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Chapter 13
Early Hypertrophic Signals After Myocardial
Stretch. Role of Reactive Oxygen Species and
the Sodium/Hydrogen Exchanger

Horacio E. Cingolani, Néstor G. Pérez, Claudia I. Caldiz, Carolina D.
Garciarena, Verónica C. De Giusti, María V. Correa, María C. Villa-Abrille,
Alejandra M. Yeves, Irene L. Ennis, Gladys Chiappe de Cingolani,
and Ernesto A. Aiello

Abstract In this chapter the enhanced activity of the cardiac Na+/H+ exchanger
(NHE-1) after myocardial stretch is considered a key step of the intracellular signal-
ing pathway leading to the slow force response to stretch as well as an early signal
for the development of cardiac hypertrophy. We propose that the chain of events trig-
gered by stretch begins with the release of small amounts of angiotensin II which in
turn induce the release/formation of endothelin. The actions of these hormones trig-
ger the production of mitochondrial reactive oxygen species that enhances NHE-1
activity, causing an increment in the intracellular Na+ concentration which promotes
the increase in intracellular Ca2+ concentration ([Ca2+]i) through the Na+/Ca2+

exchanger. This [Ca2+]i increase would trigger cardiac hypertrophy by activation
of widely recognized Ca2+-dependent intracellular signaling pathways.

Keywords Myocardium · Stretch · Sodium/hydrogen exchanger · Reactive oxygen
species · Hypertrophy

13.1 Introduction

Adding electrons to oxygen produces sequentially: (1) superoxide anion (O2
–), (2)

hydrogen peroxide (H2O2), (3) hydroxil radical (OH–) and finally water (H2O)
(Boveris, 1998). While H2O2 is not a free radical, this very reactive and membrane
permeant molecule is included among the reactive oxygen species (ROS), together
with the oxygen radicals O2

– and OH–. Mitochondria are the main source of ROS
production, although NADPH oxidase and Xanthine Oxidase may also contribute
to ROS formation (Giordano, 2005). The enzyme responsible for NO production
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(Nitric Oxide Synthase, NOS) can also generate O2
– under certain oxidative stress

conditions (Takimoto et al., 2005).
During many years ROS were considered deleterious agents, but in the last years

evidences of their effects as second messengers have emerged (D’Autreaux and
Toledano, 2007). Furthermore, the concept that free radicals in the heart could be
“friend or foe” depending on the magnitude, duration or timing of the redox sig-
nal has been recently suggested (Downey and Cohen, 2008). The cardiac Na+/H+

exchanger (NHE-1) is a target for ROS through the activation of kinases (Sabri
et al., 1998; Snabaitis et al., 2002). ROS, kinases activation, and NHE-1 hyperactiv-
ity are three early hypertrtophic signals after myocardial stretch and/or stimulation
by growth factors. Interestingly, inhibition of ROS, NHE-1 or growth factors results
in regression of cardiac hypertrophy. The discussion of how these three factors are
linked among them and how they are linked to other well known hypertrophic sig-
nals constitutes the aim of this chapter.

13.2 NHE-1 and Myocardial Stretch

In 1998 Bluhm et al. published the results obtained with an elegant theoretical ionic
model of a ventricular myocyte used to analyze the changes in sarcolemmal ion
fluxes following step changes in cardiac muscle length. They suggested that a sud-
den increase in muscle length might induce changes in sarcolemmal Na+ influx
leading to an increase in [Na+]i and a concomitant increase in systolic Ca2+ entry
through the Na+/Ca2+ exchanger (NCX). However, the mechanism by which the
increase in [Na+]i takes place was not proposed. Since the NHE-1 is an important
Na+ entry pathway in cardiomyocytes, the possible role played by the exchanger
will be analyzed in detail.

The finding of a stretch-induced myocardial alkalization in cat papillary muscles
bathed with a bicarbonate-free medium was the first piece of evidence provided
by our laboratory referent to NHE-1 activation by myocardial stretch and the
main role played by this exchanger in the early signals leading to hypertrophy
(Cingolani et al., 1998). The absence of bicarbonate in the medium allowed us to
analyze the role of NHE-1 without the influence of bicarbonate-dependent intracel-
lular pH (pHi)-regulatory mechanisms. The stretch-induced myocardial alkalization
was suppressed by either angiotensin II (Ang II) type 1 (AT1) or endothelin (ET)
type A (ETA) receptors blockade, suggesting the involvement of these receptors in
the stretch-induced activation of NHE-1 (Cingolani et al., 1998). In accordance with
this, Sadoshima and co-authors (1993) have initially reported the release of Ang II
after stretching cultured neonatal cardiomyocytes. They showed that the addition of
the surrounding medium from stretched to non-stretched cardiomyocytes promoted
hypertrophy, and that Ang II was the autocrine mediator of this effect. These authors
also suggested that Ang II is stored in secretory vesicles in myocytes and released
within 1 min by mechanical stretch (Sadoshima et al., 1993). Contemporarily,
Ito et al. (1993) found in the same type of preparation that Ang II promotes the
release/formation of ET-1, demonstrating that ET-1 is an autocrine factor in the
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13 Early Hypertrophic Signals After Myocardial Stretch

mechanism of Ang II-induced cardiac hypertrophy. In addition, Yamazaki et al.
(1996) found that, together with an increase in NHE-1 activity, stretch induced
a rise in the concentration of ET-1 constitutively secreted from cardiomyocytes
to the culture medium. The same authors showed that NHE-1 inhibition partially
attenuated the stretch-induced mitogen-activated protein kinase (MAPK) activa-
tion. Our main contribution was to demonstrate the existence of a stretch-triggered
autocrine/paracrine release of Ang II/ET leading to NHE-1 activation in an adult
cardiac multicellular preparation (Cingolani et al., 1998; Alvarez et al., 1999; Perez
et al., 2001). This finding allowed us to propose the hypothetical scheme depicted
in Fig. 13.1. The proposed chain of events begins with the release of preformed
Ang II and ends with an increase in the Ca2+ transient through reverse mode of
NCX (NCXrev) activation and/or forward mode of NCX (NCXforward) inhibition
secondary to the NHE-1 activation-mediated rise in [Na+]i. If we analyze the poten-
tial effects of NHE-1 activation on myocardial contractility, we should consider
two different mechanisms: Na+-triggered increase in the Ca2+ transient through
NCX, and an increase in pHi that would increase the contractile force by increasing
myofilament Ca2+ responsiveness. Considering the latter possibility, it is important
to emphasize that little or no change in pHi is detected when the stimulating effect
of stretch, exogenous Ang II or ET-1 on NHE-1 is studied in the presence of
bicarbonate buffers (Cingolani et al., 1998; Alvarez et al., 1999; Perez et al., 2001,
2003; Aiello et al., 2005; Luers et al., 2005) The explanation for the lack of change
in pHi can be found in the fact that growth factors like Ang II and ET-1 simulta-
neously activate at least two opposing pHi-regulatory mechanisms: the alkalinizing

Fig. 13.1 A representation of the proposed autocrine/paracrine cascade of events following
myocardial stretch. Endogenous Ang II is released from the myocytes activating AT1 receptors
in an autocrine fashion. Stimulation of AT1 induces the release/formation of ET, which simul-
taneously activates NHE-1 and Cl––HCO3

– exchanger through ETA receptors. The activation of
Cl–– HCO3

– exchanger prevents the expected intracellular alkalization due to NHE-1 activation
but does not prevent the rise in [Na+]i. The increase in [Na+]i drives the NCX in its reverse mode
and this, together with a probable direct action on the exchanger, leads to the increase in Ca2+

transient (Ca2+T)
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NHE-1 and the acidifying Na+–independent Cl––HCO3
– anion exchanger (Ganz

et al., 1988; Thomas, 1989; Camilion de Hurtado et al., 1998; de Hurtado et al.,
2000; Alvarez et al., 2001; Cingolani et al., 2003a; Perez et al., 2003). The scheme
in Fig. 13.1 illustrates the fact that Ang II – through release/formation of ET-1,
simultaneously stimulates NHE-1 and Cl––HCO3

– exchanger, thus minimizing the
changes in pHi but without affecting the increase in [Na+]i that follows NHE-1
activation. Therefore, NHE-1 activation can be detected as a pHi increase only if
bicarbonate is absent in the medium. We emphasize this point because the absence
of changes in pHi after growth factor stimulation in bicarbonate media is not widely
recognized, though it was reported by Ganz et al. in 1988 in mesangial cells and
a call for attention was published by Thomas (1989) in a letter to Nature one
year later. More recently, Schafer et al. (2002) demonstrated that the hypertrophic
response of cardiomyocytes to α- and β-adrenergic stimulation requires NHE-1
activation but not cellular alkalization. In summary, although there is enough
evidence to suggest a direct correlation between activation of cellular acid extrusion
mechanisms and proliferation, there is also enough evidence to state that prolifer-
ation can occur without changes in pHi, and that changes in pHi do not necessarily
induce proliferation (Schafer et al., 2002; Ganz et al., 1988, 1990; Shrode et al.,
1997). There is no agreement in the literature about the role played by the NHE-1
in growth and viability. While some authors report that NHE-1-deficient transgenic
mice can grow at normal rate (Grinstein et al., 1989), others have shown that these
animals exhibit growth retardation and are subject to slow-wave epilepsy (54–56).

