
Incorporating Resilience to Platforms based on Edge and
Fog Computing

Santiago Medina (1) ,Diego Montezanti (1) , Lucas Gómez D´Orazio(1), Evaristo
Compagnucci(1), Armando De Giusti (1)(2) , Marcelo Naiouf (1)

1 Instituto de Investigación en Informática LIDI (III-LIDI),
Facultad de Informática, Universidad Nacional de La Plata – Comisión de Investigaciones

Científicas de la Provincia de Buenos Aires
2 CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas

{smedina,dmontezanti,degiusti,mnaiouf}@lidi.info.unlp.edu.ar

{evaristogaston,lucas.dorazio}@alu.ing.unlp.edu.ar

Abstract. In recent years, Internet of Things (IoT) has become extremely popu-
lar because of its ability of sensing information from the environment and pro-
cessing it in the cloud. Edge and Fog Computing are new paradigms that aim to
localize some of the processing near the sensors, helping to cope with high
communications latencies and bandwidth bottlenecks. As Wireless Sensor Net-
works (WSN) and Fog nodes are prone to failure, affecting system reliability
and performance, the implementation of resilience strategies becomes essential
to ensure reliable delivery of data and system availability during interruptions
or in the presence of faults. In this article, we present three lines of research in
progress: Redundant Image Processing, Integration of a WSN with an IoT Plat-
form for Intelligent Control and Resilient Monitorization and Control of Ro-
bots. We aim to incorporate resilience mechanisms to platforms that integrate
Edge, Fog and Cloud Computing, and to evaluate the proposed solutions in
terms of the coverage achieved, processing and communication times and pow-
er consumption.

Keywords: Edge Computing, Fog Computing, Cloud Computing, Resilience,
Internet of Things, Wireless Sensor Networks.

1 Introduction/Motivation

In recent years, the Internet of Things (IoT) has gained a lot of attention because of its
characteristic of typically enabling the connection of a significant number of sensor
devices that sense information from the environment and share it to a cloud service
for processing [1]. This has been extensively used to develop smart applications, such
as traffic management, smart houses, monitoring of natural events and human health
[2]. Due to the growing popularity of the IoT, the number of Internet-connected de-
vices has increased significantly. As a result, a huge amount of network traffic is gen-
erated, which may lead to bottlenecks, and eventually generate limitations in terms of

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 7 -

https://orcid.org/0000-0001-6852-7165
https://orcid.org/0000-0003-0436-0997
https://orcid.org/0000-0002-6459-3592
https://orcid.org/0000-0001-9127-3212

communication latency with the cloud and network bandwidth [3], so the traditional
cloud-based infrastructures are not enough for the current demands of IoT applica-
tions [4]. To deal with these issues, in recent years, the paradigms of Fog computing
and Edge computing were proposed to alleviate these limitations, by moving some
processing capabilities closer to the network edge and away from the central cloud
servers [1]. This allows to distribute the computations of the IoT data, and to reduce
the communication latency [3].

In IoT systems, data are acquired by wireless sensor networks (WSNs), which are
deployed in harsh environments where weather and other factors can cause node fail-
ure. In addition, the IoT devices and the nodes in WSNs are heterogeneous, highly
distributed, reliant on wireless communications and generally powered by batteries,
which are prone to failure [2]. All of this makes the recovery of devices, and the crea-
tion of a pattern for Fault Tolerance in IoT, especially difficult [4].

In the Fog layer, some of the computing nodes may be unreliable and fail unex-
pectedly, affecting the system’s reliability. For this reason, mechanisms for handling

node failures become essential but are also especially challenging, because when a
Fog node fails, moving the computations to neighbor nodes (or to the cloud) may
increase the communication latency, and thus affect the system performance [3]. Con-
sequently, the design of an effective fault tolerance mechanism is crucial to ensure
reliable delivery of data and to warrant the system availability during interruptions of
any kind, or in the presence of faults [2].
 Resilience can be introduced at different architectural layers because a fault can
occur at any of the layers. Either sensors and actuators, network, or computation and
storage nodes, can perform erroneously in their layers [5].

