uncoordinated checkpoint fault tolerance method. The
failures considered are permanent node failures which in environments using
MPI are fail-stop. Fig. 1 shows two processes, P1 and P2, running on different
nodes. The green area means regular execution of the application; the red area
means that the process is blocked for communication; the blue area means re-
execution caused by the failure; while yellow squares indicate that the process is
performing checkpoints. When the node where P1 is running fails (indicated by
the yellow star), P2 will be affected by the failure because it will have to wait for
P1 for a proportional time to its recovery one (recovery time is indicated in blue
in the figure). At this time, the strategies to be applied to the computing and
waiting phase (indicated in the figure) of surviving process P2 are evaluated.

The strategies are: (1) frequency change for the computational phase, (2)
frequency change for the waiting phase, and (3) sleeping for the waiting phase.
When the selected strategy is to change the clock frequency, it is applied to all
cores of the node.

P1
E i compute phase wait phase E
P2

Fig. 1. Computing and waiting phases

4 Cascading Analysis Considerations

In the past, we have developed an event-based simulator to assess the different
scenarios that involve the application of the strategies [6]. For the selection of the
strategy to apply to each node, it is necessary to know the time until processes
of the node get blocked (computing phase) and the duration of that blocking
(waiting phase). The simulator results show us that, in general, the duration of
the waiting phase defines the action to be applied to each node. If the waiting
phase lasts long enough to put the node to sleep, this will be the preferred
option, since the savings obtained largely exceed the benefits of the rest. With
”long enough to sleep the node” we mean that the wait has a duration greater
than the sum of the time it takes for the node to sleep and to wake up plus a
configurable fraction of time.

Sleeping a node affects all processes on the node. This is why it is necessary
to identify which process will be the one that defines the strategy. In applications
with a single process (and multiple threads), there is a single option. In tightly
coupled applications, all processes on the node will be blocked nearly at the same

-19 -

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

time, and the selected strategy can be applied without a problem. In applications
where there are substantial differences in the computing phases of processes that
shares the same node, sleeping the node could affect the execution of the other
processes.

To which processes is it appropriate to apply the strategy? A first approach is
to apply the strategies to the processes that are blocked by communication with
the failed process. But it is possible to increase energy savings if we apply the
strategies to a larger set of processes that are also affected by the failure, even
if they do not communicate directly with the failed process. We then consider
analyzing the processes that gets blocked with processes that are already blocked
due to the failure. We call this cascade blocking. Including this aspect obviously
increases the complexity of the algorithm that estimates the computing and
waiting phases. Besides, we call parent process to the one responsible for blocking
the child process. When we analyze processes that are blocked in cascade, some
situations may arise:

— The child process communicates several times with its parent before reaching
the communication that will block him due to the failure. We define depth as
the number of subsequent communications to analyze when looking for one
that gets blocked due to the failure. The depth can be calculated by looking
at the communication pattern between each pair of processes and choosing
the maximum amount of communications found (there will never be more
communications than that). It would also be possible to define the depth
by process, and apply the corresponding one in each case. Here again, we
need to check the duration of the recovery. If the recovery time of the failed
processes will be greater than a certain threshold, we can ensure that the
nodes will sleep. In this case it would not be necessary to consider the depth
or make an estimate of the moment when the blocking will occur, since we
can mark the action that the node should take, and when that block arrives
apply it.

— The parent process has been slowed down (it received the application of a
strategy that was to decrease the clock frequency in the computation phase)
but the child has not, or it has been slowed down in a different way. This will
affect the communication time between the processes, probably generating
unexpected waiting pahses.

— If the application uses non-blocking MPI operations, it could happen that
a process starts a non-blocking send and goes to sleep (by applying the
strategy) before data is transmitted. In this case, when the receiving process
issues the matching receive, the communication cannot be completed. But as
the node is hibernating, the second process will not be able to complete the
communication and will block before expected. A possible solution to this
is to wake up the node. In this way, the buffers with the messages become
available.