The effects of myocardial stretch, exogenous Ang II and ET-1 on pHi and [Na+]i
in cat papillary muscles are illustrated in Fig. 13.2. In these experiments, low doses
of exogenous Ang II or ET-1 that probably reproduced those released after stretch

Fig. 13.2 Representative experiments showing that in the presence of bicarbonate, NHE-1 activa-
tion by stretch (Panel A), exogenous Ang II (Panel C) or ET-1 (Panel E) does not change pHi. The
same interventions promoted an increase in [Na+]i that was prevented by NHE-1 blockade (pooled
results of Panels B, D and F). ∗ Indicates P<0.05 vs. NHE inhibition. Modified from Perez et al.
(2003) with permission
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13 Early Hypertrophic Signals After Myocardial Stretch

did not affect pHi but significantly increased [Na+]i. This rise in [Na+]i was sup-
pressed by NHE-1 inhibition. The ET receptor blockade exerted the same inhibitory
effect after myocardial stretch and after the addition of exogenous Ang II or ET-1
(Perez et al., 2001, 2003). The role played by the Cl––HCO3

– exchanger in pre-
venting intracellular alkalization after myocardial stretch is better visualized by
repeating the intervention in a bicarbonate medium before and after inhibition of the
anion-exchanger with specific antibodies (see Fig. 13.3) (Cingolani et al., 2003a).

Under these conditions, an increase in pHi takes place only after Cl––HCO3
–

exchanger inhibition. It is not clear whether changes in pHi after the addition of
growth factors or stretch stimulation localized to certain subcellular spaces within
the myocyte may occur in the presence of bicarbonate-dependent mechanisms. The
fact that an increase in pHi stimulates protein synthesis (Fuller et al., 1990) does
not necessarily mean that intracellular alkalization occurs after myocardial stretch,
Ang II or ET-1 stimulation (Ganz et al., 1988; Schafer et al., 2002; Cingolani et al.,
2005). We would like to emphasize that our proposal is valid for the concentration
used by us. Higher concentrations of Ang II and/or ET-1 can trigger mechanisms
other than those described herein.

It is known that the increase in [Na+]i can induce an increase in [Ca2+]i through
the NCX as a result of a decrease in Ca2+ efflux (decreased forward mode) and/or an
increase in Ca2+ entry (increased reverse mode). As mentioned before, the increase
in [Na+]i induced by stretch or by exogenous low doses of Ang II or ET-1 was
prevented by blocking NHE-1 (Fig. 13.2) (Alvarez et al., 1999; Perez et al., 2001,
2003; Aiello et al., 2005). The increase in myocardial [Na+]i detected in our exper-
iments was ∼3–6 mmol/L. In line with this, increases of similar magnitude were
detected by Baartscheer et al. (2005) in the myocardium of rabbit failing hearts
with enhanced activity of NHE-1 and by Luers et al. (2005) after stretching rabbit

Fig. 13.3 When Cl–– HCO3
– exchanger activity is inhibited by a specific antibody against it, the

slow increase in force after stretch is even greater than when the anion exchanger is operative,
due to a rise in pHi despite the presence of extracellular bicarbonate. Under this condition, the
increase in myofilament responsiveness increases developed force in addition to the effect of the
augmented Ca2+ transient. C P <0.05 vs. Control serum. Modified from Cingolani et al. (2003a)
with permission
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myocardium. This increase in [Na+]i shifts the reversal potential of NCX to a more
negative voltage, thus allowing the NCX to operate in reverse mode for a longer
period of time during the action potential and promoting Ca2+ influx to the cell
which should be reflected by changes in contractility. As reported by Bers et al.
(2003), cardiomyocytes have a limited capacity to buffer increases in [Na+]i and the
NCX is more sensitive than the Na+/K+ ATPase pump to a change in [Na+]i of this
magnitude.

Calculation of the estimated reversal potential of NCX in cat papillary muscles
gives a value of –34 mV which is of the same order of magnitude as those estimated
by other authors (Kusuoka et al., 1993; Bers, 2001), if we assume 10 mmol/L
[Na+]i, 140 mmol/L extracellular Na+, 1.5 mmol/L extracellular Ca2+ and a
150 nmol/L diastolic [Ca2+]i. The quick rise in sub-membrane [Ca2+]i due to the
Ca2+ transient that shifts the NCX reversal potential to even more positive voltages
(Bers and Despa, 2006) would lead to a minimal contribution of the NCXrev to
basal contractility under normal conditions (Perez et al., 2001, 2003; Aiello et al.,
2005). This in accordance to what we have shown that NCXrev inhibition with
5 μmol/L KB-R7943 did not affect basal contractility or the increase in contractility
of ∼20% promoted by rising extracellular Ca2+ from 1.35 to 1.9 mmol/L (Fig. 13.4)
in cat papillary muscle. However, these results are in contrast to those obtained
by Kurogouchi et al. (2000) in the dog myocardium that showed that KB-R7943
promoted a pronounced negative inotropic effect, discrepancy that might depend on
the model and/or species used in each study. However, in isolated cat ventricular
myocytes a decrease in basal inotropism of approximately 20% was detected after
1 μmol/L KB-R7943 (Cingolani et al., 2006). Therefore, this compound seems to
exert greater negative inotropic effect in isolated myocytes.

The approximately 3–6 mmol/L increase in [Na+]i induced by stretch (34),
exogenous Ang II (Perez et al., 2003) or ET-1 (Aiello et al., 2005) in our experi-
mental conditions certainly changes the scenario by shifting the reversal potential
of NCX from –34 to –55 mV, allowing operation of the NCX reverse mode during a
longer fraction of the action potential plateau. In line with the above-mentioned
effect of stretch, Ang II and ET on [Na+]i, we detected a negative shift of the
NCX reversal potential of –5 and –15 mV after treating isolated patch-clamped cat
myocytes with 1 and 10 nmol/L ET-1, respectively (Aiello et al., 2005). Considering
these experimental results, estimation of the ET-1-induced increase in [Na+]i gives
values of approximately 1.6 and 5.0 mmol/L for 1 and 10 nmol/L ET-1, respectively.
These values are of the same order of magnitude as those measured in the bulk of
the cytosol by epifluorescence in papillary muscles after addition of 5 nmol/L ET-1
(Perez et al., 2003). However, it is important to note that the increase in [Na+]i in
the isolated myocytes might reflect changes of this ion in a space in which intra-
cellular dialysis with the solution of the patch pipette cannot maintain [Na+] at a
constant level. The increase in [Na+]i would tend to increase Ca2+ influx through
reverse mode NCX during systole and to reduce Ca2+ extrusion via forward mode
NCX during diastole that should necessarily end with an increase in the force of
contraction as reported by us (Alvarez et al., 1999; Perez et al., 2001, 2003; Aiello
et al., 2005).
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13 Early Hypertrophic Signals After Myocardial Stretch

Fig. 13.4 Original force records showing the lack of effect of 5 μmol/L KB-R7943 (NCXrev
blocker) on basal contractility (A, extracellular Ca2+=1.35 mmol/L) and on the increase in con-
tractility of ∼20% promoted by increasing extracellular Ca2+ from 1.35 mmol/L to 1.9 mmol/L
(C). Overall results of developed force (DF, in g/mm2) for each type of experiments (B, n=6 and
D, n=4). These results also strongly suggest that KB-R7943 at this concentration does not exert
non-specific actions which may affect contractility. Reproduced from Perez et al. (Cingolani et al.,
2003a) with permission

We have reported an increase in the Ca2+ transient amplitude of about 12% dur-
ing the slow force response without changes in diastolic Ca2+ (Alvarez et al., 1999;
Perez et al., 2001), result that coincides with that reported by Kentish and Wrzosek
(1998). The reported lack of participation of the sarcoplasmic reticulum in this
mechanism (Bluhm and Lew, 1995; Hongo et al., 1995; Kentish and Wrzosek, 1998)
further supports the notion that the NCXrev is one possible mechanism involved in
the increase in Ca2+ transient.

The question that now arises is if this increase in [Ca2+]i secondary to the
increase in [Na+]i is the only mechanism responsible for the positive inotropic
effect when Ang II or ET are involved in the mechanism. Figure 13.5 shows
that the developed force increases linearly with the increase in [Na+]i caused
by Na+/K+-ATPase inhibition, and that this increase is blunted by KB-R7943
(Fig. 13.5, inset). However, when [Na+]i increases because of ET-1-induced
activation of NHE-1 (Aiello et al., 2005), the increase in developed force lies above
the linear relationship (Fig. 13.5). In addition, if ET-1 is applied when the rise in
[Na+]i caused by Na+/K+-ATPase inhibition reached a steady state in the presence
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Fig. 13.5 The increase in [Na+]i induced by partial inhibition of Na+/K+ ATPase by lowering
extracellular K+ (squares: 1.8 mmol/L; triangles: 0.9 mmol/L) increased developed force (DF) as
a function of [Na+]i. This effect may be assigned to activation of NCXrev, because it was reverted
by KB-R7943 (5 μmol/L; inset). However, when [Na+]i levels were augmented by ET-1-induced
NHE activation, the results lied above the relationship, suggesting that factors additional to the rise
in [Na+]i have taken place. Modified from Aiello et al. (2005) with permission

of NHE-1 inhibition, the peptide still produces a positive inotropic effect that is
completely reversed by either inhibition of NCXrev or protein kinase C (PKC)
(Aiello et al., 2005). Patch-clamp experiments in isolated myocytes showed that
ET-1 increases the NCX current and negatively shifts the NCX reversal potential
(Aiello et al., 2005). Taken together, these data suggest that ET-1 is driving the
reverse mode of the NCX by an NHE-1-mediated increase in [Na+]i and by a direct
stimulatory effect on the NCX, possibly by a PKC-dependent phosphorylation
mechanism (Aiello et al., 2005). It is important to mention that PKC is a well known
target of intracellular ROS (Juhaszova et al., 2004; Costa and Garlid, 2008). Thus,
increased production of ROS by Ang II and/or ET-1 could stimulate PKC and might
lead to the activation of both transporters, the NHE-1 and/or the NCX (Fig. 13.6).