2 Main goals

Our main goal in this project is to incorporate mechanisms aimed at obtaining a cer-
tain degree of resilience on a platform that integrates sensor networks with levels of
Edge, Fog and Cloud Computing (see Fig. 1).

To do this, we propose to evaluate different scenarios of communication failures
on such a 3-tier architecture. The end nodes are sensors connected to microcontrol-
lers, robots, drones, or other devices that can perform tasks remotely controlled by a
server.

Faced with possible communication failures between the different levels of the ar-
chitecture, it is planned to redundantly process information in each of the layers, so
that the system can maintain a degree of responsiveness. Through the measurement of
response times and energy consumption, we hope to obtain criteria to evaluate the
convenience of carrying out the processing at a specific level, but also of having the
alternative of transferring it to another layer in presence of a communication failure,
in order to provide fault coverage.

In the case of communication failures between robots (or end devices) and servers,
validating the status is proposed. This validation can be either periodical or event-
driven (like the fulfillment of partial objectives or the reaching of intermediate posi-

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 8 -

tions), by exchanging round trip messages with the server. Therefore, the device could
return to the last consistent state and wait for the link to restore. For this, the valid
states must be stored in the final device, so that the recovery can be autonomously
made.

Fig. 1. 3-layer architecture

Accordingly, in both cases, we aim to improve the integrity of the system, allowing
it to maintain some basic functionality in the presence of communication failures, or
at least to remain in a safe state, by adopting the most appropriate strategy for each
case, similar to that explored in [6]. The deliberate provocation of communication
failures will allow us to evaluate the robustness of the proposed solutions.

3 Works in progress

3.1 Redundant Image Processing in 3-layer architecture

In this line of research, the focus is on the conceptual integration of resilience aspects
in an architecture with Edge, Fog and Cloud Computing levels.

In the 3-layer platform that we propose, the Edge level consists of a node built
from an ESP32-CAM [7], which takes pictures when movement is detected. The pic-
tures are transmitted to a Fog server, which can pre-process them and, in turn, trans-
mit them to the Cloud to be able to take a concrete action from the Internet. As each
of the three levels has a computational capacity, certain data processing tasks can be
performed alternatively in any of them. This makes it possible to implement resilience
strategies based on redundancy.

There are two possible scenarios: in normal operation, our goal is to evaluate pro-
cessing times and communication latencies, in order to decide where to process the

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 9 -

images to detect people or objects. However, in the presence of communication fail-
ures, we aim to take advantage of the computing power, whether in the Fog server or
in the sensor node itself, to redundantly process the images to maintain functionality.
As a consequence, we will be able to characterize the system performance in terms of
processing times at each level, coverage obtained against failures and energy con-
sumption.

3.2 Integration of a WSN with an IoT Platform for Intelligent Control of
Classrooms

In this line of research, we are studying the deployment and configuration of the IoT
platform ThingsBoard [8], to be integrated with a Wireless Sensor Network (WSN)
built with CO2 sensors and energy consumption measurement and control nodes, in
the context of a university building with classrooms that are monitored and remotely
controlled [9].

The CO2 sensors in each classroom are connected via WiFi to a Raspberry Pi
(which is at the Fog level) that reads the data (via HTTP), and makes some pre-
processing before transmitting them to the ThingsBoard server. This Fog server can
maintain centralized monitorization of the CO2 levels across the whole building, and
activate alerts in case of undesired values.

The energy consumption measurement and control nodes in each classroom are di-
rectly connected via WiFi to the Fog ThingsBoard server, publishing information in
MQTT [10] topics. The server can maintain centralized monitorization of power con-
sumption and take concrete actions, such as remotely turning off lights or air condi-
tioning equipment when the classroom is not being used.