Fig. 2 shows a scenario of 8 processes that communicate in a pipeline man-
ner (each process sends data to the next one) in order to observe the effect of

-20-

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

incorporating the cascade analysis. Fig. (a) shows the case where cascade are
not supported, and Fig. (b) shows the case where it is used (depth = 2). The
red blocks are waiting times when the node is awake, and the gray blocks are
waiting times when the node sleeping. In case (a), the strategies are applied to
a single node, while in case (b) the same strategies are applied to the 7 ”surviv-
ing” nodes. In this way, energy savings increase from 32,500 J to almost 207,000
J. This represents more than six times the number of joules saved in a similar
period of time (almost 4 minutes). According to the energy model defined in [6],
energy saving is defined as the difference between the joules consumed with and
without the application of the strategies. Table 1 shows the results, including
cascade with depth = 1. Note that with this depth, only one node is added to
the analysis.

Table 1. Selected actions and energy savings

Compute phase | Wait phase Sum of the phases
Node| Action [T (m)| Action [T (m)|T (m)] Save (J)[Save Rate (J/s)[Save (%)
No cascade

1 [No action] 4.84] sleep [3.67] 8.51] 32,502.3] 147.77] 3835
Cascade deep 1

1 |No action| 4.84| sleep 3.67| 8.51| 32,502.3 147.77 38.35

2 |No action| 5.00| sleep 3.68| 8.68| 32,617.8 147.79 37.74
Cascade deep 2

1 |[No action| 4.84| sleep 3.67| 8.51| 32,502.3 147.77 38.35

2 |No action| 5.00| sleep 3.68| 8.68| 32,617.8 147.79 37.74

3 |No action| 5.17| sleep 3.69| 8.86| 32,764.1 147.82 37.12

4 |No action| 5.35| sleep 3.70| 9.05| 32,787.2 147.82 36.39

5 |No action| 5.52| sleep 3.70| 9.22] 32,841.1 147.83 35.77

6 |No action| 5.68| sleep 3.71 9.39| 32,925.8 147.85 35.19

7 |21 GHz | 9.22{1.2 GHz| 0.35| 9.57(10,348.97 18.02 11.08

:

Fig. 2. Application of strategies: (a) Without cascade (b) With cascade

-21-

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

5 Conclusions and Future Work

Energy-saving opportunities exist in a rollback recovery scheme where only some
processes must go back and re-execute. If the re-execution time is long and the
possibility of sleeping the nodes gets enabled, the energy savings can be large.
Depending on the communications pattern, the processes will be blocked sooner
or later due to the failure. Extending the application of strategies beyond the
nodes that communicate directly with the failed one can improve energy savings,
as shown in this work. At the same time, determining which processes block and
when they do so, are not easy tasks in applications with loosely coupled and
non-homogeneous communication patterns.

Future work includes the analysis of new experimentation that considers non-
blocking communications and cascade analysis, and also the implementation of
a proof of concept in a cluster.

References

1. Bouteiller, A., Cappello, F., Dongarra, J., Guermouche, A., Hérault, T., Robert, Y.:
Multi-criteria checkpointing strategies: Response-time versus resource utilization.
In: European Conference on Parallel Processing. pp. 420-431. Springer (2013)

2. Dichev, K., Cameron, K., Nikolopoulos, D.S.: Energy-efficient localised rollback via
data flow analysis and frequency scaling. In: Proceedings of the 25th European MPI
Users’ Group Meeting. pp. 1-11 (2018)

3. Dolz, M.F., Fernandez, J.C., Iserte, S., Mayo, R., Quintana-Orti, E.S.: A simulator
to assess energy saving strategies and policies in hpc workloads. In: ACM SIGOPS
Operating Systems Review. vol. 46, pp. 2-9. ACM New York, NY, USA (2012)

4. Hajiamini, S., Shirazi, B., Crandall, A., Ghasemzadeh, H.: A dynamic programming
framework for DVFS-based energy-efficiency in multicore systems. IEEE Transac-
tions on Sustainable Computing 5(1), 1-12 (2019)

5. Moréan, M., Balladini, J., Rexachs, D., Luque, E.: Prediction of energy consumption
by checkpoint/restart in HPC. IEEE Access 7, 71791-71803 (2019)

6. Moran, M., Balladini, J., Rexachs, D., Rucci, E.: Towards management of energy
consumption in hpc systems with fault tolerance. In: 2020 IEEE Congreso Bienal
de Argentina (ARGENCON). pp. 1-8. IEEE (2020)

7. Rountree, B., Lowenthal, D.K., De Supinski, B.R., Schulz, M., Freeh, V.W., Bletsch,
T.: Adagio: making dvs practical for complex hpc applications. In: Proceedings of
the 23rd international conference on Supercomputing. pp. 460-469 (2009)

-22 -