Interestingly, experiments performed by Eigel et al. (2004) in guinea pig ven-
tricular myocytes demonstrated that ROS activate NCX directly (Fig. 13.6). On the
other hand, it was reported that Ang II or myocardial stretch, via AT1 receptors
stimulation, induces a ROS-mediated reduction of the transient outward potassium
current (Ito) by a signaling pathway involving NADPH oxidase activation (Zhou
et al., 2006). Moreover, Lu et al. (2008), recently reported that Ito, the slow delayed
outward K+ current (IKslow) and the steady-state K+ current (Iss) are phosphorylated
and inhibited by p90RSK after ROS activation of this enzyme. Thus, decreased
potassium currents would lead to a prolongation of action potential duration, which
may eventually increase Ca2+ influx through NCXrev (Fig. 13.6).
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13 Early Hypertrophic Signals After Myocardial Stretch

Fig. 13.6 Potential
intracellular pathways
mediated by ROS after
stimulation of the autocrine
Ang II/ET crosstalk. ROS
generated by this autocrine
mechanism might trigger the
three different
ROS-dependent pathways
depicted in the Figure:
(a) [Na+]i-independent and
PKC-dependent pathway by
direct stimulation of NCX;
(b) [Na+]i-dependent
pathway, consistent with a
negative shift of the NCX
reversal potential after a rise
in [Na+]i due to NHE-1
activation and
(c) prolongation of the action
potential duration due to
inhibition of K+ currents

In summary, it may be suggested that the reverse mode of cardiac NCX is mod-
ulated by myocardial stretch or, equivalently, by the Ang II/ET network, through
the three different ROS-dependent pathways depicted in Fig. 13.6: (a) an [Na+]i-
dependent pathway, consistent with a negative shift of the NCX reversal potential
after a rise in [Na+]i due to NHE-1 activation; (b) an [Na+]i–independent and protein
kinase C-dependent pathway by direct stimulation of NCX; and (c) a prolongation
of the action potential duration. All these intracellular pathways appear to be con-
tributing in concert to the increase in Ca2+ after stretch.

The fact that Ang II triggers the beginning of the cascade of events leading
to the slow force response has not been confirmed in all their steps. Activation
of the NHE-1 after stretch has been confirmed in different species by several
authors (Yamazaki et al., 1998; Alvarez et al., 1999; Calaghan and White, 2004;
von Lewinski et al., 2004; Luers et al., 2005). However, the pathway leading to its
activation is controversial. The release of Ang II and activation of the AT1 recep-
tors by stretch proposed by us in rat and cat myocardium (Cingolani et al., 1998;
Alvarez et al., 1999; Perez et al., 2001), though reported in isolated rat myocytes
(Sadoshima et al., 1993; Leri et al., 1998), was not confirmed by other investigators
in ferret multicellular preparations (Calaghan and White, 2001). The role played by
ET has been reported by Calaghan and White in ferret (Calaghan and White, 2001)
and by us in rat (Alvarez et al., 1999) and cat myocardium (Cingolani et al., 1998;
Perez et al., 2001), but it was not found in rabbit (Luers et al., 2005) or failing human
myocardium (von Lewinski et al., 2004).

Whether the discrepancies are a matter of species differences is not apparent
to us yet, but in any case, they leave open the possibility that under different
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experimental conditions some other mechanisms may be triggered by stretch. In
this regard, another report by Calaghan and White (2004) shows activation of
stretch-activated channels in addition to NHE-1 activation after myocardial stretch
in rat ventricular myocytes and papillary muscles; Isenberg et al. (2005) proposed
that myocardial stretch increases [Na+]i and [Ca2+]i in cell organelles partly by
their influx through the stretch-activated channels, but they were unable to prevent
the increase in [Na+]i by cariporide. Interestingly, Hongo et al. (1996) demonstrated
that the slow force response can be also detected in isolated cardiomyocytes, but
they did not detect an increase in [Na+]i during its development. In the same
work, the authors also reported that L-type Ca2+ current is not involved in the slow
force response. Vila Petroff et al. (2001) presented evidence that stretch activates
the PI-3-kinase pathway to phosphorylate the endothelial isoform of nitric oxide
synthase. Then nitric oxide stimulates Ca2+ release from the sarcoplasmic reticulum
and promotes the slow force response. Unfortunately, the results of Vila-Petroff
et al. (2001) could not be reproduced by other authors either in papillary muscle
or isolated myocytes (Calaghan and White, 2004). This was certainly expected
since the mechanism proposed by these authors requires a functional sarcoplasmic
reticulum and the possible role of the sarcoplasmic reticulum in the slow force
response has been clearly ruled out by several authors including Bluhm and Lew
(1995), Hongo et al. (1995) and Kentish and Wrzosek (1998).

Another important aspect to consider in order to clarify the failure of detecting if
ET is participating in the slow force response to stretch is to analyse the pharmaco-
logical intervention used to prove it. In this regard, Endoh et al. have clearly shown
that high doses of the non-specific ET receptor antagonist TAK044 were necessary
to prevent the inotropic effect of ET in the myocardium (Endoh et al., 1998). In our
hands, either TAK044 or the selective ETA receptor antagonist BQ123 (Fig. 13.7)
blunted the slow force response (Alvarez et al., 1999; Perez et al., 2001). However,
if based on the works of Calaghan and White (2001) and our own results (Cingolani
et al., 1998; Alvarez et al., 1999; Perez et al., 2001) the role of ET after stretch is
accepted in addition to the well known fact that Ang II induces release/formation of
ET as shown in different studies by us (de Hurtado et al., 2000; Aiello et al., 2002;
Perez et al., 2003; Cingolani et al., 2006) and others (Dohi et al., 1992; Imai et al.,
1992; Chua et al., 1993; Ito et al., 1993; Fujisaki et al., 1995; Barton et al., 1997;
Rajagopalan et al., 1997; Serneri et al., 1999; Muller et al., 2000; Ficai et al., 2001;
Ortiz et al., 2001; Muller et al., 2002; Seccia et al., 2003), the rationale to accept our
proposed chain of events seems to be plausible.

Regarding the identification of the ET isoform (s) that could be participating in
the response to stretch, experiments in cat papillary muscles from our own labo-
ratory showed an increase in ET-3 mRNA after stretch (Ennis et al., 2005). How-
ever, we should bear in mind that Tamamori et al. (1996) reported that, in cultured
neonatal cardiomyocytes, ET-3 triggers the synthesis and release of ET-1, which in
turn mediates a hypertrophic response. Therefore, though speculative, we should
consider the possibility that the stretch of multicellular preparations triggers ET-3
release that might be responsible for the inotropic response and for the sequential
release/formation of ET-1, which would induce cell growth. Moreover, while stretch
could sequentially induce the release of ET-3 and ET-1, it is possible that exogenous
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13 Early Hypertrophic Signals After Myocardial Stretch

Fig. 13.7 Panel A: The
stretch of rat papillary
muscles promotes a slow
force response (SFR) which
stabilized after 10–15 min in
a value ∼20% greater initial
phase. The ETA blocker
BQ123 canceled the SFR (the
SFR was expressed as percent
of the initial rapid phase).
∗ Indicates P<0.05 vs. initial
rapid phase, † indicates
P<0.05 between curves.
Panel B shows the lack of
effect of BQ123 on the
positive inotropic effect of
5 nmol/L ET-1. Comparative
averaged results of developed
force (DF) (expressed as
percent of the pre-ET-1 value)
after 30 min of incubation
under both experimental
conditions are shown.
∗ Indicates P<0.05 vs.
pre-ET-1 value. Panel C:
Addition of 5 nmol/L ET-3 to
a papillary muscle increased
DF in a similar magnitude to
the same dose of ET-1. This
time, however, BQ123
canceled the increase in DF,
suggesting that this may be
the isoform involved in the
SFR. DF was expressed as
percent of the pre-ET-3 value
after 30 min of incubation
with the peptide. ∗ Indicates
P<0.05 vs. pre-ET-3 value,
† indicates P<0.05 vs ET-3
alone. Modified from Ros
et al. (2005) with permission

Ang II induces the release of ET-1 that in turn mediates, in this case, the increase in
contractility. Supporting these speculations, we demonstrated, working with cat pap-
illary muscles, that the same concentration of the ETA blocker BQ123 (300 nmol/L)
was able to cancel the slow force response to stretch and the inotropic effect induced
by ET-3, but not that induced by ET-1 (Fig. 13.7) (Ros et al., 2005). However, we
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need to mention that we have recently demonstrated that the positive inotropic effect
and the increase in ROS production induced by ET-1 in isolated cat ventricular
myocytes were effectively blocked by 300 nmol/L BQ123 (De Giusti et al., 2008).