3.3 Resilient Monitorization and Control of Robots

Our goal in this line of research is to incorporate resilience to a system that uses Lego
Mindstorms EV3 robots [11] to perform specific tasks controlled by a server. We aim
to develop an application that controls the functions of the robots through resilient
communications.

Currently, we are exploring 3 alternative strategies, in the attempt to maintain the
consistency of the system in the presence of failures. Each of them has particular
characteristics as regards to detection latency, coverage and workload to be rerun.

1. The server communicates the whole information of the task to be performed or
the path to be followed. The robot must store the path and follow it autonomously,
communicating with the server upon completion. If the connection is lost during
the trajectory, the task cannot be validated. The only resilience strategy is to restart
from the beginning if the final point does not match with the expected one. This
variant minimizes communication load but maximizes the detection latency.
2. The server communicates partial information of the task or the path. The robot
must store the partial path and communicate with the server when reaching the tar-
get point, which in turn validates the completed chunk. If the connection is lost, the
robot has to use the stored information to return to the starting point, which is the

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 10 -

last valid one. Compared with the previous variant, this one involves more com-
munications but improves the detection latency.
3. The server communicates partial information of the task or the path. In addition,
a periodic keepalive signal is transmitted via an independent socket or a different
MQTT topic. The robot must store the partial path and communicate with the serv-
er when reaching the target point, which in turn validates the completed chunk. In
the meanwhile, the status of the connection is monitored with periodical messages.
Consequently, if the connection is lost, the robot has to use the stored information
to return to the last valid point. This latter alternative involves frequent messages
but minimizes the detection latency.

4 Conclusions

Although the research is in an incipient stage, this work proposes to implement mech-
anisms to provide robustness to a system against communication failures, and to de-
termine the performance of the different resilience strategies in terms of the coverage
achieved, processing and communication times and power consumption.

References

1. Mohan, N., & Kangasharju, J. (2016, November). Edge-fog cloud: A distributed cloud for
internet of things computations. In 2016 Cloudification of the Internet of Things (CIoT)
(pp. 1-6). IEEE.

2. Tong, Y., Tian, L., Lin, L., & Wang, Z. (2020). Fault Tolerance Mechanism Combining
Static Backup and Dynamic Timing Monitoring for Cluster Heads. IEEE Access, 8,
43277-43288.

3. Karagiannis, V., Desai, N., Schulte, S., & Punnekkat, S. (2020). Addressing the node dis-
covery problem in fog computing. In 2nd Workshop on Fog Computing and the IoT (Fog-
IoT 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

4. Bierzynski, K., Escobar, A., & Eberl, M. (2017, May). Cloud, fog and edge: Cooperation
for the future?. In 2017 Second International Conference on Fog and Mobile Edge Compu-
ting (FMEC) (pp. 62-67). IEEE.

5. Agrawal, A., & Toshniwal, D. (2021). Fault Tolerance in IoT: Techniques and Compara-
tive Study. Asian Journal For Convergence In Technology (AJCT) ISSN-2350-1146, 7(1),
49-52.

6. Montezanti, D., Rucci, E., De Giusti, A., Naiouf, M., Rexachs, D., & Luque, E. (2020).
Soft errors detection and automatic recovery based on replication combined with different
levels of checkpointing. Future Generation Computer Systems, 113, 240-25.

7. Espressif Web Page, https://www.espressif.com/en/news/ESP32_CAM, last accessed
2022/04/28.

8. ThingsBoard Homepage, https://thingsboard.io, last accessed 2022/04/27.
9. De Antueno, J., Medina, S., De Giusti, L., & De Giusti, A. (2020). Analysis, Deployment

and Integration of Platforms for Fog Computing. Journal of Computer Science and Tech-
nology, 20(2), e12-e12.

10. MQTT Homepage, https://mqtt.org/, last accessed 2022/04/15.
11. ev3dev Homepage, https://www.ev3dev.org/, last accessed 2022/04/08.

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 11 -