We can state that myocardial stretch-induced NHE-1 activation and the role of
the NCX in increasing Ca2+ transient are confirmed facts. Considering the results
of other investigators and our own (Cingolani et al., 1998; Alvarez et al., 1999;
Perez et al., 2001; Calaghan and White, 2004; Cingolani et al., 2005; Luers et al.,
2005) together with those from the experiments in isolated neonatal cardiomyocytes
(Yamazaki et al., 1998), we can conclude that NHE-1 activation induced by myocar-
dial stretch constitutes a relevant intracellular signal leading to myocardial hypertro-
phy. A recent publication support the idea that activation of NHE-1 is sufficient to
generate Ca2+ signals that induce cardiac hypertrophy and failure (Nakamura et al.,
2008). This signaling pathway can be also evoked by equipotent doses of exoge-
nous Ang II or ET-1 (Perez et al., 2003). Since it has been demonstrated that Ang
II induces the release of ET-1 (see below), at least in some species, which in turn
induces ROS formation and NHE-1 activation, the physiological chain of events
depicted in Fig. 13.8 seems plausible.

Fig. 13.8 Intracellular mechanisms triggered by 1 nmol/L Ang II. The figure schematizes the
sequential steps that take place after activation of AT1 receptors by Ang II, effect that can be
blocked by the AT1 blocker Losartan. Step 1: release of endogenous ET-1. Step 2: Increased
ROS production after ETA receptors activation, effect that can be blocked by the ETA antago-
nist BQ123 and the ROS scavenger MPG. Step 3: Activation of the MAP kinase ERK 1/2 by ROS,
effect that can be blocked by the MEK inhibitor U0126. Step 4: Phosphorylation and activation
of P90RSK. Step 5: Phosphorylation and activation of the NHE-1, which can be blocked by the
NHE-1 inhibitors HOE 642 (cariporide), EMD 87580 and BIIB. Step 6: Increase in the intracel-
lular concentration of Na+. Step 7: Activation of the reverse mode of the NCX, effect that can be
inhibited by the blocker of the NCXrev, KB-R7943. Step 8: Increase in the Ca2+ transient. Step 9:
This increase in intracellular Ca2+ might lead to cardiac hypertrophy
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13 Early Hypertrophic Signals After Myocardial Stretch

13.3 Evidences for the ANG II-Induced Release of ET-1
Autocrine Mechanism

Many cardiovascular effects initially thought to be mediated by Ang II were in fact
reported to be due to the paracrine/autocrine action of endogenous ET-1 released
by the octapeptide (Ito et al., 1993; Rajagopalan et al., 1997; Liang and Gardner,
1998; Ortiz et al., 2001). The effects of stretch, which were mediated by the action
of endogenous ET released by Ang II described above, were reflected by results
obtained in cat papillary muscles. Since this is a multicellular preparation, it was
not possible to elucidate if the action of ET-1 was paracrine or autocrine. However,
working with isolated cat ventricular myocytes, we also reported that the increase
in INCX induced by Ang II was blocked by ET receptors blockers, suggesting an
autocrine interaction between these two hormones (Aiello et al., 2002). Accord-
ingly, more recently we also showed that Ang II induced a concentration-dependent
increase in sarcomere shortening of cat myocytes, which was downward shifted after
ET receptors blockade (Fig. 13.9). This shift decreased the maximal effect of Ang
II by approximately 30% and cancelled the effect of 1 nmol/L Ang II (Fig. 13.9).
Therefore, these findings demonstrate that the increase in contractility induced by
1 nmol/L Ang II is entirely due to an autocrine pathway involving an ET isoform.

Further evidence that Ang II induces the release/production of ET from the
myocyte was obtained in RT-PCR experiments performed in isolated cat myocytes

Fig. 13.9 Dose-response curve for different concentrations of Ang II, from 1 to 500 nmol/L, in the
absence or presence of TAK044 (1 μmol/L). The maximal positive inotropic effect was obtained
with 100 nmol/L Ang II. TAK044 shifted the dose-response curve to the right, and completely
blocked the inotropic effect of 1 nmol/L Ang II indicating that this effect was entirely due to
the action of the endogenous ET released/produced by Ang II. However, the data suggest that
concentrations higher than 1 nmol/L are activating other mechanisms than the autocrine signal
triggered by Ang II. Modified from Cingolani et al. (2006) with permission
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Fig. 13.10 Real-time
RT-PCR. Panel A shows a
significant increase in the
expression of mRNA of
preproET-1 induced by
1 nmol/L Ang II. This
increase was prevented by
losartan. The mRNA levels
for preproET-3 (Panel B)
does not change with
1 nmol/L Ang II. ∗ Indicates
p<0.05 vs. control. Modified
from Cingolani et al. (2006)
with permission

exposed to 1 nmol/L Ang II. Following 15 minutes of exposure to Ang II, iso-
lated cat ventricular myocytes showed a significant increase in the expression of
preproET-1 mRNA but not in that of preproET-3 mRNA (Fig. 13.10) (Cingolani
et al., 2006). Although these RT-PCR experiments do not elucidate the mechanism
by which Ang II induces the release/production of ET-1, they suggest that Ang
II increases the “de novo” production of ET-1 in the isolated myocytes. It seems
unlikely that the increase in preproET-1 mRNA levels in 15 min upon Ang II expo-
sure could explain the acute positive inotropic effect induced by this peptide during
that time frame, since production of mature ET-1 to be released by the myocyte
would require a longer time period. However, it appears valid to assume, if the
translation efficiency is not altered, that the Ang II-induced increase in ET-1 mRNA
during this time reflects an increase in ET-1 synthesis secondary to the decrease in
its intracellular pools due to its release, a mechanism probably leading to restore
these intracellular pools.

13.4 The Slow Force Response as the Mechanical Counterpart
of the Autocrine Mechanism Triggered by Stretch:
the Anrep’s Phenomenon

It is well known that two consecutive phases characterize the increase in force
after myocardial stretch: A rapid and immediate one and the slow force response.
The initial rapid change in force is induced by an increase in myofilament Ca2+
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13 Early Hypertrophic Signals After Myocardial Stretch

Fig. 13.11 After stretching a
papillary muscle from 92 to
98% of Lmax, a sudden
increase in force immediately
occurs (a to b, Panel A), due
to an increase in myofilament
Ca2+ responsiveness. After
that, a progressive increase in
force develops during the
next 10–15 min, the slow
force response (SFR) (b to c),
that is due to an increase in
the Ca2+ transient (Panel B).
Modified from Cingolani
et al. (2001) with permission

responsiveness without changes in the Ca2+ transient whose underlying mecha-
nisms are beyond the scope of this review (Fig. 13.11). The slow force response,
in turn, is due to a progressive increase in the Ca2+ transient without changes
in myofilament Ca2+ responsiveness during this phase (Fig. 13.11) (Allen and
Kurihara, 1982; Kentish and Wrzosek, 1998; Alvarez et al., 1999). The increase in
the Ca2+ level appears to result from the autocrine/paracrine mechanism described
in the previous section. While the initial change in force after stretch seems to
express the Frank-Starling mechanism, the slow force response may conceivably
be the expression of Anrep’s phenomenon.

In 1912, Von Anrep observed that when aortic pressure was elevated, ventricular
volume initially increased and then declined to the starting volume. It appeared to
him that an influence operating soon after myocardial dilatation caused an increase
in myocardial contractility. His interpretation was that perhaps, the decrease in the
flow to the adrenal glands induced the release of catecholamines and the consequent
positive inotropic effect. In 1959, experiments by Rosenblueth et al. (1959) indi-
cated that an increase in coronary perfusion pressure was not necessarily concomi-
tant with the return of the heart to its initial volume. In 1960, Sarnoff et al. coined the
term “pressure-induced homeometric autoregulation” to define the decrease in left
ventricular end diastolic volume that follows an increase in diastolic volume due to
a sudden increase in afterload. On the other hand, since the experiments of Sarnoff
et al. (1960) were performed in isolated hearts, the study served to rule out the
possibility of a role played by catecholamines in the described phenomenon. Inter-
estingly, Sarnoff defined as “homeometric autoregulation” a phenomenon occurring
in an organ which was not attributable to an influence by nerves or chemicals in its
vicinity, paving the way for the idea of an autocrine/paracrine mechanism after car-
diac stretching (Sarnoff et al., 1960). The existence of a real change in contractility
during the homeometric autoregulation was challenged by the possibility of changes
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Fig. 13.12 Suppression of the slow force response (expressed as percent of initial rapid phase)
after AT1 but not AT2 receptors blockade (Losartan and PD123, 319 respectively) (Panel A).
Myocardial stretch significantly increased ERK1/2 and p90RSK phosphorylation, effect cancelled
by losartan (Los) (Panel B). Inhibition of MEK (a kinase upstream ERK1/2 and downstream
RAS) by PD98059 cancelled slow force response (expressed as percent of the initial rapid phase)
(Panel C). ∗Indicates P < 0.05 vs. non-stretched control (cont); † indicates P < 0.05 control vs.
PD98059. DF = developed force. Modified from Caldiz et al. (2007) with permission
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13 Early Hypertrophic Signals After Myocardial Stretch

in coronary blood flow distribution (Monroe et al., 1972). However, in 1973 Parmley
and Chuck reproduced for the first time the contractile effect of stretch in isolated
strips of ventricular myocardium. They showed that when the length of the muscle
was increased, there were corresponding rapid and slow increases in the developed
force. Since the slow force response to the change in length was still present in
isolated muscles from animals treated with reserpine, those authors also ruled out
the possibility of catecholamines released by nerve endings as having a role in the
mechanism.

We and other authors have provided evidence that activation of NHE-1 after
stretch play a key role in the development of the slow force response (Alvarez
et al., 1999; Perez et al., 2001; Calaghan and White, 2004; von Lewinski et al.,
2004; Luers et al., 2005), however, there is no agreement in the role played by Ang
II and ET in NHE-1 activation (Sadoshima et al., 1993; Leri et al., 1998; Alvarez
et al., 1999; Calaghan and White, 2001; Perez et al., 2001). Ang II is an octapep-
tide acting through its own G coupled receptors AT1 and AT2. Gαq-βγ activated by
either Ang II or ET-1 targets the NHE through extracellular signal-regulated pro-
tein kinases 1/2 (ERK1/2)-p90 ribosomal S6 kinase (p90RSK). We showed that the
slow force response was abolished by AT1 receptors blockade (Alvarez et al., 1999;
Perez et al., 2001) (Caldiz et al., 2007) but not by AT2 receptors blockade (Caldiz
et al., 2007) as shown in Fig. 13.12A. These results support the notion that Ang
II is released after stretch and triggers the intracellular signaling pathways leading
to slow force response. We should keep in mind that the release of Ang II from
the cell after stretch and its link with ET-1 has been previously demonstrated (Ito
et al., 1993; Sadoshima et al., 1993). Furthermore, a significant increase in ERK1/2
and p90RSK kinase phosphorylation can be detected after 15 minutes of stretch,
effects that are both cancelled by AT1 receptors blockade with losartan as shown
in Fig. 13.12B (Caldiz et al., 2007). Finally, inhibition of MEK (a kinase that is
upstream of ERK1/2 and downstream of RAS kinases) by PD98059 abolished the
slow force response to stretch (Fig. 13.12C ).

13.5 Role of ROS After Stretch, ANG II and ET-1

Ang II and ET-1 are well known activators of the NADPH oxidase (Lavigne
et al., 2001; Giordano, 2005; Kimura et al., 2005b) and through this action
it has been reported the phenomenon called “ROS-induced ROS-release”, by
which a small amount of ROS triggers a greater ROS production from the
mitochondria (Fig. 13.13) (Zorov et al., 2000; Brandes, 2005; Kimura et al.,
2005a). The possibility that this mechanism participates in the chain of events
following stretch was examined. Figure 13.14A shows that stretch -in addition
to its mechanical effect- induces an increase in intracellular ROS formation of
approximately 30% above baseline levels. Furthermore, scavenging of ROS by
N-(2-mercaptopropionyl)-glycine (MPG) or EUK8 inhibited both stretch-induced
increase in ROS (Fig. 13.14A) and the slow force response (Fig. 13.14B). We
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Fig. 13.13 The proposed “ROS-induced ROS-release mechanism”. Stimulation of cardiac
myocytes with Ang II leads via the action of AT1 receptor to the assembly and activation of
NADPH oxidase. The subsequently generated O2

– stimulate mKATP channels, which augments
the production of more O2

– by the electron transport chain and allows the mitochondrial per-
meability transition pore (MPT) to open, facilitating the efflux of large amounts of O2

– into the
cytoplasm. O2

– (or H2O2) can then act as signaling molecules in the cytosol (i.e. activating MAP
kinases)

also found that the scavenging of ROS inhibited the increase in [Na+]i that occurs
in response to the stretch (Fig. 13.14C). We may hypothesize that activation of
NAPDH oxidase after stretch would produce a small amount of O2

–, which may
open the ATP-sensitive mitochondrial potassium (mKATP) channels and produce a
larger amount of O2

– responsible for generating the slow force response. Therefore,
if these assumptions were correct, the slow force response should be abolished by
either NADPH oxidase inactivation or blockade of mKATP channels. As shown in
Fig. 13.15A, slow force response was abolished after inhibition of NADPH oxi-
dase inhibition (apocynin or diphenyleneiodonium chloride, DPI) or after blockade
of mKATP channels (5-hydroxydecanoate, 5HD, or glibenclamide). The NHE-1-
induced increase in [Na+]i underlying the slow force response was also abolished
by these interventions (Fig. 13.15B).

Ang II induced the production of O2
– in a concentration-dependent manner in

cat cardiac slices (Fig. 13.16A). Interestingly, the Ang II-induced concentration-
dependent increase in O2

– was very similar to the above shown (Fig. 13.9)
concentration-dependent inotropic response curve (Fig. 13.16A), suggesting
a potential correlation between Ang II-induced ROS production and positive
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13 Early Hypertrophic Signals After Myocardial Stretch

Fig. 13.14 Myocardial stretch induced an intracellular ROS increase of ∼30% above the baseline
levels that was cancelled by the ROS scavengers MPG and EUK8 (Panel A). MPG and EUK8
also cancelled the slow force response (expressed as percent of initial rapid phase) (Panel B).
Furthermore, ROS scavenging also blunted stretch-induced increase in (Na+)i (Panel C). Insets
show original raw data. ∗Indicates P < 0.05 control vs. MPG and EUK8. DF = developed force.
Modified from Caldiz et al. (2007) with permission

inotropy. The O2
– production augmented by 1 nmol/L Ang II was abolished by

AT1 receptors blockade (losartan), ROS scavenging (MPG), NADPH oxidase
inhibition (apocynin) and mKATP channels blockade (5HD or glibenclamide) as
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Fig. 13.15 NADPH oxidase inhibition by apocynin (Apo) or diphenyleneiodonium chloride (DPI)
as well as mKATP channels blockade with 5-hydroxydecanoate (5HD) or glybenclamide (Gly)
abolished slow force response (expressed as percent of initial rapid phase) (Panel A). All these
interventions also cancelled NHE-1-mediated increase in [Na+]i that accompanied the slow force
response (Panel B). Insets show original raw data. ∗ Indicates P < 0.05 control vs. all other groups.
DF = developed force. Modified from Caldiz et al. (2007) with permission

shown in Fig. 13.16B. This Ang II-induced O2
– production was also blunted by

the non selective ET receptors blocker TAK044 and by the selective ETA receptors
antagonist BQ123 (unpublished observations), indicating that this effect is, in fact,
mediated by endogenous ET released by Ang II. Consistently, MPG, apocynin,
glybenclamide and 5HD also blocked the production of O2

– induced by exogenous
ET-1 in isolated cat ventricular myocytes (De Giusti et al., 2008) (Fig. 13.17).
In line with these experiments, the ET-1-induced positive inotropic effect in cat
ventricular myocytes was inhibited by these blockers (De Giusti et al., 2008)
(Fig. 13.18), indicating that the “ROS-induced ROS-release” mechanism triggered
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Fig. 13.16 Panel A: Ang II dose-response curves for the inotropic response and the produc-
tion of O2

–. The effect of different concentrations of Ang II on O2
– production was assessed in

cardiac tissue slices. Values of O2
– production are expressed as the difference from control. The

Ang II-induced concentration-dependent increase in O2
– was very similar to the concentration-

dependent inotropic response curve, suggesting a potential correlation between Ang II-induced
ROS production and positive inotropy. Panel B: Superoxide production induced by 1 nmol/L Ang
II (n = 34) in the absence and presence of 1 μmol/L losartan (Los, n = 8); 2 mmol/L MPG
(n = 3); 300 μmol/L apocynin (Apo, n = 7); 100 μmol/L 5-hydroxydecanoate (5HD, n = 10) and
50 μmol/L glibenclamide (Gly, n = 6), expressed as percent of control values without additions
and after 15 min of incubation. ∗ Indicates P < 0.05 vs. control. Modified from Caldiz et al. (2007)
and Garciarena et al. (2008) with permission
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Fig. 13.17 Effect of MPG, the NADPH oxidase blocker, apocynin, and the mKATP blockers,
glibenclamide and 5HD, on the ET-1-induced O2

– production. Average increase in O2
– after

15 min of 0.4 nmol/L ET-1 (n = 12). This increase was prevented by apocynin (Apo, 0.3 mmol/L;
n = 13), MPG (2 mmol/L; n = 12) and glibenclamide (Glib, 50 μmol/L; n = 14) and attenuated
by 5HD (100 μmol/L; n = 15) indicating that ET-1 is inducing the formation of O2

– by activation
of the NADPH oxidase, which in turn release O2

– from the mitochondria after opening mKATP
channels (ROS-induced-ROS-release). The results were expressed as the values in AU min −1

105 cells −1 obtained in the presence of drugs minus control. ∗Indicates p < 0.05 vs. ET-1. Modi-
fied from De Giusti et al. (2008) with permission

by ET-1 participates in the inotropic response, being the release of mitochondrial
ROS a step in the signaling cascade involved in this pathway.

The ET-1-induced positive inotropic effect observed in cat ventricular myocytes
was also cancelled by the PKC inhibitor, chelerythrine, indicating that this kinase
is involved in the intracellular pathway of this effect (De Giusti et al., 2008)
(Fig. 13.19). However, the exact site of action of this enzyme in the chain of effects
is unknown. One of these possible sites could be the activation of NADPH oxidase,
since PKC activation is a critical step in the phosphorylation of the NADPH oxidase
subunit p47phox and the subsequent assembly of this enzyme (Seshiah et al., 2002).
However, the participation of PKC downstream NADPH oxidase activation can
also be responsible for the effects of ET-1 on contractility. In relation to this matter,
it is important to mention that the stimulation of the NHE-1 after PKC activation by
ROS has been previously reported (Snabaitis et al., 2002). In addition, PKC can act
upstream or downstream mKATP channels since PKC stimulation of mKATP chan-
nels (Sato et al., 1998) and PKC activation by mitochondrial ROS produced after
mKATP channels opening (Juhaszova et al., 2004) have been reported. Moreover,
a feed-forward mechanism in which mitochondrial swelling leads to activation
of PKC, which stimulates mKATP channels and further increases mitochondrial
swelling, has been also proposed (Juhaszova et al., 2004). Finally, the possibility
that different PKC isoforms are acting upstream and downstream the production of
ROS and/or the activation of mKATP channels might also be considered.
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Fig. 13.18 The ET-1-induced positive inotropic effect is blunted by ETA receptors, PKC and
NADPH oxidase blockade, ROS scavenging, mKATP blockers and NHE inhibition. The aver-
age changes in SL shortening, expressed as delta percent of the control, with 0.4 nmol/L ET-1
(n = 10), and with the same concentration of ET-1 but in the presence of 0.3 μmol/L BQ123
(n = 9), 2 μmol/L chelerythrine (Chel, n = 6), 2 mmol/L MPG (n = 8), 0.3 mmol/L apocynin
(Apo, n = 13), glibenclamide (Glib, 50 μmol/L, n = 6), 5HD (500 μmol/L, n = 9) and 5 μmol/L
HOE642 (cariporide, n = 7) are shown. The positive inotropic effect induced by ET-1 was inhib-
ited by BQ123, indicating that this effect is due to stimulation of the ETA receptor. Prevention of
the ET-1-induced increase in contractility with Chel suggests the participation of PKC in the intra-
cellular pathway. Since MPG, Apo, Glib and 5HD also abolished this positive inotropic effect, the
results suggest the participation of ET-1-induced ROS production by NADPH oxidase and the par-
ticipation of mitochondrial ROS in this effect. Furthermore, the positive inotropic effect induced
by ET-1 was inhibited by HOE642, indicating that this effect is mediated by NHE stimulation.
∗Indicates p < 0.05 vs. ET-1. Modified from De Giusti et al. (2008) with permission

The ET-1-induced positive inotropic effect was inhibited by NHE blockade with
HOE642 (Fig. 13.18). Additionally, ET-1 was able to increase the proton flux (JH)
carried by the NHE during the recovery of intracellular acidosis induced by ammo-
nium pulses and this effect was inhibited by scavenging ROS with MPG (De Giusti
et al., 2008). These data are in line with previous results that have shown activa-
tion of the NHE after exogenous addition of H2O2 and stimulation of the MAPK
ERK 1/2 pathway (Snabaitis et al., 2002) (Sabri et al., 1998). Consistently, ERK
1/2 phosphorylation induced by 1 nmol/L Ang II was cancelled by MPG, apocynin,
glibenclamide, 5HD and the inhibitor of the complex I of the electron transport
chain, rotenone (Fig. 13.19) (Garciarena et al., 2008), indicating that mitochon-
drial ROS released after NADPH oxidase activation are responsible for this effect.
Interestingly, ERK 1/2 phosphorylation was also inhibited by cariporide (HOE642)
(Fig. 13.19), suggesting that this compound is acting at a mitochondrial site, as also
suggested by other authors (Juhaszova et al., 2004; Toda et al., 2007). In addition,
it has been also demonstrated in cardiac slices that the Ang II-induced mitochon-
drial O2

– formation was cancelled by cariporide and two other NHE-1 blockers,
BIIB723 and EMD87580 (Fig. 13.20A) (Garciarena et al., 2008). Parallel in vitro
experiments determined that these inhibitors were unable to decrease O2

– formation



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

SPB-175887 Chapter ID 13 July 20, 2009 Time: 08:53pm Proof 1

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

H.E. Cingolani et al.

Fig. 13.19 Ang II-induced phosphorylation of ERK 1/2. Ang II (1 nmol/L) induced an increase in
ERK1/2 phosphorylation in isolated cat ventricular myocytes that was prevented by losartan (Los,
1 μmol/L), MPG (2 mmol/L), apocynin (Apo, 300 μmol/L), 5-HD (100 μmol/L), glibenclamide
(Gli, 50 μmol/L), rotenone (Rot, 10 μmol/L), and cariporide (carip, 10 μmol/L) (n = 4). No
changes in total ERK1/2 was observed. ∗p < 0.05 vs. all other groups, ANOVA. Modified from
Garciarena et al. (2008) with permission

induced by PMS and NADH in a range that includes the values of chemilumines-
cence obtained with 1–100 nmol/L Ang II (Fig. 13.21A) (Garciarena et al., 2008),
indicating that they were not acting as ROS scavengers. Moreover, the production
of mitochondrial O2

– induced by the mKATP opener diazoxide was also inhibited by
cariporide (Fig. 13.20B). Thus, it seems likely that cariporide is targeting the mito-
chondria and blunting ROS formation which, in addition to the direct blocking effect

I

Fig. 13.20 Panel A: The stimulatory effect of 30 min-incubation with Ang II on O2
– produc-

tion by cardiac tissue slices was prevented by three different NHE-1 inhibitors; cariporide (carip,
10 μmol/L; n = 12), BIIB723 (BIIB, 1 μmol/L; n = 3) and EMD87580 (EMD, 5 μmol/L; n = 4).
Values are the difference from the control after 15 min in the presence of lucigenin. Panel B: The
increase in the chemiluminescence signal observed with 100 μmol/L Diaz (n = 17) was of a sim-
ilar magnitude to that induced by 1 nmol/L Ang II and it was prevented by 5-HD (100 μmol/L;
n = 5), carip (10 μmol/L; n = 5) and cyclosporine A (CsA) 2 μmol/L (n = 5). ∗p < 0.05 vs. all
other groups, ANOVA. Panel C: MPTP formation inhibition suppressed the stimulatory action of
Ang II on mitochondrial ROS production. CsA (0.5, 1 and 2 μmol/L) prevented the effect of Ang II
(n = 4). 2 μmol/L CsA did not affect control chemiluminiscence signal. Values are the difference
from the control after 15 min in the presence of lucigenin expressed as the mean ± SE. None of
the inhibitors used had an effect on the control chemiluminescence signal. ∗p < 0.05 vs. all other
groups, ANOVA. Modified from Garciarena et al. (2008) with permission
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Fig. 13.20 (continued)
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Fig. 13.21 Panel A: Lack of ROS scavenger effects of NHE-1 inhibitors. O2
– production was

induced in vitro by PMS and NADH in a range that includes the values of chemiluminescence
(in AU/min) obtained with 1–100 nmol/L Ang II. None of the NHE-1 inhibitors (BIIB, carip and
EMD) had an effect on the detected levels of O2

–. induced by PMS and NADH (n = 5). Panel B:
Mitochondrial swelling induced by CaCl2. Typical experiment showing that cyclosporine A (CsA)
and bongkrekic acid (BKA) significantly attenuated calcium-induced mitochondrial swelling and
the decrease in light scattering in mitochondrial suspensions. Cariporide inhibited the decrease
in light scattering in a similar magnitude to CsA (1 μmol/L) and BKA (10 μmol/L). Panel C:
Average results. The combination of both drugs, CsA or BKA with cariporide, did not show any
greater effect (n = 7). ∗ p < 0.05 vs. CaCl2, ANOVA. Modified from Garciarena et al. (2008) with
permission
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of the sarcolemmal NHE-1, would prevent the activation of this transporter by ROS.
Recent experiments performed with isolated cat ventricular mitochondria allowed
us to suggest that the mitochondrial site of action of cariporide could be, directly
or indirectly, the mitochondrial permeability transiton pore (MPT), since this drug
and the MPT blocker cyclosporine A (CsA) inhibited mitochondrial swelling to the
same extent and both effects were not additive (Fig. 13.21B, C) (Garciarena et al.,
2008).

It is well known that irreversible opening of the MPT leads to cell death.
Mitochondrial ROS burst lower the threshold for MPT opening, triggering the
apoptotic cascade (Kim et al., 2003; Shivakumar et al., 2008). However, milder
mitochondrial ROS generation after mKATP opening induces a series of anti-
apoptotic events, involving PKC activation, glucogen synthase kinase 3β (GSK3β)
phosphorylation and prevention of MPT opening (Juhaszova et al., 2004; Costa
and Garlid, 2008; Gomez et al., 2008). We have recently shown that the Ang II-
and diazoxide-induced O2

– production was cancelled after MPT blockade with
CsA (Fig. 13.20B, C) (Garciarena et al., 2008). A possible explanation is that
MPT opening is necessary to induce the increased production of mitochondrial
O2

–. Supporting this hypothesis, Cheng et al. (Wang et al., 2008) have recently
demonstrated that reversible and transient opening of MPT triggers the formation
of O2

– flashes in the mitochondrial matrix.
It is important to note that both, mKATP activation (which could lead to

“protective” mitochondrial ROS production) and inhibition of the NHE-1 by
cariporide, have been identified as relevant cardioprotective mechanisms upon
ischemia/reperfusion (Karmazyn et al., 1999; Pain et al., 2000; Avkiran and Marber,
2002; Oldenburg et al., 2003, 2004; Kimura et al., 2005b). However, regarding the
inhibitory effects of cariporide and CsA on the diazoxide-induced O2

– production,
we could speculate that the protection induced by diazoxide would be lost with
cariporide (Fig. 13.22). This speculation, that seems paradoxical, would be and
interesting topic for further research.

The intracellular pathways discussed in this section, which involve the partic-
ipation of the “ROS-induced ROS release mechanism” triggered by the autocrine

Fig. 13.22 Diazoxide
stimulates mKATP channels
leading to an increase in
mitochondrial ROS
production that might flux
across the membrane through
the MPT. Either CsA or
cariporide inhibited the
mitochondrial ROS release,
suggesting that they have a
common target, the MPT
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Fig. 13.23 Possible sites of action of cariporide in the cell: the sarcolemma and the mitochon-
dria. The figure shows that cariporide can inhibit NHE-1, leading to a decrease in Na+

i and Ca2+
i

(decrease of NCX reverse mode or increase of NCX forward mode) and therefore also a decrease
in mitochondrial calcium. On the other hand, cariporide can inhibit MPT. In both cases, cariporide
might attenuate the mitochondrial ROS production

Ang II/ET-1 mechanism are depicted in the cell and mitochondrial schemes of
Figs. 13.23 and 13.24, respectively.

13.6 The Mechanical and Hypertrophic Effect
of NHE-1 Activation

The possible link between slow force response to stretch and myocardial hyper-
trophy is supported by the fact that an enhanced activity of the NHE-1 – the cause
of the slow force response – is detected in several models of cardiac hypertrophy
and, consistent with this, the specific blockade of NHE-1 has been shown to
effectively regress cardiac hypertrophy in different models (Hori et al., 1990; Mrkic
et al., 1993; Perez et al., 1995; Schussheim and Radda, 1995; Takewaki et al.,
1995; Yamazaki et al., 1996, 1998; Schluter et al., 1998; Hayasaki-Kajiwara et al.,
1999; Yokoyama et al., 2000; Yoshida and Karmazyn, 2000; Chen et al., 2001;
Konstantinou-Tegou et al., 2001; Kusumoto et al., 2001; Camilion de Hurtado et al.,
2002b; Engelhardt et al., 2002; Schafer et al., 2002; Bak and Ingwall, 2003; Ennis
et al., 2003; Fujisawa et al., 2003; Karmazyn et al., 2003; Rajapurohitam et al.,
2003; Saleh et al., 2003; Aker et al., 2004; Chen et al., 2004; Marano et al., 2004;
Xu et al., 2004; Baartscheer et al., 2005; Chahine et al., 2005; Javadov et al., 2005;
Kilic et al., 2005; Rajapurohitam et al., 2006). The increase in [Ca2+]i is widely
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Fig. 13.24 Possible mitochondrial sites of action of NHE-1 inhibitors. The scheme shows the “two
step” release of ROS through activation of G-coupled receptors and inhibition of the MPT forma-
tion by NHE-1 inhibitors. These inhibitors may act upon different mitochondrial mechanisms,
including MNHE. They may act through a decrease in mitochondrial Ca2+, H+, inner membrane
potential affecting the MPT formation or altering the sensitivity to those factors to induce MPT
formation. Modified from Garciarena et al. (2008) with permission

recognized as one of the main prohypertrophic intracellular signals. It activates
several intracellular pathways like calcineurin/ nuclear factor of activated T cells
(NFAT), Ca2+/calmodulin-dependent kinase II (CaMKII), PKC and possibly some
others. Nevertheless, we emphasize that [Ca2+]i may be increased by mechanisms
other than that triggered by the hyperactivity of NHE-1. It has been recently sug-
gested that CaMKII is preferentially activated by an increase in a specific subcellular
Ca2+ pool localized in the perinuclear area after ET-1 stimulation (Wu et al., 2006).

In 1995 an enhanced activity of the NHE-1 was reported in the hypertro-
phied myocardium of spontaneously hypertensive rats (SHR) (Perez et al., 1995;
Schussheim and Radda, 1995). The hyperactivity of NHE-1 has been described
in several tissues other than the myocardium in human hypertension (Livne et al.,
1987; Rosskopf et al., 1993; Garciandia et al., 1995). Experiments performed in our
laboratory showed that the hyperactivity of NHE-1 in the myocardium of the SHR
was not accompanied by an increase in pHi, since there was a simultaneous acti-
vation of the acidifying Cl––HCO3

– exchanger (Perez et al., 1995) (see Fig. 13.1).
We also reported that the NHE-1 increased activity in this model was the result
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of a PKC-dependent post-translational modification of the exchanger (Ennis et al.,
1998). It was further hypothesized that the inhibition of the antiporter activity could
regress and/or prevent the development of hypertensive hypertrophy. Kusumoto
et al. (2001) proved that NHE-1 was upregulated after myocardial infarction and
that the specific inhibition of this exchanger with cariporide decreased hypertrophy
and remodeling in these hearts. Experiments from our own laboratory demonstrated
that myocardial hypertrophy of SHR regressed after 1-month cariporide treatment
(Fig. 13.25) without significantly changing the arterial pressure (Camilion de
Hurtado et al., 2002b). In addition, we reported that chronic NHE-1 blockade
normalized the enhanced interstitial fibrosis of these hypertrophic hearts, but this
effect took longer to occur compared to the regression of myocyte size (Cingolani
et al., 2003b) (Fig. 13.26), possibly as a reflection of the lower turn-over rate of
collagen (Weber and Brilla, 1991).

The precise mechanism by which NHE-1 inhibition prevents hypertrophy is still
unknown, though a number of pathways have been proposed (Fliegel and Karmazyn,
2004) As there is evidence that calcineurin plays a key role in many pathological
models of cardiac hypertrophy (Molkentin et al., 1998; Taigen et al., 2000; Haq
et al., 2001; Bueno et al., 2002; Nagata et al., 2002; Zou et al., 2002; Wilkins et al.,

Fig. 13.25 Chronic NHE-1 blockade with cariporide (one-month treatment) regressed myocar-
dial hypertrophy in SHR. Upper panels show comparative major axis sections of representative
hearts from a Wistar control rat (left), a non-treated SHR (middle) and a cariporide treated SHR
(right), and lower panels show representative myocytes cross section micrographs from the three
experimental groups. Modified from Camilion de Hurtado et al., (2002b) with permission
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Fig. 13.26 Chronic NHE-1
blockade normalized the
enhanced interstitial fibrosis
of the hypertrophic SHR
hearts, but a longer treatment
was necessary to observe this
effect. Despite the fact that
full regression of myocytes
cross sectional area (CSA)
was observed as early as after
one-month cariporide
treatment (Panel A), fibrosis
indexes like left ventricle
collagen volume fraction
(LVCVF) (Panel B) and
serum levels of the
carboxyterminal propeptide
of procollagen type I (PIP)
(Panel C) remained elevated.
However, when treatment
duration was prolonged,
normalization of fibrosis was
observed (Panels B and C).
Modified from Cingolani
et al. (2003b) with permission

2004), we recently investigated its participation in the signaling pathway involved
in the regression of cardiac hypertrophy induced by NHE-1 inhibition. We analyzed
the expression of the β-isoform of calcineurin A (CnAβ) as an indication of cal-
cineurin activity. The nuclear abundance of NFAT in the left ventricular myocardium
of untreated SHR, treated SHR and normotensive rats was measured as a confirma-
tion of calcineurin activation. CnA expression and NFAT nuclear abundance are
augmented in the hypertrophied myocardium of untreated SHR, compared with the
normotensive rats, and the regression of cardiac hypertrophy induced by NHE-1
inhibition normalizes both parameters (Fig. 13.27) (Ennis et al., 2007) This was
the first report showing that the regression of cardiac hypertrophy caused by NHE-1
inhibition, which is independent from any change in blood pressure, is accompanied
by normalization of CnAβ expression and NFAT nuclear abundance. Even though
we have provided evidence that a decrease in CnA and nuclear NFAT expression
takes place during the regression of cardiac hypertrophy induced by NHE-1 inhibi-
tion, we cannot rule out the possibility of additional effects of this pharmacological
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Fig. 13.27 (continued)
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Table 13.1 Models of cardiac hypertrophy (CH) where the NHE-1 may play a role

Cardiac hypertrophy model References

Pressure overload Arai et al. (1995), Perez et al. (1995), Perez et al. (2003),
Marano et al. (2004), and Baartscheer et al. (2005)

Post myocardial infarction Yoshida and Karmazyn (2000), Camilion de Hurtado et al.
(2002b), and Bers et al. (2003)

β–adrenergic stimulation Weber and Brilla (1991), Schafer et al. (2002), and
Cingolani et al. (2003b)

Hyperthyroidism Li et al. (2002b) and Bak and Ingwall, (2003)
Hyperparathyroidism Harnett et al. (1988), Azarani et al. (1995), and Saleh et al.

(2003)
Mineralocorticoid

stimulation
Fujisawa et al. (2003)

Leptin stimulation Konstantinou-Tegou et al. (2001) and Xu et al. (2004)
Human heart failure Chen et al. (2001)
Hamster model hereditary

cardiomyopathy
Chahine et al. (2005)

α-adrenergic stimulation Schluter et al. 1998, Xia et al. 2004, Dulce et al. (2006)
ET-1 stimulation Xu et al. (2004) and Dulce et al. (2006)
Angiotensin II stimulation Yamazaki et al. (1995) and Hautala et al. (2002)
Stretch Sadoshima et al. (1993), Yamazaki et al. (1995)
ANP receptor deficient mice Mrkic et al. (1993)
Carbonic anhydrasa

inhibition
Li et al. (2002a)

Combined pressure and
volume overload

Baartscheer et al. (2003), Baartscheer et al. (2005) and
Baartscheer et al. (2008)

Pacing-induced Aker et al. (2004)
Monocrotaline-induced Chen et al. (2001)

intervention. It has been proposed, as we discussed earlier, that cariporide might
also exert effects at the mitochondrial level (Miura et al., 2001; Ruiz-Meana et al.,
2003; Teshima et al., 2003; Javadov et al., 2005)

Below are summarized several neuro-hormonal models of cardiac hypertrophy in
which a link between NHE-1 activity and myocardial growth has been established
(Table 13.1):

J

Fig. 13.27 Panel A: Calcineurin Aβ expression was analyzed in the myocardium of treated (cari-
poride or BIIB723) and untreated SHR (n = 4 each group). Calcineurin Aβ expression was up-
regulated in the hypertrophied myocardium of the untreated SHR while a significant decrease in its
expression was detected after the regression of cardiac hypertrophy by the NHE-1 inhibitors. For
the sake of comparison the results obtained in normotensive rats (n = 3) were included in the figure.
The calcineurin Aβ expression levels of the cariporide- and BIIB723-treated SHR were not signifi-
cantly different from those of the NT rats. Panel B: Representative Western blot and average values
of NFAT abundance in nuclear extracts from LV of untreated, cariporide- or BIIB723-treated SHR
and normotensive (NT) rats (n = 8, 8, 5 and 6, respectively). NHE-1 inhibition normalized the
nuclear expression of NFAT, previously up-regulated in the hypertrophied myocardium of SHR.
∗ means p < 0.05 vs. untreated SHR, ANOVA. Modified from Ennis et al. (2007) with permission
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1. An up-regulation of NHE-1 was reported in a cardiac hypertrophy and failure
model of β1-adrenergic receptor transgenic mice (Engelhardt et al., 2002) The
inhibition of this exchanger prevented the development of cardiac hypertrophy
and fibrosis, suggesting that NHE-1 was essential for the detrimental cardiac
effects of chronic β1-receptor stimulation in the heart (Engelhardt et al., 2002)
Similarly, cardiac hypertrophy induced in rats by chronic isoproterenol adminis-
tration was prevented by inhibition of NHE-1 (Ennis et al., 2003)

2. Hypertrophied hyperthyroid hearts show enhanced g810 NHE-1 activity and
when exposed to acute ischemia, they accumulate more Na+ than the control non-
hypertrophied hearts (Bak and Ingwall, 2003) These changes were prevented
by NHE-1 inhibition (Bak and Ingwall, 2003) Furthermore, it has been demon-
strated that thyroid hormone, by the interaction of its receptor with the NHE-1
promoter increases the expression of NHE-1 (Li et al., 2002b)

3. In patients with end-stage renal disease and secondary hyperparathyroidism
as well as in patients with primary hyperparathyroidism, a strong correlation
between cardiac hypertrophy and serum parathyroid hormone levels has been
reported (Harnett et al., 1988; Bauwens et al., 1991; Piovesan et al., 1999).
This correlation was shown to be even much stronger than that between Ang
II and hypertrophy (Bauwens et al., 1991). In addition, a direct evidence that
parathyroid hormone improves hypertrophy was also reported (Schluter and
Piper, 1992). Though controversial (Mrkic et al., 1993; Azarani et al., 1995), a
stimulatory effect of parathyroid hormone on NHE-1 has been described; there-
fore, it is tempting to speculate about the possible involvement of the antiporter
in the signaling pathway evoked by parathyroid hormone in the genesis of car-
diac hypertrophy. On the other hand, low sodium plasma levels were detected in
patients with NYHA class III–IV heart failure and high levels of parathyroid hor-
mone (Arakelyan et al., 2007). The resulting misbalance of the Na+/Ca2+ may in
turn be a factor to consider in the development of cardiac hypertrophy.

4. In rat neonatal ventricular myocytes, aldosterone stimulation induced a hyper-
trophic response accompanied by NHE-1 up-regulation and increased [Na+]i.
Both, hypertrophy and elevated [Na+]i, were prevented by the NHE-1-specific
inhibitor EMD87580 as well as the aldosterone antagonist spironolactone
(Karmazyn et al., 2003). Similar results were obtained in uninephrectomized rats
exposed to deoxycorticosterone acetate/salt, in which cariporide treatment com-
pletely inhibited hypertrophy and NHE-1 up-regulation (Fujisawa et al., 2003).

5. Cardiac hypertrophy of atrial natriuretic peptide receptor-deficient mice was
accompanied by an increased activity of NHE-1, which thereby increased [Ca2+]i
(Kilic et al., 2005). It was shown that these alterations were normalized by
chronic treatment with the NHE-1 inhibitor cariporide. These results are in line
with the report by Tajima et al. (1998) demonstrating that atrial natriuretic pep-
tide inhibits NHE-1 activity.

6. Emerging evidence indicates that leptin – a protein encoded by the obesity
gene- is linked to cardiac hypertrophy (Rajapurohitam et al., 2003, 2006; Xu
et al., 2004). Interestingly, leptin has been reported to activate NHE-1 through
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a PKC-dependent pathway (Konstantinou-Tegou et al., 2001). Moreover, it has
been reported that leptin elevates ET-1 levels and, though speculative, this may
be the pathway involved in NHE-1 stimulation (Xu et al., 2004). Furthermore,
a recent report by Karmazyn’s group implicated leptin as a mediator of hyper-
trophic effects of Ang II and ET-1 in cultured neonatal ventricular myocytes
(Rajapurohitam et al., 2006).

7. In right ventricular hypertrophy due to monocrotaline-induced pulmonary artery
injury, myocardial NHE-1 expression was enhanced. As a consequence, both
hypertrophy and NHE-1 up-regulation were abrogated by cariporide treatment
(Chen et al., 2001).

8. In rabbits subjected to volume and pressure overload, which induced cardiac
hypertrophy and failure, acute inhibition of NHE-1 in isolated left ventricular
myocytes reversed ionic remodeling (Baartscheer et al., 2003). In this model, it
has also been reported that dietary cariporide treatment, initiated at induction of
volume and pressure overload, reduced hypertrophy and prevented the develop-
ment of heart failure and cellular ionic and electrical remodeling (Baartscheer
et al., 2005). Moreover, it has been recently reported by the same group, that in
rabbit hearts with established hypertrophy and signs of heart failure (one month
after induction of pressure/volume overload), two months of chronic treatment
with cariporide caused regression of hypertrophy, heart failure and ionic and
electrophysiological remoldeling (Baartscheer et al., 2008).

9. In human hearts with chronic end-stage heart failure exhibiting various degrees
of hypertrophy, a significantly greater NHE-1 activity was detected in the human
hypertrophied myocytes in comparison to myocytes from normal unused human
donor hearts (Yokoyama et al., 2000).

We have also demonstrated that three different antihypertensive pharmacologi-
cal interventions with different mechanisms of action (nifedipine, a Ca2+ channel
blocker; enalapril, an inhibitor of angiotensin converting enzyme; and losartan, an
AT1 receptor blocker) caused the normalization of myocardial NHE activity, regres-
sion of cardiac hypertrophy (Fig. 13.28), and decrease of arterial pressure in SHR
(Alvarez et al., 2002). However, for a similar reduction in systolic blood pressure
and NHE-1 activity, losartan induced the largest regression of cardiac hypertrophy.
Even though these results give support to the hypothesis that an increased myocar-
dial tension is determining intracellular signals having common end points on the
antiporter activity and cellular growth, they also suggest that the eventual recruit-
ment of additional intracellular pathways may be playing a role in the hypertrophic
response.

In line with the experiments reported by Kusumoto et al. (2001) showing that
NHE-1 inhibition decreased hypertrophy and remodeling after myocardial infarc-
tion, we have recently reported that post-myocardial infarction hypertrophy and
fibrosis were reduced after phosphodiesterase 5A inhibition by sildenafil, being the
phosphodiesterase inhibition accompanied by protein kinase G activation and NHE-
1 inhibition (Perez et al., 2007).
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Fig. 13.28 Panel A: Effect
of nifedipine, enalapril and
losartan on cardiac
hypertrophy (CH) in SHR.
Heart weight to body weight
(HW/BW) was used as an
index of CH. (∗) P < 0.05
compared to SHR-control;
(†) P < 0.05 compared to
enalapril-.and
nifedipine-treated SHR
(ANOVA). Data are means ±
SE. Panel B shows the values
of the rate of pHi recovery
from CO2-induced
intracellular acid load
(dpHi/dt) at a common pHi
value of 6.90 in SHR-Control
(n = 7); WKY-Control
(n = 6); SHR-Nife (n = 5);
SHR-Ena (n = 8); and
SHR-Los (n = 5).
(∗) P < 0.05 compared to all
other groups (ANOVA). Data
are means ± SE. Modified
from Alvarez et al. (2002)
with permission

As mentioned before, an enhanced activity of NHE-1 may be the result of an
increased expression of the exchanger, an increased turnover of functional units, or
a combination of both alternatives. In line with this, the reviewed models clearly
exhibited cases of enhanced NHE-1 activity due to up-regulation, post-translational
modification, or a combination of both. In either case, the hyperactivity of NHE-1
was linked to cardiac hypertrophy.

Interestingly, whereas chronic NHE-1 inhibition with cariporide in the whole
animal induces up-regulation of the exchanger (Camilion de Hurtado et al., 2002a),
the normalization of its previously augmented expression has been reported after
chronic NHE-1 inhibition (Chen et al., 2001; Engelhardt et al., 2002; Ennis et al.,
2003; Kilic et al., 2005). Nevertheless, several aspects deserve further investigation
to clarify the precise mechanism by which NHE-1 is involved in the development of
cardiac hypertrophy and the possible link with other mechanisms of the intracellular
hypertrophic program.
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